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ABSTRACT 
We experience and interact with the world through our body. The founding father of computer science, 

Alan Turing, correctly realized that one of the most important features of the human being is the 
interaction between mind and body. Since the original demonstration that electrical activity of the cortical 
neurons can be employed to directly control a robotic device, the research on the so-called brain–machine 
interfaces (BMIs) has impressively grown. For example, current BMIs dedicated to both experimental and 
clinical studies can translate raw neuronal signals into computational commands to reproduce reaching or 
grasping in artificial actuators. These developments hold promise for the restoration of limb mobility in 
paralyzed individuals. However, as we review here, before this goal can be achieved, several hurdles have 
to be overcome, including developments in real-time computational algorithms and in designing fully 
implantable and biocompatible devices. Future investigations will have to address the best solutions for 
restoring sensation to the prosthetic limb, which still remains a major challenge to full integration of the 
limb into the user’s self-image.  

 
 

INTRODUCTION 
At the beginning of the third millennium the development of a revolutionary approach to rehabilitation 

radically improved the integration between apparently separated fields of research and heavily reshaped 
the traditional intervention protocols. Building on the last century’s most promising technological 
innovations, this inspired trend confirmed the importance of neuroprosthetics as an interdisciplinary 
specialty aiming at merging advances in neuropsychology, cognitive neuroscience, and biomedical 
engineering for creating adaptive devices to overcome the impairments resulting from traumatic or 
degenerative loss of sensorimotor functionality.  

Following long-established procedures, manual interventions have been widely employed in 
conventional rehabilitation protocols. However this approach is extremely task-specific and time-
consuming for both patients and therapists, requires elaborate schemes, and depends drastically both on 
therapists’ experience and patients’ compliance (del-Ama et al., 2012). In addition, these procedures do 
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not always address some of the most important features of a proper sensorimotor rehabilitation, including 
systematic control of feedback and difficulty (Popovic et al., 2003) and monitoring patients’ achievements 
(Dietz, 2009). Thanks to the most recent technological advances in mechanics, control, and attachment, 
neuroprosthetics has rapidly grown (Zlotolow and Kozin, 2012). Thus by increasing repeatability, 
automation, and quantification, robotic-assisted rehabilitation represents one possibility to solve these 
issues (Prange et al., 2006). 

Despite the broad implementation of robotic devices in clinical practices (Marchal-Crespo and 
Reinkensmeyer, 2009), robotic assistance does not always cope with the difficulties of severe clinical 
conditions characterized by complete loss of body segments or neural connections, e.g. amputation or 
spinal cord injury, respectively. As some visionary artists imagined in forward-looking master pieces such 
as the song “The Robots” realized by the band Kraftwerk in 1978, pioneering studies showed that the 
signal originating from the neural activity in the brain can be recorded, encoded, and used to control 
external devices (Fetz and Finocchi.Dv, 1971; Fetz, 1969). This innovative methodology triggered a huge 
amount of scientific investigations and clinical applications, establishing in fact an innovative field in 
neuroprosthetics and a new era in rehabilitation. Thus the so-called Brain-Machine Interfaces (BMIs) have 
been applied to a wide collection of clinical conditions (Lebedev and Nicolelis, 2006) and radically 
transformed the expectations of both patients and medical doctors, quantitatively increasing the range of 
possibilities for coping with the patients’ needs and qualitatively improving the rehabilitation protocols. 
However before BMI techniques can be fully implemented into clinical environments, some important 
issues have to be clarified and further investigations are necessary. 

The main aim of this chapter is to provide detailed information on the state-of-the-art progresses and 
future directions of neuroprosthetics and BMIs, highlighting the advantages and disadvantages of each 
technique. In the first section of this chapter we will introduce how BMI systems can provide users with 
communication and control capabilities independently of muscular activity, explaining that translating the 
electrical brain activity into commands is a way to restore lost motor functions by allowing the 
communication between the brain and an external device. In the second section we will summarize the 
advances in invasive and non-invasive neuroprosthetics, both for rehabilitation and motor substitution, 
according to the type of disability towards which the intervention is addressed. Here we will review the 
progresses in innovative prosthetic technology and we will further discuss the future key challenges aimed 
at improving the life of disabled people. The third section of the chapter will be dedicated to illustrate the 
development of the BMIs which made it possible to control prosthetic limbs, giving birth to the research 
and application of neuroprosthetics, including external as well as implanted components. We will take into 
account recent evidence showing new methodology for accurately predicting and reconstructing natural 
kinematics from non-invasively recorded brain activity during movements. In addition, we will focus on 
the therapeutic implementation of functional electrical stimulation, combined with neuroprostheses, as a 
possibility for restoring lost motor functions by stimulating muscles with either intramuscular or surface 
electrodes. In the fourth section of the chapter we will mention the significant emerging challenges to 
implementation of advanced neuroprostheses. Furthermore, we will elucidate the work on the elaboration 
of biologically-derived and computationally-implemented neural modeling of kinematic learning on the 
basis of virtual reality technology, focusing on the development of bio-mimetic controllers to control 
robotic neuroprosthetics. The fifth section of the chapter will be dedicated to provide insights on the work 
directed towards the restoration of sensations from the prosthetic limb in order to improve what remains 
still a major challenge in neuroprosthetics: the full integration of the prosthesis into the body 
representation at the brain level. 
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1. IMPLEMENTATION OF RECENT TECHNOLOGY INTO THERAPEUTIC 
REHABILITATION PROTOCOLS 

Traumatic injuries of the central nervous system, as well as neurodegenerative disorders, continue to 
inflict harmful motor deficits in large populations. In 2005 more than 1.5 million people in North America 
suffered amputations (Ziegler-Graham et al., 2008), with a severely reduced quality of life though 
preserved cognitive functions (Millan et al., 2010). In the USA alone, spinal cord injury (SCI) is 
responsible for the occurrence of more than 10000 new cases of permanent paralysis per year (Nobunaga 
et al., 1999). The annual incidence of stroke in industrialized countries is approximately 2‰ of the 
inhabitants (Kolominsky-Rabas et al., 2001). In case of stroke survivors, the impairments have a highly 
disabling impact on the individuals’ quality of life. Even after completing standard rehabilitation, 
approximately 50%-60% of stroke patients still experience some degree of motor impairments (Belda-
Lois et al., 2011). 

For treating motor outcomes of neurodegenerative diseases several strategies have been proposed, but 
still result in chronic deficits. One possibility is the pharmaceutical treatment, but for example dopamine 
administration is affective only in the early, not late, stages of Parkinson’s disease. Another possibility is 
the attempt to restore neural activity, but for example deep brain stimulation can be performed only on 
10% of patients and the high risk of mortality is very high (Fuentes et al., 2009). Several alternative 
approaches have been progressively developed in the recent years, including the use of neuroprosthetic 
devices, e.g. for stimulating the spinal cord.  

The most promising approach is based on the so-called “Brain-Computer Interfaces” (BCIs) and has 
only recently enlarged its range of application, making it possible to control motor functions such as 
reaching, grasping, or locomotion. A BCI system can be defined as “a system that measures and analyzes 
brain signals and converts them in real-time into outputs that do not depend on the normal output 
pathways of peripheral nerves and muscles” (Wolpaw et al., 2000). Recently, there has been an enormous 
development in the research field of substitution of lost motor functions. BCIs have rapidly been 
incorporated into the improvement of neuroprosthetic devices that use neurophysiological signals from 
undamaged components of the central or peripheral nervous system to allow patients to regain motor 
capabilities. Indeed, several findings already point to a bright future for neuroprosthetics in many domains 
of rehabilitation medicine. Translating the electrical brain activity into commands is a way to restore lost 
motor functions by allowing the communication between the brain and an external device. Clinical 
practice illustrates that patients who receive robot assisted training in combination with physiotherapy 
(after stroke) are more likely to achieve better motor functionality with respect to patients trained only 
with regular physiotherapy or devices (Waldner et al., 2009).  

 

 
2. BENEFITS AND LIMITATIONS: INVASIVE VERSUS NON-INVASIVE APPLIED 
NEUROPROSTHETICS 

In order to restore motor functions by using an artificial device to overcome the loss of neural activity, 
the first important step is to integrate the external device with the nervous system. In this vein, since the 
first experimental demonstrations that the invasively-recorded activity of ensembles of cortical neurons 
can directly control a robotic manipulator (Chapin et al., 1999; Fetz, 1969), BMI has moved at a stunning 
pace. Invasive BMIs are based on recordings from populations or few single brain neurons using 
intracranially implanted electrodes, thus providing an excellent quality of brain signals but with some risks 
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generally associated with invasive procedures, including infection or rejection (Lebedev and Nicolelis, 
2006). Implantable brain electrodes and electrocorticography (ECoG) procedures were invented during the 
1950s in order to identify the origin of epileptic seizures. Using similar techniques, pioneering animal 
studies showed that the brain signals can be detected, recorded, and used to control external devices 
(Nicolelis and Lebedev, 2009). Starting from these revolutionary setups, there has been a huge increase of 
attempts to integrate such techniques with rehabilitation purposes, but successful results are still very few. 
In one case a stroke patient suffering from locked-in syndrome was implanted with a device which let him 
be able to control a cursor on a computer screen (Kennedy and Bakay, 1998). Following the first 
demonstration of the possibility to control an artificial hand using a device directly implanted on the 
cerebral cortex (Hochberg et al., 2006), other examples were brought to the scientific community only in 
the last months. Thus, an innovative prosthetics program achieved the first ECoG-controlled prosthetic 
arm fitted on a patient with tetraplegia who was implanted with a CyberKinetics 96-electrode Brain Gate 
chip (CyberKinetics Neurotechnology Systems, Inc., Foxboro, MA), and was able to control not only a 
robotic arm but also the home lights and television (Zlotolow and Kozin, 2012). Similarly, the residual 
activity of the neurons in a small portion of the motor cortex has been used to let tetraplegic individuals 
control a robotic arm and hand in order to perform daily activities such as reaching objects and interact 
with them (Hochberg et al., 2012).  

Non-invasive BCI also offers several practical solutions for control and communication between the 
nervous system and the prosthetic devices, even if there are some costs due to technical issues, required 
training, and quality of the neural signals. Electroencephalography (EEG) is the most common non-
invasive method for recording brain activity (Bortole et al., 2014). One possibility of overcoming such 
problems is to use adaptive algorithms that constantly update the parameters of the classifiers during 
training (Wolpaw and McFarland, 2004). Non-invasive EEG techniques can detect the modulations of 
brain activity correlating with a wide range of conditions, such as sensory processing, movement 
execution, and cognitive states. These properties have led to development of several classes of EEG-based 
BMI systems, differentiated  in terms of recorded cortical areas, extracted signals’ features, and sensory 
feedback (Lebedev and Nicolelis, 2006). Non-invasive systems use surface EEG to control computers or 
other devices by encoding the neural response of different origin. This approach is useful for helping 
paralyzed people (e.g. Locked-in syndrome) to extend communication with the external world. One of the 
first BMI systems took advantage of the neural activity in response to the presentation of visual stimuli 
(Sutter, 1992). This system could detect the differences between the cortical activity in the visual cortex 
related to different symbols (e.g. letters), and therefore identify the letter that the user is looking at and 
build sequences of symbols (e.g. words). In this way an individual suffering from amyotrophic lateral 
sclerosis became able to communicate by creating strings of about 12 words in one minute (Sutter, 1992). 
Another EEG-based BCI system exploits the human ability to voluntarily regulate the so-called slow 
cortical potentials, i.e. spontaneous brain waves between 0.5 and 10Hz (Brown, 1993; Siniatchkin and 
Gerber, 2011). Through specific training programs people can learn to control these brain waves and 
thereby the output associated with them (Birbaumer et al., 1999). Despite its limitations in terms of 
number of suitable couplings between patterns of brain activity and robotic output, this system has been 
successfully tested in patients suffering from locked-in syndrome. In particular, the patient showed clear 
developments in their ability to control a cursor on a computer screen in order to select different symbols. 
This improved capability significantly increased basic communication skills (Kubler et al., 1999). This 
system clearly increases the communication capabilities and the interactions with the external world, e.g. 
providing Internet access to disabled people (Birbaumer et al., 2000).   
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Non-invasive BCI is an effective tool not only for improving communication and control, but 
importantly it can be used for re-establishing neural activity. For example it has been very recently shown 
that EEG activity is a reliable signal to trigger motor rehabilitation after stroke (Pichiorri et al., 2013). In 
particular, stroke patients were equipped with the EEG cap and could see the projection of a virtual hand 
shown at the location of their own affected hand. In these conditions patients were asked to imagine to 
grasp and release objects using the affected hand and the EEG signal resulting from this imagery task 
triggered the movement of the virtual hand. After the training patients showed restored brain activity, with 
inter-hemispheric patterns more similar to healthy controls with respect to prior the experiment. 
Importantly a group of patients which performed the imagery task but did not undergo the BCI setup did 
not show improvements in inter-hemispheric connections. EEG-based BCIs have been implemented as 
solutions for patients suffering from both partial (Kubler et al., 2005) and complete paralysis (Piccione et 
al., 2006; Sellers and Donchin, 2006). These BCIs enable patients to control computer cursors in order to 
communicate with the external world or to indicate intentions. Electromyography (EMG) works in a 
similar way and represents an alternative to the existing non-invasive BCIs. In EMG-based systems the 
voluntary activations of unaffected muscles in partially paralyzed people and amputees is used to control 
limb prostheses and exoskeletons (Light et al., 2002; Zecca et al., 2002). Currently, these systems are 
more feasible for daily life situations with respect to EEG-based BCIs, because patients who suffered 
either amputations (Hargrove et al., 2013) or SCI (Williams and Kirsch, 2004) might have residual 
muscular activity to allow them to efficiently interact with the external world.  

The ultimate trend in rehabilitation and control procedures is the combination of EEG-based and EMG-
based BCI. Pioneering this line of research Leeb et al. (2010) fused the recording of EMG and EEG 
activity in the framework of the hybrid BCI approach. In this way, people could achieve a good control of 
their hybrid BCI independently of their level of muscular fatigue. Very recently Cheron et al. (2012) used 
EEG and upper limb EMG, or a hybrid of these two neurophysiological signals, to control assistive 
exoskeletons used in locomotion based on programmable central pattern generators or dynamic recurrent 
neural networks. These methods may exploit mechanisms of brain plasticity and assist in the 
neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple 
sclerosis, and cerebral palsy. 

 
------------------------------------ 

Please insert Figure 1 about here 

------------------------------------- 

Figure 1. Schematic representation of the principles (lower panel) and the characteristics of brain-
computer interfaces (upper panel). The brain signals are acquired and used by invasive or non-invasive 
BCIs in order to extract their features and translate them into commands for external devices. The main 
applications of BCIs are communication skills and interaction with objects. 

 
 

2.1 Rehabilitation 
Initial work on robot-assisted neurorehabilitation for the upper limbs aimed primarily at training the 

reaching movements with the proximal sections of the extremity. Recent work brought a surge in devices 
dedicated to arm-hand function, focused on the proximal sections of the missing limb and specifically 
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designed to assist and train movements of the shoulder, elbow, wrist, and fingers. Thanks to these 
technological advances, a large variety of specific devices is now available for dealing with all phases of 
neurological rehabilitation, based on the concept that task-oriented repetitive movements can improve 
motor recovery in patients with neurological or orthopedic injuries. The importance of robotic assistance 
in rehabilitation is associated with its peculiar utility in helping, enhancing, evaluating, and documenting 
all the different stages of the neurological rehabilitation procedure. 

There are some mandatory requirements for a rehabilitation robot. First, the robot should be adapted to 
the human limbs in terms of length, range of motion, and number of degrees of freedom (DOFs). Second, 
in order to rehabilitate several movements, the device should have a high number of DOFs allowing a 
broad range of movements with many anatomical joint axes of rotation involved. Following these 
directives many robotic devices have been introduced in clinical environments. Among these, various 
robots have been dedicated to the rehabilitation of the upper extremities, mostly focused on stroke 
patients. For example the ARMin II is a robot developed for arm therapy, applicable to the training of 
activities of daily living. It has a semi-exoskeletal structure with seven active DOF, five adjustable 
segments to fit different body sizes, and position and force sensors (Staubli et al., 2009). ArmeoPower 
(Hocoma, Zurich, Switzerland) is a rehabilitative exercise device that allows early rehabilitation of motor 
abilities and provides arm support in a 3D environment. It is designed for individuals who have 
experienced strokes, traumatic brain injuries, or other neurological disorders resulting in hand and arm 
impairment. Similarly to the devices used to address basic research questions in healthy volunteers 
(Pulliam et al., 2012), recent work showed the importance of integrating virtual environments and robotic 
prosthetics to train hand and arm movements in post-stroke patients (Adamovich et al., 2009). Adapting a 
commercially available haptic device incorporated into a virtual environment and implemented in 
rehabilitation procedures, these authors developed a system which simulated a piano with visual, auditory, 
and tactile feedback comparable to an actual piano. Arm tracking with the hand Master robot allows 
patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport 
and manipulation phases.  

Robotic hand devices can be used independently by patients in both acute and post-acute settings and, 
focusing on compensation, they can be valuable adjunctions to conventional approaches. The main feature 
of such devices is that they are wearable and therefore can be integrated directly into task-specific 
training. The feasibility of the introduction of robotic devices in several rehabilitation settings is 
demonstrated by the fact that early efforts with proximal arm robots demonstrated their safety, tolerance 
by patients, and capability for improving motor control (Burgar et al., 2011; Krebs et al., 1999)  

 
2.2 Substitution 

Nowadays, lower extremity prosthetics have developed to the point that a bilateral below-the-knee 
amputee is able to participate in the Olympics Games and challenge the best runners in the world. 
Scientific research on the upper extremity has not yet reached the same level and there are still a lot of 
shortcomings and difficulties with regards to the fact that patients will only use their prosthesis if they 
consciously perceive a clear advantage (Zlotolow and Kozin, 2012). 

Innovations in upper extremity prosthetics over the last years have succeeded in improving several 
critical parameters, including control, functionality, speed, attachment, size, weight, and power (Belter et 
al., 2013). Most of these advances have been achieved during the Iraq and Afghanistan conflicts, when 
efforts were focused on improving prostheses for the many soldiers who had to deal with missing or 
severely compromised limbs (Resnik et al., 2013). Belter and Dollar (2011) made a review comparing 
several different anthropomorphic prosthetic hands, taking into account not only the technical aspects of 
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each device (identifying metrics such as weight, grip force, and grasp speed), but also the end-user opinion 
during the clinical use, including the nature and level of the amputation, as well as the motor activity and 
professional needs. The most advanced prosthetic upper limbs have motors for each finger, 
interphalangeal and metacarpal articulations (e.g. Contineo Multi-Grasp hand and Michelangelo hand) 
where the fingers are individually powered and with a great variety of possible pinch and grasp patterns. 
Other devices are able to gradually increase the strength of grip on an object and offer a fully rotating 
forearm and wrist flexion/extension (e.g. i-Limb Ultra hand), whereas old terminal devices require manual 
wrist positioning.  

Amputations above the elbow and shoulder are difficult challenges for prosthetic design, because they 
require the device to implement more functional segments. For an entire-limb replacement the Modular 
Prosthetic Limb® (MPL) allows 22 DOF with individual finger, thumb, wrist, forearm, and elbow control. 
The MPL system for control and sensory feedback is designed to accommodate both non-invasive (surface 
EEG) and invasive (ECoG) interfaces. Thanks to its flexibility in terms of adopted interface and based on 
its exploitation of the brain signals, the MPL system may be useful not only for amputees but also for SCI 
patients. In a special report on the role of sensory feedback in upper limb prostheses, (Antfolk et al., 2013) 
extensively summarized the studies involving upper limb prosthetics, taking into account input and output 
(vibrotactile, direct nervous stimulation, mechano-tactile, extended physiologic proprioception, 
electrotactile). The main finding of this report is that the availability of advanced robotic hand devices or 
multi-fingered prostheses is continuously increasing, their quality in terms of functionality and reliability 
is progressively enhancing, and the number of experimental studies and clinical applications of prosthetics 
devices is intended to exponentially grow in the next years. Beyond improvements in function, patients 
also report improved social integration, self-image, and perception by others. As the field of prosthetics 
advances, not only functionally but also aesthetically, the users’ acceptance threshold will be lowered. 
Indeed, successful prosthetic care depends not only on technological developments but also on good 
communication and cooperation among patients, surgeons, and physiotherapists, as well as on the 
collaboration with the scientists harnessing the power of technology to solve real-life challenges.  

 

 
3. IMPLEMENTING NEUROPROSTHESES AND FUNCTIONAL ELECTRICAL 
STIMULATION 

The research on new techniques to better integrate brain signals and impaired muscular activity is 
calling increasing attention to functional electrical stimulation (FES). By means of implanted or surface 
electrodes, FES is used to trigger muscular contractions using electrical impulses, often coupled together 
with BCI as a motor neuroprostheses (invasive or not) to facilitate movement (Marquez-Chin et al., 2009). 
Where viable - not for muscular degeneration- FES artificially compensates the loss of voluntary muscle 
control and it is also used as an effective therapeutic tool for prevention of muscle atrophy, maintenance 
of joint mobility, and generation of proprioceptive feedback. FES motor training with surface electrodes is 
used for supporting the desired movements in order to improve hand functions. For example in the case of 
SCI survivors the activity from muscles above the level of the lesion can used to control the electrical 
stimulation of paralyzed limbs (Ferguson et al., 1999). 

Following stroke or SCI one of the main issues is to maintain muscular activity of the affected body 
segments in order to avoid a wide range of secondary impairments due to disuse, including arthritis, 
osteoporosis, or contractures. Holding promise for achieving these aims, one of the first important 
advances have been brought by the development of the BION system (Loeb et al., 2001). This system 
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ensembles fully implantable and externally controlled electrodes and is capable to trigger muscular 
activity. Thanks to these devices it was possible to induce movements of previously paralyzed body 
segments; however, an external controller was required and external power is necessary to create the 
stimulation. Therefore, the next step was to avoid the necessity of this external amplifier and render the 
patient able to internally control muscle contractions. In order to achieve this goal it has been shown that 
the muscular activity of a preserved body part can function as controller to trigger contractions in an 
affected limb. In particular, a stroke patient has been successfully implanted with an electromyography-
controlled FES device which used the signals recorded at the chest level to control muscular activity of the 
affected hand (Knutson et al., 2012). Similarly, taking advantage of the ultimate integration between FES-
BCI and semi active orthoses, a patient suffering from complete sensory and motor loss due to SCI at the 
cervical level became able to perform grasp-and-release movements with the previously affected limb, 
including writing and precision grip, even one year after the training (Rohm et al., 2013). As already 
suggested by the work of Rohm et al. (2013) the next neuroprosthetic devices will incorporate fully 
portable active exoskeletons and FES systems, giving birth to new hydrid orthosis devices (Weber et al., 
2011). In this direction a new device is in current development: the “OrthoJacket” (Schill et al., 2011). 
This device combines the advantages of stabilizing the joints together and the possibilities offered by 
stimulating muscular activity of paralyzed limbs. In addition, it does not require to implant electrodes 
directly in the muscular fibers, but rather uses surface electrodes to trigger muscular activity. This feature 
renders the OrthoJacket one of the best candidates to fulfill the requirements for at home motor re-training 
and for supporting daily activities. Finally, it overcomes the limitations due to the characteristics of the 
controlling components of previous devices which had to be fixed to the floor or the wheelchair, thereby 
stationary and suitable only for training in clinics. By increasing portability the OrthoJackect will allow 
patients to perform rehabilitation exercises at home and to accomplish daily activities independently.  

Nowadays, several FES-based actuating systems have been proposed to aid motor task practice and 
training, including virtual reality feedback systems (Merians et al., 2006) and robotic assistive device 
(Alon et al., 2007). In order to investigate the integration between BMI and FES systems, Marquez-Chin 
et al. (2009) tested two SCI patients on a neuroprostheses for grasping. Both patients suffered from a 
bilateral loss of the grasp function, but the first one had subdural ECoG electrodes implanted, while the 
second one underwent to four-week long FES training paradigm and wore a neuroprosthesis for 
generating palmar and lateral grasp (using a Compex Motion transcutaneous electrical stimulator). After 
some training, both patients demonstrated a significant increase in grasping, actuating the desired hand 
movements and picking up different objects by executing previously impaired movements (Marquez-Chin 
et al., 2009). These findings support the notion that neuroprostheses based on FES are reliable and non-
invasive possibilities for restoring lost motor function (Millan et al., 2010). The clinical applications of the 
FES-BCI joint approach range from neurological disorders at the cortical level to motor impairments due 
to lesions of the corticospinal tract. In the case of stroke the FES-BCI is used to restore hand motor 
function as a neuroprosthetic and assistive tool in a rehabilitative capacity. In the case of SCI, the FES-
BCI works as a motor substitution tool for upper limb motility. In both SCI and stroke patients it has been 
demonstrated that, by stimulating muscles, the FES training performed by the users can produce 
neuroplasticity changes in the motor representations at the brain level, a fundamental feature that further 
supports the effectiveness of such systems.  

As a final remark, it is important to note that several examples of muscular stimulation systems based 
on surface electrodes are currently available on the market.  Though the non-invasive systems are rapidly 
developing, they are currently limited due to insufficient selectivity in terms of selectivity in muscular 
stimulation, difficulties with reproduction of movements, limited excitability of deeper muscle groups, and 
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also pain sensations (Mattia et al., 2012). On the other hand, implantable electrode stimulation systems 
have been developed (Keith et al., 1989). However, they inherently bear the risks of infections and 
associated with surgical interventions. The full implementation of robotically-assisted therapy in standard 
clinical practice will depend on the ability of future research to address such issues relative to both non-
invasive and invasive FES-BCI.  

 
 

4. THE NEURAL BASIS OF PROSTHETICS  
Control is the process of acting on a dynamical system in order to achieve a goal. The brain operates as 

a biological controller to perform difficult tasks such as locomotion and manipulation, and it is able to 
manage nonlinearities, such as noise, delays, and external perturbations. The human hand includes 
multiple joints, thereby allowing for an infinite number of different finger trajectories critical in daily 
tasks. Such flexibility results in a complex brain-spinal cord-hand coordination system, based on a neural 
control scheme required at the brain level -and communication pathways through the spinal cord- to 
select, plan, and execute particular trajectories in order to properly accomplish the requirements of the 
manual tasks (e.g., accuracy), supporting the central role of the spinal cord. 

Evidence in animal models of SCI showed that the firing rate of individual neurons can be modulated 
as a function of the sensory feedback associated with the neuronal firing (Fetz and Finocchi.Dv, 1971; 
Fetz and Baker, 1973; Fetz and Finocchio, 1975). Recently, several studies in rodents (e.g. Talwar et al., 
2002) and in primates (e.g. Serruya et al., 2002; Taylor et al., 2002), have demonstrated that animals can 
learn to take advantage of the brain signals to control the movement of a computer cursor on a screen, and 
also the 1- and 3-dimensional movements of a robotic arm (Chapin et al., 1999; Wessberg et al., 2000). 
These findings support the notion that motor recovery can be improved by bypassing the SCI and using 
the brain signals to directly control external devices. One of the first attempts to bypass human SCI and 
restore voluntary motility included the implementation of an interface between the residual cortical and 
subcortical activity and an artificial device able to perform specific mechanic movements (Schmidt, 1980). 
Modern BMI systems for upper limb prosthetics are focused on predicting arm movements during 
reaching and grasping in the form of endpoint trajectories or wrist, elbow and shoulder angles and 
velocities in monkeys and humans (Carmena et al., 2003).  

The reliability of the quality of the brain signals to be used in BMI systems and of the recording 
techniques is demonstrated by the high accuracy (up to 99%) with which a single-movement-specific 
neural firing pattern can be recognized using staining techniques in awake animals (Ben Hamed et al., 
2007) Not only simple movements but also complex, combined motor schemas are recognizable by BMI 
systems. Some important studies used intracortical electrodes in monkeys to show that it is possible to 
encode grasp aperture and finger movements during natural grasping motions (Artemiadis et al., 2007; 
Vargas-Irwin et al., 2010). Furthermore, in a recent study Aggarwal et al. (2008) demonstrated the 
asynchronous decoding of individual and combined finger movements. Single-unit activities were 
recorded sequentially from a population of neurons in the hand primary motor cortex of trained primates 
during flexion and extension movements of individual fingers and wrist, respectively. The detection 
accuracy of the BMI system was within 90% and 99% for individuated fingers and wrist. The average 
decoding accuracy was still 92.5% when combined movements of two fingers were analyzed. In humans, 
recent studies have shown the possibility of decoding kinematic parameters of movement during 
individuated finger movements, and simple grasping motion from local motor potentials extracted from 
ECoG signals (Acharya et al., 2010; Kubanek et al., 2009). 
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Taken together, these results demonstrate that it is possible to asynchronously decode dexterous finger 
movements from a neuronal ensemble with high accuracy. Agashe and Contreras-Vidal (2011) presented a 
methodology to accurately predict and reconstruct natural hand kinematics from non-invasively recorded 
scalp EEG signals during grasping. EEG and hand kinematics were recorded simultaneously while 
subjects performed a grasping task. The task involved making a decision to select an object, planning the 
goal of the movement, programming the movement, and executing the grasp in conjunction with 
specification of the appropriate hand trajectory. The authors used a specific decoder, basing its 
performance on a correct combination of time-domain amplitude modulation of EEG signals. Trajectories 
of the joint angles were reconstructed for metacarpophalangeal joints of the fingers. The high decoding 
accuracy detected during the study indicated that this technique may be suitable for use with a closed-loop 
real-time BMI to control grasping motion in prosthetics with high DOF. This demonstrates the first 
successful decoding of hand re-shaping kinematics from non-invasive neural signals. 

This line of research takes an important step towards the development of a BMI for direct control of 
multi-fingered hand prostheses. When considering the multiple DOFs involved in the control of dexterous 
robotic hands and fingers, both specialists in neuroscience and robotics focused on adaptive robot 
controllers (Conforto et al., 2009; Reinhart and Steil, 2009). One fundamental problem is that the brain -as 
any other robotic controller aiming to command complex kinematic mechanisms- is able to learn internal 
models of forward and inverse sensorimotor transformations (e.g. inverse kinematic) for reaching and 
grasping (Gentili et al., 2011). This is a problem because the mapping between sensory and motor 
information is generally highly non-linear and depends on the constraints imposed by the physical features 
of the human or robotic hand/finger. One possible solution of this issue is the so-called inverse kinematics. 
It refers to the use of the kinematics equations of a robot to determine the joint parameters that provide a 
desired position of the end-effector. “Motion planning” refers to the specification of a movement pathway 
to achieve a desired task. Inverse kinematics transforms the motion plan into joint actuator trajectories for 
the robot. Gentili et al. (2011) propose a cortical neural model that is able to learn to control the inverse 
kinematics of an anthropomorphic simulated robot finger named Shadow Hand. The neural model 
specifically reproduces the main kinematic features of human finger movements and grip production. At 
the first step, there is an exploration phase, where endogenously generated random motor commands are 
used to activate the finger while the corresponding sensorial consequences (e.g. visual) allow training the 
neural model to learn the inverse kinematic of the actuator. This neural model is based on biological 
neural network modeling, including specific brain structures/functions both at the cortical (Bullock et al., 
1993; Gentili et al., 2012) and cerebellar level (Contreras-Vidal et al., 1997; Porrill and Dean, 2007). The 
learning period of the model is based on the integration of five different sensorimotor data: i) neural drive 
conveying information about motor command for actual performance; ii) proprioceptive information 
providing the current state of the finger (e.g., angular position); iii) visual information related to the finger 
and the localization of the targets in the 3D space; iv) task and goal-related information involved in motor 
planning; v) motor accuracy elaborated by the cerebellum. The results revealed that the neural model was 
able to control the anthropomorphic finger in order to perform accurate and robust 3D reaching 
movements (with various levels of complexity) towards spatial targets with kinematics comparable to 
those previously observed in humans (Gentili et al., 2011).  

 
 

5. FUTURE PERSPECTIVES 
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Attempting to create a mental image of the missing limb by early prosthetic fitting is an important 
direction for the research in neuroprosthetics. This line of research is both timely and challenging because 
some data show that in children with congenital absence of limbs the body sensorimotor representations in 
the brain do not include the missing body parts. Such alterations can explain why most of the children 
reject their prosthesis, probably because their own familiar limb, although incomplete, is still more 
functional to them. Due to the absence of sensory feedback from the prosthetic limb, children rarely 
incorporate the prosthetic limb into their body schema. By restoring the sensations from the missing limb 
and therefore repairing the sensorimotor loop, future research will help patients to better accept, integrate, 
and use neuroprostheses. Some work in this direction has already started, however some issues remain to 
be clarified. For example, it has been shown that electrotactile and vibrotactile feedback -together with 
tactile re-innervation- can be successfully integrated (Kaczmarek et al., 1991; Marasco et al., 2009). 
However, patients need to be specifically trained to associate the stimulation due to the occurring physical 
events with the state of the prostheses (Antfolk et al., 2013). The attempt to reproduce the original 
sensations associated with the lost limb will be one of the main challenges for future researchers. 

Another crucial aspect is the timing of the sensory feedback. Short latencies between the event 
occurring at the prosthesis and the perceived sensation (within 300ms) is important for the brain to 
develop the sense of ownership of the prosthesis and to allow its incorporation within the body schema 
(Shimada et al., 2009). Emerging insights into the procedures to be followed for better integrating 
prostheses with the body schema highlight the importance of timely closing the loop between 
exteroceptive and proprioceptive information for a proper functioning of the prosthesis and recovery of 
the function (Antfolk et al., 2013). One possibility to “recover” sensory information or provide sensory 
substitution is provided by the use of invasively implanted electrodes (Berg et al., 2013; Tabot et al., 
2013). For example, trying to close the informational loop between brain and machines a Brain-Machine-
Brain interface can allow active tactile exploration during BMI control using intracortical 
microstimulation (O'Doherty et al., 2011). In this study two monkeys were intracortically implanted in the 
primary motor cortex and the primary sensory cortex. The task required searching a single object with 
particular artificial tactile properties using a computer cursor or a joystick to explore a virtual space. As 
resulted, artificial tactile feedback was delivered when the actuator, controlled by cortical ensemble 
activity, entered the feedback zone and continued in the response zone. A particular interleaved scheme of 
recording and stimulating was implemented to achieve concurrent afferent and efferent operations and 
both the afferent and efferent channels bypassed the monkeys’ body and created a specific communication 
loop between brain and an external device. However, despite the reliability of intracortical stimulation for 
mimicking the sensory feedback of a prosthetic limb in animal models, such technique does not seem 
easily implementable in standard therapeutic protocols for humans. Indeed none of the prostheses used in 
clinical practice is designed following this principle and the use of visual, vibrotactile and electro-tactile 
feedback remains still the most promising technique. 

  
 
CONCLUSION 

Ambroise Parè, the official royal surgeon in France during the 16th century, was the creator of artificial 
limb. He realized that surviving amputees would prefer to die rather than live without a limb, so he began 
to design artificial limbs (Hernigou, 2013). This is not the first example of prostheses. Even in Ancient 
Greece and Roman Empire there were examples of substitutive prostheses. From then on, clearly, 
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scientists have made great strides, almost finding the way to restore sensory information to amputees, but 
some additional work is still required.  

The hand is the main structure for physically manipulating objects and interacting with the 
environment, that is why so many researchers are involved in the development of prostheses to restore 
motor function, from hand kinematics to the original sensations. However, before implementing new 
therapeutic protocol, it is necessary to introduce methods for providing the brain with feedback from the 
actuators and to design and build artificial prostheses that can be controlled directly by brain-derived 
signals. BMIs can be seen as extremely useful platforms to enhance the investigation on several neural 
mechanisms and the implementation of rehabilitation therapies. By reaching these milestones, future 
BMIs will be able to drive and control revolutionary prostheses that will feel and act like the human body 
segments. 

Thanks to the multidisciplinary interactions between different fields of research and application, 
neuroprosthetics is constantly progressing and improving. The number of opportunities is continuously 
increasing and the impact of the neuroprosthetic research will soon be clear, not only to specialists. In this 
direction a challenging project aiming at restoring full mobility in tetraplegic patients by using BMI in a 
whole-body exoskeleton, will be play an important role in the opening ceremony of the FIFA World Cup 
in Brazil 2014 (Nicolelis, 2012). If the progress to date is any indication, amputees of the future will find 
their dreams limited only by their imagination.  
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KEY TERMS AND DEFINITIONS 

Rehabilitation 
BCI: Brain-Computer Interface 
BMI: Brain-Machine Integration 
FES: Functional Electrical Stimulation 
Robotics 
Neuroscience 
Sensorimotor 
Therapy 

 


