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ABSTRACT
The rapid development of high-throughput experimental technolo-
gies for biological sampling has made the collection of omics data
(e.g., genomics, epigenomics, transcriptomics and metabolomics)
possible at a small cost. While multi-view approaches to omics
data have a long history, omics-to-omics translation is a relatively
new strand of research with useful applications such as recovering
missing or censored data and finding new correlations between
samples. As the relations between omics can be non-linear and ex-
hibit long-range dependencies between parts of the genome, deep
neural networks can be an effective tool. Graph neural networks
have been applied successfully in many different areas of research,
especially in problems where annotated data is sparse, and have re-
cently been extended to the heterogeneous graph case, allowing for
the modelling of multiple kinds of similarities and entities. Here, we
propose a meso-scale approach to construct multiplex graphs from
multi-omics data, which can construct several graphs per omics and
cross-omics graphs. We also propose a neural network architecture
for omics-to-omics translation from these multiplex graphs, fea-
turing a graph neural network encoder, coupled with an attention
layer. We evaluate the approach on the open The Cancer Genome
Atlas dataset (N=3023), showing that for MicroRNA expression pre-
diction our approach has lower prediction error than regularized
linear regression or modern generative adversarial networks.
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•Computingmethodologies→Neural networks; •Applied com-
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1 INTRODUCTION
In biological analysis, the general term omics refers to data gathered
from various sources such as genomics, transcriptomics, metabolomics,
and others. Omics modelling has a vast range of applications such as
disease subtyping, survival analysis and individualised risk predic-
tion. High-throughput biomedical technologies have made possible
the collection of large datasets combining various types of omics
data. As these data are generally high-dimensional, sometimes in-
complete, and exhibit non-linear relationships, it is of particular
interest to be able to analyse them jointly using expressive models.
Recent deep learning methods for omics data have shown to be
effective in many areas of research[6, 10, 34]. As efforts are made to
make these types of methods more interpretable, one can assume
that their adoption will continue to grow in this field.

Network representations are particularly well suited to this type
of data, as they offer a flexible and rich mathematical structure
for representing similarities between objects in a non-Euclidean
domain, and have seen ever-increasing adoptions in life sciences
[19]. With the recent advances in graph representation and deep
learning, graph convolutional networks (GCNs) [15] have shown
to be effective for a wide variety of tasks in both supervised and
unsupervised problems [29]. While these methods were generally
initially designed for social networks, they have also been applied
to a variety of other data sets [4, 14, 32]. More recently, GCNs have
been extended to the heterogeneous and multiplex cases [8, 11],
where graphs can havemultiple node and edge types. The number of
deep graph neural representationmethods is growing at a rapid pace
and new self-supervised algorithms such as contrastive learning
[21] and consensus representation learning [17] can potentially be
applied in many areas of research for widely different fields.

In some applications, generating the graph is trivial, for instance
two users in a social platform can be connected with a edge if they
are friends. However many data sets, especially in biology, come in
the form of tabular data; what should be considered a similarity be-
tween two nodes is not as well defined. Nevertheless, representing
similarities between samples has shown to be an effective strategy
for different tasks such as clustering [30], classification [33] and
subtyping [2]; more generally, correlation networks representing
sample-to-sample similarities are a staple of data analysis in life
sciences, including gene co-expression [36] or brain networks [24].

Similarities between two samples can be defined in many ways.
State of the art methods for omics analysis [31, 33] generally com-
pute one similarity per omics, such as a measure of the inverse
distance between two samples. However we can argue that this
choice might be too reductive given the large dimensions of these
samples, and that multiple similarities can be computed for each
modality. These design decisions will ultimately affect the output
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of the network, and thus need to be studied in more detail. To the
best of our knowledge, no work has been done to provide a general
framework for multiplex graph generation from omics data.

Our main contributions are summarized as follows:

• We propose a method for constructing a multiplex graph
from multi-omics data by grouping correlated features and
computing an edge type per group, providing a "meso-scale"
approach which is more fine-grained than using a single
graph per omics.

• We introduce a novel graph encoding architecture able to
generate meaningful latent representations of the samples
with minimal annotated data.

• We compare ourmethodwith the state of the art for omics-to-
omics translation and show the effectiveness of our method
in both low and well annotated regimes.

• We examine the impact of the multiplex graph construction
step, comparing with a well-established method for multi-
view, similarity-based omics analysis.

2 RELATEDWORK
In the multi-omics literature, most similarity-based methods regard
the generation of the sample-sample similarity graph as prepro-
cessing [23], and use a single similarity graph per omics, with the
notable exception of rMKL-LPP [26], which can use several differ-
ent kernels per omic. Going back to spectral clustering [5], several
results have shown that graph construction impacts clustering [18],
so it is of interest to examine the impact of graph construction on
predictive algoritms.

In the next subsections, we highlight the graph construction
stage of a well established and a more recent approach for multi-
omics clustering and classification. We also mention other methods
that construct graphs out of tabular data.

2.1 Similarity Network Fusion
The Similarity Network Fusion [31] (SNF) method consists in gen-
erating graphs from multiple modalities and fusioning them iter-
atively. Given xi a feature vector for node i , let ρ(xi , xj ) denote
the Euclidean distance between nodes xi and xj . For the graph
generation process, initial edges weights between nodes i and j are
given by :

Wi j = exp

(
−
ρ2

(
xi , xj

)
µεi, j

)
(1)

where µ is a hyperparameter that can be empirically set and εi, j
is defined as

εi, j =
mean (ρ (xi ,Ni )) +mean

(
ρ

(
xj ,Nj

) )
+ ρ

(
xi , xj

)
3

(2)

where Ni represent the N closest neighbors of node i , Finally, the
adjacency matrix entries are given by

Ai j =


Wi j

Σk ∈NiWik
,j ∈ Ni

0, otherwise
(3)

This matrix is computed for each modality and used in conjunc-
tion with another similarity matrix. This method assumes that local
similarities given by the K nearest neighbors are the most reliable.
Note that a single graph is computed for each modality.

2.2 MOGONET
MOGONET [33] is a method based on graph convolutional net-
works and a view correlation discovery network. It also builds a
single graph for each modality of measurement, but does so based
on a similarity metric.

Ai j =

{
s
(
xi , xj

)
, if i , j and s

(
xi , xj

)
≥ ϵ

0, otherwise (4)

where s is the cosine similarity

s
(
xi , xj

)
=

xi · xj
∥xi ∥2

xj2 (5)

and ϵ is chosen such that

k =
∑
i, j

I
(
s
(
xi , xj

)
≥ ϵ

)
/n (6)

where I (·) is the indicator function and n is the number of nodes,
and the hyperparameter k dictates the sparsity of the graph.

Again, only one graph is computed for each modality. We argue
that as the modalities contain a large amount of features, it could
be valuable to model more than one similarity per omic between
the nodes.

2.3 Other Methods
To the best of our knowledge, TabGNN [7] is the only method
using a graph neural network that builds a multiplex graph out
of general tabular data. The graph construction step is however
largely left to the user. Other methods build single graphs from k
nearest neighbors [25, 35], or Pearson correlation [2] and de Re-
sende et al. [3] compute an approximation of the Shapeley values
to model relationships. In general, these methods have one or mul-
tiple hyper-parameters that dictate the resulting graph properties,
such as its sparsity. The common assumption is that appropriate
links between the samples will provide meaningful information for
the downstream task. These approaches all make sense intuitively,
however for high-dimensional data it is worth considering whether
similarities between samples should be considered uni-dimensional.
Although building one graph per modality is a first step, it is itself
an arbitrary choice and other less obvious choices might yield better
results.

3 A MULTIPLEX GRAPH NEURAL NETWORK
FOR MULTI-VIEW OMICS TRANSLATION

3.1 Notation
Let F ∈ RN×df be a feature matrix where N is the number of sam-
ples and df is the dimension of the features, and let A ∈ RN×N

denote an adjacency matrix representing similarities between the
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Figure 1: Overview of the proposedmethod. The adjacencymatrices of the multiplex graph, computed for each feature cluster
(represented in colors) are fed to a variational graph neural encoder, and decoded with a regular fully connected network.

samples. An attributed graph G(A, F) is composed of these two com-
ponents. An attributed multiplex graph GM =

{
G1, · · · ,GR }

is
composed of R ≥ 1 layers where Gr (Ar , F) are individual attributed
graphs.

3.2 Feature Clustering
As computing one layer of the multiplex graph per feature would
be computationally intensive and would result in many redundant
graphs, we instead choose to cluster correlated features together
and compute a single layer per cluster. As a result, in a multi-modal
setting features from different modalities can be in the same cluster.
Our motivation for this approach so is that multiplex graphs neural
networks can effectively make use of the appropriate similarities
(or graph layer) for a given task and discard the others. Formally, we
define a number of clusters K that will also represent the number
of layers in the multiplex graph. Following Ward’s method [20],
pairs of clusters that minimally increase within-cluster variance are
merged recursively. This procedure is repeated until the number
of clusters is equal to K . The feature clustering is computed using
scikit-learn’s [22] FeatureAgglomeration method.

This approach has multiple benefits when compared to SNF and
MOGONET. First, the number of layers in the graph is not limited
to the number of modalities, making this approach more flexible.
Second, the similarities we compute reflect part of the data, as
opposed to an entire modality. In cases where a lot of features are
highly correlated, computing a single distance will drown out other
potentially useful links. Finally, the aforementioned methods are
based on the assumption that a link between samples for an entire
modality is a good proxy for their respective final tasks, while
we only assume this for some sub-groups of features that will be
weighted by the neural network.

3.3 Multiplex Graph Construction
Let K be the number of clusters generated from the feature clus-
tering, then Xk denotes the features of cluster k for all sample.
We build a multiplex graph with K layers, each layer representing
similarities for an associated cluster. Similarities sk for samples in
cluster k are defined as

sk

(
xki , x

k
j

)
= e−γ ∥xki −x

k
j ∥2 (7)

where xki represents features in cluster k for the i-th sample, and
γ = 0.5. As some nodes can be left without any neighbors, we also
link singleton nodes with their 10 nearest neighbors. The adjacency
matrix Ak is then computed as in equation 4 with ϵ = 0.5 for each
layer. There is a number of other ways we can construct these
graphs. We could for instance combine multiple kernel functions
for the similarity computation [26], use different thresholds, and
many other variants. It is thus difficult to know for certain which
similarities to combine and how, and this might cause us to over
engineer these similarities based on the dataset. It could be possible
to design a neural network making that choice for us, but defining
a fully differentiable method for generating a multiplex graph is
not trivial.

3.4 Encoder Architecture
The network, shown schematically in Figure 1, is composed of two
main parts, an encoder and a decoder. The encoder makes use of
the pre-computed multiplex graph to encode samples into a low-
dimensional embedding space. The embeddings are then fed into a
regular decoder composed of two fully connected blocks. Each block
is a composed of a fully connected layer, a dropout layer and an
activation function. The output of the decoder is the reconstructed
modality, and is compared directly with the ground truth.
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To allow a wider range of applications for our approach, the
head of the graph encoder predicts the mean and variance of a mul-
tivariate gaussian distribution rather than the latent representation
directly. This can enable us to generate new samples for the output
omic directly from the latent space, at no cost of performance for
the observed metrics.

The graph encoder, depicted in detail in Figure 2 is similar in
stucture to the network used in HDMI [11] and MxGNN [16] as
it is a multiplex graph neural network with a similar attention
mechanism. However we do not use any contrastive loss or pooling
layer. An initial fully connected block reduces the intial dimension
of the data (6000 + 5000 in our case) to an embedding size of 512.
The embeddings are then passed to a one-layer graph convolution
for each cluster defined in equation 8, and recasted by a residual
connection.

Zk = fk (X, Âk ) = ÂkXWk (8)
where Âk = Ak + µI, Ak is the adjacency matrix for cluster k , I

is the identity matrix and µ is a self connection hyper-parameter.
Similarly to HDMI [11], the output embeddings from the GCN

are passed to a attention layer. The attention weights are computed
as :

αrn = tanh(yr · LeakyRelu(Wr
ah

r
n )) (9)

where yr and Wr
a are learnable parameters, and a LeakyRelu

activation function with a slope 0.2. The weights are the normalized
using the softmax function

αrn =
exp

(
αrn

)∑R
r ′=1 exp

(
αr

′

n
) (10)

The final embedding of then-th node is then obtained by a weighted
average

hn =
R∑
r=1

αrn hrn (11)

The role of this attention mechanism is to discern meaningful
modalities for the downstream task. Unlike graph attention net-
works [28], this attention mechanism works solely on layers and
not on nodes in each layer. In contrast to social or molecular graphs,
the graph structure of our layers is not as relevant, and thus a simple
GCN layer was chosen as our message passing paradigm.

3.5 Variational Encoder Decoder
Variational autoencoders (VAE) [13] are a class of deep neural net-
works capable of learning meaningful latent representations from
high dimensional data. Let some dataset {x(i)}Ni=1 with N samples
and x(i) ∈ Rd where d is large. We assume that x(i) are i.i.d. sam-
ples from some distribution x and that this data is itself generated
by some random process involving a latent representation z ∈ Rl

where l << d . Latent representations from samples come from a
prior distribution pθ (z) where θ is a vector of learnable parame-
ters. From a known z, each sample is generated from a conditional
distribution pθ (x|z). The approximate modelled probability is then

pθ (x) =
∫
z
pθ (x | z)pθ (z)dz (12)

This integral is intractable, to remedy this we approximate the
true posterior pθ (z | x) by an approximation qϕ (z | x) where

ϕ is another set of parameters. Maximizing the Kullback-Leibler
divergence between these two quantities is equivalent to minimzing
the evidence lower bound, or ELBO :

Ez∼qϕ (z |x) logpθ (x | z) − DKL
(
qϕ (z | x)∥pθ (z)

)
(13)

where DKL is the Kullback-Leibler divergence. This term however
can be analytically derived as both qϕ (z | x) and pθ (z) are known
distributions. We use a variation of this method, a variational
encoder-decoder [13], to generate suitable latent representations
for our omics translation task. The only difference being that the
input sample is a different vector from the ground truth target.

The ELBO minimization is composed of the reconstruction loss
between the reconstructed and the original sample, and the KL
divergence between the estimated qϕ (z|x) and the normal distri-
bution. As the choice of prior for pθ (z), we simply use a normal
distribution. Our loss function, initially defined in [13], is described
in equation 14, we use the binary cross-entropy for our reconstruc-
tion loss and average over all training samples.

Lvae =
1
N

N∑
j=1

BCE (y, ŷ) + LKL (14)

where y is the output modality and ŷ is the reconstructed approxi-
mation. LKL is the regularization loss, which is the KL-divergence

LKL = DKL(N(µ,σ )∥N(0, I)) (15)

As the two distributions in the KL-divergence are Gaussian, an
analytical formulation of this loss can be computed. Table 1 provides
an overview of the most important hyperparameters.

4 EXPERIMENTS
4.1 Dataset
We use the TCGA [27] multi-omics data (available for download
here http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html)
for all of our experiments, and use all ten available cancer types.
Data for each cancer type comprises of three omics layers: gene
expression, DNA methylation, and MicroRNA (miRNA) expression.
We use the same proprocessing as Cantini et al. [1], by using the
natural logarithm of the miRNA expression level and gene expres-
sions. We also only keep the first 6000 features of gene expression
with the highest variance. Finally, only samples for which all three
modalities were available were kept. The number of samples ranges
from 170 for Acute Myeloid Leukemia (AML) to 621 for Breast can-
cer for a total of 3023 samples and 6000, 5000, 1508 features for
gene expression, DNA methlyation and miRNA respectively. For all
our results, we choose to reconstruct miRNA from gene expression
and DNA methylation.

4.2 Experimental Setup
We test our method for two different splits of training and testing
data. We define split A as random split in (5%, 5%, 90%) for train,
validation and test data percentage respectively. For split B, we
choose (80%, 5%, 15%). In both cases we pick the best performing
model on validation data and evaluate it on the test set. We average
the performance over 5 runs, and to ensure that our comparisons
are fair we use the exact same splits for all methods. Our network
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Figure 2: Encoder Architecture. The initial fully connected
layer condensed the initial high dimensional space to the
network dimension. The K layers of themultiplex graph are
fed to individual GCNs and combined by an attention mech-
anism. The final fully connected blocks project the output
of the attention layer to a lower dimensional space (Embed-
ding dimension 1 to 2 referenced in Table 1)

is trained with the Adam optimizer and a stepwise learning rate
scheduler of coefficient 0.5 applied every 1000 iterations. The values
of important hyper-parameters are summarized in table 1. All mod-
els were trained on an NVIDIA GTX 3090 and an Intel(R) Core(TM)
i9-10900X CPU @ 3.70GHz.

4.3 Comparison Methods and Performance
Assessment

For our baselines, we compare our method with multivariate LASSO
regression (with regularization parameter α = 1), as well as a tradi-
tional variational encoder decoder (named VED). The VED encoder
is a simple MLP composed of two fully connected blocks and has
the exact same decoder as our proposed approach. In addition, we
compare our method with OmiTrans [37], a GAN-based neural
network that, to the best of our knowledge, is the state of the art
for omics-to-omics translation. OmiTrans was slightly modified to

Hyper-parameter Value
K 10
Embedding dimension 1 512
Embedding dimension 2 256
Dropout Rate 0.1
Maximum number of iterations 15000
Initial learning rate 0.001
Self connection coefficient µ 3

Table 1: Values of hyper-parameters for our method. K de-
notes the number of feature clusters. Embedding dimen-
sions 1 and 2 refer to the dimension of the graph encoder
and the final embeddings, respectively.

accommodate for our experiments, and the two input omics were
simply concatenated to form the network input. We also compare
the performance when generating one graph per modality, with
graphs computed with the same method as SNF.

We use three different metric to assess the quality of our recon-
struction. We compute the average mean square error (MSE), the
mean absolute error (MAE) and the coefficient of determination
(R2) .

5 RESULTS
Our results for the reconstruction of miRNA expression from gene
expression and DNA methylation are summarized in Table 2. For
split A, both our graph-based methods perform better than Omi-
Trans (Wilcoxon signed-rank test on samples mean squared error, p
= 2 × 10−19). However there seems to be no significant gain or loss
in performance when comparing the graph construction methods,
and LASSO also performs similarly as our graph encoder.

For split B, our approach also outperforms OmiTrans on MSE (p
= 7 × 10−4). The increased amount of training data also validates
our graph construction method (p = 1.6 × 10−2) compared to SNF.
Interestingly however, compared to OmiTrans we do not observe
better results for MAE (non-significant, p=0.12). Our approach seem
better equipped to handle outliers while OmiTrans does slightly
better on average.

To better understand why our graph encoder performs signif-
icantly better than VED, we plotted the t-SNE projections of the
target modality and of latent representation of each sample for the
two methods on figure 3. We can see that most of the types of can-
cer are distinguishable for both the raw targets and our approach,
while they collapse in VED. As the decoders are exactly the same
in both methods, we conclude that encoding with fully connected
blocks results in less expressive latent encodings. Admittedly, our
architecture for VED might not be optimal for this problem, but we
have not found a single combination of layers that would provide a
better suited latent representation.

To summarize, we showed that our graph construction method
can be advantageous in cases where enough data is provided. We
also showed that our multiplex graph based approach can produce
state of the art results for a multi-omics to omics translation task.
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Split A Split B
MSE ↓ MAE ↓ R2 ↑ MSE ↓ MAE ↓ R2 ↑

LASSO 0.3768 ± 0.0015 0.2626 ± 0.0017 0.9546 ± 0.0002 0.3759 ± 0.0028 0.2609 ± 0.0016 0.9548 ± 0.0003
VED 0.7548 ± 0.0281 0.3609 ± 0.0042 0.8971 ± 0.0040 0.7751 ± 0.0080 0.3634 ± 0.0048 0.8949 ± 0.0020

OmiTrans 0.3876 ± 0.0039 0.2674 ± 0.0022 0.9538 ± 0.0005 0.2775 ± 0.0045 0.2117 ± 0.0026 0.9670 ± 0.0004
Ours (SNF) 0.3639 ± 0.0058 0.2570 ± 0.0010 0.9558 ± 0.0008 0.2537 ± 0.0086 0.2226 ± 0.0042 0.9685 ± 0.0010

Ours 0.3688 ± 0.0050 0.2577 ± 0.0017 0.9557 ± 0.0006 0.2401 ± 0.0046 0.2163 ± 0.0026 0.9702 ± 0.0006
Table 2: Reconstruction performance of the testedmethods for differentmetrics. Split A and B correspond to (train, validation,
test) sample percentages of (5%, 5%, 90%) and (80%, 5%, 15%), respectively. Ours(SNF) denotes using our architecture with a mul-
tiplex graph computed like SNF (one graph per modality), while Ours denotes using the feature clustering step for multiplex
graph construction.

Figure 3: Two-dimensional t-SNE projections from our best model trained on split B using (left) the original high-dimensional
target miRNA expression data, (middle) the latent space of our approach, and (right) the latent space of a VEDwithout a graph
architecture.

6 DISCUSSION AND CONCLUSION
We proposed a new method for multi-view omics-to-omics trans-
lation using a multiplex graph neural network encoder. While we
showed that this type of method can do well for one type of omics
it is still not clear to what extent this method can apply to other
datasets and modalities, and further experimentation is required.
On the other hand there is no reason for this approach to be limited
to omics translation, and it would be worth to investigate other
problems such as survival prediction, disease sub-typing, or other
types of predictions.

There is room for improvement in our pipeline. Our method for
splitting the features into clusters is rather simple, and generating
the graph based on other factors that do not stem directly from
the data (isolating important genes or clustering them based on
some exterior criteria such as biological pathways or ontologies)
could be an informative and interpretable way of injecting prior
knowledge to the neural network. Moreover, our encoder decoder
structure, while simple and easy to train, may lack the flexibility of
other architectures such as GANs.

Despite its apparent advantages our method still suffers from
some limitations. First, we have no a priori estimation of a suitable
number of clusters K . This means that K has to be treated like a
hyper-parameter which, given the computational load of computing
the multiplex graph, may take a significant amount of time. Second,
we treat the variables in each cluster as equally important. This is
also an issue as some individual variables might have a lot more

expressive power than others in the same cluster; relatedly, our
evaluation was limited to the few thousand features with the high-
est variance in gene expression, meaning that scaling issue could
be present when moving to whole-genome coverage. Finally, the
performance of our algorithm would significantly decrease when
increasing K , meaning that our attention mechanism might not be
sufficient to efficiently weight the graphs after a certain point.

A potential solution would be to compute similarities directly
during training by doing some sort of similarity learning, such as
Huai et al. [9]. Our approach could also be extended with some
form of contrastive method such as Deep Graph Infomax [29] or
Graph-MVP [12] to further improve performance on self-supervised
tasks.
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7 CODE AVAILABILITY
The source code for generating the graph and training the network
can be downloaded from GitLab at :
https://gitlab.com/CGeorgantasCHUV/mgnn-omics-translation.

1035

https://gitlab.com/CGeorgantasCHUV/mgnn-omics-translation


Multi-view Omics Translation with Multiplex Graph Neural Networks WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES
[1] Laura Cantini, Pooya Zakeri, Celine Hernandez, Aurelien Naldi, Denis Thieffry,

Elisabeth Remy, and Anaïs Baudot. 2021. Benchmarking joint multi-omics dimen-
sionality reduction approaches for the study of cancer. Nature Communications
12, 1 (Jan. 2021), 124. https://doi.org/10.1038/s41467-020-20430-7

[2] Wei Dai, Wenhao Yue, Wei Peng, Xiaodong Fu, Li Liu, and Lijun Liu. 2022.
Identifying Cancer Subtypes Using a Residual Graph Convolution Model on
a Sample Similarity Network. Genes 13, 1 (Jan. 2022), 65. https://doi.org/10.3390/
genes13010065

[3] BrunoMessias F. de Resende, Eric K. Tokuda, and Luciano da Fontoura Costa. 2021.
Unraveling the graph structure of tabular datasets through Bayesian and spectral
analysis. arXiv:2110.01421 [cs] (Oct. 2021). http://arxiv.org/abs/2110.01421 arXiv:
2110.01421.

[4] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S. Yu. 2020.
Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters. Proceedings of the 29th ACM International Conference on Information
& Knowledge Management (Oct. 2020), 315–324. https://doi.org/10.1145/3340531.
3411903 arXiv: 2008.08692.

[5] Miroslav Fiedler. 1973. Algebraic connectivity of graphs. Czechoslovak mathe-
matical journal. 23 (1973), 298–305. Place: London : Publisher: Kluwer/Plenum
Publishers.

[6] Edian F. Franco, Pratip Rana, Aline Cruz, Víctor V. Calderón, Vasco Azevedo,
Rommel T. J. Ramos, and Preetam Ghosh. 2021. Performance Comparison of
Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics
Data. Cancers 13, 9 (April 2021), 2013. https://doi.org/10.3390/cancers13092013

[7] Xiawei Guo, Yuhan Quan, Huan Zhao, Quanming Yao, Yong Li, and Weiwei
Tu. 2021. TabGNN: Multiplex Graph Neural Network for Tabular Data Predic-
tion. arXiv:2108.09127 [cs] (Aug. 2021). http://arxiv.org/abs/2108.09127 arXiv:
2108.09127.

[8] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
Graph Transformer. arXiv:2003.01332 [cs, stat] (March 2020). http://arxiv.org/
abs/2003.01332 arXiv: 2003.01332.

[9] Mengdi Huai, Chenglin Miao, Qiuling Suo, Yaliang Li, Jing Gao, and Aidong
Zhang. 2018. Uncorrelated Patient Similarity Learning. In Proceedings of the 2018
SIAM International Conference on Data Mining (SDM). Society for Industrial and
Applied Mathematics, 270–278. https://doi.org/10.1137/1.9781611975321.31

[10] Zhi Huang, Xiaohui Zhan, Shunian Xiang, Travis S. Johnson, Bryan Helm,
Christina Y. Yu, Jie Zhang, Paul Salama, Maher Rizkalla, Zhi Han, and Kun
Huang. 2019. SALMON: Survival Analysis Learning With Multi-Omics Neu-
ral Networks on Breast Cancer. Frontiers in Genetics 10 (2019). https://www.
frontiersin.org/article/10.3389/fgene.2019.00166

[11] Baoyu Jing, Chanyoung Park, and Hanghang Tong. 2021. HDMI: High-order
Deep Multiplex Infomax. Proceedings of the Web Conference 2021 (April 2021),
2414–2424. https://doi.org/10.1145/3442381.3449971 arXiv: 2102.07810.

[12] Baoyu Jing, Yuejia Xiang, Xi Chen, Yu Chen, and Hanghang Tong. 2021. Graph-
MVP: Multi-View Prototypical Contrastive Learning for Multiplex Graphs.
arXiv:2109.03560 [cs] (Oct. 2021). http://arxiv.org/abs/2109.03560 arXiv:
2109.03560.

[13] Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.
(Dec. 2013). https://arxiv.org/abs/1312.6114v10

[14] Amy C. Kinsley, Gianluigi Rossi, Matthew J. Silk, and Kimberly VanderWaal.
2020. Multilayer and Multiplex Networks: An Introduction to Their Use in
Veterinary Epidemiology. Frontiers in Veterinary Science 7 (2020), 596. https:
//doi.org/10.3389/fvets.2020.00596

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs, stat] (Feb. 2017). http:
//arxiv.org/abs/1609.02907 arXiv: 1609.02907.

[16] Yanyan Liang, Yanfeng Zhang, Dechao Gao, and Qian Xu. 2021. An End-to-End
Multiplex Graph Neural Network for Graph Representation Learning. IEEE Access
9 (2021), 58861–58869. https://doi.org/10.1109/ACCESS.2021.3070690

[17] Changshu Liu, Liangjian Wen, Zhao Kang, Guangchun Luo, and Ling Tian. 2021.
Self-supervised Consensus Representation Learning for Attributed Graph. Pro-
ceedings of the 29th ACM International Conference on Multimedia (Oct. 2021),
2654–2662. https://doi.org/10.1145/3474085.3475416 arXiv: 2108.04822.

[18] Markus Maier, Ulrike von Luxburg, and Matthias Hein. 2008. Influence of graph
construction on graph-based clustering measures. In Proceedings of the 21st Inter-
national Conference on Neural Information Processing Systems (NIPS’08). Curran
Associates Inc., Red Hook, NY, USA, 1025–1032.

[19] Patrick McGillivray, Declan Clarke, William Meyerson, Jing Zhang, Donghoon
Lee,Mengting Gu, Sushant Kumar, Holly Zhou, andMarkGerstein. 2018. Network
Analysis as a Grand Unifier in Biomedical Data Science. Annual Review of Biomed-
ical Data Science 1, 1 (July 2018), 153–180. https://doi.org/10.1146/annurev-
biodatasci-080917-013444

[20] Fionn Murtagh and Pierre Legendre. 2014. Ward’s Hierarchical Clustering
Method: Clustering Criterion and Agglomerative Algorithm. Journal of Classi-
fication 31, 3 (Oct. 2014), 274–295. https://doi.org/10.1007/s00357-014-9161-z
arXiv: 1111.6285.

[21] Erlin Pan and Zhao Kang. 2021. Multi-view Contrastive Graph Clustering. https:
//openreview.net/forum?id=NlB8:hXkbby

[22] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12, 85 (2011),
2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html

[23] Nimrod Rappoport and Ron Shamir. 2018. Multi-omic and multi-view clustering
algorithms: review and cancer benchmark. Nucleic Acids Research 46, 20 (Nov.
2018), 10546–10562. https://doi.org/10.1093/nar/gky889

[24] Jakob Seidlitz, František Váša, Maxwell Shinn, Rafael Romero-Garcia, Kirstie J.
Whitaker, Petra E. Vértes, Konrad Wagstyl, Paul Kirkpatrick Reardon, Liv Clasen,
Siyuan Liu, Adam Messinger, David A. Leopold, Peter Fonagy, Raymond J. Dolan,
Peter B. Jones, Ian M. Goodyer, Armin Raznahan, and Edward T. Bullmore. 2018.
Morphometric Similarity Networks Detect Microscale Cortical Organization and
Predict Inter-Individual Cognitive Variation. Neuron 97, 1 (Jan. 2018), 231–247.e7.
https://doi.org/10.1016/j.neuron.2017.11.039

[25] Qianqian Song, Jing Su, and Wei Zhang. 2021. scGCN is a graph convolutional
networks algorithm for knowledge transfer in single cell omics. Nature Commu-
nications 12, 1 (June 2021), 3826. https://doi.org/10.1038/s41467-021-24172-y

[26] Nora K. Speicher and Nico Pfeifer. 2015. Integrating different data types by
regularized unsupervised multiple kernel learning with application to cancer
subtype discovery. Bioinformatics 31, 12 (June 2015), i268–i275. https://doi.org/
10.1093/bioinformatics/btv244

[27] The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Nature
455, 7216 (Oct. 2008), 1061–1068. https://doi.org/10.1038/nature07385

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. arXiv:1710.10903 [cs,
stat] (Feb. 2018). http://arxiv.org/abs/1710.10903 arXiv: 1710.10903.

[29] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2018. Deep Graph Infomax. arXiv:1809.10341 [cs, math, stat]
(Dec. 2018). http://arxiv.org/abs/1809.10341 arXiv: 1809.10341.

[30] Bo Wang, Aziz M. Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael
Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. 1993. Similarity network
fusion for aggregating data types on a genomic scale. Nature Methods 11, 3
(November 1993), 333–337.

[31] Bo Wang, Aziz M. Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen Tu, Michael
Brudno, Benjamin Haibe-Kains, and Anna Goldenberg. 2014. Similarity network
fusion for aggregating data types on a genomic scale. Nature Methods 11, 3
(March 2014), 333–337. https://doi.org/10.1038/nmeth.2810

[32] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. 2021. A Review on
Graph Neural Network Methods in Financial Applications. arXiv:2111.15367 [cs,
q-fin, stat] (Nov. 2021). http://arxiv.org/abs/2111.15367 arXiv: 2111.15367.

[33] Tongxin Wang, Wei Shao, Zhi Huang, Haixu Tang, Jie Zhang, Zhengming Ding,
and Kun Huang. 2021. MOGONET integrates multi-omics data using graph con-
volutional networks allowing patient classification and biomarker identification.
Nature Communications 12, 1 (June 2021), 3445. https://doi.org/10.1038/s41467-
021-23774-w

[34] Eloise Withnell, Xiaoyu Zhang, Kai Sun, and Yike Guo. 2021. XOmiVAE: an in-
terpretable deep learning model for cancer classification using high-dimensional
omics data. Briefings in Bioinformatics 22, 6 (Nov. 2021), bbab315. https:
//doi.org/10.1093/bib/bbab315 arXiv: 2105.12807.

[35] Chen Xu and Zhengchang Su. 2015. Identification of cell types from single-cell
transcriptomes using a novel clustering method. Bioinformatics (Oxford, England)
31, 12 (June 2015), 1974–1980. https://doi.org/10.1093/bioinformatics/btv088

[36] Bin Zhang and Steve Horvath. 2005. A General Framework forWeighted Gene Co-
Expression Network Analysis. Statistical Applications in Genetics and Molecular
Biology 4, 1 (Jan. 2005). https://doi.org/10.2202/1544-6115.1128

[37] Xiaoyu Zhang and Yike Guo. 2021. OmiTrans: generative adversarial networks
based omics-to-omics translation framework. arXiv:2111.13785 [cs, q-bio] (Nov.
2021). http://arxiv.org/abs/2111.13785 arXiv: 2111.13785.

1036

https://doi.org/10.1038/s41467-020-20430-7
https://doi.org/10.3390/genes13010065
https://doi.org/10.3390/genes13010065
http://arxiv.org/abs/2110.01421
https://doi.org/10.1145/3340531.3411903
https://doi.org/10.1145/3340531.3411903
https://doi.org/10.3390/cancers13092013
http://arxiv.org/abs/2108.09127
http://arxiv.org/abs/2003.01332
http://arxiv.org/abs/2003.01332
https://doi.org/10.1137/1.9781611975321.31
https://www.frontiersin.org/article/10.3389/fgene.2019.00166
https://www.frontiersin.org/article/10.3389/fgene.2019.00166
https://doi.org/10.1145/3442381.3449971
http://arxiv.org/abs/2109.03560
https://arxiv.org/abs/1312.6114v10
https://doi.org/10.3389/fvets.2020.00596
https://doi.org/10.3389/fvets.2020.00596
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.1109/ACCESS.2021.3070690
https://doi.org/10.1145/3474085.3475416
https://doi.org/10.1146/annurev-biodatasci-080917-013444
https://doi.org/10.1146/annurev-biodatasci-080917-013444
https://doi.org/10.1007/s00357-014-9161-z
https://openreview.net/forum?id=NlB8:hXkbby
https://openreview.net/forum?id=NlB8:hXkbby
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1093/nar/gky889
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1038/s41467-021-24172-y
https://doi.org/10.1093/bioinformatics/btv244
https://doi.org/10.1093/bioinformatics/btv244
https://doi.org/10.1038/nature07385
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1809.10341
https://doi.org/10.1038/nmeth.2810
http://arxiv.org/abs/2111.15367
https://doi.org/10.1038/s41467-021-23774-w
https://doi.org/10.1038/s41467-021-23774-w
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bib/bbab315
https://doi.org/10.1093/bioinformatics/btv088
https://doi.org/10.2202/1544-6115.1128
http://arxiv.org/abs/2111.13785

	Abstract
	1 Introduction
	2 Related Work
	2.1 Similarity Network Fusion
	2.2 MOGONET
	2.3 Other Methods

	3 A multiplex graph neural network for multi-view omics translation
	3.1 Notation
	3.2 Feature Clustering
	3.3 Multiplex Graph Construction
	3.4 Encoder Architecture
	3.5 Variational Encoder Decoder

	4 Experiments
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Comparison Methods and Performance Assessment

	5 Results
	6 Discussion and Conclusion
	Acknowledgments
	7 Code Availability
	References

