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Abstract

In this thesis, I investigate two specific subjects in data science, namely demand
forecasting and causality inference, dividing this thesis in two main parts.

The first part aims at improving demand forecasting accuracy that impacts
supply chain performance. It consists of three articles aiming at studying how
to enhance demand forecasting accuracy using pertinent data (e.g. operational
transaction data, weather data, socio-economic data, etc.). Each article ex-
plores a new statistical approach on the supply chain optimization through
demand forecasting accuracy.

• In the first article we analyze transactional longitudinal data of several
business units, matched with daily location-based weather conditions.
We also study ways in which weather fluctuations affect supply chain
performance though the delivery delay in days. Understanding this re-
lationship is valuable both for improving sales forecast accuracy and for
improving operational performance.

• The second article aims at explaining how weather conditions and fluc-
tuations affect the accuracy of demand forecasting for seasonal products.
We found that weather conditions have a significant impact on demand
forecasting accuracy with reductions in percentage errors up to 45%.
These results can be used to justify and motivate the integration of the
impact of variability in weather in the decision making process in or-
der to better anticipate demand volumes and reduce costs due to excess
inventory or stock shortages.

• The goal of the third article is to improve demand forecasting accuracy
by using the concept of spatial dependence and interpolation, and incor-
porating the effects of socio-economic aspects and weather conditions in
the spatial dependence structure. The accuracy of demand forecasting
is improved, the reduction of the forecasting error is up to 48%.

The goal of the second part is to infer the causal relationship in the case of
non-linearity and heteroscedasticity.

• In the fourth article, a two-steps method is proposed to infer the intrinsic
causal mechanism between two variables dealing with heteroscedasticity.
We provide a bivariate multiplicative noise model that we extend to the
multiplicative case. The two-steps Causal Hetetoscedastic Model consists
of applying a causal additive model on the BAMLSS (bayesian additive
model for location, scale and shape) fitted values of the estimated pa-
rameters. The simulation study provides an accuracy of 0.97 on average.

In this thesis, I have explored and analyzed two specific subjects in data
science, which are demand forecasting and non-linear causality inference. This
thesis has provided several studies improving demand forecasting accuracy
by reducing the forecasting error in several contexts dealing with seasonality,
through the integration of external data such as weather or socio-economic
data, using complex statistical models. The causal method provided in this
thesis allows the inference of inherent causal mechanism.
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Résumé

Dans cette thèse j’investigue deux sujets particuliers de la science des données,
à savoir la prévision de la demande et l’inférence de la causalité, divisant cette
thèse en deux parties.

Le but de la première partie est d’améliorer la précision de la prévision de
la demande car elle impacte la performance de la chaîne logistique. Cette
partie comprend trois articles dans lesquels nous étudions comment améliorer
la précision des prévisions de la demande grâce à l’incorporation des données
pertinentes dans le modèle d’analyse. Chacun des trois articles explore une
nouvelle approche statistique.

• Dans le premier article, nous analysons les données transactionnelles des
opérations de plusieurs unités commerciales, jumelées avec les données
sur les conditions météorologiques journalières. Nous analysons aussi
comment les fluctuations de la météo affectent la performance de la
chaîne logistique. La compréhension de ces relations est importante et
utile pour l’amélioration de la précision des prévisions de la demande.

• Le but du deuxième article est d’analyser et d’expliquer comment les con-
ditions météorologiques ainsi que ses fluctuations impactent la précision
des prévisions de la demande saisonnière. Les résultats montrent que
le temps qu’il fait a un impact significatif sur cette précision, réduisant
le pourcentage d’erreur de 45%. Ces résultats peuvent être utilisés pour
justifier et motiver l’intégration de l’impact de la météo dans le processus
décisionnel.

• Le troisième article utilise la dépendance spatiale pour améliorer la pré-
cision des prévisions de la demande, ainsi que l’incorporation des effets
des facteurs socio-économiques et des conditions météorologiques dans
la structure de cette dépendance spatiale. Les résultats révèlent une
amélioration de la précision et une réduction de l’erreur de prédiction
allant jusqu’à 48%.

La deuxième partie de cette thèse explore l’inférence de la causalité dans le
cas de la non-linéarité et de l’hétéroscédasticité.

• Dans le quatrième article, nous proposons une méthode à deux étapes
pour inférer le mécanisme causal intrinsèque entre deux variables en
présence d’hétéroscédasticité. Nous proposons un modèle bivarié et mul-
tiplicatif par rapport au terme d’erreur que nous étendons au cas mul-
tivarié ensuite. Le modèle à deux étapes appelé Causal Heteroscedastic
Model (CHM) consiste à appliquer un CAM (causal additive model)
aux valeurs ajustées des paramètres estimés par un modèle BAMLSS
(bayesian additive model for location, scale and shape). Les simulations
effectuées montrent que le CHM trouve la bonne causalité dans 97% des
cas en moyenne.
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Dans cette thèse, j’ai exploré et analysé deux sujets spécifiques de la science
des données, qui sont la prévision de la demande et l’inférence de la causalité
non-linéaire. Cette thèse comprend plusieurs études améliorant la précision
des prévisions de la demande, dans différents contextes comme la saisonnalité,
en réduisant l’erreur de prédiction grâce aux données pertinentes et aux outils
statistiques complexes. Quant au model à deux étapes proposé, il permet
l’inférence du mécanisme inhérent de la causalité.
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Chapter 1

Introduction

In this thesis, I investigate two specific issues in data science, namely demand
forecasting and causality inference. Let’s start by defining data science as an
interdisciplinary field combining statistics and computer science, aiming to un-
derstand and analyze actual phenomena through large databases. According to
Van der Aalst [2016], data science includes data extraction, preparation, explo-
ration, transformation, data storage and retrieval, computing infrastructures,
various types of mining and learning, presentation of explanations and predic-
tions. Data science aims at providing meaningful information based on large
amounts of complex data for decision-making purposes. Nowadays, data sci-
ence is omnipresent in everyone’s everyday life. Applications of data science are
numerous. For example, receiving personalized advertisements related to our
past online researches, the fact that YouTube shows all our favorite videos on
our home screen, or healthcare parameters control through connected watches
etc.

Moreover, in recent years, data science has become an essential component of
many industries and fields.

• In biomedicine the application of data science on biomedical informa-
tion such as human genome, provides an opportunity for personalized
medicine programs in order to improve patient care through modern se-
quencing technology allowing high-resolution genetic sequencing at tremen-
dous scale [Costa, 2014].

• In social science, professionals have now access to terabytes of data de-
scribing almost instantly human behavior and interactions between in-
dividuals, this allows them to study and try to understand contours
of society through data science methodologies. For instance, Moussaïd
et al. [2011] study pedestrian flows and crowd disasters. They suggest
that, guided by visual information such as the distance of obstructions
in individual lines of sight, pedestrians adapt their walking speeds and
directions. Their model aims to predict individual trajectories and col-
lective patterns of motion.

• To enter a market with specific characteristics, marketers have to segment
the potential customers and understand their needs. For this purpose,
data science is used to develop predictive and descriptive methods such
as clustering techniques. Data science is also applied for more general
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customer relationship management, for example customer behavior anal-
yses in order to maximize expected customer value [Provost and Fawcett,
2013].

• Financial institutions were among the early users of data science. Data
science is applied in numerous domains such as portfolio management,
investment risk analysis, prediction of bankruptcy, etc. The use of data
science helps the banks better understand customer needs and anticipate
their response to new products and services [Dick, 2008].

Numerous other fields are impacted by data science. Our interest in data sci-
ence is motivated by a desire to improve demand forecasting accuracy impact-
ing supply chain performance on one hand, and to infer the causal relationship
in the case of non-linearity and heteroscedasticity on the other hand, dividing
this thesis in two parts.

Part 1: Demand forecasting

Supply chain management (SCM) plays an essential role in corporate efficiency.
It consists of designing, planning, monitoring and optimizing supply chain
activities, from supplying raw materials to delivering final products, in order
to create net value and synchronize supply with demand. One way of achieving
the goal of SCM is to minimize total costs with respect to frictions of different
chain partners, for example considering the inventory level, the sale department
will tend to opt for higher inventory levels in order to fulfill demands whereas
the warehouse division will prefer lower inventories so as to reduce storage
costs [Ayers, 2006; Sadeghi et al., 2016]. For the purpose of matching supply
with demand, demand forecasting is a fundamental component of supply chain
process. Historical operational and sales data are utilized to estimate the
expected forecast of customer demand that are used for almost all supply
chain related decisions such as:

• Optimization of inventory levels: the most accurate demand forecast
allows an optimized management through right decisions concerning the
whole process going from desired raw material to finished goods and their
inventory level [Singh and Kumar, 2011].

• Customer service/satisfaction level: proper forecast of customer demand
helps to adapt the offering to a wide variety of customers. Indeed, un-
derstanding the customer’s situation and need contributes to superior
demand chain efficiency and high customer satisfaction [Heikkilä, 2002].

Demand forecasting has been widely studied in both qualitative and quanti-
tative reasoning approaches. Hofmann and Rutschmann [2018] showed that
demand forecasting is a complicated task that could benefit from additional
relevant data and processes and they examine how big data analytics improve
the accuracy of demand forecasts. They found that the integration of different
data sources in demand forecasting process is feasible but requires data scien-
tists and appropriate technology investments. Hence the first part of this thesis
consists studying how to enhance demand forecasting accuracy using pertinent
data (e. g. operational transaction data, weather data, socio-economic data,
etc.). Each article explores a new statistical approach on the supply chain
optimization through demand forecasting accuracy.
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Article 1:

Uncertainty has been proved to negatively affect supply chain performance
[Dahistrom et al., 1996; Morris and Carter, 2005]. The starting point of the
improvement of supply chain performance is to understand the customer’s
demands in order to optimize the asset utilization, to eliminate the excess
inventories costs and to reduce lead time. For this purpose, several studies
focus on the impacts of extreme weather [Tierney, 1997; Blackhurst et al.,
2011]. The effects of weather on productivity has been more investigated
than its effects on supply chain performance, especially in agricultural and
construction industries [Thomas et al., 1999]. Since weather plays a role in
the operational activities, the first article consists of studying how everyday
weather fluctuations impact supply chain performance in different business of
sport goods.

We analyze several business units with different operational strategies through
real transctional business longitudinal data matched with daily location-based
weather conditions (temperature, quantity of snow/rain, length of sunshine per
day). We found that when the temperature increases the mean order volume
significantly decreases for small customers in resorts ordering seasonal products
in winter. In other words, weather at customer locations has a significant effect
on order volumes and this effect differs according to the type of product, the
location and the size of the customer; and non-urban locations or resorts seem
more vulnerable than urban areas to weather variability. We also study ways
in which weather fluctuations affect supply chain performance, that is, the
delivery delay in days. We found that when the temperature increases, the
delay in days also significantly decreases.

We were also interested in analyzing how weather fluctuations affect the de-
pendence between order volume and delays. We found that order volume and
delay are more dependent during winter than during summer.

The results of this article can be used to estimate and explain the weather
effect in supply chain performance. Understanding this relationship is valu-
able both for improving sales forecast accuracy and for improving operational
performance.

Article 2:

Demand forecasts play a crucial role for supply chain management especially
in case of seasonal products because of the conflict opposing retailers to manu-
facturers concerning the order time. Indeed, due to the demand uncertainty of
seasonal products, retailers tend to place their orders as late as possible in or-
der to gather more information and reduce demand forecasting error, whereas
manufacturers having limited productions capacity wish to have orders as soon
as possible [Chen and Xu, 2001]. According to Chen and Yano [2010], weather
is an important determinant of demand for the seasonal products. In the sec-
ond article we aim to explain how weather conditions and fluctuations affect
the accuracy of demand forecasting for seasonal products, namely winter sport
goods which are ordered and manufactured over 8 months before to be sold to
customers, meaning a long lag between ordering and delivery. We analyze real
transaction business data of alpine ski products of different brands matched
with daily location based weather conditions.
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We found that weather conditions have a significant impact on demand fore-
casting accuracy. The incremental improvement gained is the reduction in
percentage errors up to 45%. The contribution of this article is the opera-
tionalization of a ‘great winter’ and the demonstration of the fact that weather
in one winter affects sales in the next winter. These results can be used to jus-
tify and motivate the integration of the impact of variability in weather in
the decision making process in order to better anticipate demand volumes and
reduce costs due to excess inventory or stock shortages.

Article 3:

Seasonal products are common in many industries and can involve a large
number of factors such as the influence of seasonal weather changes or socio-
economic features. Since the weather characteristics such as temperature or
precipitation, and socio-economics features are spatially dependent [Ashraf
et al., 1997; Anselin, 1999], we assume that close customers are more likely
to similar demand according to weather and socio-economic features and cus-
tomers far apart from each other are more likely to have less similar demand.

Numerous studies of seasonal products are based on time series statistical tech-
nics [Adhikari and Agrawal, 2012; Gan et al., 2014] and less on geostatistics.
Geostatistics have been applied to model the spatial dependence in various
fields such as mining industry, soil science, agriculture etc.

Assuming that customers in a neighborhood may imitate each other leading to
spatial dependence, we aim in the third article to improve demand forecasting
accuracy by using the concept of spatial dependence and interpolation, and
incorporating the effects of socio-economic aspects and weather conditions in
the spatial dependence structure. We focus on studying the demand fluctu-
ation of seasonal (winter sport goods) and unseasonal leisure goods (indoor
sports and golf equipment). We analyse real demand data to find first how it
varies geographically according to socio-economic aspects and weather condi-
tions; and second how the additional information, i.e external to the supply
chain, affects demand forecasting accuracy.

As main results we show that weather conditions impact the spatial correlation
of the demand of seasonal products, but they do not have a significant impact
for unseasonal products. We found that socio-economic features impact spatial
correlation of both seasonal and unseasonal demand. The accuracy of demand
forecasting is improved by the incorporation of weather conditions and socio-
economic features in the forecasting process, the reduction of the forecasting
error is up to 48%.

These results can be used in the decision making process, for example for plan-
ning future demand in order optimize inventories and orders, or for deciding
the location of a new retail shop.

Part 2: Causality inference

It is well known to anyone who has basic notions of statistics that "correla-
tion does not mean causation". The most famous example is the link between
country’s chocolate consumption and Nobel Prize victories [Messerli, 2012].
This article provides a graph showing a strong correlation between chocolate
consumption per capita in a country and the number of Nobel laureates per
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capita as well. Since this correlation does not imply causation, we have three
possibilities: Either chocolate influences Nobel price or the opposite, or both
chocolate consumption and Nobel price are influenced by a common under-
lying mechanism such as the country’s economic features and the investment
capacity in research. Therefore, the best way to go from correlation to causal-
ity is, identifying causal relationships from controlled randomized experiments
[Rubin, 1974], but these experiments are in many cases too costly or unethical
and even infeasible.

Inferring causality from observational data is one of the fundamental subjects
in empirical science. The alternative developed tools to controlled randomized
experiments, are based on inferring causal relationships from observational
data using conditional independence [Rubin, 1974; Pearl, 2009; Spirtes and
Zhang, 2016]. In the bivariate case when observing only two variables (X
and Y ), causality inference consists of identifying the direct causation "X →
Y " or "X ← Y " with the assumption that there is no latent confounding
variable causing both X and Y . In the additive context, this problem has
been studied by imposing certain model specifications or restrictions. For
linear causal models (Y = bX + ε), if at most one of X and ε is gaussian,
the causal direction is identifiable, due to the independent component analysis
(ICA) theory [Hyvärinen et al., 2004]. The linear non-Gaussian causal model,
known as LinGAM [Shimizu et al., 2006] also relies on ICA with the additional
assumption that disturbance variables have non-gaussian distributions of non-
zero variances. Even though linear causal models with additive noise are often
used because they are well understood and there are well-known methods,
nevertheless in reality many causal relationships are more or less nonlinear.
Nonlinearities in the data-generating process provide more information on the
underlying causal system since these models allow more aspects of the true
data generating mechanisms to be identified (Y = f(X) + ε) [Hoyer et al.,
2009]. The post-nonlinear causal model (Y = g(f(X)+ε)) provided by [Zhang
and Hyvärinen, 2009] aims to distinguish the cause from effect by analyzing
the nonlinear effect of the cause, the inner noise effect, and the measurement
distortion effect in the observed variables. According to the literature review,
most of the papers analyze additive models with either linearity, nonlinearity or
gaussian noise, the case of a nonlinear and non-gaussian causal multiplicative
noise model (Y = f(X) + g(X)ε) has been less explored.

In finance, causality is mostly studied conditioned on time. For example, the
linear and nonlinear intertemporal cross correlation [Atchison et al., 1987] aims
to infer causality according to time. This method relies on the fact that asset
prices change in a time-lag manner and not simultaneously. In other words,
price-adjustment delay factors along with nonsynchronous trading cause the
autocorrelations present in daily asset returns.

The most explored is the widely used Granger causality [Granger and Morgen-
stern, 1963]. Under Granger causality, the cause happens prior to its effect. It
aims to determine whether one time series is useful in forecasting another. A
time series X is said to Granger-cause Y if it can be tested that lagged val-
ues of X provide statistically signicant information about future values of Y .
Granger [1981] provides a cointegrated form causality based on the fact that,
in finance, assets can move in an integrated manner, meaning that they evolve
dynamically together and this joint evolution can be analyzed as a linear or
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nonlinear integrated dependencies function. More precisely two time series are
considered as cointegrated when their combination is stationary. For the linear
case if asset X is negatively cointegrated with asset Y , this means that if the
price of asset X increases at time t−1, then the price of asset Y shall decrease
at time t. Besides the up cited methods, numerous time series models aim to
infer causal dependencies nevertheless they are all conditioned on time, hence
one cannot observe assets and infer the causality simultaneously.

Article 4:

Inferring causality between financial assets is a common and fundamental sub-
ject in nance. We have seen that most of the existing methods are conditioned
on time. In this paper, we aim to infer the intrinsic causal mechanism between
two financial heteroscedastic time series. Unlike the Granger causality which
infers only at the mean level, we investigate causal relations not only in mean
but from the perspective of location, scale and shape parameters of the under-
lying distribution. We propose a new two-steps method Causal Heteroscedastic
Model (CHM) that is not conditioned on time and can handle any response
distribution since it infers the inherent causality through all the parameters
of the underlying distribution. We focus on the bivariate multiplicative noise
model Y = f(X) + g(X)ε. The two-steps CHM consists of applying a causal
additive model (CAM) on the BAMLSS (bayesian additive model for location,
scale and shape) fitted values of the estimated parameters. We have tested
our method on both simulated and real financial indices log-returns data. We
found that CHM reaches the accuracy of 0.97 on average. On financial data
we fitted both bivariate and the multivariate CHM, we find an intrinsic causal
effect of the shares on the index they compose. The multivariate analysis pro-
vides directed acyclic graphs (DAG) revealing the causal structure between
shares in normal and extreme case. This new method is a real contribution
to causality research since it can deal with any response distribution and it is
applicable to many other domains in future research, such as genomics etc.

Conclusion

In this thesis, I have explored and analyzed two specific subjects in data
science, which are Demand forecasting and Causality inference. With proper
demand forecasting, supply chain and business performance can be consid-
erably improved, resulting in numerous benefits, such lead time reduction,
storage costs reduction and more important customer satisfaction. This thesis
has provided several studies improving demand forecasting accuracy by reduc-
ing the forecasting error in several contexts dealing with seasonality, through
the integration of external data such as weather or socio-economic data, using
complex statistical models.

The causal method provided in this thesis allows the inference of inherent
causal mechanism between assets unconditioned on time. The developed Causal
Heteroscedastic Model is applied to financial index data highlighting ground-
truth causal evidence and opens wide the door to numerous other applications
in finance or any other domain dealing with heteroscedasticity.
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Abstract
Purpose – The purpose of this paper is to study how variations in weather affect demand and supply
chain performance in sport goods. The study includes several brands differing in supply chain
structure, product variety and seasonality.
Design/methodology/approach – Longitudinal data on supply chain transactions and customer
weather conditions are analysed. The underlying hypothesis is that changes in weather affect demand,
which in turn impacts supply chain performance.
Findings – In general, an increase in temperature in winter and spring decreases order volumes in
resorts, while for larger customers in urban locations order volumes increase. Further, an increase in
volumes of non-seasonal products reduces delays in deliveries, but for seasonal products the effect is
opposite. In all, weather affects demand, lower volumes do not generally improve supply chain
performance, but larger volumes can make it worse. The analysis shows that the dependence structure
between demand and delay is time varying and is affected by weather conditions.
Research limitations/implications – The study concerns one country and leisure goods, which can
limit its generalizability.
Practical/implications – Well-managed supply chains should prepare for demand fluctuations
caused by weather changes. Weekly weather forecasts could be used when planning operations for
product families to improve supply chain performance.
Originality/value – The study focuses on supply chain vulnerability in normal weather conditions
while most of the existing research studies major events or catastrophes. The results open new
opportunities for supply chain managers to reduce weather dependence and improve profitability.
Keywords Weather, Demand variation, Seasonal products,
Supply chain management and performance
Paper type Research paper

1. Introduction
Due to their multi-level structures, many events can disturb supply chain performance in
several ways. Unplanned events may affect value and product processes, assets and
infrastructures, inter-organizational networks through man-made and environmental
causes (Peck, 2005). The more complex the supply chain is the more vulnerable it is to
risks emerging from the supply and demand side, as well as catastrophic risks like
natural hazards (Wagner and Bode, 2006). Major events or catastrophes make the news
headlines and have significant consequences on societies, businesses and individuals.
Along with the most memorable events, there have been severe but less extent
incidents, such as European heat waves in 2003 and 2006, which were devastating
and destroyed crops and affected businesses and their value chains. These and
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similar events surely had a negative impact on supply chains, yet for some reason
they seem to be within normality in their occurrence, and companies and people are
expected to cope with them.

However, everyday weather-related fluctuations also affect supply chain
performance in different business and supply chain contexts. Although these
weather fluctuations, and even severe local weather conditions, occur frequently, most
existing research focuses on rare major weather events or catastrophes and the
vulnerability of supply chain operations. To fill this gap in the existing research, we
focus in this paper on normal daily fluctuations in weather conditions by studying the
following research question:

RQ1. Do everyday changes in weather conditions have an effect on demand, and in
turn on supply chain performance measured by delivery punctuality?

Our research is based on analysing real transactional business data that covers over a
decade of operations and supply chain-related transactions for seven different business
units. These individual units are owned by a publicly listed brand holding company
delivering well-known sporting equipment and goods to customers worldwide. The
business units differ in operational strategy, product variety, country of origin, demand
variability (seasonality) and predictability. The business data will be matched with
daily location-based weather conditions (temperature, quantity of snow/rain, length of
sunshine per day).

Our research methods include using a generalized linear model (GLM) to explain
changes in demand and the delay in delivery based on local weather conditions, and
then analysing the dependence between these using a generalized additive model and a
copula approach. Our results show that, in addition to the order volume, customer
locations and weather conditions affect supply chain performance. Further, this
relationship is not constant but it depends on the season and weather conditions when
resort locations are considered. The results can be used in many ways for improving
supply chain performance. An example of this would be to remove bias caused by
weather variables to measure the true supply chain performance of the company, to
prepare the supply chain for higher volumes or variations in demand based on weather
forecasts, or even to re-engineer supply chains which are less weather dependent.

Our study deals with weather events that are considered as normal in variation
and which do not make the major headlines. We do not study floods, earthquakes and
tsunamis, but the variation in performance and non-resilience in supply chains faced
with normal fluctuations in weather conditions. We study orders made by business
customers during business days, for example, retailers or ski rental companies, and
delivery efficiency to them. Thus, end customer behaviour is beyond our scope.
Since these normal changes in weather conditions do not have a direct effect on
movement of goods, efficiency in factories, or logistics, we focus on weather at the
customer’s geographical locations.

We start by reviewing the literature on supply chain performance and vulnerability
with a special focus on weather and its influence on performance. We seek to find gaps
in the body-of-knowledge to form our detailed research hypotheses. The applied
statistical methodology is then explained along with the description of the data used for
the analysis. This is followed by a detailed analysis section after which the results are
discussed from theoretical and practical points of view. We will also assess the internal
and external validity of the work done. Finally, conclusions are drawn and avenues for
future research are presented.
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2. Literature review on weather affecting operations and supply chain
management
Disruptions and process variance lead to poor supply chain performance. There is
ample literature including case studies, models and surveys on the costly consequences
of dysfunctional supply chains. In their seminal study, Hendricks and Singhal (2003)
show that companies reporting problems in sourcing and delivery, product quality, etc.,
are associated with an abnormal decrease in shareholder value by 10.28 per cent. These
problems refer to a vast multitude of incidents embedded in modern supply chains and
researchers have classified and modelled these causes for poor supply chain
performance in many ways.

For more than a decade research on supply chain risk, vulnerability and security has
flourished and become a discipline of its own. Motivation for this research has increased
ever since the 9/11 terrorist attacks (Sheffi, 2001), various epidemics (Giunipero and
Eltantawy, 2004) and natural hazards and other drastic disruptions in the business
environment (Kleindorfer and Saad, 2005; Sheffi, 2005; Sheffi and Rice, 2005). In their
thorough analysis on supply chain disruptions, vulnerability and mitigation, Stecke and
Kumar (2009) show that incidents negatively affecting supply chain performance have
increased over time. These incidents include natural catastrophes, terrorist attacks, social
unrest, major accidents and other mishaps that affect the increasingly complex and
physically longer supply chains with increased numbers of exposure points. With
regards to weather they hint that advanced companies do take forecasts into account
when planningmaterial flows. In their thorough study on supply resiliency, which results
in a comprehensive framework, Blackhurst et al. (2011) treat weather as an extreme
disturbance. Similarly, most of the literature on supply chain vulnerability concerns
mainly major events and weather is only referred to in an extreme context.

Christopher and Lee (2004) emphasize the role of information sharing when mitigating
supply chain risk while at the same time building confidence among the partners in the
chain. In a similar vein, in their survey of supply chain professionals, Craighead et al. (2007)
find that early warning systems and rapid distribution of information to various players in
the supply chain are vital to prevent and prepare for potentially hazardous events. These
warning systems should also include information on changes in weather, that is, should a
ship be a day late or a truck a few hours off schedule. Delays in sharing information also
imply delays in corrective measures, as demonstrated in the famous mobile phone
industry case in which a storm triggered a fire at a critical component supplier’s
warehouse paralyzing the industry for several weeks (Norrman and Jansson, 2004; Latour,
2001). Although with no direct reference to weather, Manuj et al. (2014) indicate that
postponement and reasonable speculation in supply chains may fall short of mitigating
operational supply chain risk. They emphasize that it is vital to understand the total cost
and system implications related to the importance of a stable and reliable supply base, the
nature of demand variability, and the cost of finished goods inventory are reviewed first.

The impact of weather on productivity has been studied more widely than its impact
on supply chain performance, especially in construction and agricultural industries.
Thomas et al. (1999) quantified the effect of weather on a construction site and found
significant losses in productivity because of snow (41 per cent) and cold temperatures
(32 per cent). Seasonal industries have also examined the impact of weather. In their
study on the construction industry, Rojas and Aramvareekul (2003) conclude
surprisingly that external factors, notably weather and temperature, which are often
cited as a major cause for reduced productivity, are considered to be one of the least
relevant productivity drivers.
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As Van der Vorst et al. (1998) show, even if average consumer demand is known there
are always variations due to weather changes and changing consumer preference. The
traditional way to respond to weather-induced fluctuations is by keeping inventory.
From perishable goods to services, keeping inventory and reactive capacity are
important as they are the main means to maintaining service level (Chopra and Lariviere,
2005). Further, Van der Vorst and Beulens (2002) study supply chain uncertainties
through three case studies that were also vulnerable to weather. They indicate that
weather plays a variation generating role both in up- and-downstream supply chains,
especially when agricultural and perishable products are concerned. In general, in food
chains weather causes variation both in demand and supply and this should be taken
into account There are some indications that seasonal production, products and services
tend to be more vulnerable to changes in weather (Costantino et al., 2013), which partially
explains the use of production smoothing and reactive capacity.

Clark and Hammond (1997) study the retail industry and the impact of electronic
commerce to speed up reordering processes. They point out that efficient service also
requires taking into account regional weather conditions (e.g. higher inventories are
needed in Maine than in California due to snow and hurricanes) and that this is possible
due to shorter replenishment cycles and information sharing. Following similar
reasoning, Sheffi and Rice (2005) mention a company-specific weather service at a
global parcel carrier incorporating weather fluctuations in their daily operational
planning, which enables them to rapidly reroute to maintain the service level.

Aviv (2001) presents and formalizes the concept of collaborative forecasting as a
means of improving supply chain performance. Even though the model is abstract, in a
well concerted situation with continuously updated situational information, it could
also take into account changes in weather. Chaharsooghi and Heydari (2010) study
ways in which mean and variance in lead time affect supply chain performance. As lead
time at each echelon of the supply chain plays a major role in the overall performance of
the whole chain, they analyse whether the focus should be on the reduction of the mean
or the variance. They show that focus on variance has a greater impact on supply chain
and inventory performance, yet to tame the bullwhip effect focusing on reducing the
lead time mean is more important. Ways to manage weather-induced variation are
limited. However, as indicated earlier, being prepared via inventory and reactive
capacity is one way to handle it. One could also prepare for fluctuations caused by
weather through planning that extends beyond organizational boundaries.

Various financial instruments like rebates and derivatives also provide companies
with a means of protecting themselves against disruptions and problems caused by
weather. The development of weather derivatives represents one of the recent trends
towards the convergence of insurance and finance (Brockett et al., 2005). Chen and
Yano (2010) show that the use of price fluctuations and hedging against bad weather,
by using weather derivatives, could improve supply chain performance in weather
intensive seasonal products. These tools aim to share supply chain risk along the
downstream players of the supply chain. These and other statistical methods related to
risk management have been applied to the supply chain context. These instruments are
relatively new and mainly concern certain industries and markets. They are beyond the
scope of our research, although there could be further uses for them in highly seasonal
and weather dependent businesses.

There are many studies on the effect of the weather on consumer behaviour and
demand. Bahng and Kincade (2012) study women’s business wear and show strong
evidence that fluctuations in temperature can impact sales of seasonal garments.
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During sales periods when drastic temperature changes occur, more seasonal garments
are sold. However, the temperature changes from day to day or week to week do not
affect the number of garments sold for the whole season. They also show that
fluctuations depend on the fabric and design.

Murray et al. (2010) study how weather affects consumer spending and the
underlying psychological phenomenon. They especially focus on the sunlight effect.
The authors recognize, based on the literature, three general categories: first, bad
weather reduces people’s willingness to go shopping; second, the weather has a direct
effect on some products, such as ice-cream; and finally, the weather can affects the
consumers’ “internal states”. The study contained sales and weather data for a period
of six years. They find that an increase in sunlight tends to increase consumer
spending but this effect also depends on temperature: at lower temperatures the effect
is positive but negative when temperatures are high.

In agriculture, Behe et al. (2012) study the influence of weather on the sale of
different plants (vegetables, flowers, etc.). Their conclusion is that the weather has an
impact but it is weaker than that of the weekday, region, or month. Other examples of
the weather effect on consumer decision making is a study by Busse et al. (2015) on
how the weather conditions affect car sales. They find that the weather on the purchase
day has a significant impact on the sales of convertibles and 4× 4 vehicles. Bertrand
et al. (2015) study how unseasonal weather affects apparel sales and how companies
can deal with this risk. They use a linear regression model to estimate the impact of
temperature differences on sales volumes in the apparel retail business.

There are also several studies on effects of external events such as weather on stock
market behaviour. Levy and Galili (2008) study how cloudiness affects people’s mood
and their stock market transactions. They find differences among investor groups
relative to how the weather affects their decision making. They conclude that, in cloudy
weather, men, lower income and young people buy more stocks than other groups.
In the same spirit, Lu and Chou (2012) study weather effects and stock index returns.
Their conclusion is that weather can affect trading activities but not returns. Finally, an
example of the influence of weather on the electricity market can be found in Huurman
et al. (2012) who study the weather premium in the electricity market. They show that
using the next day weather forecast clearly improves electricity price predictions.

As the literature review above illustrates, research into the effects of weather on
supply chain performance is limited to overall classification of issues making supply
chains vulnerable and ways in which major disruptions impact global supply chains.
Weather plays a role in the operational planning of transportation, retail and seasonal
businesses. However, the impact of fluctuations in temperature and sunshine duration
on supply chain performance has not been systematically studied. Few case studies
show that advanced companies can adjust and react to changes in weather, and can
actually gain a competitive advantage from it (Ishikawa and Nejo, 1998). Common
knowledge and some of the research shows that weather is blamed for poor
performance, although this has not really been proven and the evidence is based on
limited case-based surveys and anecdotal evidence.

3. Research hypotheses, data and methodology
Based on the existing literature, academics have paid limited research interest to
weather and its impact on supply chain performance. On the one hand strong evidence
supports the fact that weather affects demand and consumer shopping behaviour
(Murray et al., 2010; Parsons, 2001), and on the other hand, fluctuations in demand
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affect supply chain performance (e.g. Beamon, 1999). But the overall chain of reasoning
from fluctuations in weather affecting demand variation leading to variance in supply
chain performance has been less studied. Although this effect is observed in some
cases, it is not possible to establish such a general straight hypothesis. Therefore, this
research aims to fill the gap in the current supply chain body-of-knowledge by
studying ways in which weather affects demand in different market locations and
different customer and product segments.

3.1 Building up detailed research hypotheses
By using longitudinal data covering about a decade of operations in several business
units totalling over 300,000 deliveries of different sporting goods and matching these
deliveries with daily weather data in different locations in Switzerland, we study the link
between changes in weather, demand and supply chain punctuality. Depending on the
product type, for example, summer or winter items, the change in temperature may have
a different impact on demand, thus we analyse the direction of change in temperature.
On the other hand, we assume that the greater the increase in order volumes measured in
monetary value, the more the demand fluctuates, which in turn increases supply chain
load and therefore a decrease in supply chain performance and punctuality.

The weather data holds daily information on the temperature differences to the long-
term average, precipitation and sunshine duration relative to daily maximums. This
data are location specific enabling us to divide our customers according to their
geographical location into urban vs resort areas. We assume that resorts are more
prone to demand fluctuations induced by changes in temperature, sunshine and snow
fall. In urban areas meteorological changes may have less impact on demand than in
resorts where people are more exposed to practicing activities related to the products
studied. Our first hypothesis reads:

H1. Non-urban places, that is, resorts are significantly exposed to demand
fluctuations induced by weather.

We then study seasonality. Some of the business units are seasonal (e.g. skiing
equipment for winter sports), while others are by nature non-seasonal (e.g. sports
instruments, certain apparel with relatively constant demand patterns). Seasonal here
means that manufacturing, sales and actual deliveries take indistinct phases and
overlap very little. These business units face the planning problematic depicted by the
newsvendor model according to which one has to order goods in stock before facing
actual and uncertain demand. For non-seasonal businesses the fluctuations in demand
are smaller, and demand variations easier to anticipate, thus seasonal businesses are
more prone to weather-induced disruptions in demand. Therefore we assume that
seasonal businesses are more vulnerable to fluctuations in weather, and that they face
more supply chain delays. Therefore the second hypothesis is:

H2. Supply chain performance (punctuality in terms of delay) for seasonal business
is more vulnerable to supply chain load (order volume in local currency) than it
is for non-seasonal business. Furthermore seasonal businesses and their supply
chains react differently to fluctuations of weather than non-seasonal businesses.

The customers, meaning the retailers, speciality and sport shops, etc., vary hugely in
sales volume and the amount of stock keeping units they hold. By sales rank we
differentiate between small and large customers. We assume larger customers order
more frequently and have more choice to offer and thus they hold larger buffers to
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mitigate demand fluctuations. Therefore they also face better supply chain
performance than smaller customers. On the other hand, as larger customers order
larger volumes, changes in weather may increase their ordering volumes relatively
more than the same weather changes for smaller customers. Thus larger customers
may face more supply chain delays. On the other hand, smaller customers may be more
reactive to changes in weather thus doing more rush orders and therefore they may be
faced with more frequent supply chain delays. As the literature and our reasoning leads
to differing views on how weather affects supply chain performance large and small
customers, we write the third hypothesis in the following general form:

H3. Weather has a different impact on large and small customers’ ordering
behaviour, which in turn, affects their supply chain delay.

The three previous hypotheses state separately the effects of different variables on
supply chain performance and on order volume. We then study the effects of these
independent variables on the dependence between delay and order volume. If there is a
relationship between high demand and delay, this association should be less significant
in summer but it increases in resorts when the weather conditions deteriorate. This
leads to our last hypothesis:

H4. The dependence between demand volume and supply chain performance is
seasonal and is affected by weather in resort areas.

The statistical analysis shows that these hypotheses are not independent and therefore
may not be studied separately. In Section 4, we precisely formulate our findings,
looking at the significant interactions between the different variables and for different
seasons of the year. Altogether the hypotheses make it possible to devise statistically
justified sentences on the multidimensional relationships related to customer size,
geographical location, seasonality, and weather fluctuations. The original motivation
for the study stems from the supply chain management of the underlying case
company, and their willingness to drill in to the very impact of weather on their supply
chain performance. They have hands on knowledge and experience spanning over
several years indicating that weather has an impact on their performance, yet they do
not have a unanimous view on it and opinions tend to vary over the years along with
financial results.

3.2 The case company and data
The case company, established in 1950, has a long history of commodity products.
In the end of the 1980s a decision was made to transform the company entirely into a
sporting goods company. The first sporting goods brand was acquired in 1989 followed
by another four acquisitions over the next 15 years. At the time of the study, the
company owned seven global business units providing customers with sports
equipment for a range of summer and winter sports, indoor and outdoor sports, sports
instruments as well as fitness equipment. We chose five brands for this study:

(1) Salomon (seasonal): alpine skiing, cross-country skiing, snowboarding and trail
running;

(2) Atomic (seasonal): alpine skiing;

(3) Wilson (non-seasonal): tennis, baseball, American football, golf, basketball,
softball, badminton and squash;
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(4) Suunto (non-seasonal): sports precision instruments; and

(5) Precor (non-seasonal): premium-quality fitness equipment.

At the centre of our study are three constructs, namely, weather, supply chain load and
operational performance. Weather is a construct formed by temperature and daily
sunshine. Supply chain load is measured by order volumes in local currency and the
operational performance of the supply chain is measured as a delay in days between
actual and planned delivery date. The business contexts are urban vs resort customer
residence areas and the delivery is destined for seasonal vs non-seasonal product
families and small vs large customers. The data consist of 307,300 in-season orders in
Switzerland and the corresponding delivery delays observed from March 2003 to
December 2012. The in-season orders as opposed to pre-seasonal orders are driven by
the situational constraints related to weather, overall demand and business
expectations, and they are supposed to be delivered right away.

Products are manufactured or sourced based on sales plans for the following six to
12 months. Sales plans are based on historical sales, commercial insight and on open
orders. Especially for seasonal products open pre-season orders provide a valuable
source of information for making accurate sales forecasts. Products are distributed via
regional distribution centres located in Austria, France and Germany. These
distribution centres serve customers in all European countries, and are in some
cases also replenished by regional distribution centres in Asia and the Americas.
Manufacturing and sourcing volumes are defined using multi-level MRP, considering
manufacturing capacity in its own and in supplier factories. The target of this
production planning is to maintain a balance between high delivery precision and low
inventory levels.

Switzerland is a mid-size country in terms of company sales. Products are
typically delivered directly to shops. At the time of the data sample, own retail and
e-commerce were still very small scale. There were no country-specific distribution
facilities in Switzerland. The country was divided into twelve different areas
classified as urban and holiday resorts. The urban areas were located around the
cities of Basel, Bern, Geneva, Locarno, Lucern, Neuchâtel, Zurich, St-Gallen, while
the studied holiday resorts are La Chaux-de-Fonds, Davos, Samedan (St. Moritz)
and Sion. The data were collected from the enterprise resource management
system that is used to manage each brand (for the data structure, see Table I).
The data harmonization and integration process took place in phases as new brands
were acquired.

The weather data were retrieved from the national weather database containing
weather statistics on all weather stations in Switzerland. The data were matched with
the chosen urban and resort areas mentioned above. The weather data holds
continuous daily values on the key variables and a relevant geographical location
related to main sales areas. Three of the resorts are in the mountain area, two of them
being well-known ski resorts. The rest of the resorts are in main cities in Switzerland.
We retrieved the temperature difference from the long-term average, as explained in
the next section, and daily sunshine duration relative to possible daily maximum.
The database for the analysis was built by merging the supply chain data and weather
data based on the date and location. Each data item has the following form: customer,
order ID, order time, order line value, delivery time, delay, weather station, customer size,
postal code, product group, product ID, weather variables. For the weather variables we
use moving average over the past five days.
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Figure 1 shows the histogram for the logarithm of order line values. We use a GLM to
explain the logarithm of the mean order line value, which we use to indicate the order
volume. We use the following explanatory variables (covariates):

• Place: customer location either an urban city or a ski resort; and
• Period/season of the year: we define three main periods of a year that we call

winter (from November to February), spring (from March to June) and summer
(from July to October).

There are statistical reasons for having split the year in three main seasons:
first the four formal seasons lead to too few data per season in the analysis and
second, the decomposition which actually integrates formal “autumn” in Summer
and Winter shows most significant effects among all possible yearly break
downs by blocks of three months. We also checked seasonality in demand
by adding the “day-of-year” covariate using a non-parametric form allowed by

Order line Sales document Product hierarchy
Sales document number Sales document number Product hierarchy
Item Sales doc type Description
Material number Sales organization Brand
Quantity Created by Material group
Value Sold-to party Material group
Plant Ship-to party Description
Shipping point Material Customer
Created on Material number Customer number
Requested delivery date Material description Zip code
Realistic GI date Product hierarchy Country
Actual GI date Material group
Confirmed delivery date Material type
Customer pick-up date Retail intro date
Ready pack date

Table I.
The structure of the
supply chain
transaction data
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Figure 1.
Histogram of the
logarithm of order
volumes measured in
monetary value
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generalized additive models. The effect exists but it is negligible under this
non-parametric form. Thus, we decided to use a factor “season” instead.

• Product type: we differentiate between seasonal (Atomic, Salomon) and non-seasonal
(Suunto, Precor, Wilson) products.

• Customer type: small or large (determined by individual size in sales volume from
the case company to customer): small customers are those below the median of
the empirical individual size and large customers are above it. The orders among
these groups are distributed as follows: small customers in urban areas 39 and
11 per cent in ski resorts; large customers in urban areas 37 per cent and in ski
resorts 13 per cent.

• Weather variables: we use moving average over the past five days of
“temperature” (T). This is the temperature at 2 meters above ground which is a
deviation from the daily maximum in relation to the “norm 6190” (norm 1961-
1990). This variable is continuous and its histograms for the three periods are
shown in Figure 2. The distributions are skewed, especially in spring,
highlighting a warmer deviation from the norm (1961-1990). For the sake of
interpretation, and in order to make it a factor, for each period of the year, we
differentiate two levels of temperature: the low level called LowTemp for which
the temperatures are below the median of all the temperatures observed for the
related period of time, and HighTemp which represents the temperatures below
the median. Similarly, we also use sunshine duration (high and low) and
precipitation (high and low) as covariates but it turns out that these two are not
significant to explain the demand.

3.3 Explaining weather effect for demand
We use a GLM to explain the mean value of an order line µ by the set of covariates listed
above. The model reads µ¼ e(Xβ), where X is the vector of covariates and β the vector of
coefficients. The general purpose of the GLM model is to quantify the relationship
between several predictor variables, their possible interactions and a dependent variable.
The model explains the significance of predictor variables and it can also be used for
forecasting values of the dependent variable. In our current case, the covariates are place,
period, product type, customer type and weather variables and the dependent variable is
the mean value of an order line which we use to indicate the order volume.

To find the most suitable model, several models including different covariates (X )
are fitted and compared using the likelihood ratio statistic which is a standard test for
nested models. We use the 5 per cent confidence level to retain significant covariates.
Based on this procedure, the significant covariates are: place (urban vs resort), period
(winter, spring or summer), product type (seasonal vs non-seasonal), customer type
(small vs large) and temperature variable (LowTemp vs HighTemp). The interactions
between the covariates are also significant. The goodness of fit of the model is assessed
by standard diagnostics on residuals. The residuals are the error terms, that is, the
differences between the fitted values (obtained from the model) and the observed values
(the data).The resulting estimate coefficients are listed in Table AI in the three left
columns. The table provides the coefficient estimates ( β), their standard errors for all
significant covariates and their interactions and the level of significance given by the
stars. The R2 of the model is about 21 per cent. The coefficients with the largest values
correspond to the most significant factors in the model. The covariates, or their
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interactions that do not appear, are set to 0. An example of using the table to calculate
the mean value of order lines is the following: for a small customer in a resort ordering a
seasonal product in winter during a low temperature period (Tomedian), the estimate
mean of order lines is (in CHF):

eð4:93þ 0:89�0:03þ 0:28þ 0:08þ 0:07�0:24þ 0:03�0:61�0:20�0:1�0:01þ 0:25þ 0:07Þ ¼ 223:63:

Whereas the same characteristics (covariate levels) but for high temperature
(TWmedian) gives an estimate mean order line value of CHF 208.51. The decrease
in mean order line value when the temperature increases from LowTemp to HighTemp
corresponds to one of the global trends discovered in our detailed analysis. If needed,
one can provide confidence intervals for the estimators using the standard errors. One
way to check these fitted values from the model is to compare them with the actual
mean values observed in the data set. For the low temperature period, the actual mean
was 222.19 and for the high temperature period 207.89. The predicted values from the
model are therefore very close to the actual values.

The resulting GLM model can be used to predict the effect of weather variables on
order volumes (with an uncertainty level) but it does not directly show the actual
effects. Therefore, based on the significant coefficients of the model, we constructed
tables (Table II, Section 4) using the actual data with rows and columns representing
the levels of the different covariates. These tables clearly show the observed impact of
the weather (temperature) on order volume.

Small customer Large customer Small customer Large customer

Resort Urban Resort Urban Resort Urban Resort Urban

Seasonal –0.24 –0.17 –0.16 0.29 0.78 0.83 1.61 2.31

Non-seasonal –0.21 –0.11 –0.07 0.03 –0.05 –0.54 0.88 –0.11

Small customer Large customer Small customer Large customer

Resort Urban Resort Urban Resort Urban Resort Urban

Seasonal –0.24 0.14 0.04 0.00 0.52 0.06 1.28 0.47

Non-seasonal –0.23 –0.06 0.04 0.25 –0.27 –0.62 –0.29 –0.41

Small customer Large customer Small customer Large Customer

Resort Urban Resort Urban Resort Urban Resort Urban

Seasonal –0.09 0.18 0.05 0.00 3.15 4.24 4.38 5.17

Non-seasonal 0.12 0.06 0.14 –0.13 0.81 –0.46 0.41 –0.01

Spring 

Summer

Winter
Weather (temperature) → order volumes Order volumes → delay

Notes: The numbers show the relative proportional difference for the given season.
For instance, –24 per cent is the relative decrease in percent of order volumes for a small
customer in a resort for a seasonal product in winter due to an increase of temperature.
Only significant changes are shown by an arrow at the level of 5 per cent significance.
Red means a decrease and blue an increase: the more intense the colour, the more
significant the effect. It is possible to provide confidence intervals for the true
proportions but they are not provided here to keep the paper focused

Table II.
Increase in

temperature effect on
order volume

(left blocks) and
increase in order
volume on delay

(right blocks)
during winter (top

blocks), spring
(middle blocks) and

summer (lower
blocks) seasons

at different
combinations of
customer size,
location and
product type
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3.4 Modelling delays by using weather information
We then study ways in which changes in weather affect supply chain
performance, that is, the delivery delay in days. We assume that the delay follows
a Poisson distribution with a rate that depends on the same covariates as used in
Section 3.1, allowing for possible interactions. The used model is again a GLM model
defined as follows: Denote by D the delay in days. Now D is supposed to follow a
Poisson distribution with rate λ, such that D ~ Poisson (λ). The GLM model reads
as λ¼ e(Xβ), where X is the vector of covariates plus interactions as defined above
and β the vector of coefficients. Several models are tested and compared. The selected
model includes all the same covariates as in the previous sub-section: place (urban vs
resort), period (winter, spring or summer), product type (seasonal vs non-seasonal),
customer type (small vs large) and weather variable (lowTemp vs highTemp),
plus their interactions. Table AI (three right columns) in the Appendix provides
the estimate model. Figure 3 shows the histogram of the delay (left panel) and of
the residuals of the model (right panel). The residuals vary around zero and are
skewed, but much lower than the actual delay values. In that sense the model
seems reasonable.

The interpretation of the Table and its usage is similar to the explanation provided
in Section 3.1. For instance, for the same example of a small customer in a resort
ordering a seasonal product in winter during a low temperature period (Tomedian),
the estimate rate of delay days is:

eð2:44�0:47�0:24þ 0:06�0:15þ0:07þ 0:25þ 0:2�0:04�0:27�0:02�0:09�0:07þ0:45Þ ¼ 8:33:
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Figure 3.
Histograms of the
delay (left) and
histogram of the
residuals of the
model for the delay
(right panel)
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The observed mean delay value is 8.19.Whereas the same characteristics (covariate
levels), but for high temperature (TWmedian) gives an estimate of 7.61 days for the
mean delay. The observed mean value is 7.51.

In conclusion, the example in Section 3.3 shows that when the temperature increases
from LowTemp to HighTemp, the mean order line value significantly decreases for
small customers in resorts ordering seasonal products in winter. Furthermore, when
the temperature increases, the delay in days also significantly decreases. This is in
accordance with our observations in the summary Table II in Section 4. More precisely,
when the temperature increases, the order line value decreases and when the order line
value decreases, the delay also decreases (again, for small customers in resorts ordering
seasonal products during winter). Apart from the statistical results obtained from these
two GLM models, the next section shows factual evidence of the variables effect based
on the observed data.

4. Further results and hypothesis validity
We start with a preliminary empirical analysis to determine whether changes in
weather (temperature, precipitation) have an effect on supply chain load (delivery
volumes measured in local currency), and whether this in turn has an effect on supply
chain performance (punctuality). Figure 4 illustrates this in Zurich for a specific period
of the year, product type and customer size. The left panel shows that sunshine has an
effect on order volumes, while the middle panel shows that order volumes have an
impact on delays and, finally, the right panel shows how supply chain delays are
affected by sunshine.

We split our analysis in two: we start by studying how an increase in temperature
affects order volumes and then we focus on how supply chain load affects performance.
We divided the year into the three periods as described above and then we further drill in
to urban vs resort areas and small vs large customers. Finally, we differentiate between
seasonal and non-seasonal products. The schema in Table II summarizes the effect of
increase in temperature on order volumes (left blocks) and the effect of increasing order
volumes on delay (right blocks) in winter (top blocks), spring (middle blocks) and summer
(lower blocks) for the combinations of customer size, location and product type.

The numbers are relative changes of proportion: the upper left value −24 per cent is
the relative decrease in per cent of orders for small customers in resorts for seasonal
products in winter due to the change of temperature from low to high. Only significant
effects (every 5 per cent) are highlighted by arrows.

We can see from the table (left blocks) that an increase in temperature decreases
order volumes in resorts both in winter and spring. In spring, larger customers in
resorts increase their order volumes. In winter, changes in temperature have no effect
on order volumes for small customers in urban areas, while for seasonal products
rising temperatures increase order volumes for large urban customers. In spring,
warmer temperatures increase sales for larger customers in urban areas. In winter, an
increase in temperature reduces the order volumes of non-seasonal products at
resorts. In all, for customers located in resorts, an increase in temperature always
affects order volumes for seasonal and non-seasonal products (although sometimes
non-significantly).

Table II (right blocks) shows that during the whole year, increasing order volumes
significantly increase delays for seasonal products independently of the customer’s size
and location. For non-seasonal products ordered by large customers, winter causes
delays at resorts when volumes increase. A similar analysis has been applied to order
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Triangular effect
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volumes using daily sunshine as the weather variable. Further empirical studies
using other weather variables such as precipitation (rain or snow) confirm the
hypothesis that weather has a significant effect on order volumes and thus it increases
supply chain load. However, relative temperature is clearly the most significant
weather variable in our case.

Regarding the hypotheses, the analysis shows that the highest temperatures
significantly decrease order volume in a resort (especially in winter and spring). This
means that a non-urban location or resort seems more vulnerable than an urban area to
weather variability, which supports H1. The analysis also demonstrates that delay for
seasonal products significantly increases with order volume, verifying the first part of
H2. We also show that seasonal businesses react differently to fluctuations in weather
than non-seasonal businesses, thus supporting the second part of H2. The same
reasoning applies for the different (but not independently) effect on customer size, thus
supporting H3.

So far, we have separately studied how weather fluctuations affect order volumes
(measured in money) on one hand and delay on the other. However, it is then highly
likely that the dependence structure between order volume and delay is itself
significantly affected by weather fluctuation and other independent variables. To study
this, we use the Kendall’s τ as a rank correlation dependence measure between the
order volume and delay. The used generalized additive model for the dependence
measure is a copula-based approach developed in Vatter and Chavez-Demoulin (2015).
In this approach, the generalized additive model framework (Hastie and Tibshirani,
1986) is extended to the conditional dependence structure; that is, it provides a very
flexible model to explain the dependence measure (such as the Pearson correlation,
Kendall’s τ or Spearman’s ρ) between two variables by independent variables. In our
case, it is used to explain how the dependency between the order volume and the delay,
as well as between the weather variables and the order volume, varies among seasons
and weather conditions.

H4 stating that the dependence between demand volume and supply chain
performance is seasonal and affected by weather in resort areas, is tested following the
above copula approach and measuring the dependencies by using Kendall’s τ. Our
significant findings are first that the Kendall’s τ varies yearly: in resort areas, order
volume and delay are more dependent during winter than during summer. This is
illustrated in Figure 5. The causal effect behind this finding is partly explained by the
more difficult weather conditions in winter. This leads to the second point.

For seasonal products, the Kendall’s τ between order volume and delay significantly
increases with height of snow as shown in Figure 6 for Davos. For a large quantity of
snow (above 1.5 meters), delay depends much more on demand than for reduced
quantities of snow. To summarize, globally speaking, in non-urban places, delay is
usually independent on demand but that changes once the weather conditions become
difficult. These findings clearly support H4.

We also analysed the delay by the factor levels for urban place vs resort, seasonal vs
non-seasonal, small vs large customer as well as their possible interactions and weather
(measured by temperature) and order volumes. The aim was to detect crossed effects of
weather and order volumes together on the different combinations of factor levels.
The analysis is therefore complementary to the marginal effect documented above.
From this further analysis we observe, for instance, that low-temperature and
low-order volume lead to low delays for seasonal products. Respectively, high-temperature
and high-order volume lead to proportionately high delays for seasonal products.
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The marginal effect of increasing delays with increasing order volumes for seasonal
products was observed. Marginally, we observed that high temperatures lead to
globally lower order volumes of seasonal products (not for large urban customers).
We also found that the increase in delays for seasonal products when order volumes
increase is amplified by an increase in temperature. As an example, Figure 7 directly
illustrates the effect of order volume on delay. The points are log delays against log
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Figure 5.
Kendall’s τ as
measure of
dependence between
delay and order
volume and its
yearly evolution in
resort places
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Figure 6.
Kendall’s τ as
measure of
dependence between
delay and order
volume and its
evolution as function
of height of snow in
Davos, during winter
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order volume in winter in a resort (Davos), for all seasonal products, small customers
and temperature above the median for this period of time, in 2009. The correlation is
significant and equal to 0.4.

The above documented statistically significant results emerge when analysing the
data across different brands, yet product categories even within the same brand may
behave differently to changes in weather. Figure 8 shows two categories, namely, men’s
outdoor shoes and tennis balls in Geneva during spring. These categories react in
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195

Weather and
supply chain
performance

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

E
 D

E
 L

A
U

SA
N

N
E

 A
t 0

4:
51

 0
7 

N
ov

em
be

r 
20

17
 (

PT
)

28



different ways to changes in temperature. If the relative temperature increases, the
demand for men’s outdoor shoes will decrease, while the demand for tennis balls will
increase. This may be trivial and obvious. However few companies extend and tailor
their supply chain planning routines according to product category, not to mention
incorporate weather forecasts in their planning routines. In most cases identical
planning routines are applied to all product categories although they behave very
differently. Based on the results of this research, the case company is planning to
implement a pilot project where the sensitivity of a product category to changes in
temperature is measured. This measure would then be used with a rolling forecast to
anticipate demand fluctuation and at-hand inventory levels. Documenting these results
would be a relevant topic for future research.

From the validity point of view our analysis is based on a single company, but on
different business units with highly differing products. The constructs used are
based on real supply chain transactions in the company’s operations; orders. The
weather data are also based on outputs from measurement units around Switzerland.
As we use first-hand data, and no constructs or aggregates, the validity of the data
can be considered sufficient. For internal validity the research should demonstrate
that certain conditions lead to other conditions and to achieve this, multiple pieces of
evidence from different sources are needed. The numerous analyses across business
units, product groups and locations from which data were collected and analysed
provide the study with the necessary internal validity. External validity of the
research reflects whether the findings can be generalized beyond the immediate case.
At least to a certain extent this has been achieved as the results are tested across and
within cases, and the results do not conflict with previous research. The research
concerns Switzerland, which limits the generalizability of the results. Additionally,
the products concerned are mainly related to leisure, thus their demand may be more
prone to weather inflicted variation.

5. Discussion and future research
We analysed how weather conditions and customer locations affect demand and
especially supply chain performance. We used detailed transactional data on sales
orders and deliveries combined with local weather data over a decade in Switzerland.
We found two major results; first, weather at customer locations has a significant effect
on order volumes and this effect differentiates the type of product and the location and
size of the customer based on the season. Second, the order volume in monetary value,
which corresponds to the load in the supply chain, has a significant effect on supply
chain performance (punctuality in terms of delay). This means that weather affects
supply chain performance.

The results can be used to estimate and explain the weather effect in supply chain
performance. Further, our analysis shows that well-managed supply chains should be
prepared for demand fluctuations due to weather changes. For example, monthly or
seasonal weather forecasts could be used to estimate the punctuality of a supply chain
and the supply chain should be prepared to handle large volume fluctuations caused by
weather. Although medium range weather forecasts, that is, five to seven day forecasts,
are still often inaccurate, they are continuously improving (Palmerand Weisheimer,
2012; Weisheimer et al., 2011). Similar methods have been applied, for example, in
predicting wind power capacity (Barbounis et al., 2006). This suggestion is also
supported by our finding that supply chains that are more used to dealing with weather
fluctuations are even more robust when encountering variation in weather.
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For the supply chain management of the case company the results show that weather
fluctuations impact supply chain performance. Understanding this relationship is valuable
both for improving sales forecast accuracy and for improving operational performance.
To create an accurate sales forecast, historical sales is the most important starting point.
This sales history will necessarily depend on weather conditions that will not repeat
themselves the same as in past seasons. By using the model developed in this paper, the
company can eliminate these weather effects to create a “normal weather condition” sales
history as a base for forecasting. Second, it is possible to identify cases where weather
conditions in past seasons affect subsequent season sales. For example, if the winter has
been good, retailers tend to place more pre-orders for the next season – partly because their
inventories are sold out, and partly because they are in a good mood.

Operational performance is largely affected by supply availability. An accurate
long-term weather forecast would be of great help to further improve sales planning
accuracy and make sure the right products are available in right quantities when
needed. Unfortunately, weather forecasts do not forecast far enough into the future to
cover sourcing and transportation lead time. However, product availability is not the
only factor affecting delivery precision. Another important factor is distribution centre
capacity. Picking, packing and shipping are manual operations that can be scaled by
bringing in more personnel. Hence, understanding the relationship between weather,
demand and operational performance can help the company utilize a ten-day weather
forecast to adjust distribution centre capacity.

Finally, the company can re-engineer its supply chain to become less weather
dependent. In fact, the company has announced that it has a strategic priority to
“sustain profitability irrespective of weather conditions”. This is accomplished in three
different ways. First, the overall product portfolio of the company consists of products
for different seasons, for example, skiing and cycling, thus levelling the load while
keeping utilization high and unit costs down throughout the year. This approach also
enables economies of scope by sharing common resources like sales, marketing and
distribution facilities across different product categories. Second, implications of the
weather can be managed within each category by offering products for different
weather conditions within the product category, for example, T-shirts and rain gear.
Finally, every factory and supplier runs lean projects to reduce fixed costs, improve
volume flexibility, and reduce lead time. As a result of this effort a large proportion of
products can today be produced based on firm customer order, ensuring high customer
service levels along with lower inventories.

The results of this study open new opportunities for the case company to reduce
weather dependence and improve profitability. The fact that customers in different
regions react differently to weather variations could be utilized for sales management.
For example, if the weather is cold, the focus will be on selling to urban customers,
because resort customers will buy in any case. If the weather is warm, the focus will be
on resort customers. Results of the study could also be used for customer risk
management, for example, as the resort customers are more influenced by weather,
they should be offered less credit. Customers should also be educated to buy a balanced
mix of different products: seasonal and non-seasonal, summer and winter. They will
therefore be less vulnerable to fluctuations in weather.

The theoretical implications of this study are related to ways of managing supply
chain variation. In general variation is divided into two different types: assignable
or special cause variation and common cause or random variation. The former is
generated by factors that can be identified and possibly managed – they stem from
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external sources indicating that the process is statistically out of control. This type of
variation could be caused by employees, different skill levels, mistakes in complying
with the procedures, machine and truck breakdowns, etc. Common cause variation is
inherent to the process – it is intrinsic to the process and will always be present.
Weather is considered to be random variation, yet we know that advanced and agile
supply chains can manage it partially through efficient inventory management,
reacting faster and by better management of operational capacity. Our study takes this
even further by showing that weather-induced variation could be treated more like
special cause variation. Supply chains could be controlled better by understanding how
weather affects different customers in size and their location and how product
categories behave differently. As Christopher et al. (2004) argue, conventional
organizational structures and forecast‐driven supply chains are not adequate to meet
the challenges of volatile and turbulent demand which typify fashion markets. Even
though they call for agile organizational structures, one complemented with better
understanding on the impacts of weather on supply chain performance would yield an
even higher performance outcome. Taking into account weather in short-term supply
chain planning makes it possible to serve the customer better, i.e. improved punctuality
and order fulfilment. Theoretically, one could envisage that weather adjusted supply
chain planning improves performance and therefore, through the increased volume,
should also reduce prices and enlarge the choice customers have.

The findings reported open new avenues for future research to study how weather
affects supply chain performance in different businesses and locations around the
world, and especially, what management should do in practice to better manage their
supply chains in alternating weather conditions. For the case company future research
should include studying topics mentioned above, such as creating “normal weather
condition” sales history, utilizing a ten-day weather forecast in planning, and reducing
weather dependence. Additionally, further drilling down to understanding how
different indoor/outdoor and summer/winter sport products behave, and how
sentiment of the full season weather affects pre-orders for the next season, are also
promising future research directions.
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Appendix

GLM for log order volume GLM Poisson for delay
Covariates Coefficients SE Signif Coefficients SE Signif

HighTemp 5.00 0.02 *** 2.34 0.01 ***
LowTemp 4.93 0.02 *** 2.44 0.01 ***
Urban −0.33 0.02 *** −0.43 0.01 ***
Seasonal 0.89 0.02 *** −0.47 0.01 ***
Small customer −0.03 0.03 *** −0.24 0.01 –
Summer −0.10 0.03 *** 0.24 0.01 ***
Winter 0.28 0.03 *** 0.06 0.01 ***
LowTemp & Urban 0.06 0.03 *** −0.18 0.01 *
LowTemp & Seasonal 0.08 0.03 *** −0.15 0.01 *
Urban & Seasonal 0.30 0.02 *** 0.54 0.01 ***
LowTemp & Small Customer 0.07 0.04 *** 0.07 0.01 *
Urban & Small Customer 0.08 0.03 *** 0.63 0.01 **
Seasonal & Small Customer −0.24 0.03 *** 0.25 0.01 ***
LowTemp & Summer 0.15 0.04 *** −0.35 0.01 ***
LowTemp & Winter 0.03 0.04 0.00 0.01
Urban & Summer −0.50 0.03 *** −0.63 0.01 ***
Urban & Winter −0.08 0.03 *** −0.16 0.01 *
Seasonal & Summer −0.29 0.03 *** 0.58 0.01 ***
Seasonal & Winter −0.61 0.03 *** 0.20 0.01 ***
Small Customer & Summer 0.17 0.03 *** −0.04 0.01 ***
Small Customer & Winter −0.20 0.04 ** −0.04 0.01 ***
LowTemp & Urban & Seasonal −0.21 0.03 *** 0.36 0.01 ***
LowTemp & Urban & Small Customer −0.08 0.04 * 0.02 0.01 –
LowTemp & Seasonal & Small Customer −0.10 0.04 *** −0.27 0.01 *
Urban & Seasonal & Small Customer −0.18 0.03 *** −0.72 0.01 ***
LowTemp & Urban & Summer −0.07 0.04 *** 0.18 0.01 –
LowTemp & Urban & Winter 0.00 0.04 *** 0.61 0.01
LowTemp & Seasonal & Summer −0.11 0.05 *** 0.35 0.01 *
LowTemp & Seasonal & Winter 0.00 0.04 −0.02 0.01
Urban & Seasonal & Summer −0.35 0.04 *** −1.68 0.01 ***
Urban & Seasonal & Winter −0.07 0.03 *** −0.03 0.01 *
LowTemp & Small Customer & Summer −0.22 0.05 *** 0.21 0.01 ***
LowTemp & Small Customer & Winter −0.01 0.05 *** −0.09 0.02
Urban & Small Customer & Summer 0.31 0.04 *** 0.71 0.01 ***
Urban & Small Customer & Winter 0.00 0.04 *** 0.31 0.01
Seasonal & Small Customer & Summer −0.05 0.05 *** 0.06 0.01
Seasonal & Small Customer & Winter 0.25 0.04 *** −0.07 0.01 ***
LowTemp & Urban & Seasonal
& Small Customer 0.17 0.04 *** −0.20 0.01 ***
LowTemp & Urban & Seasonal
& Summer 0.17 0.05 *** 0.24 0.02 **
LowTemp & Urban & Seasonal &Winter 0.01 0.05 *** −1.10 0.02
LowTemp & Urban & Small Customer
& Summer 0.18 0.05 *** −0.20 0.02 ***
LowTemp & Urban & Small Customer
& Winter 0.00 0.06 *** −0.46 0.02

(continued )

Table AI.
Estimate coefficients
and standard errors
for the GLM model

of Section 3.1
(two left columns)
and for the GLM

Poisson of Section
3.2 (two right

columns)
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Tapio Niemi can be contacted at: tapio.niemi@unil.ch

GLM for log order volume GLM Poisson for delay
Covariates Coefficients SE Signif Coefficients SE Signif

LowTemp & Seasonal
& Small Customer & Summer 0.18 0.07 *** −0.27 0.02 **
LowTemp & Seasonal
& Small Customer & Winter 0.07 0.06

***
0.45 0.02

Urban & Seasonal & Small Customer
& Summer 0.71 0.05

***
1.42 0.02

***

Urban & Seasonal & Small Customer
& Winter 0.28 0.05

*
−0.16 0.02

***

LowTemp & Urban & Seasonal
& Small Customer & Summer −0.20 0.08

***
0.16 0.02

**

LowTemp & Urban & Seasonal
& Small Customer & Winter 0.01 0.07

***
0.89 0.02

Notes: Spring, non-seasonal products, large customers and resorts are taken as reference variables
(their value is set to 0). Significance codes: *p-valueo0.05; **p-valueo0.01; ***p-valueo0.001Table AI.

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com
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Abstract: In seasonal business, manufacturers need to make major supply 
decisions up to a year before delivering products to retailers. Traditionally, they 
make those decisions based on sales forecasts that in turn are based on previous 
season’s sales. In our research, we study whether demand forecasts for the 
upcoming season could be made more accurate by taking into account the 
weather of the previous sales season. We use a ten-year dataset of winter sports 
equipment (e.g. skis, boots, and snowboards) sales in Switzerland and Finland, 
linked with daily meteorological data, for developing and training a generalised 
additive model (GAM) to predict demand for the next season. Results show a 
forecasting error reduction of up to 45% when including meteorological data 
from the past season. In our case, the value of this reduction in the forecasting 
error corresponds to around 2% of total sales. The results contribute to the 
theory of stochastic inventory control by showing that taking into account 
external disturbances, in this case the fluctuations in weather, improves 
forecasting accuracy in situations where the lag between ordering and demand 
is around one year. 

Keywords: demand forecasting; seasonal products; newsvendor model; 
generalised additive model; GAM. 
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1 Introduction 

“Prediction is very difficult, especially about the future”. This quote by Niels Bohr, 
Nobel laureate in physics, was about his understanding of atomic structure and 
quantum mechanics. However, it also holds for forecasting of seasonal products. A vast 
body-of-knowledge has been developed to predict and forecast demand, consumer 
behaviour, supplier and operational performance to optimise processes in various 
business contexts. We focus on seasonal products. In our case, this means studying a 
special sub-category of business decisions that fall under the general framework of the 
Newsvendor problem and stochastic inventory theory (Porteus, 1990; Gerchak, 2016). To 
be precise, we study detailed and real supply chain and demand data on seasonal products 
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to learn how past weather conditions affect accuracy of demand forecasting. Data related 
to external events, such as weather conditions, are usually not used for this type of 
decision making process, especially when decisions are made several months before the 
demand arrives. By seasonal products we mean winter sport goods, which are ordered 
and manufactured over 8 months before they are sold to consumers. 

All companies have to cope with external variation and many of them collect past 
operational data to better understand the dynamics of their business environment. One of 
the main issues in demand forecasting is the bullwhip effect (Lee et al., 2004; Forrester, 
1961), which states that variability in the ordering pattern increases when moving 
upstream towards manufacturers and suppliers. This phenomenon, originating from time 
delays, forecasting errors, long lead times and gaming etc., has been observed in most 
supply chains. For example one of the bullwhip effects on inventory is the net inventory 
variance amplification (Ma et al., 2013). Companies can mitigate the effect of demand 
uncertainty on their overall profit through operational hedging, which can be achieved via 
choice of product assortment (Devinney and Stewart, 1988; Treanor et al., 2014), 
accurate and/or quick responses using more flexible production capacity (Fisher et al., 
1997; Sting and Huchzermeier, 2014), delayed product differentiation (Lee and Tang, 
1997), resource diversification and sharing (Van Mieghem, 2007), along with logistics 
technology such as electronic data interchange to support quick responses to real demand 
information, and the usual in-season and end-of-season markdowns. 

Our research is based on analysing real transactional business data that covers a 
decade of order line data on alpine skis of two well-known brands. These brands are 
owned by a publicly listed sporting goods company delivering well-known sporting 
equipment and goods to customers worldwide. The business data will be matched with 
daily location based weather conditions such as temperature, quantity of snow/rain, and 
length of sunshine per day. Our study deals with weather events that are considered as 
normal in variation. We focus on orders made by business customers during business 
days or trade shows, for example, retailers or ski rental companies one year before the 
actual demand occurs. The weather effect is not straightforward, since we only use past 
weather data, not the weather conditions during the time when the purchasing decisions 
were made, but the weather of the previous season. Our assumption is that the weather 
during the past season affects the sales of the next season. The reasoning behind this 
assumption is threefold: 

1 If the previous season was good for retailers due to good weather conditions, they 
will have less left-over inventory and therefore need to order more products for next 
season. 

2 Exceptionally good winter conditions may influence consumers to buy more. 

3 Finally, based on Kahneman’s (2011) availability heuristics higher sales during the 
previous season can have a psychological effect causing retailers to be more 
optimistic when placing their orders for the next season. 

The main purpose of our study is to explain how weather conditions and fluctuations in 
weather affect the accuracy of demand forecasting using advanced statistical methods. As 
the main result of the study, we show that demand accuracy improves when weather data 
is combined with business data by using generalised additive models (GAM). This 
information can be used, for instance, to integrate the impact of variability in weather 
with company internal data in the decision making process to better anticipate demand 
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volumes. Our detailed results show that using past weather data to complement past 
seasonal demand data reduces the forecasting error up to 45% when compared to 
traditional forecasting models without weather information. To obtain these results, we 
start with a literature review on weather related demand forecasting and its impact on 
supply chain performance. We then formulate our detailed research hypotheses to fill in 
the gaps in the existing body-of-knowledge. This is followed by the description of the 
data and the explanation of the applied statistical methodology used for the analysis. 
After that, the results are discussed. Finally, conclusions are drawn and avenues for future 
research are presented. 

2 Literature review 

The following literature review starts by reviewing research aiming to integrate external 
information, especially weather, into the forecasting routines. We then proceed to review 
studies on how weather affects supply chain performance and productivity in different 
business situations. After this, we present studies exploring how weather affects 
consumer behaviour. Finally, we look into research presenting ways in which companies 
may protect themselves against weather variation. 

Different forecasting methods have been developed for seasonal and dynamic 
businesses. For example, Thomassey (2010) proposes forecasting methods based on 
fuzzy logic, neural networks and data mining to improve supply chain performance in the 
clothing industry. Tabrizi and Ghaderi (2016) provide a comparative study of 
autoregressive integrated moving average and local linear neuro-fuzzy models through a 
manufacturing company case study. Aburto and Weber (2007) compare several 
forecasting techniques and provide hybrid systems combining an auto-regressive 
integrated moving average and neural network and fuzzy logic to improve supply chain 
management. Taylor and Xiao (2010) extend the value chain view by showing that the 
manufacturer benefits from selling to a better forecasting retailer if and only if the retailer 
is already a good forecaster. More generally, the manufacturer tends to be 
positively/negatively affected by improved retailer forecasting capabilities if the product 
economics are lucrative/poor. By extending the supply chain view Aviv (2001) 
introduces the notion of collaborative forecasting, where forecasting information is 
centralised and continuously updated in the replenishment process, with regard to 
demand evolution, which is impacted by external factors such as weather conditions. 
Appelqvist et al. (2016) study how variations in weather affect demand and supply chain 
performance in sport goods using generalised linear models (GLMs). 

Weather has been widely studied and it has a clear impact on productivity, the supply 
chain, consumer behaviour and demand in general. For example Wal-Mart reported in 
June 2005 that its inventory levels were higher than normal because of below-normal 
temperatures (Chen and Yano, 2010). In a similar vein Coca-Cola and Unilever observed 
lower sales of soft drinks and ice creams because of colder than normal summers 
(Kleiderman, 2004). Amini and Ghodsi (2016) analyse an integrated transportation and 
inventory problem in a two-stage supply chain. They find out that in each period there are 
weather extra inventories or back-ordered demands. For many products weather 
represents an important factor in demand. This applies especially to products with high 
seasonality and long lead times in sourcing and delivery, because these characteristics 
make the company financially more vulnerable (Costantino et al., 2013; Wagner and 
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Bode, 2006). Starr-McCluer (2000) uses monthly data on retail sales and weather data to 
find out that unusual weather has a modest but significant role in explaining monthly 
sales fluctuations, thus contributing to the bullwhip effect. However, on an aggregate 
level lagged effects due to weather tend to offset original fluctuations and therefore, as 
with quarterly time windows, the weather effect tends to even out. 

Weather conditions have a clear impact on productivity and supply chain 
performance. In the construction industry, Thomas et al. (1999) analyse three structural 
steel erection projects and quantify the effects of weather on productivity. Significant 
losses of productivity are observed, caused by snow (41%) and by cold temperatures 
(32%). Costantino et al. (2013) studied demand seasonality and argue that in production 
of products and services the demand may stem from factors such as weather, which 
partially explains the use of production smoothing and reactive capacity. This means that 
weather may also trigger the beginning of the season, for example, a longer warm period 
earlier in spring may advance the beginning of the sales period, and inversely bad 
weather may delay the start of the season. 

Aggregate demand and supply is the result of individual consumer behaviour and the 
interaction with each other in the economy. Consumers are consciously or unconsciously 
aware of the weather and they are not exempt from its impact. Van der Vorst et al. (1998) 
show that even if average consumer demand is known, there are variations due to weather 
changes and changing consumer preference. The traditional way to respond to weather 
induced fluctuations is to keep inventory. From perishable goods to services, keeping 
inventory and reactive capacity are important as they are the main means to maintain 
service level (Chopra and Lariviere, 2005). Van der Vorst and Beulens (2002) study 
supply chain uncertainties through three case studies that were vulnerable to weather. 
They indicate that weather plays a variation generating role both in up- and downstream 
supply chains, especially when agricultural and perishable products are concerned. In a 
more in-depth study on agricultural products, Behe et al. (2012) study the influence of 
weather on the sales of different plants (vegetables, flowers etc.). They conclude that 
weather has an impact, but that it is weaker than the effect of weekday, region or month. 

Murray et al. (2010) study the effects of weather on consumer spending. They 
provide empirical evidence to explain how weather affects consumer decision making, 
and detail the psychological mechanism that underlies this phenomenon. The authors find 
that temperature, humidity, snow fall and, especially sunlight can affect retail sales. They 
mainly analyse the effects of sunlight which is mediated by a negative effect, meaning 
that as exposure to sunlight increases, the negative effect decreases and consumer 
spending tends to increase. Bahng and Kincade (2012) explore this further and identify a 
relationship between temperature and retail sales of seasonal garments. Even though they 
had limitations in the sample and the location of stores, they provide interesting results. 
By analysing women’s business wear, the authors show strong evidence that fluctuations 
in temperature can impact sales of seasonal garments. During sales periods when drastic 
temperature changes occurred, more seasonal garments were sold. However, the 
temperature changes from day to day or week to week did not affect the number of 
garments sold for the whole season. Further, the fluctuations depend on the fabric and 
design. In a seemingly non-seasonal business Bertrand et al. (2015) show that weather 
affects apparel sales by using a linear regression model to estimate the impact of 
temperature differences on sales volumes in the apparel retail business. In the car 
industry, Busse et al. (2015) study how the weather conditions affect car sales. Their 
finding is that for the sales of convertibles and 4×4 vehicles, the weather of the purchase 
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day has a significant impact. Fashion and luxury items also set a special demand for the 
organisation to react on demand fluctuations as Christopher et al. (2004) argue that 
conventional organisational structures and forecast-driven supply chains are not adequate 
to meet the challenges of volatile and turbulent demand which typify fashion markets. 

Integration of weather forecasts in operational planning is also widely used. Steinker 
and Hoberg (2015) incorporate weather data into the sales forecasting of one of the 
largest European fashion online retailers. Using weather forecasts they are able to 
improve the sales forecasting accuracy incrementally by 57% on summer weekends. 
These considerable improvements in forecast accuracy may have an important impact on 
logistics and warehousing operations. They also apply their empirical results to quantify 
the value of incorporating weather information into workforce planning within an order 
fulfilment centre and show how weather data can be leveraged to improve costs and 
performance. They estimate that a weather forecast improved sales plan reduces excess 
costs over a perfect information scenario in the range of 12.2% to 12.9% relative to the 
baseline model. Few case studies (Ishikawa and Nejo, 1998) show that advanced 
companies can adjust and react to changes in weather, and can actually gain a 
competitive advantage from incorporating weather forecasts in their operational plans. 

In finance, Levy and Galili (2008) analyse the effects of cloud coverage on 
individuals’ mood tendencies to buy and sell equity. They found that the effects of 
cloudiness are different among groups based on age, sex, and income level. The 
conclusion was that in cloudy weather men, lower income individuals, and young people 
buy more stocks than others. In a similar vein, Lu and Chou (2012) study how weather 
affects stock index returns. Their conclusion is that weather can impact trading activities, 
but not returns. Goetzmann et al. (2014) study and show that weather-based indicators of 
mood impact perceptions of mispricing and trading decisions of institutional investors. 
Apergis et al. (2016) empirically show that unusual deviations of weather variables from 
their monthly averages have a statistically significant effect on stock returns across global 
returns. 

With regards to market pricing, Huurman et al. (2012) show that predicting the price 
of electricity can be significantly improved by complementing traditional price estimation 
models with next day weather forecasts. Various financial instruments, like rebates and 
derivatives, also provide companies with a means to protect against disruptions and 
problems caused by weather. The development of weather derivatives represents one of 
the recent trends toward the convergence of insurance and finance (Brockett et al., 2005; 
Cui and Swishchuk, 2015). Nicola (2015) analyse the impact of weather insurance on 
consumption and welfare gains of farmers, and she finds that weather insurance has the 
potential to provide large welfare gains, equivalent to a permanent increase in 
consumption of almost 17%. Chen and Yano (2010) show that by using weather 
derivatives the use of price fluctuations and hedging against bad weather could improve 
supply chain performance in weather intensive seasonal products. These tools aim to 
share supply chain risk along the downstream players of the supply chain (Singh and 
Acharya, 2015). These and other statistical methods related to risk management have 
been applied to the supply chain context. These instruments are relatively new and 
mainly concern certain industries and markets. 

 

 

44



   

 

   

   
 

   

   

 

   

    Using weather data to improve demand forecasting for seasonal products 59    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Summary table of the literature review under the main themes: forecasting, 
productivity, consumer behaviour, forecasts in operational planning and finance 

Theme Results/observations References 
Forecasting Research has focused on forecasting methods 

based on fuzzy logic, neural networks, data 
mining, GLMs and formulation of hybrid 
systems combining auto-regressive integrated 
moving average to improve supply chain 
performance. Advantages of good forecasts have 
been illustrated. Finally benefits of collaborative 
forecasting, where forecasting information is 
centralised and continuously updated in the 
replenishment process. 

Thomassey (2010), Tabrizi 
and Ghaderi (2016), 
Aburto and Weber (2007), 
Taylor and Xiao (2010), 
Aviv (2001), Appelqvist 
et al. (2016) 

Productivity Research shows that weather affects the 
productivity via inventories and sales, and is an 
important factor in demand, especially for high 
seasonality or perishable products. 

Chen and Yano (2010), 
Amini and Ghodsi (2016), 
Kleiderman (2004), 
Costantino et al. (2013), 
Wagner and Bode (2006), 
Starr-McCluer (2000), 
Thomas et al. (1999), 
Chopra and Lariviere 
(2005) 

Consumer 
behaviour 

The effects of weather on consumer behaviour 
are proven by analysing sales of different plants, 
seasonal and non-seasonal apparel, cars and 
fashion and luxury items. Empirical evidence to 
explain how weather affects consumer decision 
making is provided and the psychological 
mechanism that underlies this phenomenon is 
detailed. 

Van der Vorst et al. (1998), 
Van der Vorst and Beulens 
(2002), Behe et al. (2012), 
Murray et al. (2010), 
Bahng and Kincade (2012), 
Bertrand et al. (2015), 
Busse et al. (2015), 
Christopher et al. (2004) 

Forecasts in 
operational 
planning 

The incorporation of weather data into sales 
forecasting leads to an increase in competitive 
advantage. 

Steinker and Hoberg 
(2015), Ishikawa and Nejo 
(1998) 

Finance Literature focused on analysing the effects of 
weather on stock index returns, on tendencies to 
buy and sell equity, and on the incorporation of 
weather forecasting in price estimation models. 
Research also studied the use of price 
fluctuations and hedging against bad weather by 
using weather derivatives. 

Levy and Galili (2008), Lu 
and Chou (2012), 
Goetzmann et al. (2014), 
Apergis et al. (2016), 
Huurman et al. (2012), 
Leon et al. (2015), Brockett 
et al. (2005), Cui and 
Swishchuk (2015), Nicola 
(2015), Chen and Yano 
(2010), Singh and Acharya 
(2015) 

To summarise, weather has a significant impact on consumer behaviour which manifests 
itself in demand fluctuations and even in the timing of the seasons. This impact varies 
greatly between product and service categories (agricultural, standard, commodity, 
fashion or luxury) etc. and several companies show that incorporating past performance 
with weather data can be used to improve operational and supply chain performance. 
Most advanced companies in highly cyclical industries also use weather forecasts in their 
production and supply chain planning. Our focus, however, is on seasonal products that 
have long delays, (i.e., several months) between ordering and delivery. Concerning 
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seasonal businesses, current research mainly focuses on how companies mitigate weather 
induced demand fluctuations. Estimating demand for a sales season that is months away 
is still mainly based on the analysis of the demand information from the past sales 
seasons. The most recent season is most dominant when making sales estimates. This is 
the gap our research aims to fill. We study how demand forecast based on demand 
information from past sales seasons can be improved with weather data gathered during 
the same seasons, when the lag between ordering and delivery is more than half a year. 

3 Motivation, research questions, data and methodology 

3.1 Motivation and research questions 

Pre-orders play an important role in a seasonal business, since they cover around 80% of 
total order value. Therefore, accurate demand forecasting is a key element for successful 
business and even small improvements in prediction accuracy have a direct effect on the 
profit of the company, namely on customer service, gross margins, and inventories. 

While numerous companies incorporate short term, that is, 1–5 day, weather forecasts 
into their short-term operational and supply chain planning, our study extends this to 
seasonal products where the demand occurs months after the manufacturing orders are 
placed. By using real ordering and demand data on products sold in wintertime, we show 
that it is possible to make more accurate demand forecasts for the coming season by 
taking into account the weather of the previous sales season. This means that despite the 
long one year lag between sales seasons, weather adjusted forecasts are more accurate 
than the traditional forecasts based on historical demand only. This main objective 
transforms into the following three main research questions on seasonal demand 
forecasting when the lag between consecutive seasons is one year: 

• How do weather conditions of the past sales season affect seasonal demand of the 
next season? 

• How can past weather data be used to improve demand forecasting for seasonal 
products? 

• How generalisable are the results when compared to other geographical areas? 

3.2 Data 

The case company, established in 1950, is one of the leading sporting goods companies in 
the world. The Amer Sports sales network covers 33 countries: the largest markets being 
the United States, Germany, France, Japan, Canada and Austria. Amer Sports sells its 
products to retail customers, which include sporting goods chains, specialty retailers, 
mass merchants, fitness clubs, and distributors. In 2015, Amer Sports net sales totaled 
EUR 2,534 million and currently the company owns several global brand business units 
providing customers with sports equipment for a range of summer and winter sports, 
indoor and outdoor sports, sports instruments as well as fitness equipment. Each brand 
has their distinctive operational strategies and organisations as the case company has 
acquired them over the past two decades. 
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In this paper, we consider alpine ski products of two different brands, namely Atomic 
and Salomon. For these brands all decisions concerning production volumes have to be 
made well in advance, sometimes even eight months before the demand occurs 
(Figure 1). Normally, around 80% of the orders are made pre-season, the rest being 
ordered during the sales season. Taking pre-orders starts in early October and continues 
to the following spring while the deliveries of the products do not start until June of the 
following year. To handle this particularity, the ‘season’ spans from October to the end of 
September of the following year. This seasonal cycle, for example the 2009 season, 
covers the time between October 2009 and September 2010. This cycle repeats itself in a 
more or less similar form every year as can be seen in Figure 1. Based on this regularity, 
we assume that statistical methods can be applied to predict annual values for the order 
volume. 

Figure 1 Orders (blue) and deliveries (red) for Alpine ski products for the years 2009–2012. 
Here the annual business cycle does not relate to the calendar year. This means that the 
2009 season actually starts in October 2009 and ends in September 2010 (see online 
version for colours) 
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The company dataset contains more than 670,000 orders of winter sport goods, 
mainly alpine skies and their accessories issued by more than 1,000 customers between 
2003 and 2014 (Figure 2). This data is matched with the daily weather data in different 
customer locations in Switzerland. The customers are business customers, mainly sport 
stores and wholesalers, not end consumers. The weather data holds daily information on 
the temperature differences to the long term average, daily maximum/minimum 
temperatures, precipitation, snow, humidity, pressure, wind and daily sunshine duration. 
Using these datasets, we study how weather affects demand and the incremental 
improvement gained by incorporating weather data with demand forecasting. 

Figure 2 Weekly order volume distributions according to sales season, from 2003 to 2014 
(see online version for colours) 
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3.3 Methodology 

The weather dataset was retrieved from the Swiss national weather database containing 
weather statistics on all weather stations in Switzerland (Figure 3). Each ordering 
customer is assigned to the nearest weather station. In Figure 3 the size of the points is 
proportional to the associated total order volume in the area of the weather station. We 
apply a moving average with a lag of two days in order to smooth the weather variations. 
In other words, the quantity of snow used for day d is an average of three values: snow 
observed at day d-2, snow observed at day d-1 and snow observed at day d. To obtain the 
final dataset, we first merge company and weather data according to date and weather 
station. We then aggregate the monetary volume of orders in the area of each station. The 
latter manipulation is justified by the fact that aggregating more customers improves the 
relative forecasting performance up to a specific point (Sevlian and Rajagopal, 2014). 

Figure 3 Swiss weather stations and main ski resort areas with their corresponding order volumes 
indicated by the size of the dot (see online version for colours) 
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Since the actual day of the order is somehow ‘random’, meaning an order can be given 
late today or early tomorrow, and because weekends and other holidays occur differently 
each year, we work with aggregated weekly order volumes. This means that a customer is 
more likely to order in the same week each year rather than the same day each year. 
Hence, after aggregating the net values of orders according to the geographical location 
of customers, we sum them at the weekly level. For weather data, we apply the normal 
arithmetic mean function to obtain the weekly averages. We also noticed some missing 
values in weather variables, which correspond to less than 2% of the data. For these, we  
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imputed the value of the year before, according to the weather station and the week of the  
year. For example, if the quantity of snow is missing for weather station x in week t in 
2008, then we impute the quantity of snow of the same weather station x and the same 
week t, but in 2007. We also dismissed the variables with the most missing values, thus 
the data used in the final prediction model contains only few missing values. The final 
dataset obtained after this procedure is described in Table 2 and all data processing steps 
are illustrated in Figure 4. 
Table 2 The final merged dataset linking weather data with company data 

• Order volume: in Swiss Francs (CHF) 
• Order week (week of sales season) 
• Season: seasonal cycle from October to 

September of following year 
• Weather season: spring, summer, 

autumn, winter 
• Station: the geographical location of the 

nearest weather station to the customer 
(Figure 3). They are divided into two 
groups: 
• Urban areas: Basel (BAS), 

Bern (BER), Geneva (GVA), 
Locarno (OTL), Luzern (LUZ), 
Neuchatel (NEU), Zurich (SMA), 
and St-Gallen (STG). 

• Ski resorts: La Chaux-de-Fonds 
(CDF), Davos (DAV), St. Moritz 
(SAM) and Sion (SIO). 

• Altitude: altitude of weather stations (m) 
• Snow: thickness of snow measured at 

05:40 am (cm) 
• Fresh snow: thickness of fresh snow, sum 

of the day (24 hours), measured at 05:40 
am (cm) 

• Pressure: atmospheric pressure at altitude 
of station, daily average (hPa) 

• Temperature_dv: temperature at 2 metres 
above ground, which is the deviation from 
the daily maximum in relation to the ‘norm 
6190’ (norm 1961–1990), (°C) 

• Temperature_max: temperature at 2 metres 
above ground, daily maximum, (°C) 

• Temperature_min: temperature at 2 metres 
above ground, daily minimum, (°C) 

• Precipitation_1: sum of the daytime from 
7am to 7pm, (mm) 

• Precipitation_2: sum of day (24 hours), 
(mm) 

• Humidity: relative air humidity at 2 metres 
above ground, daily average (%) 

• Sun_1: sunshine duration, relative to the 
daily maximum possible, (%) 

• Sun_2: sunshine duration, sum of the day, 
(min) 

• Wind: wind speed, daily average (m/s) 
• Gust: daily maximum (integration at 1 s) 

(m/s) 

We use the same approach on similar datasets for Finland. The Finnish operations related 
dataset covers ten years of transactions also ranging from 2003 to 2014 and containing 
more than 240,000 order lines. Like with the Swiss case, the orders are aggregated 
according to the station and week, then merged with customer location specific weather 
data. The final dataset obtained contains the following variables: order volume, order 
date, station, snow, temperature and precipitation. 
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Figure 4 Data sets processing (see online version for colours) 

 

Amer data set 

Daily orders of winter spots goods 

Weather data set 

Daily weather data 

 Amer_Weather data set 

Final data set 

Assignment of each customer 
to the nearest weather station  

Lag of 2 days moving average of 
weather covariates: 

ௗᇱݒ݋ܥ = 13 ෍ ௗି௞ଶݒ݋ܥ
௞ୀ଴  

Aggregation of the daily customer net value 
(netd,c) according to week (W) and the station (S): ݊݁ݐௐ,ௌ = ෍ ௗ,௖ௗ∈ௐ,௖∈ௌݐ݁݊  

The value of the previous year (y-1) is imputed 
to the missing values according to the week 
and the station:   ݒ݋ܥௐ,ௌ,௬ᇱᇱ =  ௐ,ௌ,௬ିଵݒ݋ܥ 

 

As we study the link between weather conditions and demand variation, and the impact 
of including weather data in the demand forecasting model, we methodologically 
compare two nested prediction models. The first model contains only operations related 
covariates, while the second model contains both operations related variables and weather 
covariates from the previous year. There are a considerable number of published papers 
on demand forecasting. They are mainly based on time series analyses (Taylor, 2003), 
GLMs (Wasserman et al., 1991), neural networks (Al-Saba and El-Amin, 1999) or 
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machine learning techniques (Carbonneau et al., 2008). To analyse our data we opted for 
GAM, an extension of GLMs, since they let the data “speak for themselves” via 
nonparametric functions. The methods standardly used in operations management for 
demand forecasting are the linear regression or generalised linear regression models or 
moving average-based models such as the EWMA. We go one step further in terms of 
flexibility by letting the data decide for the functional form and use the GAMs that 
adequately capture in the same time seasonality, long term variation and other changes 
due to different levels of covariates. Therefore they can better handle non-linear 
relationships between the covariates and the response variable. This is essential when 
working with weather variables, since weather effects are not always linear. More 
precisely, GAMs are GLMs in which a transformation g of the expectation μ of the 
response variable linearly depends on unknown smooth functions of some covariates 
(Guisan et al., 2002). In other words, GAMs are semi-parametric extensions of GLMs 
(Hastie and Tibshirani, 1986, 1990) and the only underlying assumption made is that the 
functions are additive and the components are smooth. By applying GAMs, we model the 
mean weekly total order net value in a geographical area using the set of covariates xi: 

( ) ( ) ( )0 1 1 2 2( ) m mg μ f x f x f x= + + + +…β  

where xi (i = 1,…,m) denotes the covariates, β0 the intercept, fi smooth functions and g is 
the link function. The smooth functions may be specified with a parametric form, 
non-parametrically or semi-parametrically. This flexibility to allow non-parametric fits 
with relaxed assumptions on the actual relationship between a response variable and 
explanatory variables, provides the potential for better fits to data than parametric 
models, but arguably with some loss of quantitative interpretability although it allows a 
convenient visual result. Thus the strength of GAMs is in their ability to deal with highly 
non-linear and non-monotonic relationships between the response and the covariates. In 
our current case, the dependent variable is order volume in CHF, the possible covariates 
previous year’s order volume, order week, station, and previous year’s weather 
variables, namely, snow, fresh snow, temperature, precipitation, humidity, pressure, sun 
and wind. According to preliminary analyses, we assume that the order volume follows a 
gamma distribution (Burgin, 1975). Therefore, we decided to use the gamma family 
distribution (Dadpay et al., 2007) with the logarithm as the link function in our GAM 
models. 

A crucial step in applying GAMs is to select the appropriate level of the smoother for 
the covariates. The smooth functions are flexible and could lead to an overfitting. A 
reasonable balance must be maintained between the total number of observations and the 
total number of degrees of freedom used when fitting the model. To find a suitable 
model, several nested models including different covariates were fitted and compared 
using the Akaike Information Criterion (AIC, see Akaike, 1973; Sakamoto et al. 1986): 

( )2 ln(likelihood) 2 ,AIC k= − +  

where the likelihood is the probability of the data given a model and k is the number of 
free parameters in the model. AIC is based on information theory, where the underlying 
aim is to minimise the loss of information using Kullback-Leibler distance (Kullback and 
Leibler, 1951) between the model and the truth. Since the AIC is only valid 
asymptotically, we decided to use the AICc, which is a corrected AIC valid for finite 
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sample sizes (n) (Anderson and Burnham, 2002). The lowest AICc indicates the best 
model. 

2 ( 1)
1

k kAICc AIC
n k

+= +
− −

 

We tested several methods, such as principle component analysis (Jolliffe, 2002) and 
self-organising maps (Kohonen and Somervuo, 1998), to find the best set of candidates, 
and after that eliminating the least significant covariates one by one. 

In this paper, for both countries we compare two nested prediction models, which are 
listed below. The first model contains only operations related covariates. The second 
model contains both operations related and previous year weather variables. The term 
‘by’ in the final smooth function (f27) indicates that for each level of the second covariate 
(for each level of the station) the model fits a smooth function to the main covariate 
(previous year daily sunshine duration). 

1 Swiss prediction models: 
• M1: log(Order volume) = β10 + f11(Previous year order volume) 

+ f12(Order week) + f13(altitude) 
• M2: log(Order volume) = β20 + f21(Previous year order volume) 

+ f22(Order week) + f23(altitude) + f24(Previous year precipitation_2 by weather 
season) + f25(Previous year precipitation_2 by station) + f26(Previous year sun_2 
by weather season) + f27(Previous year sun_2 by station) + f28(Previous year 
temperature_dv by weather season) + f29(Previous year temperature_dv by 
station) 

2 Finnish prediction models: 
• FM1: log(Order volume) = β10 + f11(Previous year order volume) 

+ f12(Order week) + f13(Station) 
• FM2: log(Order volume) = β20 + f21(Previous year order volume) 

+ f22(Order week) + f23(Station) + f24(Previous year precipitation by weather 
season) + f25(Previous year precipitation by station) 

4 Results 

4.1 Model results 

This section will present the results with an identifier (a) for Swiss results and (b) for 
Finnish ones. The results of the GAM models are summarised in Tables 3(a) and 3(b). 

According to the AICc the Swiss model M2, which contains weather covariates, 
provides more information. The values for ‘deviance explained’, which is the percentage 
of the null deviance explained by the model, are 45 and 48.2%, for model M1 and M2 
respectively. The analysis of variance using a chi squared test shows that the two models 
are significantly different (p-value < 2e-16). These results allow us to conclude that past 
weather conditions have an impact on seasonal demand. In other words, incorporating 
weather data, which in this case means considering precipitation, temperature and sun, 
leads to a better model. Moreover this means, if possible, one should integrate weather 

52



   

 

   

   
 

   

   

 

   

    Using weather data to improve demand forecasting for seasonal products 67    
 

    
 
 

   

   
 

   

   

 

   

       
 

available data in the demand forecasting process. The estimated degrees of freedom 
(EDF) and approximate significance levels (p-values) are displayed for each of the 
covariates in Table 4(a). Prior to obtaining Model 2, we tested several models mixing all 
weather variables available, including snow, fresh snow, temperature, precipitation, 
humidity, pressure, sun and wind. We found that humidity, snow, pressure and wind were 
not significant in the selected model. In the selected model, as temperature, we consider 
the deviation of the daily maximum to the long term average of the day. This covariate 
allows us to exclude the seasonal effect. 

The AICc of the model Finnish model FM2 (83,239) is slightly lower than the AIC of 
FM1 (83,348), indicating that the model with weather covariates is better [Table 3(b)]. 
The deviance explained is higher for the second model (26.8 > 25.1), meaning that the 
second model explains a larger percentage of the null deviance. The analysis of variance 
using the chi squared test shows that the two models are significantly different by 
rejecting the null hypothesis with a p-value equal to 2.47e-06. As for the Swiss case, 
considering weather variables lead to a better model. 
Table 3(a) Swiss GAM models’ results 

 Model M1 Model M2 
N 7,488 7,488 
AICc 141,475 141,091 
Deviance explained (%) 45 48.2 

Table 3(b) Finnish GAM models’ results 

 Model FM1 Model FM2 
N 5,518 5,518 
AICc 83,348 83,239 
Deviance explained (%) 25.1 26.8 

Table 4(a) Swiss GAM results: estimated degrees of freedom (EDF) and approximate 
significance levels (p-values) 

Covariates 
Model M1  Model M2 

EDF p-value  EDF p-value 
Previous year order volume 3.51 1.3e-07(***)  4.08 3.5e-12(***) 
Order week 8.85 < 2e-16(***)  8.82 < 2e-16(***) 
Altitude 8.96 < 2e-16(***)  8.93 < 2e-16(***) 
Previous year precipitation_2 by weather 
season: 

- -    

• Autumn    2.44 0.097(.) 

• Spring    3.45 0.015(*) 

Notes: Significance codes for the p-value: 0 (***)0.001 (**)0.01 (*)0.05 (.)0.1 
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Table 4(a) Swiss GAM results: estimated degrees of freedom (EDF) and approximate 
significance levels (p-values) (continued) 

Covariates 
Model M1  Model M2 

EDF p-value  EDF p-value 
Previous year precipitation_2 by station: - -    
• BER    7.17 4.1e-16(***) 

• CDF    4.67 0.0016(**) 

• GVE    1.02 0.057(.) 

• OTL    1.04 0.015(*) 

• SAM    1.01 0.088(.) 

• SMA    4.79 0.037(.) 

• STG    3.77 0.023(*) 
Previous year sun_2 by weather season: - -    
• Summer    5.61 0.027(*) 
Previous year sun_2 by station: - -    
• CDF    2.16 0.072(.) 
Previous year temperature_dv by weather
season: 

- -    

• Spring    5.79 8.8e-05(***) 
Previous year temperature_dv by station: - -    
• CDF    6.2 9.1e-08(***) 

Notes: Significance codes for the p-value: 0 (***)0.001 (**)0.01 (*)0.05 (.)0.1 

Table 4(b) Finnish GAM results: estimated degrees of freedom (EDF) and approximate 
significance levels (p-values) 

Covariates 
Model FM1  Model FM2 

EDF p-value  EDF p-value 
Previous year order volume 3.14 0.198  3.26 0.03(*) 
Order week 8.74 <2e-16(***)  8.75 <2e-16(***) 
Previous year precipitation by weather 
station: 

- -    

• 45100    5.7 0.09(.) 

• 70100    1.0 0.04(*) 

• 99600    7.8 2.09e-5(***) 

Notes: Significance codes for the p-value: 0 (***)0.001 (**)0.01 (*)0.05 (.)0.1 

Next we study two covariates in more detail. In meteorology, precipitation is any product 
of the condensation of atmospheric water vapor that falls by gravity. The main form of 
precipitation includes drizzle, rain, sleet, snow and hail. The smooth function of the effect 
of daily sum of precipitation in La Chaux-de-Fonds is illustrated in Figure 5(a). Up to 
2 mm, the effect of precipitation is positive but with a negative slope, meaning that as the  
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amount of precipitation grows its positive effects on order volume decrease. Above 
2 mm, the effect of daily sum of precipitation on order volume is clearly negative, 
meaning that customers, including are retailers, sport shops etc., tend to order less when 
the amount of precipitation is higher than 2 mm. 

The smooth function of altitude [Figure 5(b)] shows clearly the difference between 
urban areas and ski resorts in Switzerland. In urban areas, which correspond to 
0–700 metres altitude, the effects of the altitude variable is undulating and oscillates 
around 0, meaning that altitude does not have a significant effect on orders. Unlike urban 
areas, in ski resorts (from 1000 m) the effect of altitude is almost linear with a positive 
slope. This means that customers in higher ski resorts tend to order more than those 
located in lower ones. Naturally the latter result matches the fact that altitude is positively 
correlated with snow. 

Figure 5 Smooth functions of model M2 with 95% confidence intervals, illustrating the effects 
of, (a) precipitation in La Chaux-De-Fonds and (b) the effect of altitude (see online 
version for colours) 
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4.2 Prediction results 

As mentioned previously, our Swiss dataset covers 12 years of operation data. For each 
year we use data from all previous years as a training set. For example, to predict the 
order volume for the 2013 sales season, we use seasons 2003–2012 to fit the models. The 
incremental improvement gained by including weather data in the forecasting process is 
clearly seen in 2013 and 2014. The percentage errors1 (PE) decreases from 4.8% to 2.6% 
for 2013, and from 20.0% to 18.3% for 2014, this corresponds to a reduction in PE of 
–45% and –8.7%, respectively. For previous years, the models need more historical data 
to become stabilised. The values of weekly aggregated order volumes provided by 
different models for 2014 in Bern are illustrated in Figure 6(a) with 95% confidence 
intervals. 

Figure 6(b) illustrates the values of weekly aggregated order volumes provided by 
different models for 2014 in the area corresponding to the Finnish weather station 
‘45100’ with 95% confidence intervals. 
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Figure 6 (a) Weekly aggregated monetary volume of orders for 2014 in Bern, with 
95% confidence intervals. comparison of the actual orders and the predicted orders from 
M1 and M2 models, the predictions provided by model M2 (red line) is closer to real 
order values (black line) (b) Weekly aggregated monetary volume of orders for 2014 in 
the area corresponding to weather station 45100, with 95% confidence intervals. 
Comparison of the actual orders and the predicted orders from FM1 and FM2 models, 
the predictions provided by model FM2 (red line) is closer to real order values 
(black line) (see online version for colours) 
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5 Discussion 

The winter sports business is weather dependent to the degree that managers often raise 
their hands: “You can do as much analysis as you like, but in the end the snow comes or 
it doesn’t”. Reliable weather forecasts can extend up to ten days, while business decisions 
like production volumes need to be made up to 12 months in advance. However, our 
research demonstrates that smart managers do not need to run their operations blindly. A 
great winter is everyone’s hope in the alpine cluster: manufacturers, retailers, consumers, 
but also hotel owners and lift operators. There is a common understanding of what great 
winter weather is like: it is cold (but not too cold) and sunny with lots of snow. The first 
contribution of our research is the operationalisation of a ‘great winter’ with publicly 
available meteorological measurement data: temperature, precipitation, snow depth, and 
hours of sun. This work quantifies the somewhat fuzzy concept of nice skiing weather 
into something that can be measured and reported consistently. 

As a second contribution, we have demonstrated that the weather in one winter affects 
sales in the next winter. This is a non-intuitive result, since traditionally, great winter 
weather has been expected to increase the in-season sales of ongoing winter, but not pre-
season sales for the next winter. However, given the facts, the effect can be explained. A 
great winter means high sell-outs for retailers. They will need new inventory for the next 
season, rather than continuing to sell the last season’s leftovers. Great winters also inspire 
people to do more of their sport, raising expected consumer demand in the future. Finally, 
a great winter can have a psychological effect causing retailers to be more optimistic 
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when placing their orders for the next season, which follows Kahneman’s (2011) 
availability heuristic, that is, a mental shortcut that relies on immediate examples that 
come to a given person’s mind when evaluating a specific topic, concept, method or 
decision. 

For supply chain management in the winter sports equipment business, the above two 
findings combined would support the management during the critical time window from 
January to April when major supply decisions for the next season are made. At that point 
in time, all orders and their deliveries for the ongoing season are known. However, these 
orders were placed in the previous season, which was about a year ago, for a different 
range of products and partly by a different set of customers. The orders for the next 
season are booked between January and April: typically depending on the schedule of 
sales visits. Hence, there is a time lag of up to three months until the weather of the 
current winter affects the order book for the next winter. This means that some of the 
orders for the next season are made before the current season has ended. Weather data, 
however, is available in real time and helps forecast order volumes. By using weather 
data, a winter sports company can improve the accuracy of their sales forecasts at the 
time when sales forecasts are most needed. 

Figure 7 Time windows for different activities in the supply chain for seasonal winter sport 
products. Weather data follows seasonal sales period and customer order intake cycle 
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In the modelled case of Switzerland, the forecasting accuracy improvement for full 
season sales value is up to two percentage points. Improving the forecasting accuracy by 
even one percentage point has a positive effect on customer service, gross margins, and 
inventories. This encourages the case company to continue their initiatives to become 
more data driven, and to use advanced analytics for driving critical business decisions. 

6 Conclusions and future research 

We studied how weather conditions impact demand of seasonal products and how 
weather data could be used to improve seasonal demand forecasting accuracy. We used 
aggregate weekly orders combined with customer location based weather conditions in 
Switzerland and Finland. We found that location based weather conditions have a 
significant impact on order volumes and that incorporating this data with the demand 
forecasting process increases the demand forecasting accuracy. The incremental 
improvement gained by including weather data in the forecasting process corresponds to 
a reduction in PE of –45% and –8% for 2013 and 2014, respectively. These results can be 
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used, for instance, to integrate the impact of variability in weather in the decision making 
process to better anticipate demand volumes and reduce costs due to excess inventory or 
stock shortages. In our case, in Switzerland, the value of forecasting error reductions is 
around 2% of total sales value in 2013. Therefore, the first contribution of our research is 
the operationalisation of a ‘great winter’ with publicly available meteorological 
measurement weather data such as: temperature, precipitation, snow depth, and hours of 
sun. The second contribution of this paper is the fact that we have demonstrated that the 
weather in one winter affects sales in the next winter. Since one usually expects a great 
winter weather to increase the in-season sales of ongoing winter, but not pre-season sales 
for the next winter, the results found are non-intuitive. 

The theoretical contribution of this article is to extend the Newsvendor model to 
seasonal products when the lag between ordering and demand is one year and that a 
weather-adjusted model provides more accurate demand forecasts. In other words, these 
results contribute to the theory of stochastic inventory control by showing that taking into 
account external disturbances, in this case the fluctuations in weather, improves 
forecasting accuracy in situations where the lag between ordering and demand is around 
one year. As for the practical implications the paper shows that weather adjusted 
forecasts improve forecasting accuracy even for seasonal products. This in turn improves 
supply chain efficiency and customer satisfaction through reduced inventory costs and 
better punctuality in deliveries. The second contribution of this paper is related to the use 
of GAM models. In previous literature, the methods used were mainly GLM, machine 
learning and time series techniques (Aburto and Weber, 2007; Thomassey, 2010; Tabrizi 
and Ghaderi, 2016; Appelqvist et al., 2016). The strength of GAM models lies in their 
flexibility to allow non-parametric fits and the ability to handle highly nonlinear 
relationships via smooth functions. 

The main limitation of this research is the fact that we study leisure goods, which can 
eventually limit the generalisation of the results. Even though, we analysed two countries, 
which are essentially different, it could be advantageous to consolidate the results by 
analysing additional countries in future research. 

As mentioned earlier, our dataset concerns highly seasonal products, and we observed 
that this seasonality was mainly captured by the order week. For future research, we can 
go deeper in the analysis, and better handle this seasonality, we can consider 
‘un-seasonalising’ the orders with time series techniques before applying the GAM 
models to the residuals. Additionally, in this paper, the weather data from previous years 
are treated equally in the training process. As an improvement, we could weight them by 
giving more importance to the most recent years. This is motivated by the fact that people 
tend to rely more heavily on the past couple of years when establishing their mental 
conception of how nice the year was in terms of weather. Other avenues for future 
research could include the exploration of how other external datasets could be used to 
improve demand forecasting accuracy for seasonal products. 
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1 Introduction 

All manufacturers and retailers wish to have the most accurate demand forecasting. This 
paper aims to improve the demand forecasting of seasonal and unseasonal products using 
the fundamental concepts of spatial dependence and interpolation; and the incorporation 
of the socio-economic aspects and weather conditions impacts in the spatial dependence 
structure. 

We focus on studying the demand fluctuations of seasonal and unseasonal leisure 
goods and on improving the accuracy of demand forecasts by integrating the spatial 
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dimension in the planning process. As seasonal products, we consider winter sport goods 
and as unseasonal products we consider indoor sports and golf equipment. 

We analyse the real demand data of different products at different levels of 
aggregation, namely, at the brand and product family levels. At the brand level, the 
studied brands are Atomic and Wilson, the latter being unseasonal and the former 
seasonal. At the product family level, we analyse two non-overlapping product families 
for both brands mentioned above. The studied products are Atomic Alpine skis, Atomic 
X-Country skis, Wilson Racquet Sports equipment and Wilson Golf equipment. The  
two main aims of this research are to determine: 

1 How demand varies geographically according to socio-economic aspects and 
weather conditions. 

2 How the additional information, external to supply chain itself, affects demand 
forecasting accuracy. 

To do this, we use order line data on several products of well-known brands owned by a 
listed company delivering sporting equipment and goods worldwide. The company 
dataset covers about 12 years of orders, which corresponds to more than 890,000 order 
lines. The spatial interpolation is performed with socio-economic data such as the number 
of inhabitants, the number of hotel nights, the size of households on average and the 
number of jobs along with weather conditions (snow, temperature, precipitation and 
sunshine). 

The main purpose of our study is to explain, using model-based geostatistics  
(Diggle et al., 2003), how considered external information, namely socio-economic 
characteristics and weather conditions affect the spatial variation of demand. Our detailed 
hypotheses are: 

1 Product specific demand is spatially impacted by socio-economic features. 

2 Demand for seasonal products is spatially affected by weather conditions. 

3 Incorporating socio-economic aspects and weather conditions in the demand 
prediction process improves the demand forecast accuracy. 

As the main results of the study, we show that: 

1 The spatial correlation of the demand for seasonal products, that is, the correlation of 
seasonal demand between different locations, is impacted by weather conditions. 

2 The accuracy of demand forecasting can be improved if the weather information and 
socio-economic features are included in the model. 

The results can be useful in the decision making, such as planning future demand to 
optimise inventories and orders, or deciding on the location of a new retail shop. 

The rest of the paper is structured as follows. We start with a literature review on 
geostatistics applications in general and especially those used in demand forecasting in 
Section 2. We then formulate, in Section 3, our detailed research questions, provide the 
description of the datasets, followed by a descriptive analysis of the variables and the 
explanation of the applied statistical methodology used in the analysis. The results are 
provided, explained and discussed in Section 4. Finally, conclusions are drawn and 
avenues for future research are presented in Section 5. 
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2 Literature review 

2.1 Socio-economic environment and weather conditions in demand forecasting 

Literature on demand forecasting is wide thus we can only focus on a sample of studies 
most relevant to our topic. Polebitski and Palmer (2009) develop regression-based water 
demand models capable of forecasting single-family residential water demands using 
demographic, economic and weather data. Subsequently, Gage and Cooper (2015) assess 
the relative importance of physical and socio-economic variables in predicting outdoor 
water usage. They provide analyses and comparisons of the predictive accuracy of 
developed models. The models study different subsets of explanatory variables (see also 
Jain and Ormsbee, 2002). 

Fadiga et al. (2005) identify sources of demand growth by analysing consumer 
demographic profiles, regions and product characteristics. They analyse nine apparel 
products through detailed demographic and socio-economic factors. The socio-economic 
data has been less explored spatially with regards to improving demand forecasting 
accuracy. 

Regnier (2008) describes what advances in weather forecasting can offer and how 
weather information can be applied to operations research models for improving decision 
making. Additionally, sophisticated firms such as Fedex, UPS and various agriculture  
and energy companies more commonly employ meteorologists to improve their ability to 
forecast and to use those forecasts in making decisions (Lustgarten, 2005). 

2.2 Geostatistics applications in various fields 

What we now regard as geostatistics models and techniques were largely developed by 
Matheron (1963) to evaluate recoverable reserves for the mining industry. Therefore, it is 
not surprising to observe that geostatistics are mainly applied in fields that are directly 
related to soil, for instance the mining industry (Benndorf, 2014), soil science, geology, 
the coal industry (Srivastava, 2013), etc. 

Soil has been widely studied using geostatistics techniques. McBratney (1992) 
analyses soil variation which is usually considered as problematic to optimal soil 
management. Geostatistical methods are used to investigate the spatial characteristics of 
the compaction data from several projects, with the goal of using these techniques to 
guide the quality assurance process (Petersen et al., 2007). Caeiro et al. (2003) use a set 
of multivariate geostatistical approaches to delineate spatially contiguous regions of 
sediment structure and Moral et al. (2010) characterise the spatial variability of the main 
soil physical variables. 

In the field of agriculture, Oliver (2010) describes the two core techniques of 
geostatistics and illustrates their applications. Variography evaluates the evolution of  
the spatial correlation between two points when their separation distance increases. 
Kriging is an interpolation method (Krige, 1951). The role of field-scale experiments in 
location-specific crop management is studied by Pringle et al. (2004a, 2004b) using 
different forms of kriging and the outcome is a map for each field that describes the 
optimum application of experimental input. Location-based crop management has widely 
benefited geostatistics (Inamura et al., 2004; Moral et al., 2011). Morari et al. (2009) 
analyse the spatial variability of soil properties and their relationships with electrical 
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conductivity in horizontal and vertical mode is estimated using multivariate geostatistical 
techniques. 

Zhang et al. (2016) and Legleiter and Kyriakidis (2008) study the spatial interpolation 
of river channel topography using the shortest temporal distance, inverse distance 
weighting and kriging. Warner et al. (2006) discuss a stochastic groundwater model for 
the management of a pump and treat system located in the Offpost Operable Unit at the 
Rocky Mountain Arsenal. 

Many other fields have benefited from geostatistic methods. Tuominen et al. (2003) 
combine the k-nearest-neighbours estimation, stand inventory data and geostatistical 
interpolation for the estimation of five forest variables (mean diameter, mean height, 
mean age, basal area and volume) per sample plot and stand. Nelson et al. (1999) focus 
on the spatial relationships of landscape features that interact with the progression  
of an epidemic to refine cultural management strategies for plant disease control. To 
evaluate the tsetse fly that poses a major constraint to crop and livestock production, 
Sciarretta et al. (2005) use geostatistical methods to identify and monitor the 
spatiotemporal dynamics of areas with increased fly densities, considered as hot spots. 
Namysłowska-Wilczyńska and Wilczyński (2015) analyse the superficial variability of 
electric power using lognormal and ordinary kriging that allows the identification of their 
nature and their range. Stelzenmüller et al. (2008) examine the spatial dynamic of 
artisanal fishing fleets around five European marine protected areas with geostatistical 
modelling techniques. They find that in most cases the factors ‘distance to the no-take’, 
‘water depth’ and ‘distance to the port’ have a significant influence on effort allocation 
by the fishing fleets. In risk assessment and decision making, Rendu (2002) uses 
geostistical simulation in the evaluation of the geologic risk in order to contribute in the 
assessment of the expected utility of a project. 

2.3 Geostatistics applied to demand forecasting 

There are many applications of geostatistical techniques in demand forecasting. Gomes  
et al. (2016) compare the results of two techniques, namely ordinary and indicator 
kriging, in the estimation of private motorised travel (car or motorcycle) in several 
geographical locations. They conclude that spatial statistics are thriving in travel demand 
forecasting issues. In public transportation, Prasetiyowati et al. (2016) provide an 
analytical tool such as a model that can be used to govern a public policy regarding traffic 
management and help to solve issues such as how to determine public transportation 
routes, how to determine the type of public transportation and how to determine the 
optimal amount of public transportation needed for each route. They use the ordinary 
kriging to predict the occupancy of public transportation systems for each crowd spots 
area. 

In water resource management, Muthuwatta et al. (2010) conduct a study to assess 
water availability and consumption in the Karkheh River Basin. They estimate the 
precipitation using geostatistical techniques, while a surface energy balance approach is 
selected for evapotranspiration estimation. Their results suggest that the water balance is 
sufficiently understood for policy and decision making. 

Geostatistical methods are applied to forecasting electrical power demand 
(Namysłowska-Wilczyńska and Wilczyński, 2010). These authors analyse two kinds of 
electrical power networks using the directional variogram function and power demand 
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forecasts for one year and five years are made using ordinary block kriging. Their results 
show that the employed techniques are useful and effective. 

In agribusiness, the market prices of crops are indicators for their demand and supply. 
Peng et al. (2015) investigate the spatial relationships between prices in different  
markets. To do so, they examine the forecasting price given by four well-known spatial 
algorithms, which are the nearest neighbour, inverse distance weighting, the kriging 
method and artificial neural networks. They finally compare the performance of these 
four algorithms with the price data obtained from 15 markets on the official website of 
the Council of Agriculture of Taiwan. They find that kriging leads to the lowest error in 
percentages. Considering the time efficiency, the kriging method is also recommended 
for the development of forecasting service, since the regression can be accomplished 
efficiently. 

According to this literature review, geostatistics is an interesting tool that has been 
applied to various fields but not directly to supply chain demand forecasting, although 
geostatistics could offer clear benefits to supply chain management and demand 
forecasting. Therefore, in this study, we focus on applying geostatistical techniques to 
supply chain management by analysing the demand of seasonal and unseasonal products, 
incorporating socio-economic data and weather conditions in the modelling process. 

3 Research questions, data and methodology 

3.1 Research questions 

One of the main questions for a retail company is how to choose the right site for a store, 
since the location determines the external market conditions. Our study analyses how 
using information on these external conditions can improve demand forecasting accuracy 
when applying geostatistical models. By analysing real order data on several, seasonal 
and unseasonal sport products, we show how external data explains spatial variations in 
demand and whether it is possible to make accurate forecasts, for example, for a new 
store location. The main research questions of the study are: 

• How does demand geographically vary according to socio-economic aspects and 
weather conditions? 

• Do external effects, namely socio-economic aspects and weather conditions, have a 
different impact on seasonal and unseasonal products demand? 

• How does additional information, external to the supply chain, affect demand 
forecasting accuracy? 

3.2 Data 

The analysed data is from the Amer Sports Corporation, which is one of the leading 
sporting goods companies in the world with a sales network covering 34 countries and 
net sales over 2.6 billion euros. Customers of Amer Sports are mainly sporting goods 
chains, specialty retailers, mass merchants, fitness clubs and distributors. In this study, 
we focus on customers located in Switzerland. The company owns several global brand 
business units and provides its customers with a wide range of sports equipment for 
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indoor and outdoor sports for winter and summer. In this paper, we consider two different 
brands: Atomic as seasonal and Wilson as unseasonal. 

• Atomic: The Atomic brand concerns skiing equipment, including both alpine and 
cross-country skis, ski boots, bindings, helmets, ski poles and goggles. At the 
product level, we analyse Alpine and X-Country skis. 

• Wilson: This brand is involved in ball sports such as tennis, baseball, American 
football, golf, basketball, softball, badminton and squash. The company is structured 
into three business areas: racquet sports, team sports and golf. At the product level, 
we analyse racquet sports and golf equipment. 

The corresponding dataset contains more than 890,000 orders made by more than  
1,700 customers between 2003 and 2014. By analysing the temporal dimension, meaning 
the effect of the year on the spatial trend, we found that it is not significant. This means 
that after removing the trend, the studied spatial structure should not significantly differ 
from one year to another. To obtain this result, we remove the fitted spatial trend and the 
residuals analysis for different years. Using a chi-squared test shows that we cannot reject 
the null hypothesis, which corresponds to the fact that the sets of residuals from different 
years are not significantly different from each other (p-value = 1). This result indicates 
that the effect of the year on the spatial trend is not significant. We therefore focus on the 
analysis of the most recent data. 

In the next step, this data, corresponding to the year 2014, is geographically matched 
with socio-economic data, retrieved from the Swiss Federal Statistical Office and weather 
data from the Swiss national weather database. The socio-economic dataset contains the 
following variables: number of inhabitants, population density per km2, percentage of 
population between 20–64 years old, the number of hotel nights, number of private 
households, percentage of housing environment and infrastructure surface, social 
assistance rate, number of companies in the primary, secondary and tertiary sectors, 
number of jobs in the primary, secondary and tertiary sectors. The weather dataset 
contains the following variables: gust, snow, pressure, temperature, precipitation, 
humidity, sun and wind. 

The final dataset was obtained by merging the company, weather and socio-economic 
datasets according to the postal code. The further coming model selection provides the 
listed significant variables (Table 1). 
Table 1 List of used variables 

Order variable Socio-economic variables per postal code 
 • Order volume value: in Swiss francs (CHF)  • Number of hotel nights 
Location coordinates: (long, lat.)  
 • Longitude (°)  

• Percentage of population between  
20-64 years old (%) 

 • Latitude (°)  • Private households 
 • Altitude (m)  

Weather conditions variables (annual maximum)  
• Percentage of housing environment 

and infrastructure surface (%) 

  • Snow: thickness of snow measured at 
05:40 am (cm)  

• Number of companies in the primary 
sector 
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Figure 1 (a) Atomic order value according to location (b) Histogram of the positively skewed 
distribution of Atomic orders with a normal fitted curve (c) Log-likelihood function 
with the chosen λ (d) Histogram of the distribution of transformed orders with a normal 
fitted curve (see online version for colours) 

 

  
(a)     (b) 

  
(c)     (d) 

Note: (a) Order volume, (b) order volume distribution, (c) log-likelihood optimisation 
and (d) transformed order volume distribution. 

The response variable expressing demand is the order value measured in Swiss francs. 
We start with the univariate data analysis of the orders and exclude a maximum of  
two outliers depending on the dataset (Atomic, Atomic Alpine, Atomic X-Country, 
Wilson, Wilson Racketsports or Wilson Golf). The distribution of the Atomic (seasonal) 
and Wilson (unseasonal) orders values in Swiss francs (CHF) according to the location is 
displayed in Figures 1(a) and 2(a) along with the distribution of orders [Figures 1(b)  
and 2(b)]. The order distribution is positively skewed. To meet the relevant theoretical 
assumptions relating to the geostatistical model, namely the normality and the 
homoscedasticity (random variables having equal variances) of the data, we use the  
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Box-Cox transformation (Box and Cox, 1964), which reduces anomalies such as  
non-additivity, non-normality and heteroscedasticity. The transformed orders are 
calculated as follows: 

1, 0

log( ), 0

λOrders λ
Transformed orders λ

Orders λ

−⎧
≠⎪= ⎨

⎪ =⎩

 

The parameter λ is chosen such that it maximises the log-likelihood [Figures 1(c) and 
2(c)]. Figures 1(d) and 2(d) illustrate the distribution of the transformed Atomic and 
Wilson orders with the normal fitted curve. 

Figure 2 (a) Wilson order value according to location (b) Histogram of the positively skewed 
distribution of Wilson orders with a normal fitted curve (c) Log-likelihood function 
with the chosen λ (d) Histogram of the distribution of transformed orders with a normal 
fitted curve (see online version for colours) 

 

  
(a)     (b) 

 

  
(c)     (d) 
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3.3 Methodology 

The main focus of the geostatistical data analysis is understanding and describing the 
spatial patterns of the response variable. The geostatistical data consists of the response Y 
(transformed orders in our case) associated with locations x (defined by the longitude and 
the latitude) in a continuous spatial region A (Switzerland). 

We start with a short spatial exploratory analysis to empirically describe the 
correlation structure. A common tool used to describe this spatial dependence in 
geostatistics for exploratory purposes is the semivariogram, which describes the spatial 
association as a function of the separation distance. 

The empirical semivariogram γ(u) is given by equation below, where u is the distance 
interval and Nu is the total number of sample pairs within the distance interval u. The 
semivariogram shows the degradation of the spatial correlation between two points of 
space when the separation distance increases. 

( ) ( )[ ]2
1

1( )
2

uN

i u i
u i

γ u Y x Y x
N +

=

= −∑  

We then continue with the model selection based on the main assumption which is that 
each observed value Y is either a direct measurement of, or is statistically related to, the 
value of an underlying continuous spatial phenomenon S(x) at the corresponding 
sampling location x. This means that for instance the orders of alpine skis in Lausanne are 
statistically related to the spatial phenomenon S(x) in Lausanne. Therefore, given the 
continuous process S(x), the observed data Y are assumed to be independent conditional 
on S(x) (Diggle et al., 2003, 1998). 

In this paper, we consider a Gaussian model with the following specifications: 

1 [ ] ( ) ( )
1

| (.) 1, , #
p

i i k k ik
E Y S S x d x i n p of covariates

=
= + = =∑ Kβ  

where 
dk(xi) is the measurement of the kth covariate at the ith location 
βk are the unknown spatial regression parameters 
xi (Longitudei, Latitudei). 

2 2[ | (.)] 1, ,iVar Y S τ i n= = K  

3 The signal S(.) = {S(x): x ∈ A} is a Gaussian stationary stochastic process with: 

a 
2 2

0 1 2 3 4

5

[ ( )]i i i i i

i i

E S x Longitude Latitude Longitude Latitude
Longitude xLatitude

= + + + +
+
α α α α α
α

 

b Var[S(xi)] = σ2 
c Corr[S(xi), S(xj)] = ρ(u) 

where 
u = ||xi – xj|| is the Euclidian distance between two given locations and 

4 The correlation function ρ(.) is specified by the parametric exponential correlation 
model. 
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Once the theoretical specifications are made by defining the signal and the correlation 
function, a crucial step in the data fitting is to find the best model [ | (.)] ( )i iE Y S S x=  

1
( )

p
k k ik
d x

=
+∑ β  for a subset of the available covariates dk(xi). To do so, several nested 

models including different covariates were fitted and compared using the Akaike 
information criterion (AIC, see Akaike, 1973), according to which the model with the 
lowest AIC is the best. 

For each seasonal product, namely Atomic, Atomic Alpine and Atomic X-Country 
and each unseasonal product, Wilson, Wilson Racketsports and Wilson Golf, we compare 
two nested prediction models: M0 (only location data used) and M1 (M0+ weather and 
socio-economic covariates). 

M0 For both seasonal and unseasonal products, in the M0 models, the mean is assumed 
to be the first order polynomial on the coordinates, since the quadratic terms were 
not significant. 

[ ] 0 1 2| (.)i i iE Y S Longitude Latitude= + +α α α  

M1 In models M1, the expected order value is specified by the coordinates and the 
covariates, which are: 
• number of hotel nights 
• percentage of population between 20–64 years old (%) 
• private households 
• percentage of housing environment and infrastructure surface (%) 
• number of companies in the primary sector 
• altitude (m) 
• snow: thickness of snow measured at 05:40 am (cm) 

[ ] 0 1 2 1

2 20 64 3 4

5 6 7

| (.)i i iE Y S Longitude Latitude NbHotelNights
Pop years PrivateHouseholds CompPrimSector
HousingSurface Altitude Snow

−

= + + + ∗

+ ∗ + ∗ + ∗
+ ∗ + ∗ + ∗

α α α β
β β β
β β β

 

Our method has two steps: 

1 Fitting the geostatistical model for different product groups. 

2 Using fitted models for demand prediction. 

In the first step, we estimate the coefficient parameters that describe the relationship 
between the response variable and the explanatory variables; and the estimation for 
parameters that define the covariance structure of the latent process. 

The model parameters to be estimated are: 

β the mean parameters 

σ2 the variance of the signal 
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τ2 the variance of the noise 

φ the scale parameter of the correlation function. 

These parameters are estimated through the maximisation of the log-likelihood using 
numerical optimisation. The log-likelihood function is obtained from the density of the 
multivariate Gaussian. 

In the second step, the fitted models are used to predict the values of the response 
variable, namely the order value, at the locations in the studied area where the response 
variable is unobserved. The prediction of the order value is a linear predictor obtained by 
minimising the mean squared error prediction under Gaussian modelling assumptions. 

Summary of the data analysis process: 

• Transformation of the response variable using the Box-Cox transformation in order 
to meet the assumption of normality. 

• Use of the semivariogram for empirically describing the correlation structure 
according to the separation distance. 

• Estimation of the model parameters by maximising the log-likelihood function. 

• Use of the fitted model to predict the values of the order value at a given location, by 
minimising the mean squared error prediction. 

The computation is done using the R package geoR (Ribeiro and Diggle, 2007). 

4 Results 

We start with a short spatial exploratory analysis to empirically describe the correlation 
structure through the semivariogram, followed by the presentation of the model results, 
the estimations of the parameters. We finally discuss the predictions of the order value 
for seasonal and unseasonal products all across Switzerland. 

4.1 Semivariograms 

The following semivariograms (Figure 3) provide a descriptive analysis of the spatial 
association as a function of the separation distance. 

The first row of Figure 3 displays the semivariograms for seasonal products and the 
second row the semivariograms for unseasonal products. The analysis of a semivariogram 
is made through two main components which are the nugget and the range which is 
related to the sill, as explained below: 

• The nugget is the semivariogram value at the origin (u = 0), which should be 0. 
Having a nugget significantly different from 0 for small distance intervals is named 
the nugget effect. The nugget effect characterises the eventual discontinuity jump 
observed at the origin of distances, quantifies the erratic variations of the studied 
phenomenon, measurements and data errors. The nugget effects of the seasonal 
products, namely Atomic and Atomic Alpine are significantly different from zero 
(0.0117 and 0.011), meaning that the seasonality is translated as data errors. The 
nuggets effects of unseasonal products are lower (0.008, 0.007 and 0.002). 
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• The sill is the value of the semivariogram at which the semivariogram levels  
off (theoretical sample variance). The range is the lag distance at which the 
semivariogram reaches the sill value. The seasonal products have a small range. The 
fitted semivariogram is flat. That tends to express a spatial independence between the 
transformed order value and the locations. The unseasonal products have a range 
parameter around 0.011 and the transformed order value is spatially correlated to the 
locations. 

Figure 3 Empirical semivariogram 

 

 

Note: Model fitted variogram with 95% confidence bounds. 

4.2 Model fitting results 

In this section, we present the results of the models defined previously in Section 3. The 
estimations of the parameters, AICs and p-values are summarised in Tables 2 and 3, for 
seasonal and unseasonal products, respectively. 

According to the AIC, all the models that contain significant socio-economic  
and/or weather condition covariates (all M1s) are better. These covariates include the 
number of hotel nights, the percentage of the active population, the number of private 
households, the number of companies in the primary sector, the percentage of housing 
environment and infrastructure, altitude and snow. This means that they provide more 
information about the spatial dependence structure of the transformed order value. The 
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variance analysis using a chi-squared test shows that the M1 models are significantly 
different (p-values are all less than 2.2e–16). These results allow us to conclude that 
socio-economic and weather conditions have an impact on the spatial demand structure. 
Table 2 Model results for seasonal products (see online version for colours) 

Seasonal products 

Atomic  Atomic Alpine  Atomic X-Country 

 

M0 M1  M0 M1  M0 M1 

0α̂  [constant] 18.105 
(5.52)*

20.747 
(4.82)* 

 9.224 
(5.29) 

10.804 
(5.56) 

 –21.91 
(11.37) 

–30.74 
(9.98)* 

1α̂  [longitude] 0.002 
(0.05) 

–0.025 
(0.05) 

 –0.01 
(0.05) 

–0.022 
(0.06) 

 –0.017 
(0.11 ) 

–0.026 
(0.10) 

2α̂  [latitude] –0.448 
(0.12)*

–0.513 
(0.11)* 

 –0.253 
(0.11)*

–0.297 
(0.12)* 

 0.41 
(0.25) 

0.586 
(0.22) 

1̂β  [nb. hotel nights]  –1.117 
(0.54)* 

  -   - 

2β̂  [pop. 20–64 years]  3.491 
(0.4)* 

  3.124 
(0.32)* 

  - 

3β̂  [priv. households]  -   -   - 

4β̂  [comp. prim. sector]  -   -   - 

5β̂  [% housing surface]  -   -   - 

6β̂  [altitude]  -   -   3.194 
(0.45)* 

7β̂  [snow]  1.091 
(0.33)* 

 - 0.921 
(0.34)* 

  2.344 
(0.43)* 

AIC –1,522 –1,627  –1,293 –1,214  –1,103 –1,213 
p-value  < 2.2e–16   < 2.2e–16   < 2.2e–16 

Notes: AIC and estimations of the parameters related to spatial coordinates in light blue, 
related to the socio-economic covariates in blue and related to weather condition 
covariates in green. The corresponding standard errors are in parentheses. 
*Indicates the significance, with a significance level of 0.05. 

At the brand level, the coordinates indicate that the direction of the effect is north-east for 
all products: the longitude negatively affects the spatial correlation function of all 
products, while it is the opposite for the latitude. 

Seasonal demand and unseasonal demand are not totally impacted by the same  
socio-economic elements. When comparing Atomic and Wilson, the number of hotel 
nights and the percentage of the population between 20–64 years old are significant for 
both seasonal and unseasonal demand. The number of private households per postal code 
and the number of companies in the primary sector have an impact only on unseasonal 
demand. 

The percentage of housing environment and infrastructure surface per postal code  
is significant only for Wilson Golf demand. Since golf sport requires a significant 
infrastructure surface, this result tends to say that the higher the percentage of housing 
environment and infrastructure surface, the higher the Wilson Golf equipment demand. 
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Table 3 Model results for unseasonal products (see online version for colours) 

Unseasonal products 
Wilson  Wilson Racketsports  Wilson Golf 

 

M0 M1  M0 M1  M0 M1 

0α̂  [constant] –23.125 
(19.97) 

–34.243 
(6.72)* 

 –23.34 
(18.97) 

–34.956 
(6.53)* 

 –21.795 
(16.5) 

–24.244 
(15.59) 

1α̂  [longitude] –0.625 
(0.21)* 

–0.364 
(0.06)* 

 –0.611 
(0.19)* 

–0.376 
(0.06)* 

 –0.132 
(0.18) 

–0.054 
(0.18) 

2α̂  [latitude] 0.512 
(0.43) 

0.68 
(0.15)* 

 0.515 
(0.41) 

0.7 (0.14)*  0.429 
(0.35) 

0.459 
(0.33)* 

1̂β  [nb. hotel nights]  –7.619 
(1.88)* 

  –7.435 
(1.84)* 

  - 

2β̂  [pop.  
20–64 years] 

 7.139 
(0.79)* 

  6.262 
(0.69)* 

  - 

3β̂  [priv. 
households] 

 5.747 
(2.04)* 

  5.661 
(2.03)* 

  - 

4β̂  [comp. prim. 
sector] 

 –0.981 
(0.49)* 

  –1.01 
(0.5)* 

  - 

5β̂  [% housing 
surface] 

 -   -   1.961 
(0.56)* 

6β̂  [altitude]  2.521 
(0.81)* 

  2.577 
(0.79)* 

  2.683 
(0.65)* 

7β̂  [snow]  -   -   - 

AIC –1,911 –2,037  –1,861 –1,981  –1,123 –1,240 
p-value   < 2.2e–16   < 2.2e–16   < 2.2e–16 

Notes: AIC and estimations of the parameters related to spatial coordinates in light blue, 
related to the socio-economic covariates in blue and related to weather condition 
covariates in green. The corresponding standard errors are in parentheses. 
*Indicates the significance, with a significance level of 0.05. 

The annual number of registered hotel nights in the location impacts the demand for 
seasonal products more negatively than the demand for unseasonal products, at the brand 
level. At the product or product family level, the annual number of registered hotel nights 
negatively affects only the Wilson Racketsports demand which corresponds to more 
familiar sports (tennis, badminton and squash). This result could reflect the fact that sport 
equipment is usually bought where one lives and rarely while travelling. Therefore, the 
more the registered hotel nights, relatively the lower the sport equipment demand. 

At the brand level, the percentage of labour force positively affects both seasonal and 
unseasonal demand. Indeed, since the labour force represents the purchasing power, an 
increase in the population between 20–64 years old tends to increase the sport equipment 
demand for both seasonal and unseasonal products. But at the product family level,  
the positive effect of the labour force is significant for Atomic Alpine and Wilson 
Racketsports and is not significant for Alpine X-Country and Wilson Golf demand. 
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The number of companies in the primary sector and the percentage of housing and 
infrastructure area reflect the distinction between big cities and the countryside. They are 
significant only for some unseasonal products, namely Wilson Racketsports and not for 
Wilson Golf demand. This result tends to indicate that Wilson Racketsports equipment, 
used for familiar sports, is bought more in big cities. 

The yearly maximum registered snow is significant only for seasonal products and 
positively affects seasonal demand. The altitude does not affect Atomic and Atomic 
Alpine demand and positively affects unseasonal demand and Atomic X-Country 
demand. This could indicate that for seasonal demand, people tend to bring their own 
winter sport equipment from home and tend not to buy it in ski resorts or other winter 
resorts. On the contrary, unseasonal sport equipment is bought everywhere. 

These results allow us to conclude that socio-economic and weather conditions have 
an impact on the spatial demand structure and provide more information about this 
structure for both seasonal and unseasonal products. 

4.3 Prediction results 

We developed the spatial interpolation, called kriging, for the geographical area of 
Switzerland, ordinary kriging is an estimation procedure that uses weighted averages 
specified through the variogram model that describes the spatial correlation. In other 
words, it consists of using a weighted average of neighbouring samples to estimate the 
unknown value at a given location. These weights are optimised using the variogram 
model and the location of the samples. 

In Figure 4, we show the predicted order values for both seasonal (first column) and 
unseasonal products (second column) obtained by using the corresponding model M1 that 
contains socio-economic features and weather conditions. 

The first line [Figures 4(a) and 4(b)] corresponds to the predictions of the order value 
for seasonal and unseasonal products at the brand level, namely Atomic and Wilson, 
respectively. The two graphs are quite different. For Atomic [Figure 4(a)], the prediction 
of the order value tends to be high around big cities such as Bern, Zurich and St. Gallen 
and around big ski resorts such as Davos, St. Moritz and Andermatt. The map of Wilson 
predictions [Figure 4(b)] is relatively uniform everywhere across Switzerland. 

Figures 4(c) and 4(e) display the predictions of the order value for seasonal products 
at the product level, namely Atomic Alpine and Atomic X-Country, respectively. The 
map corresponding to Atomic Alpine demand [Figure 4(c)] suggests that the order value 
is high around big cities such as Bern, Zurich and St. Gallen. The demand is also high in 
the region of Grison, where there are famous ski resorts such as Davos, St. Moritz or in 
the north of Ticino (Andermatt area), where the demand is predicted to be high.  
Figure 4(e) corresponding to the map of Atomic X-Country demand suggests that the 
order value is high around Zurich, Bern and in the region of Grison. This finding could 
help the company to decide about the location of a new shop selling the considered 
seasonal product. 

The order values for unseasonal products at the product level are displayed in  
Figures 4(d) and 4(f), corresponding to Wilson Racketsports and Wilson Golf, 
respectively. The demand levels for Wilson Racketsports, which are considered as the 
most popular sports, are predicted to be relatively regular everywhere across the country 
[Figure 4(d)]. There are some regions where these levels are slightly higher, such as 
around Zurich and in the Grison around St. Moritz. There is also a high demand in 
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Lugano, in the south of Ticino. The predictions are more irregular for Wilson Golf 
equipment demand [Figure 4(f)]. The order value is higher in the region of St. Gallen, 
Luzern and in the Valais. 

Figure 4 Map showing the prediction of the order value in CHF for the seasonal demand  
of Atomic across Switzerland (kriging according to M1), (a) Atomic (b) Wilson  
(c) Atomic Alpine (d) Wilson Racketsports (e) Atomic X-Country (f) Wilson Golf  
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

Note: With cities [Geneva (GE), Bern (BE), Lugano (LG), Zurich (ZH), Basel (BS)  
and St. Gallen (SG)] and ski resorts [Champéry (1), Nendaz (2), St. Moritz (3), 
Gstaad (4), Zermatt (5), Adelboden (6), Davos (7), Andermatt (8) and Verbier (9)]. 

In order to analyse the effect of a variable, we first set this variable at a certain level (low 
or high), and then we predict the order value and compare them obtained maps. The low 
and high levels correspond to the 0.25 and 0.8 sample quantiles of observed data.  
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Figures 5 and 6 provide prediction maps of the order value in Swiss francs (CHF)  
for seasonal and unseasonal brands, respectively Atomic and Wilson, using the 
corresponding model M1 different levels of two covariates, namely the number of hotel 
nights and the proportion of the labour population. Since the effect of the number of hotel 
nights on the order value is negative (Table 4), we then start with the high level of 
number of hotel nights. We have the opposite for the proportion of the labour population, 
meaning that since its effect is positive, we set the first level to be low. The effects of 
theses covariates on the Atomic products (Figure 5) show that the order value is higher 
and especially around ski resorts. The predicted order value of Wilson is higher but more 
uniform across the country (Figure 6). 

Figure 5 Map showing the prediction of the order value in CHF for the seasonal demand of 
Atomic across Switzerland (kriging according to M1) (see online version for colours) 

 

 

  

Note: With cities [Geneva (GE), Bern (BE), Lugano (LG), Zurich (ZH), Basel (BS)  
and St. Gallen (SG)] and ski resorts [Champéry (1), Nendaz (2), St. Moritz (3), 
Gstaad (4), Zermatt (5), Adelboden (6), Davos (7), Andermatt (8) and Verbier (9)]. 

Figure 6 Map showing the prediction of the order value in CHF for the unseasonal demand of 
Wilson across Switzerland (kriging according to M1) (see online version for colours) 

  

Note: With cities [Geneva (GE), Bern (BE), Lugano (LG), Zurich (ZH), Basel (BS)  
and St. Gallen (SG)] and ski resorts [Champéry (1), Nendaz (2), St. Moritz (3), 
Gstaad (4), Zermatt (5), Adelboden (6), Davos (7), Andermatt (8) and Verbier (9)]. 
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Table 4 Summary of covariate effects according to brand seasonality (see online version  
for colours) 

Covariate\brand seasonality Seasonal Unseasonal 

Nb. hotel nights   
Pop. 20–64 years   
Priv. households -  
Comp. prim. sector -  
% housing surface - - 
Altitude -  
Snow  - 

The model validation is performed by comparing observed and predicted values. This is 
done by leaving-one-out cross-validation, consisting of removing one point from the 
dataset and predicting it using the remaining points. This process is done for each point. 
Figure 7 displays the boxplots of the errors provided by the cross-validation analyses. 
These graphs show that the models containing only the coordinates (M0s) tend to 
underestimate the demand level. This is the case for seasonal and unseasonal products. 
The M1 boxplots, that is, the models that contain not only the coordinates, but also  
socio-economic features and weather conditions, show a clear improvement in the 
demand forecasting accuracy. The reduction of the median absolute percentage error 
(MdAPE) is –25%, –31% and –26% for seasonal products (respectively Atomic, Atomic 
Alpine and Atomic X-Country) and –18%, –11% and –48% for unseasonal products 
(respectively, Wilson, Wilson Racketsports and Wilson Golf). 

Figure 7 Boxplots of the prediction errors for different models (see online version for colours) 

 

5 Conclusions 

In this paper, we studied how seasonal and unseasonal demands spatially vary according 
to socio-economic aspects and weather conditions, and how this additional information 
could be used to improve the accuracy of seasonal demand forecasting. We analysed real 
business data for orders in Switzerland along with socio-economic features and weather 
conditions. We found that the effect of the year on the spatial trend is not significant. 
After removing the trend, the studied spatial structure does not significantly differ from  
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one year to another. This means, we can generalise the results among different years. By 
analysing the most recent year using model-based geostatistics, we found that the 
incorporation of socio-economic data and weather conditions in the model provides more 
information about the spatial dependence structure of the demand for seasonal and 
unseasonal products than the tested pure geostatistical model does. Moreover, the 
incorporation of this additional information increases the demand forecasting accuracy. 
We discovered that the analyses according to the spatial coordinates tend to 
systematically underestimate the order value. This bias is corrected in the second model 
containing more information about the socio-economic environment and weather 
conditions. The incremental improvement corresponds to a reduction in mean squared 
errors by –25%, –31%, –26% –18%, –11% and –48%, for, respectively, Atomic, Atomic 
Alpine, Atomic X-Country, Wilson, Wilson Racketsports products and Wilson Golf. In 
addition, the kriging method, commonly used in geostatistics, provides the prediction 
maps of the order value across Switzerland, which is helpful, for example, when deciding 
on the location of a new shop. 
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Chapter 5

Causal discovery for
heteroscedastic financial series

Abstract

Inferring causality between financial assets is a common and fundamental sub-
ject in finance. The widely used Granger causality allows to determine whether
one time series is useful in forecasting another. Under Granger causality, the
cause happens prior to its effect. In this paper, we propose a new method
to understand intrinsic causal mechanism between series, unconditionally on
time. Dealing with heteroskedastic financial data, we investigate causal rela-
tions not only in mean but from the perspective of location, scale and shape
parameters of the underlying distribution. The proposed two-steps method
relies on bayesian additive models for location, scale and shape (BAMLSS)
and on causal additive models (CAM), admitting non-linear and non-gaussian
causal multiplicative noise models. Based on an extensive simulation study,
our approach globally outperforms standard causal discovery methods of data
science. When applied to financial indices, we find evidence of an un-lagged
causal effect of the shares on the index they compose. We detail the method-
ology for the bivariate case but, in the empirical study, we show how to extend
the causal discovery to the multivariate case.

5.1 Introduction

A key challenge in finance is to understand relationship between financial as-
sets for both investment and risk management purposes. Granger causality
[Granger and Morgenstern, 1963] analysis is the standard method for achiev-
ing this. It provides information about the dynamic interactions between time
series, conditionally on time. More precisely, a time seriesX is said to Granger-
cause Y if it can be tested that lagged values of X provide statistically signif-
icant information about future values of Y . There are two serious limitations
of this approach. First, the causality is inferred at the level of the mean only
and not at other distribution characteristics. To remedy this, Chuang et al.
[2009] investigated Granger causal relations from the perspective of conditional
quantiles. In this paper, motivated by the heteroscedastic stylised feature of
financial time series, we infer causal relations at higher moments of the data
distribution. Second, the autoregressive structure underlying Granger causal-
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ity is restrictive. We relax any parametric assumption about the functional
form of the causal effect. Our approach offers a new methodology to detect
intrinsic causal mechanism between financial series, unconditionally on time.
It is based on recent data science developments inferring causal relationships
from observational data using conditional independence [Rubin, 1974; Pearl,
2009; Spirtes and Zhang, 2016].
Consider two random variables X and Y which can represent financial time
series and that are linked by an intrinsic causal mechanism. We assume that
there is no latent confounding variable causing both X and Y . If X is the
cause of Y we note X → Y and the traditional structural equation model
approach is written as

Y = f(X, ε), (5.1)

where f is a causal mechanism linking Y to its direct cause X, and ε the noise
variable [Galles and Pearl, 1997].

Many papers have studied additive noise models (ANM) [Peters et al., 2014;
Hoyer et al., 2009] for which

Y = f(X) + ε. (5.2)

To allow heteroscedasticity, we consider in this paper a multiplicative model
with respect to the noise variable, that is

Y = f(X) + g(X)ε , (5.3)

where the noise is ε ∼ N (0 , σ2) with σ2 > 0 and f(·) and g(·) are arbitrary
functions.

Causality identification in the bivariate case is challenging [Galles and Pearl,
1995]. In the additive context, certain approaches impose model specifications
or restrictions [Nowzohour and Bühlmann, 2016; Hoyer et al., 2009]. For linear
causal models (Y = bX + ε), if X and ε are gaussian, the causal direction is
identifiable, due to the independent component analysis (ICA) theory [Hyväri-
nen et al., 2004]. The linear non-Gaussian causal model, known as LinGAM
[Shimizu et al., 2006] also relies on ICA with the additional assumption that
disturbance variables have non-Gaussian distributions of non-zero variances.
Although linear causal models with additive noise are often used because they
are well understood, in reality, many causal relationships are far from being
linear. Non-linearities in the data-generating process provide more information
on the underlying causal system since these models allow more aspects of the
true data-generating mechanisms to be identified (Y = f(X)+ε) [Hoyer et al.,
2009]. The post-nonlinear causal model (Y = g(f(X) + ε)) provided by Zhang
and Hyvärinen [2009] aims to distinguish the cause from effect by analyzing
the non-linear effect of the cause, the inner noise effect, and the measurement
distortion effect in the observed variables.
In this paper, we address the case of non-linear and non-gaussian causal mul-
tiplicative noise model (Y = f(X) + g(X)ε) [Tagasovska et al., 2018; Goudet
et al., 2018]. To distinguish the cause from the effect, we use a two-step
method based on bayesian additive models for location, scale and shape pa-
rameters and on causal additive models applied to the fitted estimated pa-
rameters. In other words we first consider the two multiplicative noise models
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Y = fy(X)+gy(X)εy (respectivelyX = fx(Y )+gx(Y )εx), and using BAMLSS,
we compute the resulting fitted location, scale and shape of the estimated pa-
rameters β̂Y |X (respectively β̂X|Y ). Second, to discover causality, we apply
the bivariate causal additive model (BiCAM) of Peters et al. [2014]. The Bi-
CAM approach has been proven to be an efficient and computationally fast
method to discover causality in the Gaussian context. Relying on the asymp-
totic normality of the BAMLSS estimator of β we apply BiCAM on pairwise
fitted parameters of β̂Y |X and β̂X|Y . We provide a rule based on the BiCAM’s
scores of each parameter to identify the causal direction.

The rest of the paper is organized as follows: in Section 5.2, we detail our
two step method, and in Section 5.3 we run an extensive simulation study to
assess the accuracy of our method. Intrinsic causal discovery between pairs
of indices and shares are presented in the first part of Section 5.4, the second
part describing the extension to the multivariate setting of several shares. We
conclude in Section 5.5.

5.2 Causal discovery for heteroscedastic model

In this section we present our two-step method for causal heteroscedastic model
(CHM), which consists of applying a BiCAM method on the fitted values of
the estimated BAMLSS models parameters.

5.2.1 First step: BAMLSS

Bayesian additive models for location, scale and shape [Umlauf et al., 2017] are
bayesian version of generalized additive models for location, scale and shape
(GAMLSS) [Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007]
that relaxe the distributional assumptions of the response variable and allow
the modelization of the mean (location) and higher moments (usually scale
and shape) using covariates. Each parameter of the distribution is linked to
an additive predictor as for generalized additive models (GAM) [Hastie and
Tibshirani, 1990] and the covariate effects can have flexible forms such as,
for example linear, non-linear, spatial or random effects. BAMLSS handles
complex models, like for instance considering a response distribution out of
the exponential family or when multiple predictors contain several smooth
effects. In these cases, the bayesian approach that uses Markov chain Monte
Carlo (MCMC) simulation techniques provides valid and credible confidence
intervals while standard confidence intervals based on asymptotic properties
of the maximum likelihood estimators fail.

Model structure

BAMLSS models are based on n observations and assume conditional inde-
pendence of individual response observations yi given a set of covariates W,
(i.e: yi|W ⊥ yj|W, ∀ i 6= j; i, j = 1, ..., n). All parameters of the response
distribution can be modeled using explanatory variables such that

Y ∼ DY (h1(θ1) = η1, h2(θ2) = η2, ..., hK(θK) = ηK)
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where DY denotes a parametric distribution for the response variable Y with
K parameters θk, θk ∈ Γθ, k = 1, ..., K, that are linked to additive predictors
using known monotonic and twice differentiable functions hk(·). For example
for the gaussian distribution we have Y ∼ N (hµ(µ) = ηµ, hσ2(σ2) = ησ2).
The k-th additive predictor is given by

hk(θk) = ηk := ηk(Wk;βk) =

Jk∑
j=1

fjk(Wjk;βjk)

where:

• Wk = (W1k; ...;WJkk)
T is the combined design matrix for the k-th pa-

rameter

• fjk(·) are unspecified and possibly non-linear functions of subvectors of
W collecting all available covariate information, j = 1, ..., Jk and k =
1, ..., K.

• βk = (β1k, ...,βJkk)
T , βJk ∈ Γβ, are coefficients that need to be estimated

from the data.

Model fitting and inference

The estimation of the probability density function dY (y|θ1, ...,θK) requires to
evaluate the log-likelihood function:

l(β;y,W) =
n∑
i=1

log dy(yi; θi1 = h−1
1 (ηi1(wi;β1)), ..., θiK = h−1

K (ηiK(wi;βK))).

By assigning prior distributions pjk(·) to the individual model component we
obtain the log-posterior:

log π(β, τ ;y,W,α) ∝ l(β;y,W) +
K∑
k=1

Jk∑
j=1

log pjk(βjk; τ jk,αjk)

where τ = (τ T1 , ..., τ
T
K)T with τ jk ∈ Γτ is the vector of all assigned hyper-

parameters used within prior functions pjk(·) and similarly α is the set of all
fixed prior specifications. The rather general prior for the jk-th model term is
given by

pjk(βjk; τ jk,αjk) ∝ dβjk(βjk|τ jk;αβjk) . dτ jk(τ jk|αβjk)

with prior densities or combinations of densities dβjk(·) and dτ jk(·) that depend
on the type of the covariate and prior assumptions about fjk(·).
Bayesian point estimates of β and τ for the posterior mean estimation is
obtained by solving high dimensional integrals given by

E(β, τ |y,W,α) =

∫
Γβ

∫
Γτ

(
β
τ

)
π(β, τ ;y,W,α) d

(
β
τ

)
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which can be rarely solved analytically and therefore need to be approximated
by numerical techniques such as MCMC simulations through iterative algo-
rithm with an updating scheme of type

(β(t+1), τ (t+1)) = U(β(t), τ (t);y,W,α)

at step t + 1 where U(.) is an updating function. MCMC samples for the
regression coefficients βjk can be derived by each of the following methods
namely Random-walk Metropolis [Metropolis et al., 1953; Gelman et al., 1996],
Derivative-based Metropolis-Hastings [Hastings, 1970] and Slice sampling [Neal,
2003]. Consider for instance the Derivative-based Metropolis-Hastings method.

The sampler proceeds by drawing a candidate β∗jk from a symmetric jumping
distribution q(β∗jk|β

(t)
jk ) which is commonly a normal distributionN (µ

(t)
jk ,
∑(t)

jk )
centered at the current iterate with:

• µ(t)
jk = β

(t)
jk − [Jkk(β

(t)
jk ) +Gjk(τ jk)]

−1 s(β
(t)
jk )

• (
∑(t)

jk )−1 = −Hkk(β
(t)
jk )

• β(t+1)
jk = β

(t)
jk − [Jkk(β

(t)
jk ) +Gjk(τ jk)]

−1 s(β
(t)
jk )

where the score vector s(.) and the Hessian matrix are explicited bellow:

s(β) = ∂logπ(β,τ ;y,W,α)
∂β

= ∂l(β;y,W)
∂β

+
K∑
k=1

Jk∑
j=1

∂log pjk(βjk;τ jk,αjk)

∂β

Hjk(β) =
∂s(βj)

∂βk
= ∂2logπ(β,τ ;y,W,α)

∂βj∂β
T
k

J jk(β) = ∂2l(β;y,W)

∂βjk∂β
T
jk

Gjk(τ jk) =
∂2log pjk(βjk;τ jk,αjk)

∂βjk∂β
T
jk

Inference for parameters βjk can, under suitable regularity conditions [Walker,
1969], be based on the asymptotic normality of the posterior distribution

βjk|y
a∼ N (β̂jk,H(β̂jk)

−1) (5.4)

with β̂jk being the posterior mode estimate and H(β̂jk)) the hessian matrix.
The marginal asymptotic normality of each BAMLSS parameter estimator is
crucial for applying BiCAM at the second step.

5.2.2 Second step: Bivariate CAM

In the first step, we have fitted BAMLSS models Y = fy(X) + gy(X)εy and
X = fx(Y )+gx(Y )εx from which we get estimates β̂Y |X and β̂X|Y respectively.
Denote β̃Y |X (respect. β̃X|Y ) the corresponding fitted vector that is composed
by three sets of fitted values µ̃Y |X (respect. µ̃X|Y ) for the location parameter,
σ̃Y |X (respect. σ̃X|Y ) for the scale parameter, ξ̃Y |X (respect. ξ̃X|Y ) for the shape
parameter, each of size n. Suppose n large, from (5.4), each fitted values set
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can be supposed to come from a normal distribution, so that we can use Bi-
CAM, an appropriate and efficient approach to infer causality in the Gaussian
context. The basic idea of the causal additive models (CAM) is to learn the
causal direction from an observational joint distribution by assuming that the
effect can be written as some function of the cause plus additive noise, which is
independent from the cause. In what follows we detail the second-step process
for the location parameter µ but we also process in a similar way for the scale
and shape parameters. We aim at testing the causal models “X causes µ̃Y |X"
(X → µ̃Y |X) and Y causes µ̃X|Y " (Y → µ̃X|Y ) by regressing µ̂Y |X on X and
respectively µ̂X|Y on Y that is,

µ̃Y |X = vY |X(X) + εY |X (5.5)

µ̃X|Y = vX|Y (Y ) + εX|Y (5.6)

where

• vY |X(·) and vX|Y (·) are smooth functions R→ R

• E(vY |X(X)) = 0 ; E(vX|Y (Y )) = 0

• εY |X ∼ N (0 , σ2
Y |X) with σ2

Y |X > 0 and εX|Y ∼ N (0 , σ2
X|Y ) with

σ2
X|Y > 0

• εY |X , εX|Y independent.

If vY |X(·) 6= 0 ⇒ ∃ a causal link between X and µ̃Y |X and if vX|Y (·) 6= 0 ⇒ ∃
a causal link between Y and µ̃X|Y . It may happen that both directions are
significant, or in other words both v̂X|Y and v̂Y |X are significantly different
from 0. To decide the direction, we calculate an independence score between
the residuals rY |X = v̂(µ̃Y |X) − X and the regressor X for model (5.5), and
between rX|Y = v̂(µ̃X|Y ) − Y and Y for model (5.6), and choose the model
with the highest likelihood independence score. This measure of independence
relies on the fact that if X → µ̃Y |X then µ̃Y |X |X ⊥⊥ X therefore rY |X ⊥⊥ X.
The so-estimated causal effect is consistent [Peters et al., 2014]. If vY |X(·) is
non-linear then vY |X(·) is identifiable from the joint distribution of µ̃Y |X and
X that is, the causal structure of variables can be uniquely estimated using
the observational data. Same for vX|X(·). We apply a similar process to the
scale and shape parameters. The final direction is X → Y if the sum of the
independence scores for X → µ̃Y |X , X → σ̃Y |X and X → ξ̃Y |X is higher than
the sum of the independence scores for Y → µ̃X|Y , Y → σ̃X|Y and Y → ξ̃X|Y .
The underlying assumption our process rely on is that if X causes Y , then
X has an effect on the characteristics of the distribution of Y , that is on its
location, scale and shape parameters.

5.3 Simulation study
To assess our method and compare it to competitive approaches, we ran an
extensive simulation study. We suppose that X is the cause of Y and that the
causal relation is explained by a multiplicative noise model:
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Y = f(X) + g(X)ε (5.7)

Relying on BAMLSS, our method can handle any response distribution. In
the simulation study we consider three different distributions for X namely,
the normal distribution (X ∼ N (0 , 1)), the log-normal distribution (X ∼ Log-
N (1 , 0.25)) and the generalized pareto distribution (X ∼ GPD(0.2, 5, 0.5))
which happens to be useful in finance in a risk management perspective. For
the choice of f(·) and g(·) we consider the following functions: −x2, 3x3 + x,
tanh(x), log(|x|) and

√
|x|. We generate 200 samples of yi, i = 1, .., n from

(5.7) with the different functions f(·) and g(·), and four different levels of
standard deviation of the noise term (ε ∼ N (0 , sd)), each sample of size
n = 500. We apply our CHM method on each of the 200 simulated data to
find the causality direction and compare its performance with four alternative
methods which are

1. CAM [Bühlmann et al., 2014]: non-linear-Gaussian structural equation
models.

2. Linear non-Gaussian acyclic causal model (LinGAM) [Shimizu et al.,
2006]: relies on independent component analysis with the additional as-
sumption that disturbance variables have non-Gaussian distributions of
non-zero variances (implementation of Peters et al. [2014]).

3. Regression with subsequent independence test (RESIT) [Peters et al.,
2014]: is based on the fact that for each node X, the corresponding noise
variable εx is independent of all non-descendants of X.

4. Quantile-Based Causal Discovery (QCCD) [Tagasovska et al., 2018]: is
based on the link between Kolmogorov complexity and quantile scoring
using a nonparametric conditional quantile estimator based on copulas,
hence placing no restrictive assumptions about the joint distribution.
The QCCD method can handle any distribution including heteroscedas-
tic distributions.

These competitive approaches are the most recent and commonly recognized
methods in causality. CAM, LinGAM and RESIT are additive noise models
therefore can hardly handle heteroscedasticity. The QCCD method is the only
one allowing a fair comparison since it deals with heteroscedasticity.

Tables 5.1, 5.2 and 5.3 provide a summary of accuracy of the compared
methods based on simulating samples from (5.7) with the different functions
f(·) and g(·) and with X coming from the normal distribution (Table 5.1), the
log-normal distribution (Table 5.2) and the GPD (Table 5.3). The accuracy is
the percentage of times the method discovers the true causality direction. Each
figure of these tables is a mean of four accuracies corresponding to four dif-
ferent levels of standard deviation of the noise term ε. Globally our approach
performs much better than the competitive approaches in the log-normal and
GPD cases since these cases have more heteroscedasticity. In case of the nor-
mal distribution we can distinguish two different scenarios according to the
intensity of the multiplicativity in f(x) + g(x)ε. We find that whenever g(x)
dominates f(x) that is f(x) � g(x) (see examples in Figure 5.3 left panel)
the multiplicative part dominates and CHM performs better. This is the het-
eroscedasticity case we typically find in finance and want to handle. Figure
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5.1 shows boxplots of accuracy for the five compared methods for the nor-
mal distribution with a special case where g(x) dominates and for different
values of the standard deviation of the noise ε. In this highly multiplicative
case, CHM gets a mean accuracy of 0.94. It slightly improves when the noise
standard deviation increases, re-enforcing the multiplicative part. In the case
where f(x) � g(x), where g(x) is negligible compared to f(x) (see examples
in Figure 5.3 right panel) we tend to an additive noise model, hence the per-
formance of CHM is affected but still good. Figure 5.2 represents the boxplots
of accuracy of the five methods in the normal case with f(x) dominating and
for different values of the standard deviation of the noise ε. Again, the CHM
accuracy improves when the noise standard deviation increases. The average
accuracy for CHM is 0.76 but LinGAM and RESIT perform better reaching
both the accuracy of 1 on average. In GPD and log-normal scenarios CHM
performs well and better than all compared methods in most of the cases with
the accuracy reaching 0.97 on average.

Figure 5.1: Boxplots of estimated accuracy of different methods for the model
Y = −X2 + (3X + X)ε on 200 samples of size n = 500, where X ∼ N (0 , 1),
and ε ∼ N (0 , sd)

Figure 5.2: Boxplots of estimated accuracy of different methods for the model
Y = −X2 +

√
(|X|)ε on 200 samples of size n = 500, where X ∼ N (0 , 1), and

ε ∼ N (0 , sd)
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Figure 5.3: X ∼ N (0 , 1) and ε ∼ N (0 , 1.2); We consider different relations
Y = f(X)+g(X)ε with multiplicative dominant constructions (left panel) that
are y = −x2, y = x3 + x, y = (x3 + x)ε, y = −x2 + (x3 + x)ε and additional
dominant constructions (right panel) that are y = −x2, y =

√
|x|, y =

√
|x|ε,

y = −x2 +
√
|x|ε

Figure 5.4: Boxplots of estimated accuracy of different methods for the
model Y = tanh(X) +

√
(|X|)ε on 200 samples of size n = 500, where

X ∼ GPD(0.2 , 5 , 0.5), and ε ∼ N (0 , sd)
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Figure 5.5: Boxplots of estimated accuracy of different methods for the model
Y = log(|X|) +

√
(|X|)ε on 200 samples of size n = 500, where X ∼ Log-

N (1 , 0.25), and ε ∼ N (0 , sd)

CHM CAM LinGAM RESIT QCCD

Y = −X2 + (3X3 +X)ε 0.94 0.90 0.51 0.13 0.98
Y = −X2 + tanh(X)ε 0.68 1 0.51 0.29 1
Y = −X2 + log(|X|)ε 0.61 1 0.54 0.23 1
Y = −X2 +

√
|X|ε 0.76 1 0.53 0.30 1

Y = 3X3 +X −X2ε 0.76 1 0.53 0.30 1
Y = 3X3 +X + tanh(X)ε 0.96 1 1 0.03 0.29
Y = 3X3 +X + log(|X|)ε 0.93 1 1 0.01 1
Y = 3X3 +X +

√
|X|ε 0.95 1 1 0.02 0.24

Y = tanh(X)−X2ε 0.95 1 1 0.02 0.24
Y = tanh(X) + (3X3 +X)ε 0.97 0.58 0.53 0.70 0.84
Y = tanh(X) + log(|X|)ε 0.55 0.13 0.62 0.19 0.14
Y = tanh(X) +

√
|X|ε 0.21 0.99 0.02 0 0.96

Y = log(|X|)−X2ε 0.21 0.99 0.02 0 0.96
Y = log(|X|) + (3X3 +X)ε 0.94 0.91 0.50 0.15 1
Y = log(|X|) + tanh(X)ε 0.36 1 0.48 0.40 1
Y = log(|X|) +

√
|X|ε 0.46 1 0.49 0.37 1

Y =
√
|X| −X2ε 0.47 1 0.49 0.37 1

Y =
√
|X|+ (3X3 +X)ε 0.47 1 0.49 0.37 1

Y =
√
|X|+ tanh(X)ε 0.46 1 0.48 0.37 1

Y =
√
|X|+ log(|X|)ε 0.25 1 0.49 0.32 1

Table 5.1: Accuracy on gaussian simulated data
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CHM CAM LinGAM RESIT QCCD

Y = −X2 + (3X3 +X)ε 0.98 0.03 0.88 0.04 0
Y = −X2 + tanh(X)ε 0.95 0.13 1 0.98 0.68
Y = −X2 + log(|X|)ε 0.94 0.01 1 0.16 0
Y = −X2 +

√
|X|ε 0.97 0.04 0.95 0.69 0.09

Y = 3X3 +X −X2ε 0.94 0.30 0.99 0.01 0
Y = 3X3 +X + tanh(X)ε 0.91 0.72 1 0.79 0.76
Y = 3X3 +X + log(|X|)ε 0.90 0.43 1 0.05 0.01
Y = 3X3 +X +

√
|X|ε 0.92 0.14 1 0.77 0.16

Y = tanh(X)−X2ε 1 0 0.51 0.37 0
Y = tanh(X) + (3X3 +X)ε 1 0.01 0.55 0.35 0
Y = tanh(X) + log(|X|)ε 1 0.01 0.52 0.50 0
Y = tanh(X) +

√
|X|ε 1 0.33 0.49 0.52 0.06

Y = log(|X|)−X2ε 1 0 0.53 0.40 0
Y = log(|X|) + (3X3 +X)ε 1 0.02 0.48 0.33 0
Y = log(|X|) + tanh(X)ε 1 0.52 0.53 0.52 0.49
Y = log(|X|) +

√
|X|ε 1 0.30 0.49 0.52 0.07

Y =
√
|X| −X2ε 1 0 0.51 0.41 0

Y =
√
|X|+ (3X3 +X)ε 1 0.06 0.53 0.37 0.05

Y =
√
|X|+ tanh(X)ε 1 0.48 0.49 0.49 0.49

Y =
√
|X|+ log(|X|)ε 0.99 0 0.02 0.02 0

Table 5.2: Accuracy on Log-normal simulated data
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CHM CAM LinGAM RESIT QCCD

Y = −X2 + (3X3 +X)ε 1 0.11 0.53 0.87 0.01
Y = −X2 + tanh(X)ε 0.78 0.06 1 0.99 0.88
Y = −X2 + log(|X|)ε 0.85 0.04 1 0.99 0.58
Y = −X2 +

√
|X|ε 0.89 0.07 0.94 0.92 0.60

Y = 3X3 +X −X2ε 0.95 0.40 0.98 0.88 0.05
Y = 3X3 +X + tanh(X)ε 0.94 0.91 1 0.59 0.85
Y = 3X3 +X + log(|X|)ε 0.95 0.64 1 0.79 0.69
Y = 3X3 +X +

√
|X|ε 0.95 0.43 1 0.90 0.74

Y = tanh(X)−X2ε 1 0.02 0.48 0.86 0
Y = tanh(X) + (3X3 +X)ε 1 0.09 0.51 0.86 0.01
Y = tanh(X) + log(|X|)ε 1 0.45 0.53 0.55 0.34
Y = tanh(X) +

√
|X|ε 1 0.46 0.55 0.58 0.39

Y = log(|X|)−X2ε 1 0.02 0.49 0.88 0.01
Y = log(|X|) + (3X3 +X)ε 1 0.10 0.52 0.87 0.01
Y = log(|X|) + tanh(X)ε 0.99 0.52 0.52 0.53 0.51
Y = log(|X|) +

√
|X|ε 0.99 0.44 0.52 0.54 0.39

Y =
√
|X| −X2ε 1 0.02 0.52 0.87 0

Y =
√
|X|+ (3X3 +X)ε 1 0.12 0.54 0.83 0.01

Y =
√
|X|+ tanh(X)ε 0.99 0.51 0.52 0.52 0.51

Y =
√
|X|+ log(|X|)ε 1 0.45 0.54 0.56 0.35

Table 5.3: Accuracy on GPD simulated data
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5.4 Stock market indices
In this section, our method is used to determine the intrinsic casual mechanism
between shares and indices. An index being composed of weighted stock prices,
the share is a “parent" and the index, the “child". We expect our method to
retrieve the “share −→ index" causal direction. The analysis is carried out on
the S&P 500, CAC 40 and Nikkei indices and, for each index, on five of its
shares with important weights. The indices and shares are listed in the first
column of Table 5.5. The data consists of daily log-returns from 2008 to 2018.

5.4.1 Pairwise exploration

We apply our CHM method to discover a causal direction for each “share-
index" pair. Figure 5.6 illustrates three examples of these pairs. The scatter
plots of the other pairs appear in Appendix. To test the heteroscedaticity of
all pairs we use the Breusch-Pagan test [Breusch and Pagan, 1979; Koenker,
1981], the results are reported in Table 5.4. The considered data is globaly
heteroscedastic, except for Nikkei where the test based on linear regression
could not capture the singularity of the joint distribution shaped like a cross
(Figure 5.6). Table 5.5 displays the estimated causal direction between the
pairs of share and index for our method and for the four other methods. Using
our methodology, in almost all cases we find the correct causal effect of the
share on the index. In the Nikkei case, apart from CHM and QCCD, all the
other methods fail to retrieve the correct direction. This can be explained
by the unusual and complex structure between Nikon and Nikkei as shown in
the right panel of Figure 5.6 . Indeed, the bivariate structure for this pair
is much less elliptical than for other pairs like the one for Coca-Cola and
S&P500 (left panel of Figure 5.6) and that shows more evidence for bivariate
Gaussian distribution. Both our method and QCCD capture these complex
links by exploring the causal mechanism at different moments or quantiles of
the distribution.

Figure 5.6: Scatter plot of indices and stocks

5.4.2 Extension to multivariate case

The previous section was about discovering pairwise underlying causal struc-
ture between one share and the index. In this section, we propose an extension
of our pairwise CHM to the multivariate case and explore the causal structure
between different shares. This extension leads to graphical modelling that con-
sists of fitting graph that satisfies a set of conditional independence relations,
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Pairs Heteroscedasticity p-value

S&P 500 ∼ Cola cola Yes 1.60 E-7
S&P 500 ∼ Medtronic Yes 4.87 E-4
S&P 500 ∼ Walt Disney Company Yes 2.13 E-3
S&P 500 ∼ Caterpillar Yes 0.023
S&P 500 ∼ Bank of America Yes 1.26 E-6

CAC 40 ∼ BNP Paribas Yes 0.087
CAC 40 ∼ Legrand Yes <2.2 E-16
CAC 40 ∼ Orange No 0.68
CAC 40 ∼ Sanofi Yes 0.035
CAC 40 ∼ Total Yes 2.18 E-4

Nikkei ∼ Nikon No 0.49
Nikkei ∼ Inpex Yes 2.25 E-3
Nikkei ∼ Japan Tobacco No 0.96
Nikkei ∼ Tosoh No 0.61
Nikkei ∼ Toyota No 0.11

Table 5.4: Results of heteroscedastic test applied on stock market indices data

Pairs CHM CAM LinGAM RESIT QCCD

S&P 500 - Cola cola ← ← → → ←
S&P 500 - Medtronic ← ← → → ←
S&P 500 - Walt Disney Company ← ← → → ←
S&P 500 - Caterpillar ← ← → → ←
S&P 500 - Bank of America → ← → ← ←

CAC 40 - BNP Paribas ← → ← → →
CAC 40 - Legrand → → ← ← ←
CAC 40 - Orange ← → ← → →
CAC 40 - Sanofi ← ← → → →
CAC 40 - Total ← → → → →

Nikkei - Nikon ← → → → ←
Nikkei - Inpex ← → → → ←
Nikkei - Japan Tobacco ← → → → ←
Nikkei - Tosoh ← → → ← ←
Nikkei - Toyota ← → → ← ←

Table 5.5: Estimated causal direction on stock market indices data

known as markov property [Maathuis et al., 2009]. We use the idea suggested
by Goudet et al. [2018] which is that pairwise and CPDAG (the skeleton and
the v-structures of a graphical model) learning procedures are complementary
in the multivariate analysis. To get the edges, for each pair of variables X and
Y , we remove the effect of all remained covariates using gam models [Hastie
and Tibshirani, 1990; Wood, 2017] and fit our CHM method on the obtained
pair of gam rediduals rx and ry to get the edge between X and Y . Then
we rank the resulting edges according to the standardized score defined as
score =

|sy|x−sx|y |
max(sy|x, sx|y)

, where sy|x and sx|y are the scores obtained by fitting
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CHM models ry = fy(rx) + gy(rx)εy and rx = fx(ry) + gx(ry)εx respectively.
Finally we include the ranked edges in the graph sequentially, starting from
the highest score while checking the acyclicity of the resulting graph after each
addition.

The so obtained directed acyclic graph (DAG) corresponding to S&P 500
shares is illustrated in Figure 5.7 for the normal case, meaning using the ob-
served log returns. The normal DAGs of CAC 40 and Nikkei shares appear
in Appendix. The darker and thicker the arrow, the stronger the causal ef-
fect. We note in fig. 5.7 that the Bank of America and Caterpillar are mainly
“parent” whereas Coca Cola and Medtronic are essentially “Child”.

After exploring the normal situation, we were interested in analysing the
extremes, especially negative log returns extremes representing small financial
crisis. We use “Peak Over Threshold” method [Coles et al., 2001], which con-
sists of selecting values exceeding a certain threshold, namely the 0.85 quantile
of negative log returns and fit a GPD. Figure 5.8 provides the DAG obtained
after applying the multivariate CHM to the extremes of negative log returns
of shares of S&P 500. Unlike the normal case, the DAG of extremes shows
that Bank of America, Caterpillar and Disney are essentially “Child” meaning
effects, while Coca Cola and Medtronic have become “parent” meaning causes.
The DAGs of CAC 40 and Nikkei shares extreme negative log returns appear in
Appendix. These causal graphs are interesting since they provide the causal
structures in different scenarios, and could be useful for asset and financial
portfolio management.

Figure 5.7: DAGs for S&P 500 shares in the normal case
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Figure 5.8: DAGs for S&P 500 shares in extreme case

5.5 Conclusion
In this paper we provide a two-steps method CHM based on BAMLSS and
CAM, that allows the causal inference of heteroscedastic data through causal
multiplicative noise models and can handle any response distribution. We
assess our method on both simulated and real financial data. In the simulation
study we consider normal, generalized pareto and lognormal distributions. In
the highly multiplicative of the normal case CHM has a mean accuracy of
0.94, and in the GPD and lognormal scenarios CHM reaches the accuracy of
0.97 on average. The application of CHM on heteroscedastic financial data
is motivated by the fact that our method is not conditioned on time and
investigate the causal relation not only in mean but in higher moments such
as the scale and the shape. The analyse of financial indices data we find an
un-lagged causal effect of the shares on the index they compose. Hence, CHM
method is useful for inferring causality for any response distribution.

104



5.6 Appendix

Figure 5.9: Scatter plot of S&P 500 and stocks log returns

Figure 5.11: Scatter plot of Nikkei and stocks log returns
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Figure 5.10: Scatter plot of CAC 40 and stocks log returns

Figure 5.12: DAGs for CAC 40 shares in the normal case
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Figure 5.13: DAGs for CAC 40 shares in extreme case

Figure 5.14: DAGs for Nikkei shares in the normal case
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Figure 5.15: DAGs for Nikkei shares in extreme case
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