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Abstract: Recently, we established and used the generalized Littlewood theorem concerning contour
integrals of the logarithm of analytical function to obtain new criteria equivalent to the Riemann
hypothesis. The same theorem was subsequently applied to calculate certain infinite sums and study
the properties of zeroes of a few analytical functions. In this article, we discuss what are, in a sense,
inverse applications of this theorem. We first prove a Lemma that if two meromorphic on the whole
complex plane functions f(z) and g(z) have the same zeroes and poles, taking into account their orders,
and have appropriate asymptotic for large |z|, then for some integer n, dn ln( f (z))

dzn =
dn ln(g(z))

dzn . The
use of this Lemma enables proofs of many identities between elliptic functions, their transformation
and n-tuple product rules. In particular, we show how exactly for any complex number a, ℘(z)-a,
where ℘(z) is the Weierstrass ℘ function, can be presented as a product and ratio of three elliptic θ1

functions of certain arguments. We also establish n-tuple rules for some elliptic theta functions.

Keywords: logarithm of an analytical function; generalized Littlewood theorem; elliptic functions;
zeroes and poles of analytical function

MSC: 30E20; 30C15; 33B20; 33B99

1. Introduction

The generalized Littlewood theorem concerning contour integrals of the logarithm of
analytical function is stated as follows [1,2]:

Theorem 1 (The Generalized Littlewood theorem). Let C denote the rectangle bounded by
the lines x = X1, x = X2, y = Y1, y = Y2 where X1 < X2, Y1 < Y2 and let f(z) be analytic and
non-zero on C and meromorphic inside it, and let also g(z) be analytic on C and meromorphic inside
it. Let F(z) = ln(f(z)) be the logarithm defined as follows: we start with a particular determination
on x = X2 and obtain the value at other points by continuous variation along y = const from
ln(X2 + iy). If, however, this path would cross a zero or pole of f(z), we take F(z) to be F(z ± i0)
according as to whether we approach the path from above or below. Let also F̃(z) = ln( f (z))
be the logarithm defined by continuous variation along any smooth curve fully lying inside the
contour which avoids all poles and zeroes of f(z) and starts from the same particular determination
on x = X2. Suppose also that the poles and zeroes of the functions f(z), g(z) do not coincide.

Then

∫
C

F(z)g(z)dz = 2πi

∑
ρg

res(g(ρg) · F̃(ρg))− ∑
ρ0

f

X0
ρ+iY0

ρ∫
X1+iY0

ρ

g(z)dz + ∑
ρ

pol
f

Xpole
ρ +iYpole

ρ∫
X1+iYpole

ρ

g(z)dz

 (1)

where the sum is over all ρg which are poles of the function g(z) lying inside C, all ρ0
f = X0

ρ + iY0
ρ

which are zeroes of the function f(z) both counted taking into account their multiplicities (that is
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the corresponding term is multiplied by 485 m for a zero of the order m) and which lie inside C,
and all ρ

pole
f = Xpole

ρ + iYpole
ρ which are poles of the function f(z) counted taking into account their

multiplicities and which lie inside C. The assumption is that all relevant integrals on the right-hand
side of the equality exist.

The proof of this theorem [2] is very close to the proof of the standard Littlewood theorem
corresponding to the case g(z) = 1, see e.g., [3]. Especially interesting are some particular
cases when the contour integral

∫
C

F(z)g(z)dz disappears (tends to zero) if the contour tends

to infinity; that is when X1, Y1 → −∞, X2, Y2 → +∞ . This means that Equation (1) takes
the form

∑
ρ0

f

X0
ρ+iY0

ρ∫
−∞+iY0

ρ

g(z)dz − ∑
ρ

pol
f

Xpole
ρ +iYpole

ρ∫
−∞+iYpole

ρ

g(z)dz = ∑
ρg

res(g(ρg) · F(ρg)) (2)

If the integrals here can be calculated explicitly, in this way one obtains equalities
involving finite or infinite sums (this last case is the most interesting one).

Previously, this approach was used by us to analyze some properties of the zeroes
of the Riemann zeta-function (see, e.g., [4] for a general discussion of this function); in
particular, to establish a number of theorems equivalent to the Riemann hypothesis, see,
e.g., [1,2,5]. (Some of these results were recently included in the corresponding chapter
of the Encyclopedia of Mathematics and its Applications [6]). Later on, we used the
generalized Littlewood theorem to calculate many infinite sums over integers and to study
the properties of zeroes of some analytical functions, including the elliptic functions [7];
the latter is especially close to the subject of the current paper.

In the present paper, we discuss what, in a sense, is the inverse application of this gen-
eralized Littlewood theorem, which were not considered before. Namely, we demonstrate
how from the circumstance that certain analytical functions have the same poles and zeroes,
together with some additional information, the formulae connecting these functions can
be established. These applications are first illustrated by certain trigonometrical functions
and gamma functions and then applied to prove numerous equalities and transformation
rules between different elliptic functions. Certainly, these equalities and rules are known
for the most part, but we believe that in the frame of our approach, they are proven in a
quite clearer and more transparent way. Moreover, to the best knowledge of the present
author, the essential part of the content of the Section 4.3 “n-tuple products” is unknown in
its generality; see also the remarks below.

2. The Main Lemma

Let us state the following Lemma 1, which is the tool of proof of our main results; see
especially Sections 3 and 4.

Lemma 1. Let the functions f(z) and g(z) be analytic and meromorphic on the complex plane, and
let for some integer n the existence of a sequence of contours Ci tending to infinity, such as defined

in the conditions of the generalized Littlewood theorem, and such that
∫
Ci

1

(z − a)n+1 ln( f (z))dz

and
∫
Ci

1

(z − a)n+1 ln(g(z))dz tend to zero. Here a is an arbitrary complex number not coinciding

with any zero or pole of the functions f(z) and g(z). Let also the poles and zeroes of these functions,
taking into account their multiplicities, coincide. Then dn ln( f (z))

dzn = dn ln(g(z))
dzn .

Proof. By the Lemma conditions, the values of the contour integrals
∫
Ci

1

(z − a)n+1 ln( f (z))dz

and
∫
Ci

1

(z − a)n+1 ln(g(z))dz for contours Ci and points a considered above tend to zero,
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and the identity of poles and zeroes of the functions f(z), g(z) take place. Thus, according to
Equation (2), we have dn ln( f (z))

dzn |z=a =
dn ln(g(z))

dzn |z=a for all a not coinciding with any zero
or pole of the functions f(z), g(z). □

Certainly, this Lemma has close connections with the famous Cauchy–Liouville’s theo-
rem stating that any bounded entire analytical function is a constant; for its generalizations
by Hadamard and others, see, e.g., [3]. Nevertheless, it turns out to be rather useful in
applications, and thus, in our opinion, deserves a special attention.

3. Illustrative Applications

Let us first consider some simple illustrations.

3.1. Gamma Function

First, we apply Lemma 1 with n = 2 to the functions Γ(2z) and Γ(z)Γ(z + 1/2).
Both these functions have the same poles at z = 0, −1/2, −1, −3/2, −2. . . and no ze-
roes, and for large |z| the asymptotic of their logarithms is O(z ln z); see, e.g., [8,9] for
the general discussion of gamma function and its derivatives. Thus, Lemma 1 gives
ψ′(z) + ψ′(z + 1/2) = 4ψ′(2z). Integration gives ψ(z) + ψ(z + 1/2) = 2ψ(2z) + C1, and
one more integration gives Γ(z)Γ(z + 1/2) = C2eC1zΓ(2z), where C1 and C2 are integration
constants to be determined.

Now the elementary Γ(1) = Γ(2) = 1, Γ(1/2) =
√

π and Γ(3/2) = Γ(1+ 1/2) = 1
2
√

π
enable, after the substitution of z = 1/2 and z = 1 into above equality, to recover the Legendre
duplication rule:

Γ(z)Γ(z + 1/2) = 21−2z√πΓ(2z) (3)

The reflection formula
Γ(1 − z)Γ(z) =

π

sin(πz)
(4)

Is also trivially obtained by applying Lemma 1 with n = 2 to Γ(1 − z)Γ(z) and
1

sin(πz) . Thus ψ′(1 − z) + ψ′(z) = − π2

cos(πz) . The first integration gives −ψ(1 − z) + ψ(z) =
−π cot(πz) + C1; substitution of z = 1/2, without even the knowledge of ψ(1/2), gives C1

= 0. Second integration gives Γ(1 − z)Γ(z) = C2
sin(πz) , substitution of z = 1/2 gives C2 = π.

Let us now prove the same formula in a slightly different way relying on the Laurent
expansions of the corresponding logarithms. We know Γ−1(1 + z) = 1 + γz + O(z2) so
that from the functional equation Γ(1 + z) = zΓ(z), we have Γ−1(z) = z + γz2 + O(z3),
Γ−1(z)Γ(1 − z) = z + O(z3), and ln(Γ−1(z)Γ(1 − z)/z) = O(z2). We also know that
ln( sin πz

πz ) = O(z2). The generalized Littlewood theorem (its inverse application, Lemma 1)
shows that O(z2) terms in both these formulae are identical. Thus, ln(Γ−1(z)Γ−1(1 −
z)/z) = ln sin πz

πz and Equation (4) follows.

In exactly the same way we obtain an easy proof of
n−1
∑

k=0
ψ′(z +

k
n
) = n2ψ′(nz) and, by

integration,
n−1
∑

k=0
ψ(z +

k
n
) = nψ(nz) + C1(n). Substituting z = 1 we obtain

ψ(1) +
n−1
∑

k=1
ψ(1 +

k
n
) = nψ(n) + C1(n). The use of ψ(1) = −γ and ψ(1 + z) = ψ(z) + 1

z ,

whence ψ(n) =
n−1
∑

k=1

1
k
− γ, gives −γ +

n−1
∑

k=1
ψ(

k
n
) + n

n−1
∑

k=1

1
k
= n(

n−1
∑

k=1

1
k
− γ) + C1(n), so that

C1(n) =
n−1
∑

k=1
ψ(

k
n
) + (n − 1)γ. Applying Gauss’ identity

n
∑

k=1
ψ(

k
n
) = −n(γ + ln n) [8,9],

we obtain C1(n) = −n ln n whence
n−1
∑

k=0
ψ(z +

k
n
) = nψ(nz)− n ln n. One more integration

gives
n−1
∏

k=0
Γ(z +

k
n
) = C2(n)e−nz ln nΓ(nz) and C2(n) = n

n−1
∏

k=1
Γ(

k
n
), but unfortunately we do
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not see an obvious way to find that C2(n) = (2π)
n−1

2 n
1
2 for the case, and thus, fully restore

the Gauss multiplication theorem [8,9]:

n−1

∏
k=0

Γ(z +
k
n
) = (2π)

n − 1
2 n

1
2 e−nz ln nΓ(nz) (5)

3.2. Trigonometrical Functions

The corresponding relations for trigonometrical functions are very well known, so we
limit ourselves with quite a short exposition (it also will be useful when similar transformation
rules for elliptical functions are discussed; see below). The equivalence of the sums over

poles and zeroes expressed via
∫
C

1

(z − a)3 ln(sin(nz))dz and
∫
C

1

(z − a)3 ln(
n−1
∏

k=0
sin(z +

πk
n
))dz

(Lemma 1) readily furnishes

n−1

∑
k=0

1

sin2(z +
πk
n
)
=

n2

sin2(nz)
(6)

The integration of Equation (6) gives
n−1
∑

k=0
cot(z +

πk
n
) = n cot(nz) + C(n), the substi-

tution z = π
2n shows that C(n) = 0 whence

n−1

∑
k=0

cot(z +
πk
n
) = cot(nz) (7)

The next integration gives

n−1

∏
k=0

sin(z +
kπ

n
) = C1(n) sin(nz) (8)

This is a well-known (and very good) student exercise to establish the Euler rela-

tion
n−1
∏

k=1
sin(

kπ

n
) =

n
2n−1 . This relation corresponds to the case when z tends to zero in

Equation (8). Thus,
n−1

∏
k=0

sin(z +
kπ

n
) = 21−n sin(nz) (9)

Finally, let us note the following rarely mentioned equality between the products and
sums of squares for the sine function. From Equations (9) and (6), it immediately follows that

n−1

∏
k=0

sin2(z +
kπ

n
) = n222−2n 1

n−1
∑

k=0
sin−2(z +

kπ

n
)

(10)

Attention should be paid to the sign if extracting the square root of Equation (10).

4. Applications to Elliptic Functions
4.1. Definitions and Main Properties of Elliptic Functions

Elliptic functions, which are much studied because of their high importance in math-
ematics and physics (see, e.g., [10–16]; whenever possible, below we will mostly cite
“encyclopedia-like” Ref. [10]), are a fertile ground for the approach based on the general-
ized Littlewood theorem. First, we need to give necessary definitions and specify a notation
used, especially because, unfortunately, different notations and conventions still co-exist in
the research field of elliptic functions. We define four theta functions as follows:
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θ1(z, q) = θ1(z|τ) = 2
∞

∑
n=0

(−1)nq(n+1/2)2
sin((2n + 1)z) (11a)

θ2(z, q) = θ2(z|τ) = 2
∞

∑
n=0

q(n+1/2)2
cos((2n + 1)z) (11b)

θ3(z, q) = θ3(z|τ) = 1 + 2
∞

∑
n=0

qn2
cos(2nz) (11c)

θ4(z, q) = θ4(z|τ) = 1 + 2
∞

∑
n=0

(−1)nqn2
cos(2nz) (11d)

Here, q = eiπτ (it is named a nome), and Imτ > 0. As functions of z for any fixed τ,
they are entire and 2π periodic, and they are quasiperiodic on the lattice formed by the
points zm,n = (m + nτ)π, in the sense that the following relation holds:

θ1(z + (m + nτ)π|τ) = (−1)m+nq−n2
e−2inzθ1(z|τ) (12)

And similar relations exist for other theta functions. Here and below, unless specifically
stated to the contrary, n, m ∈ Z, but we will not always repeat this statement. The notations
θj(z, q) and θj(z|τ) are used on equal footing.

These properties guaranty that for large |z|, the theta function is at most O(exp(C|z|2))
with some constant C; hence, in the limit of infinitely large contours, we have the disappear-

ance of the contour integrals
∫
Ci

1

(z − a)n+1 ln(θj(z))dz for j = 1, 2, 3, 4 and n = 3, 4. . . The

location of zeroes ρi, which are all simple for these functions, is also well known. Namely,
the functions θj(z|τ) for j = 1, 2, 3, 4 have zeroes at the points (m + nτ)π, (m + 1

2 + nτ)π,
(m + 1

2 + (n + 1
2)τ)π and (m + (n + 1

2)τ)π, respectively [10]. Taylor expansions of

the theta functions are the following [10]: θ1(πz|τ) = πzθ1
′(0|τ) exp(−

∞
∑

j=1

1
2j

δ2jz2j),

θ2(πz|τ) = θ2(0|τ) exp(−
∞
∑

j=1

1
2j

α2jz2j),θ3(πz|τ) = θ3(0|τ) exp(−
∞
∑

j=1

1
2j

β2jz2j), and θ4(πz|τ)

= θ4(0|τ) exp(−
∞
∑

j=1

1
2j

γ2jz2j) (that is, θ1(πz|τ) = πzθ1
′(0|τ)(1− δ2

2 z2 − ( δ4
4 − δ2

2
8 )z

4 +O(z6))),

where:

δ2j(τ) =
∞

∑
n=−∞

∞

∑
m = −∞
|m|+ |n| ̸= 0

1

(m + nτ)2j (13a)

α2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m +
1
2
+ nτ)

2j (13b)

β2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m +
1
2
+ (n +

1
2
)τ)

2j (13c)

γ2j(τ) =
∞

∑
n=−∞

∞

∑
m=−∞

1

(m + (n +
1
2
)τ)

2j (13d)

The order of summation is important for these sums if j = 1; see additional discussion
in our previous paper [7].
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From these formulae, we easily obtain the Taylor expansions of the logarithms of theta
functions in some vicinity of zero, like

ln[θ1(πz|τ)/(πzθ1
′(0|τ))] = −

∞

∑
j=1

1
2j

δ2jz2j (14)

or ln[θ2(πz|τ)/θ2(0|τ)] = −
∞
∑

j=1

1
2j

α2jz2j. Note, also useful for the future relation is

δ2 = −
π2θ′′′1 (0|τ)
3θ1

′(0|τ)
(15)

which immediately follows from the Taylor series of θ1(πz|τ) given above.
The Weierstrass σ function is defined as [10]

σ(z|Λ) = z
∞

∏
ω∈Λ/{0}

(1 − z
ω
) exp(

z
ω

+
z2

2ω2 ) (16)

where Λ is a lattice formed by points 2mω1 + 2nω2, with again n, m ∈ Z, and Im ω2
ω1

> 0. We

have by definition ζ(z|Λ) = d
dz (ln σ(z|Λ)), ℘(z|Λ) = − dζ(z|Λ)

dz , ℘z(z|Λ) = d℘(z|Λ)
dz . Below

we will use the notation σ(z|Λ), ζ(z|Λ), etc. if an arbitrary lattice is used; if ω1 = 1/2,
which is usually the case, we shall write σ(z, τ), ζ(z, τ), etc.

The following Laurent expansion is well known (and evident from the above defini-
tion) [10]:

ζ(z, τ) =
1
z
−

∞

∑
k=2

δ2k(τ)z2k−1 (17)

where δ2k(τ) are the Eisenstein series defined by Equation (13a). To simplify the notation,

below we may omit τ, writing δ2k(τ) simply as δ2k. Thus, zζ(z, τ) = 1 −
∞
∑

k=2
δ2kz2k and

ln(zζ(z, τ)) = −δ4z4 − δ6z6 − (δ8 +
1
2 δ2

4)z
8 + O(z10). Of course, we have

℘(z, τ) := − d
dz

ζ(z, τ) =
1
z2 +

∞

∑
k=2

(2k − 1)δ2k(τ)z2k−2 (18)

which is often written as

℘(z, τ) =
1
z2 + z2

∞

∑
k=0

dk
k!

z2k (18a)

where evidently dk = (2k + 3)k!δ2k+4.
Jacobi elliptical functions sn(z, k), cn(z, k), dn(z, k) and other similar, are properly scaled

ratios of the appropriate theta functions [10]. They will not be considered here.

4.2. Equalities between Different Elliptic Functions

It is well known that all double-periodic meromorphic functions can be expressed via
Weierstrass elliptical functions and their derivatives, and numerous concrete examples of the
corresponding expressions/representations are commonly found in the literature [10–16]. For
this reason, here, we do not aim to consider many corresponding examples. Our purpose is to
illustrate the principle and to concentrate on the cases which, for some reasons, are seemingly
not widely indicated or even not known in all generality.

Our first example is the Weierstrass sigma function σ(z|Λ). From its definition, it
is clear that this is an entire function having simple zeroes at the lattice points. Thus,
the Weierstrass sigma function σ(z, τ) and the elliptic theta function θ1(πz|τ) are both
entire functions that have simple zeroes at m + nτ. We know the Taylor expansion
of the ln[θ1(πz|τ)/(πzθ1

′(0|τ))]; see Equation (14). Due to the Lemma 1, the Taylor
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expansion of the ln(σ(z, τ)/z) must be exactly the same starting from the O(z4) term:

ln(σ(z, τ)/z) = a + bz2 −
∞
∑

j=2

1
2j

δ2jz2j. Directly from Equation (16), we see that a = b = 0; hence

σ(z, τ) = exp
(

z2

2
δ2(τ)

)
θ1(πz|τ)
πθ1

′(0|τ)
(19)

Scaling for an arbitrary σ(z|Λ) immediately gives the “standard” formula [10]:

σ(z|Λ) = 2ω1 exp
(

η1z2

2ω1

)
θ1(πz/(2ω1), q)

πθ1
′(0, q)

(20)

where η1 = − π2

12ω1

θ1
′′′ (0,q)

θ1
′(0,q) . Here and below, it might be useful to exploit [10]

θ1
′(0, q) = 2q1/4

∞

∏
j=1

(1 − q2j)
3

(21)

Remark 1. In light of the abovesaid, the Taylor expansion of the function σ(z,τ)
z is given by

σ(z,τ)
z = exp(− 1

4 δ4z4 − 1
6 δ6z6 − 1

8 δ8z8 + . . .), sf. [10,13]. To fully restore the known results, we
need to add the formulae expressing δ2j for j = 4, 5, 6. . . via δ4 and δ6, which readily follow from,
e.g., the differential equation [10]

d2℘(z, τ)

dz2 = 6℘2(z, τ)− 30δ4 (22)

by equating the Taylor series coefficients obtained by differentiating of Equation (18). Usually, these
formulae are written in the form including the coefficients dk of Equation (18a):

n

∑
k=0

Ck
ndkdn−k =

2n + 9
3n + 6

dn+2 (23)

(Differentiating Equation (18a), we see that the coefficient in front of the z2n+4 term in the Tay-

lor expansion of l.h.s of Equation (22) is (2n+5)(2n+6)dn+2
(n+2)! , while in the r.h.s it is 6

n
∑

k=0

dk
k!

dn−k
(n − k)!

+

12
dn+2

(n + 2)!
).

Our next example of the inverse application of the generalized Littlewood theorem to
elliptic functions is the Weierstrass ℘(z|Λ) functions. These functions have second-order
poles at the same points where simple zeroes of θ1(

πz
2ω1

, q) function are located, which

means that the function θ1
−2( πz

2ω1
, q) has the same poles as the Weierstrass ℘(z|Λ) function.

Here, τ = ω2/ω1 and q = eiπτ ; again, we use this notation to be consistent with the data
presented in [10].

But contrary to the entire theta function in the power of −1, the Weierstrass ℘ functions
have zeroes. The situation is easiest with the functions ℘(z|Λ)− ei, where e1 = ℘(ω1),
e2 = ℘(ω2) and e3 = ℘(ω1 + ω2). By construction, these functions have zeroes at points,
coinciding with the “demi-lattice” points m + 1

2 + nτ, m + 1
2 + (n + 1

2 )τ or m + (n + 1
2 )τ,

respectively, and it is clear that these are second-order zeroes. It is also known that
there are no other zeroes for functions ℘(z|Λ) − ei. Thus, in particular, for the func-
tion ℘(z|Λ)− e1, the positions of second-order zeroes coincide with those of the entire

function θ2(
πz

2ω1
, q), and Lemma 1 gives d2

dz2 ln(℘(z|Λ)− e1) =
d2

dz2 ln θ2
2(πz/(2ω1),q)

θ2
1(πz/(2ω1),q)

, so that

℘(z|Λ) − e1 = C2(Λ) exp(C1(Λ)z + C(Λ)z2)
θ2

2(πz/(2ω1),q)
θ2

1(πz/(2ω1),q)
. Coefficients C(Λ) and C1(Λ)

must be equal to zero since other coefficients are incompatible with the double periodicity
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of both sides of the equality. (The ratio of the squares of theta functions in the r.h.s. here is
proportional to the square of Jacobi elliptic function cs2(ς, k); see, e.g., [10] for definitions).
Analysis for the value of z = 0 equating the coefficients in front of the 1/z2 term in the

Taylor expansions shows C2 =

(
πθ′21(0,q)
2ω1θ2

2(0,q)

)2
. Then, we can use the known equality [10]:

θ1
′(0, q) = θ2(0, q)θ3(0, q)θ4(0, q) (24)

to write the “standard” form:

℘(z|Λ)− e1 =

(
πθ3(0, q)θ4(0, q)

2ω1

)2 θ2
2(πz/(2ω1), q)

θ2
1(πz/(2ω1), q)

(25)

Similar equalities can be in the same fashion established for other ℘(z|Λ)− ej functions,
which we will not do here; see, e.g., [10] for the list of formulae. We also will not exercise
ourselves on the expression of the ratio of theta functions occurring in these formulae via
appropriate Jacobi elliptic functions; see again [10]. Instead (see our motivation discussed
above), we want to underline again that there is nothing special with the functions ℘(z|Λ)−
ej. The following theorem, which seems to almost never appear in the monographs devoted
to the elliptic functions, holds true.

Theorem 2. Let a be an arbitrary complex number not equal to e1, e2, e3 defined above, and
numbers α1,2 be such that the equality ℘(αj|Λ) = a, j = 1, 2, holds true. Let also the difference
α1 − α2 ̸= 2nω1 + 2mω2. Then,

℘(z|Λ)− a = C
θ1(πz/(2ω1)− πα1/(2ω1))θ1(πz/(2ω1)− πα2/(2ω1)), q)

θ2
1(πz/(2ω1), q)

(26)

where τ = ω2/ω1, q = eiπτ ,

C =
π2

4ω2
1

θ1
′2(0, q)

θ1(πα1/(2ω1), q)θ1(πα2/(2ω1), q)
(27)

Proof. First, we note that due to the argument principle, double-periodic function
℘(z|Λ)− a, having in each fundamental parallelogram one pole of the second order, has in
this parallelogram exactly two zeroes taking into account their multiplicity. (Exactly for a = ej,
j = 1, 2, 3, excluded by the theorem conditions, this function has one double zero inside the
fundamental parallelogram). Thus, for any a, we can find the numbers α1,2 requested by the
theorem. Clearly, the functions ℘(z|Λ)− a and θ1

−2(πz/(2ω1), q) have the same poles of the
second order at the lattice points. Function ℘(z|Λ)− a additionally has simple zeroes at the
points α1,2 + 2nω1 + 2mω2, and the product θ1(πz/(2ω1)− πα1/(2ω1), q)×θ1(πz/(2ω1)−
πα2/(2ω1), q) is an entire function also having simple zeroes exactly at these points. The func-
tions involved are both double periodic; hence, the Lemma 1 is applicable already for n = 2. The
double integration of the obtained equality of the second derivatives of the corresponding log-
arithms gives ℘(z|Λ)− a = C(ω1, q) θ1(πz/(2ω1)−πα1/(2ω1),q)θ1(πz/(2ω1)−πα2/(2ω1)),q)

θ2
1(πz/(2ω1),q)

. (Again,

the possible factor exp(Bz) ≡ 1 due to the double periodicity of the functions involved). The
coefficient C is established by analyzing the case when z tends to zero by equating the terms

proportional to 1/z2 in Laurent expansions. We have C = π2

4ω2
1

θ1
′2(0,q)

θ1(πα1/(2ω1),q)θ1(πα2/(2ω1),q)
, and

the theorem is proven. □

Corollary 1. Applying (26), (27) for a = 0, we have the following presentation of the Werierstrass
℘(z) function via θ1 elliptical functions:
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℘(z|Λ) =
π2

4ω2
1

θ1
′2(0, q)

θ1(πα1/(2ω1), q)θ1(πα2/(2ω1), q)
× θ1(πz/(2ω1)− πα1/(2ω1), q)θ1(πz/(2ω1)− πα2/(2ω1)), q)

θ2
1(πz/(2ω1), q)

(28)

where α1,2 are some solutions of the equation ℘(z|Λ) = 0 such that α1 − α2 ̸= 2nω1 + 2mω2.
In particular, we can take these solutions as discussed (for ω1 = 1/2) in Refs. [17,18] to be equal

to ±α1; here, α1 belongs to the first fundamental parallelogram. Then, ℘(z|Λ) = −π2 θ1
′2(0,q)

θ2
1(πα1,q)

×
θ1(πz−πα1,q)θ1(πz+πα1,q)

θ2
1(πz,q)

. See also our previous paper [10] for some additional considerations of

zeroes α1,2 and sums over inverse powers of the zeroes of the Weierstrass ℘(z) function.

Remark 2. It is instructive to see what happens in the limit τ → i∞ when ℘(z, τ) tends to
℘(z) = π2

sin2 πz
− π2

3 . The smallest in the module solutions of ℘(z) = 0 are then given by the complex

numbers α1,2 = ±( 1
2 + i

2π ln(5 + 2
√

6))—the values which are still not easy to work with.
Thus, for even greater simplicity, let us consider the more transparent case of, e.g., ℘(z)− π2 =

π2

sin2 πz
− 4π2

3 . We have: ℘(z)− π2 = π2

sin2 πz
− 4π2

3 = − 4π2

3 sin2 πz
sin(πz − π

3 ) sin(πz + π
3 ), and

this gives the aforementioned presentation for the case.

The derivative of the Weierstrass ℘ function ℘z(z, τ) has third-order poles at k+ jτ and
zeroes at k + 1/2 + jτ, k + (j + 1/2)τ, k + 1/2 + (j + 1/2)τ [10]. Thus, the lattice, formed
by the irregular points of the logarithm (i.e., poles and zeroes) of the ℘z(z, τ), coincides
with the zeroes of the function σ(2z, τ). We can convert the third-order poles of the ℘z(z, τ)
function into simple zeroes by multiplying it by the σ4(z, τ) function: thus, both functions
σ(2z, τ) and ℘z(z, τ)σ4(z, τ) are entire and have the same simple zeroes. Using our method,
we can then establish the well-known equality

σ(2z, τ) = −℘z(z, τ)σ4(z, τ) (29)

Of course, there are also infinitely many other possibilities of such types. For instance,
we see that the entire function σ(z + 1

2 , τ) has simple zeroes at m + 1
2 + nτ points, thus at the

same points as the entire function θ2(πz|τ), so that σ(z + 1
2 , τ) = C exp(C1z + C2z2)θ2(πz|τ).

Omitting clearly from the abovesaid details, we arrive at

σ(z +
1
2

, τ) =
σ(1/2, τ)

θ2(0|τ)
exp(ζ(1/2, τ)z +

1
2

δ2(τ)z2)θ2(πz|τ) (30)

Similar equalities hold for the functions σ(z + τ
2 , τ), σ(z + 1

2 + τ
2 , τ); see, e.g., [10].

The next example is apparently also not quite common. We observe that σ(2z, τ) and
θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ) are both entire and have the same simple
zeroes. Thus, we have 8 d3

dz3 ln(σ(2z, τ)) = π3 d3

dz3 ln[θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ)]
and 4 d2

dz2 ln(σ(2z, τ)) = π2 d2

dz2 ln[θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ)] + C1. Equating when
z tends to zero, we obtain 0 = C1 − δ2 − α2 − β2 − γ2; see Equation (13) for defini-
tions. In Ref. [7], we used the generalized Littlewood theorem in the direct way show-
ing that 3δ2 = α2 + β2 + γ2, thus C1 = 4δ2. For the first derivatives 2 d

dz ln(σ(2z, τ)) =

π d
dz ln[θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ)]+C1z+C2, so that trivially C2 = 0. Thus σ(2z, τ) =

C exp(2δ2z2)θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ). Equating functions at zero, we have 2 =

Cπθ′1(0|τ)θ2(0|τ)θ3(0|τ)θ4(0|τ) and with Equation (25), C = 2/(π[θ2(0)θ3(0)θ4(0)]
2); hence,

σ(2z, τ) =
2

πθ2
2(0)θ

2
3(0)θ

2
4(0)

exp(2δ2z2)θ1(πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ) (31)
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As usual, δ2(τ) can be expressed via the derivatives ratio using Equation (15). Now note that
by Equation (19) σ(2z, τ) = exp

(
2z2δ2(τ)

) θ1(2πz|τ)
πθ1

′(0|τ) , so that we have the following expression

θ1(2z|τ) = 2
θ2(0|τ)θ3(0|τ)θ4(0|τ)

θ1(z|τ)θ2(z|τ)θ3(z|τ)θ4(z|τ) (32)

This, of course, can also be established by our approach in the “direct way”. See the
discussion of the transformation rules for the elliptical functions in the next subsection.

Analogously—and this is our final example in this sub-section—we see that ℘z(z, τ) and
θ−3

1 (πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ) have the same poles and zeroes. Omitting standard clearly
from the abovesaid details, we obtain ℘z(z, τ) = Cθ−3

1 (πz|τ)θ2(πz|τ)θ3(πz|τ)θ4(πz|τ), and equat-
ing at zero, we have −2 = Cπ−3[θ′1(0|τ)]

−3
θ2(0|τ)θ3(0|τ)θ4(0|τ)= Cπ−3[θ2(0|τ)θ3(0|τ)θ4(0|τ)]−2.

Hence, C = −2π3[θ2(0|τ)θ3(0|τ)θ4(0|τ)]2 and

℘z(z) = − 2π3

[θ2(0)θ3(0)θ4(0)]
2 θ−3

1 (πz|τ)θ2(πz, τ)θ3(πz, τ)θ4(πz, τ) (33)

Here in the r.h.s. the expressions of θ2(πz|τ)
θ1(πz|τ) , θ3(πz|τ)

θ1(πz|τ) and θ4(πz|τ)
θ1(πz|τ) via Jacobi elliptical

functions cs(ς, k), ds(ς, k), ns(ς, k), respectively (see [10] for details), can be used.

4.3. n-Tuple Products

Let us consider the entire theta function θ1(nz|nτ) with the integer n = 2, 3, 4. . . It has
zeroes at the points nz = kπ + jnπτ, i.e., z = k

n π + jπτ (as usual, k, j ∈ Z), and thus, has the

same zeroes as the product
n−1
∏

k=0
θ1(z +

kπ

n
|τ). We illustrate this coincidence in Figure 1 below.
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Figure 1. Illustrating the coincidence of the location of zeroes for n = 3. The purely imaginary value of
τ is taken for ease of presentation and understanding. In (a), the zeroes of the function θ1(3πz|3τ) are
shown; in (b–d), the zeroes for the functions θ1(πz|τ), θ1(πz + π

3 |τ) and θ1(πz + 2π
3 |τ), respectively,

are shown.

This coincidence of zeroes, together with the asymptotic of the functions at hand
for large values of |z|, immediately enable to write, by applying Lemma 1: θ1(nz|nτ) =

C(n, τ) exp(C1(n, τ)z + C2(n, τ)z2)
n−1
∏

k=0
θ1(z +

kπ

n
|τ). C1(n, τ) and C2(n, τ) are clearly zero

because other values are incompatible with the z-periodicity of the functions involved.
(Purely imaginary C(n, τ) = ik with integer k might be compatible (for we do not have
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double periodicity now), but such a value cannot be obtained by comparison of the real
Taylor expansions at z = 0). The constant C(n, τ) should be determined from this equality
applied at any particular value of z. Using for z tending to zero θ1(nz|nτ) = nzθ′1(0|nτ) +

O(z2), we have nzθ′1(0|nτ) =C(n, τ)θ′1(0|τ)z
n−1
∏

k=1
θ1(

kπ

n
|τ); hence,

θ1(nz|nτ) =
nθ1

′(0|nτ)

θ1
′(0|τ)

n−1
∏

k=1
θ1(

kπ

n
|τ)

n−1

∏
k=0

θ1(z +
kπ

n
|τ) (34)

In particular, θ1(2z|2τ) =
2θ1

′(0|2τ)θ1(z|τ)θ1(z+ π
2 |τ)

θ1
′(0|τ)θ1(

π
2 |τ)

= 2θ1
′(0|2τ)θ1(z|τ)θ2(z|τ)

θ1
′(0|τ)θ2(0|τ)

and θ1(4z|4τ) =

4θ1
′(0|4τ)θ1(z|τ)θ1(z+ π

4 |τ)θ1(z+ π
2 |τ)θ1(z+ 3π

4 |τ)
θ1

′(0|τ)θ1(
π
4 |τ)θ1(

π
2 |τ)θ1(

3π
4 |τ) =

4θ1
′(0|4τ)θ1(z|τ)θ1(z+ π

4 |τ)θ2(z|τ)θ1(z+ 3π
4 |τ)

θ1
′(0|τ)θ1(

π
4 |τ)θ2(0|τ)θ1(

3π
4 |τ) .

Remark 3. For unclear reasons, this relation is seemingly never presented in such a (general)
form and, if presented for some particular case, is given in somewhat “artificial” form like, for

example, the following Landen transformations [10]: θ1(4z|4τ) =
θ1(z|τ)θ1(

π
4 −z|τ)θ1(

π
4 +z|τ)θ2(z|τ)

θ3(0|τ)θ4(0|τ)θ3(
π
4 |τ)

,

or θ1(2z|2τ) = θ1(z|τ)θ2(z|τ)
θ4(0|2τ)

. (This looks understandable, because Landen transformations his-
torically came from the manipulations of the elliptical integrals achieved mainly with variable
changes [10,12–15]). Of course, the equivalence of the transformations can be shown using formulae
connecting the values of the elliptical functions and their derivatives at certain values (see [10–16],
especially [14]), but this is actually not easy. Alternatively, the comparison of these formulae can be
seen as a proof of certain relations like, e.g., 2θ1

′(0|2τ)
θ1

′(0|τ)θ1(
π
2 |τ)

= 1
θ4(0|2τ)

.
Further, let us note the following. From Equation (11a) and the definition of nome, it follows

that limτ→i∞θ1(z|τ) = limτ→i∞(2eiπτ/4 sin z) = 0 for any finite z. From the same, we have
limτ→i∞e−iπτ/4θ1(z|τ) = 2 sin z Applying this (properly scaled) limit to both sides of Equation (34),
we obtain Equation (8).

There is also a quite different possibility. We can consider not θ1(nz|nτ) but θ1(nz|τ)
instead and obtain the following theorem.

Theorem 3. For odd 2l + 1 = 3, 5, 7. . ., we have:

θ1((2l + 1)z|τ) = C
l

∏
k=−l

l

∏
j=−l

θ1(z +
kπ

2l + 1
+

jπτ

2l + 1
|τ) (35)

with

C−1 =
1

2l + 1

l

∏
k=−l

l

∏
j = −l,
|j|+ |l| ̸= 0

θ1(
kπ

2l + 1
+

jπτ

2l + 1
|τ) (36)

For even 2l = 2, 4, 6. . ., we have

θ1(2lz, τ) = C̃
l

∏
m=−(l−1)

θ4(z +
mπ

2l
)×

l

∏
k=−(l−1)

l−1

∏
j=−(l−1)

θ1(z +
kπ

2l
+

jπτ

2l
|τ) (37)

with

C̃−1 =
1
2l

l

∏
m=−(l−1)

θ4(
mπ

2l
)×

l

∏
k=−(l−1)

l−1

∏
j = −(l − 1),
|j|+ |k| ̸= 0

θ1(
kπ

2l
+

jπτ

2l
|τ) (38)
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Proof. We see that the functions θ1(nz|τ) and
n−1
∏

k=0

n−1
∏
j=0

θ1(z +
kπ

n
+

jπτ

n
|τ) are both entire

and have the same zeroes (a simple “two-dimensional” generalization of Figure 1 suffices),
but to find an exponential factor we need to “symmetrize” this product.

Let first n be odd, n = 2 l + 1. Then, θ1((2l + 1)z|τ) has the same zeroes and (no)

poles as the “symmetric” product
l

∏
k=−l

l
∏

j=−l
θ1(z +

kπ

n
+

jπτ

n
|τ). Thus, by the Lemma 1 we

obtain

θ1((2l + 1)z|τ) = C exp(C1z + C2z2)
l

∏
k=−l

l

∏
j=−l

θ1(z +
kπ

n
+

jπτ

n
|τ) (39)

As usual, the coefficient C2 should be equal to zero due to the z-periodicity. The coefficient C1

is equal to zero due to the even nature of the θ1(nz|τ)/z and 1
z

l
∏

k=−l

l
∏

j=−l
θ1(z+

kπ

n
+

jπτ

n
|τ) func-

tions. This is seen as follows: θ1(nz|τ)/z is even, and all factors in the
l

∏
k=−l

l
∏

j=−l
θ1(z+

kπ

n
+

jπτ

n
|τ)

come in pairs with±k,±j if k ≠ 0, j ≠ 0. For such pairs, we have θ1(z+ kπ
n + jπ

n |τ)θ1(z− kπ
n − jπ

n )

= −θ1(z + kπ
n + jπ

n |τ)θ1(−z + kπ
n + jπ

n ) so that this product is an even function. If k or j
are equal to zero, this is also valid. If both k = j = 0 simultaneously, the factor θ1(z|τ)/z is
even. Thus, comparing the O(z) terms of the Taylor development of the logarithms of both
sides of Equation (39), we obtain C1 = 0. Coefficient C is obtained equating the values at zero:

C−1 = 1
2l+1

l
∏

k=−l

l
∏

j = −l,
|j|+ |l| ≠ 0

θ1(
kπ

n
+

jπτ

n
|τ).

What does happen if n = 2l is even? Then, in passing from
2l−1
∏

k=0

2l−1
∏
j=0

θ1(z+
kπ

n
+

jπτ

n
|τ) to the

symmetrized form, we obtain not the fully symmetric product
l

∏
k=−(l−1)

l
∏

j=−(l−1)
θ1(z+

kπ

n
+

jπτ

n
|τ).

The situation with 1
z

l−1
∏

k=−(l−1)

l−1
∏

j=−(l−1)
θ1(z+

kπ

n
+

jπτ

n
|τ) is the same as before: this is an even

function, but now we obtain also the “unpaired” factors at k = l and j = l. These are the functions
θ1(z+ π

2 + πτj
n |τ) and θ1(z+ πk

n + πτ
2 |τ), respectively. They are respectively equal to θ2(z+

πτj
n |τ)

and Az−izθ4(z+ πk
n |τ), where the constant A easily follows from [10]

θ1(z +
πτ

2
|τ) = −ie−ize−iπτ/4θ4(z|τ) (40)

but for our current purposes itis only important that it does not depend on z. The
functions θ2(z +

πτ j
n |τ) with 1 ≤ j ≤ l − 1, when paired as θ2(z +

πτ j
n |τ)θ2(z − πτ j

n )=

θ2(z +
πτ j

n |τ)θ2(−z + πτ j
n ), again are even functions. The function θ2(z|τ), corresponding

to j = 0, is also even. Thus, among the functions corresponding to k = l, only θ1(z+ π
2 + πτ

2 |τ)
rests unpaired. It is equal to Be−izθ3(z|τ) [10], where B does not depend on z; the function
θ3(z|τ) is even.

In the second group of functions (corresponding to j = l), the functions Az−izθ4
(z + πk

n |τ) for k ̸= 0 are also paired: A1e−izθ4(z + πk
n |τ)A2e−izθ4(z − πk

2 )= A1 A2e−2izθ4

(z + πk
n |τ)θ4(−z + πk

2 ). For k = 0, we have Ae−izθ4(z|τ) with an even function θ4(z|τ); the
case k = j = l has already been considered just before.

Thus, we see that the product of all these unpaired factors, related with the theta
functions at k = l and j = l, is e−2liz φ(z), where φ(z) is an even function. Thus, compar-
ing the O(z) terms of Taylor expansions of the logarithms of both sides of the equation

θ1(2lz|τ) = C exp(C1z)
l

∏
k=−(l−1)

l
∏

j=−(l−1)
θ1(z +

kπ

n
+

jπτ

n
|τ), we obtain C1 = 2il.



Symmetry 2024, 16, 1100 13 of 15

We might finish the consideration at this point, but it seems preferable to give the

purely real form using Equation (40) again: θ1(2lz, τ) = C̃
l

∏
m=−(l−1)

θ4(z +
mπ

2l
)×

l
∏

k=−(l−1)
l−1
∏

j=−(l−1)
θ1(z +

kπ

2l
+

jπτ

2l
|τ). (Note, that for m = l in the first product, θ4(z + π

2 ) = θ3(z) [12],

we used this earlier). Coefficient C̃ is obtained equating the values of both sides of the above

equation at zero: C̃−1 =
1
2l

l
∏

m=−(l−1)
θ4(

mπ

2l
)×

l
∏

k=−(l−1)

l−1
∏

j = −(l − 1),
|j|+ |k| ̸= 0

θ1(
kπ

2l
+

jπτ

2l
|τ). □

Remark 4. 1. The appearance of the factor e2ilz during the derivation of the n-tuple relation for
θ1(nz|τ) in the case of even n = 2l might look unexpected. However, let us see how we obtain it
already for n = 2. Directly from the Lemma 1, we prove θ1(2z|τ) = 2θ1(z|τ)θ2(z|τ)θ3(z|τ)θ4(z|τ)

θ2(0|τ)θ3(0|τ)θ4(0|τ)
. From

our Theorem 3, we have θ1(2z|τ) = Ce2izθ1(z|τ)θ1(z + π
2 |τ)θ1(z + πτ

2 |τ)θ1(z + π
2 + πτ

2 |τ),
and this is consistent because θ1(z + π

2 |τ) = θ2(z), θ1(z + πτ
2 |τ) = Ae−izθ4(z|τ), θ1(z + π

2 +
πτ
2 |τ) = Be−izθ3(z|τ).

2. Along the same lines, relations similar to Equations (35)–(38) can be established for the
Weierstrass sigma functions σ(nz, nτ), σ(nz, τ). These same relations can also be obtained from
the above relations for the first theta function, supplemented with Equation (19) or Equation (20).
The present author, however, was able to find only the relation analogous to Equation (35) for
the Weierstrass σ(nz, τ) function, formulae 23.10.13–23.10.16 in [10], (with a misprint

in 23.10.14: instead of An = n
n−1
∏
j=0

n−1
∏

l = 0
|j|+ |l| ̸= 0

σ−1(
2jω1

n
+

2lω3

n
) it is written An = n

n−1
∏
j=0

n−1
∏

l = 0
l ̸= j

σ−1(
2jω1

n
+

2lω3

n
)), but not for the theta functions.

4.4. Fundamental Modular Transformations and Jacobi’s Triple Product

Let us briefly discuss the fundamental modular transformations. What is presented
below are the known results, but now they are obtained in a very transparent and easy way.

Analogously to what has been done above, we establish θ1(z|τ + 1) = C1θ1(z|τ): the
possible exponential factor exp(Az2 + Bz) ≡ 1. (Any A ̸= 0 is incompatible with the
z-periodicity, while B = 0 simply due to the evenness of the functions ln(θ1(z|τ)/z)).

Similarly, θ1(z| − 1
τ ) = C2 exp( iτz2

π )θ1(τz|τ). Here, in the possible factor exp(Az2 + Bz),
B = 0 for the same reason as in the previous relation, while to establish the coefficient A we
used the Taylor expansion (13a). But this calculation requires certain caution! Clearly,

δ2(−1/τ) =
∞

∑
n=−∞

∞

∑
m = −∞
|m|+ |n| ̸= 0

1

(m − n/τ)2 = τ2
∞

∑
n=−∞

∞

∑
m = −∞
|m|+ |n| ̸= 0

1

(mτ + n)2 (41)

where δ2(τ) is defined by Equation (13a), so that one might decide that d2

dz2 ln(θ1(z| −
1
τ )/z)|z=0 = d2

dz2 ln(θ1(τz|τ)/z)|z=0 and A = 0 which is clearly impossible: θ1(z| − 1
τ ) and

θ1(τz|τ) have different incompatible periods. However, the order of the summation in
the r.h.s of Equation (41) is different from that of Equation (13a), so we need to recall the
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Eisenstein relation
∞
∑

m=−∞

∞
∑

n = −∞
|m|+ |n| ̸= 0

1

(m + nτ)2 = δ2(τ)−
2πi
τ

(see the discussion and

further references in our recent paper [7]), and in such a way we obtain A = iτ
π .

Of course, C1 = θ1
′(0|1+τ)

θ1
′(0|τ) and C2 = θ1

′(0|−1/τ)
τθ1

′(0|τ) . To move further, the use of the original
definitions Equation (11) is necessary to obtain [10]:

θ1(z|1 + τ) = i1/2θ1(z|τ) (42)

θ1(z| −
1
τ
) = −i(−iτ)1/2 exp(

iτz2

π
)θ1(τz|τ) (43)

Finally, let us look at the Jacobi triple product. We note that a whole function, hav-
ing zeroes at m + jτ, that is coinciding with those of the function θ1(πz|τ), can be written

as ψ1(z, τ) =
∞
∏
j=0

(1− e2πi((j+1)τ−z))(1− e2πi(jτ+z)), and similar expressions can be obtained

for other theta functions. (This might not look too familiar because the more standard ter-
minology/notation in the field is the use of x = e2πiz, q = e2πiτ (or x = eπiz and the

nome q = eπiτ) and (x; q) =
∞
∏
j=0

(1− xqj); then we write that ψ1(z, τ) ≡ (x; q)(q/x; q), etc.).

Application of Lemma 1 immediately enables us to write (in somewhat unusual notation):
θ1(πz|τ) = C(τ) exp(C1(τ)z)(x; q)(q/x; q), where the possible quadratic in z exp(C2(τ)z2)
term is again excluded by periodicity. The exact value of C1 is calculated comparing the val-
ues of the derivatives of the logarithms at z = 0. Trivially, d

dz(ln
θ1(πz|τ)

z )|z=0 = 0, while for

the r.h.s we have (x; q)(q/x; q)/z =
∞
∏
j=0

(1− xqj)(1− qj+1/x)/z= 1−x
z

∞
∏
j=1

(1− xqj)(1− qj/x),

and further limx→1
d

dx ln(1−x
z ) = limx→1

d
dx ln 1−x

2πi ln x= limδ→0
d
dδ ln −δ

ln(1+δ)
= 1

2 , together with

limx→1(
d

dx
ln(

∞
∏
j=1

(1− xqj)(1− qj/x))) = limx→1(
∞
∑

j=1
(− qj

1− xqj +
qj/x2

1− qj/x
)) = 0. Finally,

limz→0
d
dz ln[(x; q)(q/x; q)/z] = limz→0

dx
dz · limx→1

d
dx ln[(x; q)(q/x; q)/z] = 2πi · limx→1

d
dx ln

[(x; q)(q/x; q)/z] = πi, so that C1(τ) = −iπ. Using the well-known value θ1
′(0, q) =

2q1/8
∞
∏
j=1

(1− qj)
3—see Equation (21) but reminding that now q = e2πiτ—we find C(τ) =

ieπiτ/4(q; q) and thus restore (cf. e.g., [19])

θ1(πz|τ) = ieπi(τ/4−z)(x; q)(q/x; q)(q; q) (44)

where (q; q) =
∞
∏
j=1

(1 − qj). Similar relations can be established for other theta functions,

including the best known [10]:

θ3(πz, q) =
∞

∏
n=1

(1 − qn)(1 + qn−1/2x)(1 + qn−1/2/x) (45)

reminding that now q = e2πiτ and θ3(0, q) =
∞
∏
j=1

(1 − qj)(1 + qj−1/2) [10].

5. Conclusions

We showed how the generalized Littlewood theorem concerning contour integrals
of the logarithm of analytical function can be used in the inverse sense to readily enable
the establishment of identities between different functions and their transformation rules.
As of now, the most interesting applications are realized for “classic” elliptical functions,
and our findings apparently include some earlier unknown cases. It is hardly doubtful
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that this line of research can be continued further. (In particular, the paper devoted to the
considerations of n-tuple product rules for the derivative ℘z of the Weierstrass ℘z(z, τ)
function, having a very regular picture of poles and zeroes, is currently in preparation).
More generally speaking, first of all, the continuation can probably be foreseen for such
generalizations of the functions considered as, for example, q-gamma function (see, e.g., [20,
21]; in preparation), elliptic gamma function [19], and the whole very reach area of the
q-series. We believe this will be interesting and important not only in a purely mathematical
sense but, given the broad importance of elliptic functions and q-series for physics and
engineering (see, e.g., [16,22]), also far beyond.

We sincerely hope that numerous other applications of this approach, which is difficult
to anticipate today, will be found as well.
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