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ABSTRACT

The seismoelectric method is based on the capacity of seismic waves to generate measurable

modifications of the electrical field in porous media. Even though it combines the advantages

of both seismic and geoelectrical methods, it remains largely underused in hydrogeophysics.

Its signal results from an electrokinetic coupling that can be modeled using either the

coupling coefficient or the effective excess charge density. The traditional approach is based

on the frequency-dependent coupling coefficient, which relates the pressure drop with the

change in the electrical potential. A more recent approach consists of describing the excess

charge that is effectively dragged by water flowing within the pores. We present a new

model for the frequency dependent effective excess charge density. For this, we make use of

a mechanistic up-scaling of the electrokinetic coupling in a capillary. This novel approach

introduce inertial effects arising within the pore space in the flux-averaging procedure to

explain the frequency dependence of the effective excess charge density. The presented
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model is successfully compared to previous models and published data. This new frequency-

dependent up-scaling approach has the potential of fundamentally improving our current

understanding of the seismoelectrical signal in more complex environments, such as partially

saturated and fractured media.
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INTRODUCTION

Hydrogeophysical methods are quickly developing and can now be considered as a state of

the art tools for critical zone studies (e.g., Binley et al., 2015). In the hydrogeophysicist

tool box one can consider the geoeletrical methods, from DC (Direct Current) to higher

frequencies electrical and electromagnetic methods (e.g., Revil et al., 2012; Kemna et al.,

2012), and the seismic methods (e.g., Clair et al., 2015; Pasquet et al., 2016; Blazevic et al.,

2020). However, only few works have been conducted on the use of the seismoelectrical

method in the context of an hydrogeophysical study (e.g., Revil et al., 2015; Jouniaux and

Zyserman, 2016). Among other works, one can cite the study of vadose zone hydrology

(Dupuis et al., 2007; Strahser et al., 2011), glaciers (Kulessa et al., 2006), or borehole-based

characterization of sediments (Dupuis and Butler, 2006).

Seismoelectrical signals arise by electrokinetic coupling from the propagation of a seismic

wave in a charged porous medium. Constitutive minerals of geological media generally

exhibit electrostatic charges at their surfaces, and, when in contact with a pore water

electrolyte, an electrical double layer (EDL) develops at these interfaces. The EDL consists

in an excess of electric charges in the pore water solution to compensate from the mineral

surface charges. When a seismic wave propagates, it generates a relative displacement of the

pore fluid with respect to the solid pore walls, moving the charges in solution with respect

to the charges at the surface. This creates an electrical current and a resulting electrical

field that can be measured remotely at the Earth’s surface or within a geological medium

and that, most importantly, contains information of interest for hydrogeophysical studies.

The study of physical processes underlying the seismoelectrical signal generation can be

tracked back to the late 1930’s (e.g., Thomson, 1939; Frenkel, 1944) but it remains an active
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research subject (e.g., Pride and Garambois, 2005; Revil et al., 2015; Jouniaux and Zyser-

man, 2016). The most traditional approach to model the seismoelectric conversion is the

use of the electrokinetic coupling coefficient, that is, a frequency-dependent parameter that

relates a difference in fluid pressure to a difference in electrical potential. The two most used

frameworks to describe the evolution of the coupling coefficient as a function of frequency

have been proposed by Packard (1953) and Pride (1994). These approaches have been able

to reproduce experimental measurements of frequency-dependent streaming potential (e.g.,

Jouniaux and Bordes, 2012; Tardif et al., 2011) and seismoelectric measurements (e.g., Zhu

and Toksöz, 2013).

More recently, following theoretical developments on streaming potentials (e.g., Kormilt-

sev et al., 1998; Revil and Leroy, 2004), a new modeling approach for seismoelectric was

proposed by Revil and Jardani (2010). It consists in using the excess charge from the EDL

as an electrokinetic coupling variable, that is, the excess of charges located in the diffuse

layer which are effectively dragged by the relative displacement between the fluid and the

solid part of the porous medium. This effective excess charge approach allows to directly

relate the electrical current generated through electrokinetic coupling to the fluid movement

itself (e.g., Jougnot et al., 2012; Revil and Jardani, 2013; Guarracino and Jougnot, 2018;

Soldi et al., 2019). This approach has been used to model the seismoelectric conversion

in reservoir rocks under saturated (e.g., Mahardika et al., 2012; Revil et al., 2015) and

partially saturated conditions (e.g., Revil and Mahardika, 2013; Jardani and Revil, 2015)

or the effect of wave-induced fluid flow (e.g., Jougnot et al., 2013; Monachesi et al., 2015;

Rosas-Carbajal et al., 2020). Nevertheless, in most of these works, the effective excess

charge density is considered to be independent from the frequency. In Revil and Mahardika

(2013), the authors propose an empirical way to account for the dependence of this param-
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eter to the frequency, that is, they consider a relaxation time constant characterizing the

transition between the viscous laminar flow regime to the inertial laminar flow regime of

the Navier-Stokes equation. However, the microscopic characteristics relating the effective

excess charge density with the frequency remain largely unexplored.

In this work, we present a novel approach that permits to up-scale the effective excess

charge density from the pore scale including frequency dependent effects. For that, we make

use of the flux-averaging framework proposed by Jougnot et al. (2012), in which the porous

medium is conceptualized as a bundle of capillary tubes. First, we introduce the theoretical

basis of the proposed model. Then, we analyze its senstivity, compare its results with the

models of Packard (1953) and Revil and Mahardika (2013), and with experimental data

from the literature.

THEORETICAL DEVELOPMENT

The proposed up-scaling procedure to obtain the effective excess charge density is summa-

rized in Figure 1. First we describe the properties at the interface scale. Then we assume

that, in the presence of a fluid pressure gradient, flow channels are generated within the

pore space. These flow channels are conceptualized employing the capillary tube geometry.

Models based on such approach have a long history (e.g., Kozeny, 1927) and, despite their

conceptual simplicity, they have proven to be a highly effective tool for the realistic descrip-

tion of the hydraulic characteristics of porous media (for dynamic permeability, see Solazzi

et al., 2020). The proposed mechanistic description of oscillatory fluid flow processes, and

the corresponding interaction with the EDL, result in a new model for the frequency de-

pendent effective excess charge density at the pore scale. This parameter is then up-scaled

at the REV scale following an assumption similar to the classical model of Packard (1953).

5



Pore scale characterization

Oscillatory fluid motion in a capillary

Let us consider a capillary with a radius R (m) and a length l (m). Let r (m) be the distance

from the pore wall (r = 0 m) to the center of the capillary (r = R). We shall also consider

that the solid matrix is rigid and that the pore space is saturated with water, which is

modeled as an incompressible Newtonian fluid with density ρw (kg m−3) and viscosity ηw

(Pa s). This capillary is submitted to a infinitesimal time-harmonic pressure gradient

∆P (t) = ∆P ∗e−iωt, (1)

where t (s) is the time, ∆P ∗ (Pa) is the pressure difference amplitude between the ends

of the capillary, and ω is the angular frequency, which responds to ω = 2πf , with f (Hz)

the frequency, and i is the complex unit. Parameters with ∗ denote amplitude variations of

harmonic variables and, thus, following previous works in the matter, the harmonic term

e−iωt is hereby dropped for ease notation (e.g., Johnson et al., 1987; Reppert et al., 2001).

Note that the fluid can indeed be regarded as incompressible at the pore scale provided

that the prevailing acoustic wavelengths in the fluid are much larger than the typical pore

size (e.g., Johnson et al., 1987).

The water velocity as a function of the distance from the pore wall r and angular

frequency ω, v∗ (m s−1), can be obtained solving the Navier-Stokes equation, under the

above described conditions, and yields

v∗(r, ω) = − 1

ηwκ2

(
J0 (κ (R− r))

J0 (κR)
− 1

)
∆P ∗

l
, (2)

where κ2 = iω ρwηw , and where Jχ are Bessel functions of the first kind of order χ. The

low-frequency limit of equation 2 (i.e., the quasi-static limit: ω → 0 Hz) corresponds to the
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Poiseuille model for laminar flow rate, that is,

v∗(r)Poise =
1

4ηw

(
R2 − (R− r)2

) ∆P ∗

l
, (3)

indicating that the velocity profile is parabolic. Note that equation 3 corresponds to the

case studied by Jougnot et al. (2012). Integrating equation 2 over the cross-sectional area

of the pore, we obtain the average water velocity v̄∗(ω)

v̄∗(ω) = − 1

ηwκ2

(
2

κR

J1 (κR)

J0 (κR)
− 1

)
∆P ∗

l
. (4)

On can note here that the average water velocity within the capillary is complex and

frequency dependent.

Figure 2 shows the distribution of the complex pore water velocity v∗(r, ω) within the

capillary. Note that both amplitude (Figure 2a) and phase (Figure 2b) are obtained from

equation 2, considering ∆P ∗/l = 1 Pa m−1. The maximum amplitude of the velocity

corresponds to the lowest frequency and at the pore centre. For such a frequency limit

the response approaches that of the Poiseuille model (equation 3). A transition frequency

exists, above which, amplitude decreases with frequency. This is the so-called transition

frequency ft (Hz), which is given by (e.g., Solazzi et al., 2020)

ft '
ηw

πρwR2
. (5)

In the case displayed in Figure 2, that is R = 10−4m, the transition frequency is approxi-

mately 16 Hz.

Figure 3 shows the evolution of the complex average water velocity v̄∗(ω) with frequency

for different capillary radii (obtained from equation 4). Again, we consider that ∆P ∗/l = 1

Pa m−1. These spectra show that the maximum velocities are obtained for large R at low

frequencies. The absolute value of the velocity is constant for f � ft and equal to that
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associated with Poiseuille-type flow. As expected, water velocity decreases with increasing

frequency from ft, which can be clearly identified by the break in the curve in Figure 3a

(equation 5). Again, the ft values increase with decreasing R.

Electrical double layer description

Let us consider that the capillary is saturated by a binary symmetric electrolyte (e.g., NaCl)

with a ionic concentration Cwi (mol m−3) and valence zi = ±1, where i is the considered

ion. The capillary inner surface (pore walls) have surface charges (e.g., negative charges for

silicate and aluminosilicate minerals under typical conditions). Let us call co-ions the ions

with the same charge as the surface (e.g., Cl−) and counter-ions the one with the opposite

charge (e.g., Na+). In order to insure the electro-neutrality of the system, these surface

charges are balanced by an excess of counter-ions in the pore water that are distributed in

the so-called EDL. Figure 4a shows a sketch of the distribution of the charges in the EDL

in the so-called Stern and diffuse layers. The Stern layer is a compact layer of counter-ions

with a very restricted thickness (i.e., negligible compare to the pore size of typical soils and

permeable rocks). The diffuse layer contains counter-ions and co-ions that can move but

with a net excess of charge (e.g., positive in the silicate case: i.e. CNa > CCl ). We assume

that the interface between the Stern layer and the diffuse layer corresponds to the shear

plane: the plane that separates the stationary fluid and the moving fluid (e.g., Hunter, 1981;

Revil et al., 2002). We call zeta potential, ζ (V), the electrical potential along this plane.

For a given mineral, this potential depends mainly on the ionic strength, the temperature,

and the pH (e.g., Revil et al., 1999; Jaafar et al., 2009).

The distribution of ions in the pore water depends on the distribution of the local
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electrical potential ψ = f(r) (V). Using the assumptions of Debye-Huc̈kel and considering

a thin double layer (i.e., the thickness of the double layer is small compared to the pore

size), Pride (1994) expresses the local potential distribution as a function of the distance

from the mineral surface:

ψ(r) = ζe

(
− r
lD

)
, (6)

where ζ (V) is the Zeta potential (i.e. the electrical potential at the shear plane), r is the

distance from the shear plane (i.e., the pore wall as the Stern layer thickness is neglected),

and lD is the Debye length, which is given by

lD =

√
εwkBT

2CwNaCle
2
0NA

, (7)

where εw = εrε0 (F m-1) is the pore water permittivity with the permittivity of vacuum

ε0 = 8.854 × 10−12 F m−1 and the relative permittivity of water εr = 80.1 at T = 20 ◦C,

kB = 1.381 × 10−23 J K−1 is the Boltzmann constant, T (K) is the absolute temperature,

NA = 6.022 × 1023 is the Avogadro number, and e0 = 1.6 × 10−19 C is the elementary

charge. The thickness of the diffuse layer can be approximated as four Debye lengths 4lD

(Hunter, 1981). Equation 6 is only valid for small surface charges and neglects the effects

of the charges of the opposite capillary wall (for the case of overlapping diffuse layers, see

Leroy and Maineult, 2018), which is a valid assumption for most aquifers in environmental

conditions, i.e., permeable media and typical water chemical compositions (see discussion

in Jougnot et al., 2019). The excess charge localized in the diffuse layer can be calculated

by means of (e.g., Guarracino and Jougnot, 2018):

Q̄v(r) = NAe0C
w
NaCl

[
e

(
− e0ψ(r)

kBT

)
− e

(
e0ψ(r)

kBT

)]
. (8)

Figure 4b shows the distribution of the excess charge in the diffuse layer as a function of

the distance from the pore wall r. One can see that Q̄v(r)→ 0 when the distance from the
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pore wall increases (r ≥ 4lD).

Frequency-dependent effective excess charge density

We extend the flux-averaging approach proposed by Jougnot et al. (2012) for Poiseuille flow

accounting for inertial effects. The frequency dependent effective excess charge density is

obtained from the distribution of the pore water flux v∗(r, ω) (equation 2, Figure 4c) and

the distribution of the excess charge Q̄v(r) (equation 8, Figure 4b). For this, we integrate

the flux over the total area of the capillary and recover a complex-valued flux-averaged

excess charge Q̂R,∗v (R,ω) (C m−3), that is,

Q̂R,∗v (R,ω) =

∫ r=R
r=0 Q̄v(r)v

∗(r, ω)(R− r)dr∫ r=R
r=0 v∗(r, ω)(R− r)dr

, (9)

which is the effective excess charge carried by the water flux v∗(r, ω) in the capillary. Equa-

tion 9 is one of the central methodological results of this paper as, for the first time in

the literature, we consider the effective excess charge as a frequency dependent parameter

Q̂R,∗v (R,ω) obtained through flux-averaging up-scaling. It is crucial to distinguish the total

excess charge density Q̄v, which corresponds to all the charges in the diffuse layer (Figure

4b), and the effective (or dynamic) excess charge density Q̂∗v(ω), which responds to the

charges that are effectively dragged by the pore water velocity v∗(r, ω) (see discussions in

Revil and Mahardika, 2013; Jougnot et al., 2020, 2019).
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Upscaled behavior of the frequency dependent effective excess charge at

the REV scale

At the Representative Elementary Volume (REV) scale, the electrokinetic coupling is usu-

ally described by the electrokinetic coupling coefficient:

C∗EK(ω) =
∆V

∆P
, (10)

which links ∆V (V), the measurable electrical potential difference, and ∆P (Pa), the im-

posed pressure difference at the boundaries of a considered rock sample (e.g., Jouniaux and

Bordes, 2012). This parameter is frequency dependent and it can be described as follows:

C∗EK(ω) = C0
EKC

rel,∗
EK (ω), (11)

where we call C0
EK (V Pa−1) the quasi-static electrokinetic coupling coefficient (i.e., for

sufficiently low frequencies ω � ωt) and Crel,∗EK (ω) the frequency-dependent relative elec-

trokinetic coupling coefficient, which decreases from 1 to 0 when the frequency increases

above the transition frequency (e.g., Jouniaux and Bordes, 2012). This transition occurs at

ω ' ωt = 2πft, therefore:

Crel,∗EK (ω � ωt) = 1. (12)

For frequencies much smaller than ωt, the quasi-static electrokinetic coupling coefficient

at the REV scale can be related to the effective excess charge in the electrical double layer,

that is (e.g., Revil and Leroy, 2004; Revil and Mahardika, 2013)

C0
EK(ω � ωt) = −Q̂

0
vk

0

ηwσ0
, (13)

where Q̂0
v (C m−3) is the quasi-static effective excess charge of the medium at the REV

scale, ηw (Pa s) is the dynamic viscosity of the pore fluid, and k0 (m2) and σ0 (S m−1)
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are the permeability and the electrical conductivity of the porous medium, respectively. A

widely used approach to describe the electrical conductivity of a porous medium is given

by:

σ0 =
σw
F

+ σs, (14)

where σw (S m−1) is the electrical conductivity of the pore water that strongly depends on

the concentration of ions in the pore water (e.g., Sen and Goode, 1992), σs is the surface

conductivity, F (-) is the formation factor given by F = φ−m, with φ (-) the medium

porosity and m (-) the so-called cementation exponent (Archie, 1942).

Guarracino and Jougnot (2018) proposes an analytical model to predict the quasistatic

effective excess charge density present in equation 13:

Q̂0
v = NAe0C

w
NaCll

2
D

[
−2

e0ζ

kBT
−
(
e0ζ

3kBT

)3
]

1

τ2
φ

k0
, (15)

where τ is the hydraulic tortuosity in the medium. Particularly, the hydraulic tortuosity of

the medium from the porosity and the electrical formation factor are related by (Winsauer

et al., 1952; Jougnot et al., 2020):

τ =
√
Fφ. (16)

The permeability of a porous medium is also a frequency dependent parameter (e.g., Johnson

et al., 1987; Pride, 1994), often called dynamic permeability, and it can be expressed as

k∗(ω) = k0krel,∗(ω). (17)

where krel,∗(ω) is the dynamic permeability relative to the value of k0, such as krel ∈ [0;1].

Considering the porous medium is a bundle of capillaries having the same radius, Figure 3

illustrate the frequency behaviour of the dynamic permeability. The analogy of the bundle

of capillaries having a given size has been used in previous models (e.g., Packard, 1953;

Reppert et al., 2001; Solazzi et al., 2020).
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Using the similar analogy of the bundle of capillary, where one capillary size dominates

the REV, we can consider that the frequency-dependent effective excess charge at the REV

scale is

Q̂REV,∗v (ω) = Q̂0
vQ̂

rel,∗
v (ω), (18)

where Q̂0
v can be obtained using equation 15, while Q̂rel,∗v (ω) can be obtained numerically

by solving equation 9 for the capillary size R considered as representative of the porous

medium.

The electrical conductivity σ∗(ω) can also be considered as a frequency dependent rock

property, however this point will not be discussed in the present paper. For more informa-

tion, one can refer to a very large on the subject (e.g., Chelidze and Gueguen, 1999; Jougnot

et al., 2010; Revil, 2013).

Considering these assumptions, we can express the frequency dependent electrokinetic

coupling coefficient as

C∗EK(ω) = −Q̂
REV,∗
v (ω)k∗(ω)

ηwσ∗(ω)
, (19)

or

C∗EK(ω) = C0
EK

Q̂rel,∗v (ω)krel,∗(ω)

σrel,∗(ω)
, (20)

and the relative electrokinetic coupling coefficient can be expressed as

Crel,∗EK (ω) =
Q̂rel,∗v (ω)krel,∗(ω)

σrel,∗(ω)
, (21)

where the “rel” superscript refer to value of the corresponding parameter relative to the

associated low frequency value (equation 13).
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SENSITIVITY TEST OF THE MODEL

Effect of the pore size and the frequency on Q̂R,∗
v

In the proposed model, the first step is to compute the frequency dependent effective excess

charge density Q̂R,∗v . This can be done by modifying the code proposed in Jougnot et al.

(2012) and solving equation 9 numerically for each frequency f and capillary radius R

iteratively.

Figure 5 shows the results of the numerical simulations to compute Q̂R,∗v as a function

of the capillary radius for frequencies between 1 and 106 Hz. As expected from the theory,

the amplitude of the pore water velocity increases as the capillary radius increases for all

the considered frequencies (Figure 5a) until the radius reaches a critical size related to

the transition frequency (see equation 7). Following an opposite behavior, the effective

excess charge density decreases as the capillary radius decreases (Figure 5b) as predicted

and explained in the literature (e.g., Jougnot et al., 2012; Guarracino and Jougnot, 2018).

Around the transition frequency ft, the trend of Q̂R,∗v (R,ω) changes as its slopes reduces

its steepness.

Figure 6 shows the same simulation results but as a function of the frequency to better

understand the spectral behaviour of Q̂R,∗v (R,ω). Figures 6a and 6b illustrate very clearly

the effect of the transition frequency on the pore water velocity and the effective excess

charge density, respectively. While the pore water velocity drops for f � ft, the effective

excess charge density increases by orders of magnitude. This behavior was predicted and

discussed in Revil and Mahardika (2013) but not quantified mechanistically at the pore

scale. To the best of the authors knowledge, this is the first time that this parameter is

explicitly calculated as a function of frequency. Note that numerical instabilities start to
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appear in the code above 105 Hz for the larger capillaries.

Evolution of the frequency dependent coupling coefficient

The second step in the proposed model is to introduce the computed relative pore water

permeability krel,∗(ω) and the relative effective excess charge density Q̂rel,∗v (ω) in equation 21

to obtain the frequency dependent relative coupling coefficient. It implies that the porous

medium can be described by a bundle of capillaries with a single radius size. Note that this

assumption is one of the limitations of the model proposed in this study.

Figure 7 shows the model prediction of the amplitude of krel,∗(ω) (Figure 7a), Q̂rel,∗v (ω)

(Figure 7b), and the resulting coupling coefficient Crel,∗EK (ω) (Figure 7c). Note that for

this example, the frequency dependence of the electrical conductivity is neglected (i.e.,

σrel,∗(ω) = 1). The results are presented relatively to their quasi-static value (i.e., 0 Hz).

The dynamic permeability decreases and effective excess charge density increases at higher

frequencies. The ratio between these two parameters as a function of frequency yields the

coupling coefficient, decreasing with the frequency. Note that the inflection on the curve

does not occur at exactly the transition frequency, this can be seen quite clearly in the shape

of the frequency dependent coupling coefficient as it decreases with the frequency. This

behaviour has been previously discussed in the literature (e.g., Reppert et al., 2001,their

Figure 2).
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RESULTS AND DISCUSSION

Comparison with existing models

As presented in Jouniaux and Bordes (2012), many models already exist to describe the

frequency-dependent coupling coefficient. The two most used models are Packard (1953) and

Pride (1994). Pride (1994) derives a coupling framework based on first principles and an up-

scaling approach based on volume averaging. On the other hand, Packard (1953) proposes

a model which is based on a porous medium conceptualized as a bundle of capillaries having

a singular capillary size, which is similar to the assumptions done in the model described

in the previous section. The Packard (1953) model is expressed as follows:

C∗EK(ω) =

(
εζ

ηwσw

)(
2κ

R

J1 (Rκ)

J0 (Rκ)
e−iωt

)
. (22)

Revil and Mahardika (2013) propose an alternative model to describe the frequency-

dependent coupling coefficient under the thin double layer approximation:

C∗EK(ω) =
C0
EK√

1− iωτk
, (23)

where the frequency dependence is mainly controlled by a relaxation time:

τk =
k0ρwF

µw
. (24)

This last parameter is calculated using the values of k0 and F corresponding to a bundle

of capillaries with a single size R and the arbitrarily fixed porosity of φ = 0.5. Due to the

straightness of the capillaries, m = 1 yields F = φ−m = 2.

Figure 8 shows the comparison between the proposed model (dotted lines) and the

prediction from both Packard (1953) (plain lines) and Revil and Mahardika (2013) (dashed

lines). One can see that the proposed model, which based on a numerical upscaling of the
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effective excess charge, reproduces exactly the predictions of the complex coupling coefficient

from Packard (1953) for both amplitude (Figure 8a), real part (Figure 8b), and imaginary

part (Figure 8c), for different pore radii from 10−6 to 10−3m. This behaviour was expected

since the model of Packard (1953) is based on the same hypothesis than the one propose

in this work, that is the medium can be approximated by an equivalent pore size. On the

other hand, even though the overall results are fairly similar to those predicted by the model

of Revil and Mahardika (2013), one can see that such model and the proposed approach

exhibit slightly different values in the transition shape: i.e., the imaginary part of the model

predicted by Revil and Mahardika (2013) is less than 5% smaller than the one predicted by

the proposed model. Nevertheless, these comparisons clearly show that the new upscaling

procedure proposed to determine the frequency dependent effective excess charge density is

consistent with existing models from the literature.

Comparison with published data

In the following, the model predictions are then compared with experimental seismoelec-

tric laboratory data by Zhu and Toksöz (2013). They measured the quasi-static and the

frequency-dependent coupling coefficient of a sandstone for five different pore-water con-

ductivities and a frequency range from 50 to 120 kHz.

Figure 9a shows the predicted quasi-static effective excess charge using equation 15 for

different NaCl concentrations in the pore water, that is CwNaCl = 0.0017, 0.0085, 0.0171,

0.0342, and 0.0684 mol L−1. The corresponding zeta potentials are obtained using the

approach of Revil et al. (1999) with the empirical parameters proposed by Jaafar et al.
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(2009):

ζ(CwNaCl) = −6.43 + 20.85log10(C
w
NaCl). (25)

The quasi-static permeability k0 = 4.44× 10−13 m2 and porosity φ = 0.23 of the sandstone

have been measured by the authors. The only unknown parameter is the hydraulic tor-

tuosity, which was set at τ = 3.5 as it was considered to be an acceptable value by Zhu

et al. (2016). Note that Revil and Mahardika (2013) consider a fixed effective excess charge

density of Q̂0
v = 1.4 C m−3.

Figure 9b shows the prediction of the proposed model for the quasi-static coupling

coefficient C0
EK based on equation 13 and the predictions from Q̂0

v (Figure 9a). Note

that, following the work of Revil and Mahardika (2013), we consider that the electrical

conductivity can be described using equation 14 with σs = 1.2 × 10−3 S m−1 the surface

conductivity and F = 18. One can see that the model reproduces fairly well the behavior

of the coupling coefficient.

Figure 10a presents the evolution of the dynamic effective excess charge density calcu-

lated in an equivalent capillary radius R = 6.31× 10−6 m for five pore water conductivities

of 0.012, 0.048, 0.095, 0.18, and 0.32 S m−1. Then, Figure 10b presents the results from

equation 19 where krel,∗(ω) and Q̂rel,∗v (ω) come from our model while C0
EK comes from the

laboratory measurements by Zhu and Toksöz (2013) (considering σrel,∗(ω) = 1). Without

any further parameter adjustments, the proposed model predicts very well the experimental

data.
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Outlook

This new upscaling procedure, adapted from Jougnot et al. (2012) by taking into account the

frequency dependent inertial viscous effects in the pore water flow, offers a large flexibility

to be applied to any kind of complex media. The most straightforward development is

to apply this procedure to the prediction of the coupling coefficient in partially saturated

media (e.g., Bordes et al., 2015) through the use of the modeling approach of Solazzi et al.

(2020). To the best of the authors knowledge, the only existing model is the one proposed by

Revil and Mahardika (2013). The second extension will be toward an improved description

of the frequency dependence of the effective excess charge density in fractured media (e.g.,

Zhu and Toksöz, 2005), which has not yet been explored.

CONCLUSIONS

The present work proposes a new mechanistic model to predict the frequency dependence

of the coupling coefficient for an oscillatory flow. For this, we mechanistically define a

frequency-dependent effective excess charge by taking into account the inertial terms in the

Navier-Stokes equation at the pore scale. This new upscaling procedure reproduces the

behaviour of two existing models that were obtained from completely different approaches.

Finally, the proposed model reproduces very well published data at different pore water

salinities. These results pave the way to an improved description of the frequency depen-

dence of the effective excess charge density in complex media such as partially saturated

media or fractured media and the development of the seismoelectric method as a more

standard tool for hydrogeophysics studies.
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Figure 1: Flow chart describing the procedure used in this work to to up-scale the frequency

dependent effective excess charge.
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Figure 2: (a) Absolute value and (b) phase of the pore water velocity v∗(r, ω) as functions

of the distance from the pore wall. We consider different frequencies, which are denoted by

different colors. We considered here R = 10−4m and ∆P ∗/l = 1 Pa m−1 (equation 2). For

reference we also illustrate the behaviour for Poiseuille flow (equation 3).
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Figure 3: (a) Absolute value and (b) phase of the complex average pore water velocity as

functions of frequency for pore radii varying between 10−8 m and 10−3 m.
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Figure 4: (a) Sketch of the electrical double layer. (b) Static excess charge density (for

CwNaCl = 10−4 mol L−1 and ζ = -89.8 mV). (c) Amplitude of the pore velocity distribution

as a function of the distance from the pore wall in a capillary (R = 1.26 × 10−4 m). The

vertical dashed layer across the (b) and (c) subplots corresponds to a distance of r = 4lD.
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Figure 5: Amplitude of (a) the water flux and (b) the effective excess charge density calcu-

lated with the model as a function of capillary radii for different frequencies. The dashed

black line correspond a Poiseuille-type behavior of the corresponding variable, i.e., the case

presented in Jougnot et al. (2012) for f = 0 Hz.
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Figure 6: Amplitude spectra of (a) the water flux and (b) the effective excess charge density

calculated with the proposed model as functions of frequency for different capillary radii.
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34



Figure 7: Predicted amplitude of (a) the relative dynamic permeability, (b) the relative dy-

namic effective excess charge density, and (c) the relative electrokinetic coupling coefficient

calculated with the model as functions of frequency for different capillary radii (from 10−3

to 10−6 m).
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Figure 8: Predicted (a) amplitude, (b) real part, and (c) imaginary part of the relative

coupling coefficient by two models for different radii (from 10−3 to 10−6 m). The solid and

dashed lines correspond to the model by Packard (1953) and Revil and Mahardika (2013),

respectively, while the dots correspond to the proposed model.
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Figure 9: (a) Quasi-static effective excess charge density and (b) coupling coefficient pre-

diction of the proposed model for the sandstone sample used by Zhu and Toksöz (2013) and

comparison with their experimental data (circles).
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Figure 10: (a) Amplitude of the effective excess charge density as a function of the frequency

from the proposed model for different pore water conductivities. Comparison between the

amplitude measured coupling coefficient by Zhu and Toksöz (2013) (colored circles) and the

model predictions (colored lines).
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