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Bryophytes are predicted to lag behind future
climate change despite their high dispersal
capacities
F. Zanatta1,10, R. Engler2,10, F. Collart 1,10, O. Broennimann3,4, R. G. Mateo 5,6, B. Papp7, J. Muñoz 8,

D. Baurain 9, A. Guisan3,4,11 & A. Vanderpoorten1,11✉

The extent to which species can balance out the loss of suitable habitats due to climate

warming by shifting their ranges is an area of controversy. Here, we assess whether highly

efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their

areas of suitable climate. Using a hybrid statistical-mechanistic approach accounting for

spatial and temporal variations in both climatic and wind conditions, we simulate future

migrations across Europe for 40 bryophyte species until 2050. The median ratios between

predicted range loss vs expansion by 2050 across species and climate change scenarios

range from 1.6 to 3.3 when only shifts in climatic suitability were considered, but increase to

34.7–96.8 when species dispersal abilities are added to our models. This highlights the

importance of accounting for dispersal restrictions when projecting future distribution ranges

and suggests that even highly dispersive organisms like bryophytes are not equipped to fully

track the rates of ongoing climate change in the course of the next decades.
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Despite a growing number of climate change mitigation
policies, anthropogenic greenhouse gas emissions have
continued to increase since the pre-industrial era. Glob-

ally, an average warming of 1.0 °C as compared to pre-industrial
levels has been reported and is expected to reach 1.5 °C between
2030 and 2052, with substantial regional variations. In the Arctic
for instance, two to three times higher warming rates than the
global annual average are expected1. The impacts of this global
warming on biodiversity have been largely documented2 and
climate change has been identified as one of the major biodi-
versity threats3,4, with the worst-case scenarios leading to
extinction rates that would qualify as the sixth mass extinction in
the Earth history5.

While climate change is making some current habitats unsui-
table, it is also expected to create newly suitable areas for species to
occupy. The extent to which species have the ability to balance the
loss of suitable habitats by shifting their ranges and track areas of
suitable climate has, however, been debated6–8. Despite reports that
many species lag behind climate change9, nearly as many studies of
observed latitudinal changes fall above as below the observed10.
For plants in particular, empirical evidence for lagged migration is
far from clear-cut11. While the coincident increase of species rich-
ness with climate warming towards high elevations is suggestive of a
rapid response of communities to climate change12, considerable
lags in the future response to climate warming have been predicted
for Alpine plants13. Such lag has also been observed in the field:
Rumpf et al.14 recently reported that 38% of plant species they
investigated were not able to colonize all the sites that became
climatically suitable to them.

Assessing range shifts and extinction risks involves an assess-
ment of (i) the change in climatically suitable habitats over time
and (ii) the species ability to adapt or migrate to track areas of
newly suitable climate15. In this context, spatially explicit climatic
suitability and distribution models (also called species distribu-
tion models, or ecological niche models) have been the most
widely used tool to assess the impact of projected climate change

on future species distributions and biodiversity patterns16. Con-
trasting model predictions with actual distribution data revealed,
however, that a substantial fraction of species are missing from
areas projected as suitable17,18. This, together with the significant
effect of geographic distance on the taxonomic and phylogenetic
turn-over of species communities17,19,20, points to the need
to account for dispersal limitations when predicting species dis-
tributions under climate change21,22. Mounting evidence there-
fore suggests that approaches integrating mechanical dispersal
processes into climatic suitability and distribution models have
higher predictive accuracy in forecasting species range shifts than
structurally simpler models that only account for species’ corre-
lates with climate23,24.

The primary goal of the present study is to determine the
extent to which highly efficient dispersers like bryophytes can
mitigate the loss of suitable habitats through rapid colonization of
newly suitable areas. The relevance of bryophytes, which repre-
sent the second most diversified group of land plants after the
angiosperms25, in range shift studies, is twofold. First, bryophytes
hold exceptional importance in the control of global carbon fluxes
and climate because of the vast stores of carbon bound-up in
peat26. In particular, more carbon is stored in Sphagnum than in
any other genus of plant27. Second, bryophytes lack roots and
therefore cannot uptake water directly from the water table,
making them reliant on atmospheric precipitations. Furthermore,
bryophyte species of temperate biomes exhibit lower optima and
tolerance to warm temperatures than their angiosperm counter-
parts28 (but see ref. 29). These specific ecophysiological features
make bryophytes ideal indicators of the impact of climate change
on biodiversity patterns.

Here, we implement a hybrid statistical-mechanistic approach
that accounts for temporal and spatial variation of both climatic
conditions and wind connectivity to predict potential shifts in
distribution across Europe for 40 bryophyte species until 2050, at
a spatial resolution of 1 km2. We show that projected rates of
range loss largely exceed the proportion of newly suitable habitats
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Fig. 1 Predicted impact of future climate change for the potential distribution of European bryophytes. The maps represent the distribution of 1 km2

pixels predicted to become climatically suitable and unsuitable in 2050 for 10 representative bryophyte species of each of the four main biogeographic
elements in Europe (Mediterranean, Atlantic, wide-temperate and Arctic-Alpine) using ensemble of climatic suitability models with the MPI-ESM-LR
Global Circulation Model under scenario RCP8.5 (see Supplementary Fig. 1 for scenario RCP4.5 and Supplementary Figs. 2 and 3 for the two RCPs with the
HadGem2-ES Global Circulation Model). Colours represent the proportion of species, computed over 10 species per biogeographical elements (individual
maps are available from Figshare, DOI: 10.6084/m9.figshare.8289698), for which a pixel becomes suitable (blue) and unsuitable (red). Numbers indicate
the average (±S.D.) percentage of the predicted increase (number of pixels that become suitable in 2050) and loss (number of pixels that become
unsuitable in 2050), respectively, of suitable area in 2050 as compared to the extent number of suitable pixels.
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that could effectively be colonized, suggesting that even highly
dispersive organisms such as bryophytes might not be equipped
to track the rates of ongoing climate change in the course of the
next decades.

Results
We predicted range shifts under changing climate conditions
until 2050 in 40 bryophyte species representative of the Medi-
terranean, Atlantic, wide-temperate and Arctic-Alpine biogeo-
graphic elements. The climatic suitability models exhibited high
average True Skill Statistics (TSS) and Area Under The Curve
(AUC) of a ROC plot (Receiver Operating Characteristics)
statistics30 of 0.78 ± 0.12 and 0.93 ± 0.05 respectively, when
models were evaluated against test sets corresponding to 20% of
the data (cross-validation). These models did not show any
apparent signature of overfitting, as only a very slight increase
in AUC and TSS (0.81 ± 0.13 and 0.94 ± 0.05, respectively) was
observed when these statistics were computed at the level of the
entire dataset (Supplementary Table 1).

With the MPI-ESM-LR Global Circulation Model (GCM), the
highest relative rates of range loss are predicted for the Arctic-
Alpine element, with an average loss of 40 ± 12% and 42 ± 14% and
an average gain of 9 ± 7% and 9 ± 8% under the Representative
Concentration Pathway (RCP) 4.5 and 8.5 climate change scenarios,
respectively (Fig. 1, Supplementary Table 2 and Supplementary
Fig. 1). The highest rates of relative range expansion are predicted
for the Mediterranean element, with a 32 ± 10% (35 ± 10%) loss
against a 38 ± 14% (39 ± 15%) gain, due to the clear tendency
for a northern shift of the climatically suitable area (Fig. 1 and
Supplementary Fig. 1). Similar, but even more dramatic predictions
in terms of range loss, with a maximum of 73 ± 6% in the wide-
temperate element, were obtained with the HadGem2-ES GCM
(Supplementary Table 2 and Supplementary Figs. 2 and 3).

Simulated colonization rates (i.e., the ratio between the number
of effective colonization events and the number of pixels
becoming suitable by 2050) are displayed in Fig. 2 and Supple-
mentary Fig. 4 (MPI-ESM-LR GCM under RCP scenarios 8.5 and
4.5, respectively) and Supplementary Figs. 5–6 (HadGem2-ES
GCM under RCP scenarios 4.5 and 8.5, respectively).

There was a clear impact of release height on colonization
rates, whose median ranged from 4% at 0.03 m to 63% at 10 m for
the largest spores at maximum wind speed, and between 59% and
84% at 0.03 m for small and medium-sized spores, respectively,
whatever the long-distance dispersal probability. At release
heights of 1 and 10 m, colonization rates reached 98% and
99% for small and medium-sized spores, respectively (see Fig. 2
for scenario RCP8.5, with similar trends for scenario 4.5 in
Supplementary Fig. 4 and for the HadGem2-ES GCM under RCP
scenarios 4.5 and 8.5, Supplementary Figs. 5 and 6). Wind speed
mostly played a role for the largest spores, whose colonization
rates were 1–57 times higher when maximum vs average wind
layers were employed, but its impact was lower for smaller spores.
Finally, spore size also substantially impacted colonization rates,
with a median <1 to 7% for large spores, 25 to almost 100% for
medium-sized spores, and 61 to almost 100% for small spores
depending on release height and long-distance dispersal prob-
ability under average wind conditions.

Running the simulations beyond 2050 to determine the time-
lag of the colonization of newly suitable habitats, i.e., how many
years would be needed for species to fully colonize all the cli-
matically suitable habitats after 2050, we found, using release
height values based on habitat preferences and maximum wind
speed layers, that, on average, 80–100% and 25–70% of the spe-
cies would need more than 500 years to successfully colonize all
the newly suitable habitats when the long-distance dispersal
probability was set to 0 and 0.1, respectively (Table 1 and Sup-
plementary Table 1). Depending on climate change scenarios,
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Fig. 2 Colonization rates of areas predicted to become climatically suitable due to climate change in European bryophytes. The box-plots
(showing the 1st and 3rd quartiles (upper and lower bounds), 2nd quartile (centre), 1.5* interquartile range (whiskers) and minima-maxima beyond the
whiskers) represent simulated colonization rates expressed as the ratio (*100), averaged over 30 replicates, between the number of effective colonization
events (including effective colonization events that eventually got extinct at the end of the simulation) and the total number of pixels becoming suitable by
2050 in 40 selected bryophyte species in Europe as a function of spore size (a: <20 µm; b: 20–50 µm; c: >50 µm), release height Z0, wind speed, and
probability of long-distance dispersal P(LDD), with the MPI-ESM-LR Global Circulation Model under climate change scenario RCP8.5 (see Supplementary
Fig. 4 for scenario 4.5). The right panel illustrates selected SEM photographs of spores of Scleropodium touretii (small spores), Ulota bruchii (medium-sized
spores) and Archidium alternifolium (large spores).
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only 0–10% and 22–30% of the species fully colonized all newly
climatically suitable areas by 2050 when the long-distance dis-
persal probability was set to 0 and 0.1, respectively, and were
hence at equilibrium with the environment (Table 1). The
remaining species required, on average, 21 ± 6 years to 98 ± 141
years after 2050 before the colonization rate reached 100% of the
newly suitable pixels depending on climate change scenarios and
LDD probability (Table 1).

The ratio between the rates of range loss and gain at the end of
the simulation in 2050 is displayed in Fig. 3, and evidences a clear
pattern of substantial range contraction. Median ratios between
predicted range loss vs expansion until 2050 across species ranged
between 1.6 and 3.3 depending on climate change scenarios when
only shifts in climatic suitability were considered, but between
34.7 and 96.8 depending on climate change scenarios and
dispersal kernels when effective colonization was considered
(Supplementary Table 2). With the global circulation model
HadGem2-ES, the median loss/gain ratio was the highest in the
case of the wide-temperate element (~75:1) as compared to a
median ratio of slightly more than 50:1 for the other elements.
With the MPI-ESM-LR Global Circulation Model, the median
loss/gain ratio was the highest in the case of the Alpine-Artic
element (~50:1) as compared to a median ratio of slightly more
than 25:1 for the other elements.

Discussion
Simulating wind dispersal across a variable landscape is a chal-
lenging task because spatial variations in wind speed, topography
and canopy structure affect the probabilities of colonization
during the transportation and deposition phases31. Substantial
variation in environmental heterogeneity affecting both climatic
suitability and the ability of species to disperse therefore required
developing a spatially explicit modeling framework. Previous
studies that attempted at simulating wind dispersal under chan-
ging environmental conditions either (i) implemented constant
dispersal kernels or randomly sampled prior distributions of
migration rates at large scales11,32,33, or (ii) used detailed models
based on local wind conditions and accounting for population
dynamics, but could only do so over a limited geographical
extent34,35. In contrast, our approach allowed us to assess the
impact of climate change on a group of wind-dispersed plants,

bryophytes, by taking into account local variations in niche
suitability and dispersal limitations at a continental scale.

Our simulations are, however, based on a number of simpli-
fications due to limitations in the availability of empirical data.
These limitations include, most importantly, the assumptions that
dispersal is isotropic, that newly colonized cells are readily con-
sidered as sources, thereby ignoring demography, that there is no
competition and that microclimatically suitable pixels can serve
as migration sources. These assumptions result in an over- rather
than an under-estimation of colonization rates, so that our
approach is conservative in the sense that, as in Dullinger et al.11,
our results should be at the upper bound of those achievable.
Despite this, only a portion of the areas projected to become
climatically suitable are predicted to be effectively colonized by
2050. Median ratios between predicted range loss and expansion
across species ranged between 1.6 and 3.3 depending on climate
change scenarios when only shifts in climatic suitability were
considered and increased to between 34.6 and 96.8 depending on
dispersal kernels when effective colonization was considered.
There was, however, substantial regional variation, as the Arctic-
Alpine species pool was predicted to experience the highest range
loss (39 ± 15%), whereas the wide-temperate species pool exhib-
ited the lowest net decrease of 18 ± 4%, followed by the Medi-
terranean species pool with 24 ± 14%. While the Arctic-Alpine
species pool was indeed identified as one of the most sensitive to
climate warming, the results reported here for Mediterranean
bryophytes sharply contrast with the alarming predicted range
loss of 60% reported in angiosperms36. We suggest that this
difference is due to the much wider distribution range, higher
dispersal capacities and, potentially, broader climatic niche of
Mediterranean bryophytes as compared to their angiosperm
counterpart. This is best illustrated by the large differences in
rates of local endemism between the two groups, as more than
60% of Mediterranean endemic angiosperm species are restricted
to a single region37 and are, hence, prone to extinction if they fail
to colonize newly suitable areas, whereas there is no local ende-
mism reported to date in the Mediterranean bryophyte flora38.

While bryophytes successfully back-colonized areas of suitable
climate since the end of the last glacial maximum, 18,000 years
ago39, our results suggest that, at best, ~30% of the species would be
at equilibrium with their environment by 2050. This indicates that
bryophytes are not equipped to track the very fast rates of ongoing
climate change projected for the course of the next decades.
Although recent evidence for synchronized increases in species
richness towards high elevations and global warming points to
rapid colonization potential of newly available habitats12, our
results, together with other analyses investigating species-specific
responses13,14,40, suggest that changes in diversity patterns tend to
mask considerably the delays observed at the level of individual
species. In fact, a growing body of evidence supports the idea that
plant species spread rates are consistently expected to be much
lower than the velocity of climate change11,33–35. This highlights the
crucial role of integrating dispersal when attempting to predict
future distribution ranges22–24, even in apparently highly dispersive
organisms like bryophytes.

Methods
The methodological framework for simulating the dispersal of bryophytes under
changing climate conditions is presented in Fig. 4. A grid of pixel-specific envir-
onmental conditions and dispersal kernels, combining information on species
dispersal traits, local wind conditions, as well as landscape features affecting dis-
persal by wind, is generated and used as input in simulations of species dispersal in
the landscape under changing climate conditions.

Data sampling. The European bryophyte flora includes 1817 native or naturalized
species41. Because information on bryophyte species distribution is scarce and very
heterogeneous, challenging the application of climatic suitability models42, we

Table 1 Time-lag of the colonization of newly suitable
habitats in 2050 for 40 selected bryophyte species in
Europe, as assessed by MigClim dispersal simulations under
changing climate conditions defined by the MPI-ESM-LR
(MPI) and HadGem2-ES (HE) Global Circulation Models and
climate change scenarios RCP4.5 and 8.5.

MPI4.5 MPI8.5 HE4.5 HE8.5

LDD= 0
80% 98% 100% 98%
10% 0% 0% 2%
111 ±

126 years
149 years – –

LDD= 0.1
70% 35% 25% 27%
22% 25% 25% 30%
21 ± 6 years 66 ± 85 years 86 ± 119 years 98 ± 141 years

LDD= 0 and 0.1 refer to the probability of long-distance dispersal implemented by the model,
respectively. For each GCM, climate change scenario and LDD probability, we indicate (i) the
percentage of species that failed to colonize all newly suitable habitats by 2050 after 500 years
(top); (ii) the percentage of species that fully colonized all newly suitable habitats by 2050 and
are hence at equilibrium with climate conditions (middle); and (iii) for the remaining species, the
average (±SD) number of years required to fully colonize all newly suitable habitats after 2050
(bottom) (see Supplementary Table 2 for detailed information for each species).
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selected 10 species based upon their representativeness for each of the four main
biogeographic elements (i.e., groups of species sharing similar distribution pat-
terns), namely the Arctic-Alpine, Atlantic, Mediterranean, and wide-temperate
elements (Supplementary Table 2). For each of these species, we downloaded data
from the Global Biodiversity Information Facility (https://www.gbif.org). We
excluded data collected before 1960, which represented, on average, 41 ± 12% of the
data available, for two reasons. First, old records often lack sufficiently precise
location information. Second, we wanted to avoid a potential mismatch between
old observations and current climate conditions used for modeling. To complete
these data and generate a dataset across the entire range of each species in Europe,
we specifically performed a thorough literature review to document their occur-
rence from more than 600 sources. Only points that were separated by at least 0.1°
from each other were subsequently retained for modeling (“ecospat.occ.

desaggregation” function in Ecospat 3.143) to avoid sampling bias and reduce the
risk of spatial autocorrelation. Altogether, the number of observations available for
each species ranged between 55 and 34,035 (database available from Figshare,
https://doi.org/10.6084/m9.figshare.8289650).

Average spore diameter was recorded for each species from Zanatta et al.44 and
references therein. Species unknown to produce sporophytes were assigned a spore
size of 150 µm to take dispersal through larger asexual propagules into account.
Spore settling velocities Vt and release height (0.03, 1 and 10 m, which roughly
correspond to habitat preferences for ground-dwelling, saxicolous, and epiphytic
species, respectively) were determined for each species (Supplementary Table 2)
following Zanatta et al.44.

Nineteen bioclimatic variables, averaged over the period from 1970 to 2000,
were retrieved from WorldClim 1.4 at a resolution of 30 arc-seconds45. Although
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snow is an important driver of species distributions in Arctic regions46, the lack of
sufficiently detailed information on snow precipitation across Europe prevented us
from implementing this variable.

Given the spatial grain of our study, the hypothesis that some species will persist
in small microhabitats, where temperatures can be cooler and humidity higher than
in the surrounding environment, cannot be rejected. Data at finer scales for both
present and future conditions would therefore be desirable47. Recently developed
methods to generate fine-grained climatic data taking into account microclimatic
effects modulated by microtopographic variation in the terrain, vegetation cover
and ground properties using energy balance equations cannot, however, yet be
implemented across large spatial scales48.

For future climate conditions, a wide range of GCMs have been described and
their variation represents the largest source of uncertainty in future range
prediction studies49. No criterion exists to evaluate GCMs, whose performance
may vary among regions and variables50. Due to computational constrains
associated with our migration simulations (see below), we followed Didersky
et al.51. and selected two GCMs that reflected the highest and lowest levels of
predicted changes due to climate change for two angiosperm species in Europe50,
namely MPI-ESM-LR52 and HadGem2-ES53. For each GCM, we analyzed two
climate change scenarios. These scenarios are expressed by the representative
concentration pathways (RCPs), using values comparing the level of radiative
forcing between the preindustrial era and 2100. The moderate scenario RCP4.5
assumes 650 ppm CO2 and 1.0–2.6 °C increase by 2100, and refers to AR4
guideline scenario B1 of IPCC AR4 guidelines. The pessimistic scenario RCP8.5
assumes 1350 ppm CO2 and 2.6–4.8 °C increase by 2100, and refers to
A1F1 scenario of IPCC AR4 guidelines54. Climatic data for each GCM and each
RCP were averaged for each of the four time periods considered, i.e., 2010–2020,
2020–2030, 2030–2040 and 2040–2050.

Monthly average and daily maximum wind speeds measured at 10 m as well
as predicted wind speeds for the same ten-year time periods between 2010 and
2050, were computed from EURO-CORDEX (https://euro-cordex.net). Canopy
height data were obtained from the global scale mapping of canopy height
and biomass at a 1-km spatial resolution55. Wind speed and canopy height
were sampled for each pixel and each time-slice to generate kernel maps through
time (see below).

Deriving climatic suitability maps. The correlation among the 19 bioclimatic
variables was computed from 50,000 random points. To avoid multicollinearity,
five bioclimatic variables with a Pearson correlation value of R < 0.7 (as recom-
mended in ref. 30) were selected. These variables were: mean of monthly tem-
perature range, temperature seasonality, mean temperature of warmest quarter,
precipitation of wettest month and precipitation of warmest quarter. Since the
geographic background should not only reflect the extant, but also the potentially
occupied range in the past56, and since, in bryophytes, models built from large
geographic backgrounds are recommended57, pseudo-absence points were sampled
from a random selection from all points within the studied area excluding available
presence points across Europe.

To account for model uncertainty, we generated ensemble models58 using
generalized linear model (GLM)59 and boosted regression trees (GBM)60 with the
package biomod2 3.3–761. Following Barbet-Massin et al.62, 10,000 pseudo-absence
points were sampled for GLM and then down-weighted to give them same overall
prevalence as presences. For GBM, we sampled a number of pseudo-absence points
identical to the number of datapoints. For GLM, the default parameter set
(selection procedure via AIC, quadratic model, interaction level= 0, interaction
level between variables considered, logit function) was used. For GBM, 5000 trees
were included, the maximum depth of each tree was set to 5, the fraction of the
training set observations randomly selected to propose the next tree in the
expansion was set to 0.8. All other parameters were set to default (Bernouilli
distribution, minimum number of observations in the terminal nodes of the trees
= 5, shrinkage= 0.001, Number of cross-validation folds= 3). Ten replicates were
run and, for each run, 80% of the data was used to calibrate the models, whereas
the remaining 20% was kept aside to evaluate the performance of the model using
the AUC and TSS metrics. We generated a consensus model of the 10 replicates for
each of the GLM and GBM models, wherein each individual model contributed
proportionally to its goodness-of-fit statistics. Finally, we computed the suitability
at each pixel based on the average of the two GLM and GBM consensus models.
Because, despite our thorough literature survey to document species distributions,
the number of actually sampled points is a dramatic under-estimation of the actual
number of occupied pixels by the species across the study area, all pixels identified
as climatically suitable by binarized climatic suitability model projections were
employed as initial distribution points for migrations during the first time slice.
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Fig. 4 Overview of workflow implemented in the present study to integrate mechanistic dispersal kernels and correlative climatic suitability models in
simulations of future wind-dispersed species distributions under climate change. Species distribution data (left) are combined with climatic variables to
produce climatic suitability models that are calibrated under present and projected under future climatic conditions (Part 1) and used to build mechanistic
dispersal models (Part 2). The latter combine species intrinsic features (spore settling velocity Vt and release height Z0) and extrinsic environmental
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This could lead to an overestimation of the number of source pixels and raises the
issue that, like in any hybrid correlative-mechanistic model, datapoints are
employed both for inferring the niche and initiating dispersal simulations, whereas
datapoints are themselves the result of a dispersal process63. If, due to dispersal
constraints, a species is absent from climatically suitable conditions, climatic
suitability models may therefore underestimate species niche range63. Although
bryophytes are extremely good dispersers, so that, unlike in some angiosperm
species18, there is no mismatch between the predicted and observed northern limit
of distribution39, the present analyses suggest that there is a time-lag of more than a
century before newly suitable areas are fully colonized. Nevertheless, our datapoints
were sampled across the entire European range of the species, encompassing the
full range of climatic conditions that they can experience, so that the potential
failure to incorporate localities where the species had not time to disperse yet
would not affect the boundaries of our global niche estimate.

The ensemble model was then projected onto future climatic layers using two
GCMs and two RCPs per GCM (see above). A key issue with modeling responses
to climate change is that we do not fully understand how models made under
current conditions will transfer to future conditions. Models developed using too
many predictors may run the risk of overfitting to local conditions, restricting the
predictive power of the model64,65. Tests of transferability across taxa and
geographic locations have, however, failed to demonstrate consistent patterns, and
a general approach to developing transferable models remains elusive66. Here, we
compared the ROC and maxTSS values computed from the test sets (20% of the
data) to those observed at the level of the entire dataset, assuming that these
statistics at the level of the entire dataset would substantially drop at the level of the
test sets in case of severe issues of overfitting.

The continuous suitability index was transformed into a binary presence/
absence model, using maximum TSS to reclassify values.

Dispersal simulations under changing climate conditions
The MigClim model. Dispersal simulations under changing climate conditions were
performed with a modified version of Migclim67 adapted for wind dispersal. To
simulate dispersal under climate change, MigClim requires information on species
dispersal capacities, a map of species initial distribution, a map of present climate
conditions, and maps of future climate conditions at p intervals that divide the
period between time present and the end of the simulations, set by the user, into p
climatic periods. In MigClim, source pixels are represented by actually occupied
pixels and target pixels are pixels that newly become climatically suitable under
climate change. Dispersal simulations are performed from source pixels into target
pixels as follows (see Fig. 2 in Engler et al.68):

1. For each target pixels, all the potential source pixels located within a user-
defined range are identified.

2. The probability that the target pixel is colonized from all the potential source
pixels is computed through the probability Pcol (see below). Optionally, long-
distance can be added to the simulation, with a user-defined range and
probability.

3. These steps are repeated nDisp times, with nDisp typically set to 1 year, until
the end of the first climatic period.

4. At the end of each of the p climatic periods, pixels that are no longer suitable
due to changes in environmental conditions have their values reset to zero, and
climatic suitability is updated to reflect environmental change, potentially
resulting in a series of newly suitable target pixels.

To define Pcol, MigClim implements a dispersal kernel, which is a vector
indicating the probability of dispersal P(x) as a function of the distance from the
source. Since dispersal from a source pixel could take place in any direction,
MigClim implements a coefficient of diffusion called Surfacej, which corresponds
to the number of pixels belonging to a same distance class from the source, to
compute the probability that a diaspore from a source pixel ends-up in a target
pixel and not in any other pixel located at the same distance range:

P pixelj

� �
¼ PðxÞ

Surfacej
ð1Þ

To account for the number of diaspores produced by a source pixel j, MigClim
implements a parameter called Successful Seeds, which accounts for the number of
seeds produced by a source pixel j and allows for turning individual dispersal event
probabilities into species spread rates.

PDispðpixeljÞ ¼ 1� ð1� PSeedðpixeljÞÞSuccessfulSeed ð2Þ

Finally, P(pixelj) values are computed at increasing distances from the source and
combined to generate a global probability of colonization Pcol from n potential
source pixels:

Pcol ¼ 1�
Yn

i¼1
1� Pdisp ið Þ ´Pmat ið Þ

� �
ð3Þ

where Pmat(i) is a probability that is function of the time as the source pixel I
became occupied and represents the increase in reproductive potential of source
pixel i over time.

Implementing the Wald model in MigClim for simulating dispersal by wind.
We developed a new version of Migclim, MigClim 1.769, designed for wind dis-
persal. While a single kernel was employed across the landscape until the end of the
simulations in the previous implementation of MigClim, we employed a wind-
dispersal kernel that was sampled for each pixel individually to account for var-
iations in wind conditions and was modified at the same time as the p climatic
change intervals to take future wind conditions into account.

We employed the Wald model70 to infer dispersal kernels. The WALD model
was initially developed70 and largely used for wind-dispersed seeds34,35, so that its
use for smaller particles could be questioned. Bryophyte spore-trapping
experiments in fact revealed that the tail of the dispersal kernel is, beyond hundreds
of meters, not distance-dependent, suggesting that, once a spore is airborne, it
could disperse over hundreds to thousands of kilometers, regardless of the distance
from the source71. Spatial genetic structures consistently show, however, significant
isolation-by-distance patterns for all distance classes, evidencing that realized
colonization rates are distant-dependent72 and justifying the implementation of a
mechanistic model such as WALD. Furthermore, the WALD model assumes that
(i) the slippage velocity between the particles and surrounding air is zero, leading to
an infinite drag coefficient, so that the particles and surrounding air parcels are
tightly coupled, and that (ii) the diaspore terminal velocity is reached instantly after
release. These conditions are precisely met in small particles, which (i) are
characterized by low Reynolds numbers, and hence, high drag coefficients, and (ii)
almost readily reach terminal velocity after release. The WALD model has thus also
been applied to small particles such as pollen grains and spores73,74.

The Wald model70 defines the probability P(x) of colonization at distance x
from the source depending on intrinsic (e.g., settling velocity, height of release) and
extrinsic (e.g., wind speed) parameters, across the distance range between the
source and target pixels, as follows:

P xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
λ0

2πx3

r
exp

λ0 x � μ0ð Þ2
2μ02x

� �
ð4Þ

With μ0 ¼ H �U
Vt ; λ

0 ¼ H
σ

� �2
and σ2 ¼ 2Kh σw

�U
where x is the distance from the source, Ū is the horizontal mean wind speed at

the height of seed release, H is the release height, h accounts for canopy height, Vt
is the diaspore terminal velocity, K is von Karman’s constant (0.4), and σw is a
turbulence parameter corresponding to the standard deviation of the vertical wind
velocity.

Starting from the centroid of a source pixel, we finally integrate the Wald model
over the shortest and largest distances between the source and target pixels to
obtain the probability of colonization of the latter.

Parameter estimation. We derived the turbulence parameter σw from wind speed
data and canopy height55. σw= 1.25 u*, where u* is the wind-induced friction
velocity depending on canopy height. Since wind speed is typically measured over
short vegetation (hs, set at 0.3 m), we first inferred σw above taller vegetation of
variable height h from the wind-induced friction velocity measured above short
vegetation, u*s . Hypothesizing that, at the top of the atmospheric surface layer
(~200 m), the mean velocity is not affected by the texture of the ground vegetation,

u* ¼ u*s log 200ð Þ � log
hs
10

� �
= log 200ð Þ � log

h
10

� ��� �
ð5Þ

Following Nathan et al.35, u*s was estimated using von Karman’s formula from
the measured wind speed �Us:

�Us ¼
u*s log

w
Z0s

� �

K
ð6Þ

where K is von Karman’s constant (0.4), w is the height, at which the wind was
measured (here 10 m), and Z0s = 0.1 hs.

The friction velocity u* for taller vegetation of height h was then derived using
Eq. (5).

To derive the mean wind speed at the height of release H, we implemented
either the logarithmic or exponential wind profile75. When the height of release H
is roughly higher than the canopy height h, the logarithmic wind profile describes
the decline in horizontal wind speed with decreasing height above the surface, due
to the surface resistance, as:

�UH ¼ u*ln H�d
Z0

� �
K

ð7Þ

with Z0 = 0.1 h and d= 0.7 h.
In contrast, when the height of release H is below the canopy, we implemented

the exponential wind profile:

�UH ¼ �Uhexp α
H
h
� 1

� �� �
ð8Þ

with the mean wind speed at canopy height Uh derived from Eq. (6), and α derived
from Gualtieri and Secci76 as α= 0.24+ 0.096Z0+ 0.016log2Z0, where Z0= 0.1 h

The parameters Ū, h and σw are sampled for each pixel and each time-slice
(10 years intervals) to generate kernel maps through time.
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We determined “Successful Seed” empirically following the calibration method
of Engler and Guisan67. Although “Successful Seed” was determined once on the
basis of a single empirical study71 and kept constant across species, this study
reported observed colonization rates at distances of hundreds of meters from the
source colony, giving us a unique opportunity to make the link between our
deterministic models and actual observations, increasing the realism of our
approach. Pmat was set to 1.

Finally, in addition to short-distance dispersal events with a probability defined
by the kernel described above, any pixel located at >10 km from a potential source
could be colonized by LDD. The maximum LDD distance was set to unlimited
based on phylogeographic evidence39. Following Robledo-Arnuncio et al.31, we
employed the results of previous Approximate Bayesian Computation methods for
LDD inference from genetic structure data in bryophytes39,77 to define the range of
LDD probability values, set to 0, 10−4, 10−3, 10−2 and 10−1.

Migclim simulations. We modeled the dispersal of a species under a climate
change scenario over a period of 40 years, from 2010 to 2050. Starting with an
initial distribution for the year 2010, the climatic suitability of cells was updated
every 10 years to reflect the projected changes in climatic conditions under the
considered climate change scenario. Since our simulations run over 40 years, we
need four different climatic suitability maps. The wind layers were updated at the
same 10 years intervals as the climatic data to produce series of spatially and
temporally explicit kernel maps. We assume that our species disperse once a year,
and hence, our simulations performed a total of 40 dispersal steps between 2010
and 2050. For each 10 years climatic period, pixels were identified as potentially
suitable based on the binarized climatic suitability model projections. While cli-
matic suitability thus drove colonization probability, a recent study raised the
intriguing idea that spread rates at the migration front increase as climatic suit-
ability decreases as a response to the need to seek for more suitable habitats78. In
bryophytes, however, such a mechanism would be unlikely as inadequate resources
and investment in environmental stress defence typically result in shifts from
sexual to asexual reproduction79.

For each species, we ran a sensitivity analysis by testing the impact of variation
of the free parameters described above: two values of horizontal windspeed Ū
(monthly average and daily maximum), three values of spore release height Z0
(0.03, 1 and 10 m), and four values of LDD probabilities (see above). For each
parameter combination, 30 MigClim replicates were performed.

We computed the ratio between the predicted loss of suitable area (fraction of
initially suitable cells that became unsuitable by 2050) and the simulated effective
colonization rate (fraction of newly suitable cells by 2050 that were effectively
colonized) using two extreme values of the LDD probability range, that is, 0
and 0.1.

To determine the time-lag of the colonization of newly suitable habitats, the
analyses were run for 500 years, keeping the environmental parameters at their
2050 values.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Occurrence data are available from Figshare (https://doi.org/10.6084/m9.
figshare.8289650).

Code availability
Migclim 1.7 and all the R scripts for the analyses presented here are available on
GitHub69.
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