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A B S T R A C T
Background

Prion diseases are a group of invariably fatal neurodegenerative disorders affecting humans
and a wide range of mammals. An essential part of the infectious agent, termed the prion, is
composed of an abnormal isoform (PrPSc) of a host-encoded normal cellular protein (PrPC). The
conversion of PrPC to PrPSc is thought to play a crucial role in the development of prion
diseases and leads to PrPSc deposition, mainly in the central nervous system. Sporadic
Creutzfeldt–Jakob disease (sCJD), the most common form of human prion disease, presents
with a marked clinical heterogeneity. This diversity is accompanied by a molecular signature
which can be defined by histological, biochemical, and genetic means. The molecular
classification of sCJD is an important tool to aid in the understanding of underlying disease
mechanisms and the development of therapy protocols. Comparability of classifications is
hampered by disparity of applied methods and inter-observer variability.

Methods and Findings

To overcome these difficulties, we developed a new quantification protocol for PrPSc by
using internal standards on each Western blot, which allows for generation and direct
comparison of individual PrPSc profiles. By studying PrPSc profiles and PrPSc type expression
within nine defined central nervous system areas of 50 patients with sCJD, we were able to
show distinct PrPSc distribution patterns in diverse subtypes of sCJD. Furthermore, we were
able to demonstrate the co-existence of more than one PrPSc type in individuals with sCJD in
about 20% of all patients and in more than 50% of patients heterozygous for a polymorphism
on codon 129 of the gene encoding the prion protein (PRNP).

Conclusion

PrPSc profiling represents a valuable tool for the molecular classification of human prion
diseases and has important implications for their diagnosis by brain biopsy. Our results show
that the co-existence of more than one PrPSc type might be influenced by genetic and brain
region–specific determinants. These findings provide valuable insights into the generation of
distinct PrPSc types.
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Introduction

Transmissible spongiform encephalopathies or prion dis-
eases are neurodegenerative disorders characterized by
posttranslational conversion and cerebral accumulation of a
pathological isoform (PrPSc) of a host-encoded membrane-
associated glycoprotein (cellular prion protein, PrPC) [1].
These diseases include scrapie in sheep, bovine spongiform
encephalopathy in cattle, chronic wasting disease in cervids,
and sporadic, genetic, or acquired human prion diseases [2].
The most common human prion disease, the sporadic form of
Creutzfeldt–Jakob disease (sCJD), is clinically characterized by
rapidly progressive dementia, neurologic dysfunction includ-
ing myoclonic involuntary movements, and, finally, a terminal
state of severe cognitive impairment leading to death within
months from the onset of clinical symptoms [3]. Various
clinical phenotypes can be observed, e.g., patients with ataxia
opposed to dementia as the initial symptom or patients with
anopsia as a prominent clinical feature. This marked clinical
heterogeneity observed in sCJD is reflected by the presence of
diverse sCJD types [4] and is not yet fully understood.

It is known that various isolates, or strains, of prions may be
propagated within genetically identical hosts, leading to
distinct clinical and pathological features [5,6]. The apparent
diversity of human prion diseases may, at least in part, be
attributed to the presence of distinct prion strains in affected
individuals. In agreement with this, distinct clinical pheno-
types of human prion diseases present with diverse deposi-
tion patterns of PrPSc in addition to disparate biochemical
properties of PrPSc [7,8]. Since nucleic acids do not copurify
with prion infectivity and prion strains do not seem to be
encoded by differences in PrP primary structure, the
hypothesis that PrPSc itself may encode strain-specific
phenotypic properties within its tertiary or even quaternary
structure has to be considered [9,10]. This assumption is
supported by the presence of strain-specific N-terminal
cleavage of PrPSc upon Western blot analysis following
limited digestion with proteinase K [9].

Another important factor in phenotype variability is the
host genotype of the gene encoding the prion protein
(PRNP). It is well established that the polymorphism at codon
129, encoding either methionine or valine in PRNP,
influences the disease phenotype [8].

Thus, the classification of human prion diseases is based on
the clinical presentation of the affected individual, PRNP
status in concert with neuropathological findings, and the
biochemical analysis of PrPSc [11–13]. Previous studies have
focused on the assessment of the fragment sizes of unglycosy-
lated PrPSc and the ratios of the three glycoforms of PrPSc as
seen on Western blot following protease treatment [12,13].

Although there is some disparity in the exact number of
mobilities of the unglycosylated PrPSc fragment, researchers
agree that this fragment principally migrates between 19 and
21 kDa [12,13]. Since the resolution of one-dimensional gel
electrophoresis is limited, it is likely that additional species of
N-terminal fragments will be identified if more accurate
techniques, such as two-dimensional immunoblot or mass
spectrometry, are utilized. In fact, recent studies using two-
dimensional gel electrophoresis of human sCJD brain
homogenates strongly suggest that this is the case [14,15]. In
order to simplify comparability of our study to published
work, we decided to distinguish two principal mobilities of
unglycosylated PrPSc i.e., 21 kDa (high) and 19 kDa (low),
thereby accepting that both the high and the low PrPSc

fragments show a certain degree of variation.
In agreement with the fact that the predominant PrPSc type

may be indicative of the sCJD type, previous studies have
demonstrated that the co-existence of more than one PrPSc

type is a rare event [8]. In the light of these data, the finding
that the co-existence of more than one PrPSc type within one
individual occurs in 30% of all patients if multiple regions of
the brain are investigated [16] came as a surprise. Because of
the limited sample size in the latter study, the question of the
true incidence of co-existence of more that one PrPSc type
within one individual has remained unanswered.
It has been shown that the spatial analysis of histopatho-

logical changes often referred to as the lesion profile may
provide a tool to discriminate various clinically diverse types
of prion diseases [8,17]. A major drawback of this method,
however, is the considerable inter-observer variability. Thus it
has been virtually impossible to compare published lesion
profiles [8,13].
Here, we assess the distribution of PrPSc types in nine

central nervous system regions in a cohort of 50 patients with
sCJD, using PrPSc profiling. Furthermore, we address the
question of co-existence of more than one PrPSc type in sCJD-
affected individuals.

Methods

Selection of Patients
Cases in this study were derived from an unselected series

of patients with clinically, genetically, and neuropathologi-
cally proven sCJD (Tables 1 and 2). All tissue specimens
originated from patients referred to the Swiss National
Reference Centre for Prion Diseases, and the specimens were
processed according to established guidelines regarding
safety and ethics. Frozen brain tissue was stored at �80 8C
and samples were taken from the following brain regions:
frontal, parietal, occipital, and temporal cortex, and the

Table 1. Demographic Characteristics and Classification of Patients with sCJD Included in the Study

CJD Type All Types MM1 MV1 MV2 VV2 MM2 VV1

Number of patients n ¼ 50 n ¼ 30 n ¼ 5 n ¼ 6 n ¼ 6 n ¼ 2 n ¼ 1

Age at onset (y) 69.1 6 8.5 69.2 6 8.5 70.7 6 13.1 70.3 6 7.1 69.0 6 6.2 71.8/64.8 53.7

Disease duration (mo) 5.3 6 5.2 3.2 6 1.5 6.8 6 7.8 13.8 6 7.9 5.3 6 1.3 2/2.5 14.2

Male:female ratio 28:22 15:15 3:2 4:2 5:1 0:2 1:0

DOI: 10.1371/journal.pmed.0030014.t001
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putamen, thalamus, midbrain, medulla oblongata, and cer-
ebellum.

For positive control, neuropathologically proven sCJD
cases (Codon 129 VV, PrPSc type 2 and Codon 129 MM,
PrPSc type 1) were chosen. For negative control, a non-
demented, age-matched autopsy case was utilized.

Protein Analysis
Brain-tissue homogenates (10% w/v) were prepared in

homogenization buffer (100 mM NaCl, 10 mM EDTA, 100 mM
Tris-HCl, 0.5% NP40, 0.5% NaDOC [pH 6.9]) using a
RiboLyser (Hybaid, Ashford, United Kingdom) and stored at
�80 8C until use. Samples, containing 25 lg of protein, were
digested with Proteinase K (PK-recombinant PCR-grade
solution with a specific activity of 41.3 U/mg, measured by a
hemoglobin-activity test [Roche, Basel, Switzerland]) for 30
min at 37 8C with a concentration of 0.03 U (40 lg/ml) per
sample. Proteinase K was stored at �80 8C in storage buffer
(50% glycerol, 10 mM Tris-HCl [pH 7.5], 2.9 mg/ml CaCl2).
Proteins were separated on a 12% SDS-PAGE (10 3 10.5 cm,
Hoefer, San Francisco, California, United States) and then
transferred (1.5 h at 250 mA) to a nitrocellulose membrane
(Protran, Schleicher & Schuell, Dassel, Germany) using a wet-
blotting system (Bio-Rad, Hercules, California, United States).
Membranes were incubated overnight with monoclonal anti-
body 3F4 [18] (Signet, Dedham, Massachusetts, United States)
at a dilution of 1:2,000. After washing, HRP-conjugated
rabbit-anti-mouse-IgG-c (Zymed, San Francisco, California,
United States) served as the secondary antibody at a dilution
of 1:20,000. The signal was visualized by enhanced chem-
iluminescence using a VersaDoc 5000 imaging station (Bio-
Rad). Cases were typed according to the size of the protease-
resistant unglycosylated PrP fragment [12,13], and relative
quantification of the signal was performed employing
Quantity One software (Bio-Rad).

To quantify PrPSc, serial dilutions of a standard sCJD brain
homogenate (33, 16.5, and 8.25 lg of protein) were used on
each Western blot to generate a standard curve. Quantifica-
tion was performed only if the square of the correlation
coefficient of the standard curve was above 0.93 (r2 . 0.93).

Selected cases were separated by SDS-urea-PAGE. For this,
we adapted a published protocol [19]. Briefly, the stacking gel
was composed of 11.1% of a 60% acrylamid/0.8% bis-
acrylamid mixture, 27.7% Tris-HCl 0.6M (pH 6.8), 1.3%
SDS, 1.6% APS, 0.2% Temed (N,N, N, N,-tetra-methyl-ethyl-
enediamine [Bio-Rad]), and 8 M urea, and the resolving gel
was comprised of 44% of a 60% acrylamid/0.8% bis-

acrylamid mixture, 53.9% Tris-HCl 1.875 M (pH 8.8), 1.4%
SDS, 0.6% APS, 0.1% Temed (N,N, N, N,-tetra-methyl-ethyl-
enediamine [Bio-Rad]), and 8 M urea.

PRNP Analysis
Genomic DNA was extracted from the buffy-coat fraction

of peripheral blood or from brain tissue. The complete PRNP
open reading frame was analyzed using established methods
[20].

Neuropathology
Tissue from selected patients (n ¼ 32) was fixed in 10%

formalin. Tissue blocks from frontal, parietal, occipital, and
temporal cortex, and the putamen, thalamus, midbrain,
medulla oblongata, and cerebellum, localized adjacent to
the specimens used for biochemical analysis, were selected,
decontaminated for 1 h with 98% formic acid and embedded
in paraffin. Sections (3 lm) were subjected to conventional
staining and to immunostaining for glial fibrillary acidic
protein (Dako), and for PrP (3F4), upon hydrolytic autoclav-
ing according to published protocols [20].
Spongiosis was evaluated on a 0–4 scale (not detectable,

mild, moderate, severe, and status spongiosus). Gliosis and
PrPSc content were scored on a 0–3 scale (not detectable,
mild, moderate, severe). PrPSc accumulation patterns were
described as synaptic, perivacuolar, patchy, or plaque-like.
Averaging of the three scores resulted in the value that was
employed in order to obtain the lesion profile for individual
patients [8]. Histological analysis was performed by two
independent investigators blinded to clinical data, codon-129
status, and PrP biochemistry.

Results

Reliable Quantification of PrPSc Using Internal Standards
Routinely, quantification of PrPSc is performed by compar-

ing the signal intensities on Western blot analysis following
limited proteinase K digestion. While this method is highly
specific and objective, it does not allow for the comparison of
samples run on separate gels owing to variations in the
blotting process, antibody binding efficiencies, or differences
in visualization reaction. In order to circumvent these
problems, we developed a system whereby these variables
are compensated for by quantifying the signal intensity of a
serially diluted PrPSc standard on every Western blot. The
resulting standard curve is then used to quantify PrPSc

content in defined brain regions. The reliability and

Table 2. PrPSc Quantities in Defined Brain Areas

CJD Type Region

Frontal Temporal Parietal Occipital Putamen Thalamus Midbrain Medulla Cerebellum

MM1 9.9 (6 9.8) 7.6 (6 10.5) 11.9 (6 10.4) 14.4 (6 9.3) 2.6 (6 2.7) 5.6 (6 5.5) 0.4 (6 0.9) 0.1 (6 0.2) 3.1 (6 4.0)

VV2 1.6 (6 3.2) 1.4 (6 1.7) 1.1 (6 1.7) 0.7 (6 1.3) 13.6 (6 5.3) 15.9 (6 9.5) 10.0 (6 6.9) 3.1 (6 2.0) 15.7 (6 10.4)

MV1 13.3 (6 10.2) 12.3 (6 10.3) 11.7 (6 10.7) 7.1 (6 8.0) 10.6 (6 14.3) 5.7 (6 5.5) 2.4 (6 2.5) 1.6 (6 2.2) 10.0 (6 8.3)

MV2 11.6 (6 10.4) 6.8 (6 5.6) 5.8 (6 4.8) 10.6 (6 14.6) 16.2 (6 10.2) 22.3 (6 11.9) 11.3 (6 10.1) 6.4 (6 3.5) 21.0 (6 28.6)

MM2 32.3, 0.5 33.3, 17.3 6.0, 7.4 26.3, 0.0 3.0, 0.0 24.6, 2.4 2.3, 0.2 0.0, 0.0 1.2, 1.1

VV1 2.1 3.4 4.5 2.4 0.2 0.0 0.0 0.0 0.0

Quantities are presented in arbitrary units, measured in relation to the employed PrPSc standard.

DOI: 10.1371/journal.pmed.0030014.t002
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feasibility of this method was assessed by analyzing nine
different brain areas on a cohort of 50 patients with sCJD (see
Table 1; Figure 1). Standard curves were accepted only if the
square of the correlation coefficient was above 0.93. Our
PrPSc standard is available to the scientific community and
should facilitate comparison of PrPSc quantities present in
defined samples.

Molecular Analysis of sCJD Using PrPSc Profiling
Nine defined brain areas of 50 subjects with sCJD were

analyzed. They showed a mean age of 69.1 y (6 8.5) and a
gender ratio of 28 males to 22 females. Patients were grouped
according to both their genotype at codon 129 of the PRNP
gene and to their predominant PrPSc type (Table 1), in line
with the classification introduced by Parchi [8], and included

MM1 (n¼ 30), MV1 (n¼ 5), MV2 (n¼ 6), VV2 (n¼ 6), MM2 (n¼
2), and VV1 (n ¼ 1).
Analysis of the relative amounts of PrPSc in various brain

regions revealed distinct distribution patterns, which seem to
be dependent on the type of PrPSc and on the host’s codon-
129 polymorphism. Cases with a slower-migrating unglycosy-
lated band of PrPSc (;21 kDa) and homozygosity for
methionine on codon 129 (MM type 1) harbor significant
amounts of PrPSc in cortical regions (frontal, parietal,
temporal, and occipital) and the thalamus, smaller and
variable amounts in the putamen and cerebellum, and very
low or undetectable amounts in the midbrain and medulla
oblongata (Figure 1). PrPSc quantities for this cohort are
listed in Table 2.

Figure 1. Comparison of PrPSc Profiles to Lesion Profiles

(A) Schematic drawing indicating sampled areas which are used for the generation of PrPSc profiles (red boxes).
(B) Biochemical PrPSc profiles are indicated in the upper panel, whereas histological lesion profiles are shown in the lower panel. Patients were grouped
according to [12] in MM1, MV1, MV2, and VV2. Brain regions are shown on the x-axis. Values for PrPSc amounts are given in arbitrary units measured in
relation to the PrPSc standard. Values for lesion profiles were obtained by averaging the scores for spongiosis (scored on a scale from 0–4), astrogliosis,
and PrP immunoreactivity (both scored on a scale from 0–3). Black dots represent individual patients and black lines within boxes represent medians;
boxes encompass 25th and 75th percentiles of distribution. One outlier (denoted by asterisk: MV2, cerebellum, PrPSc content¼ 84.1) has been omitted
in the graphical representation.
DOI: 10.1371/journal.pmed.0030014.g001
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In contrast, cases with a faster-migrating unglycosylated
band of PrPSc (;19 kDa) and homozygosity for valine on
codon 129 (VV type 2) had only scant amounts of PrPSc in the
cerebral cortex, but showed marked PrPSc deposition within
the putamen, thalamus, the midbrain, the cerebellum and, to
a lesser extent, in the medulla oblongata, although this was
clearly detectable (Figure1). PrPSc quantities for this cohort
are listed in Table 2.

Whereas the deposition patterns described above were
relatively uniform in the respective groups, the picture is not
so obvious for patients heterozygous for methionine or valine
at codon 129. In this group, patients with a slower-migrating
unglycosylated band of PrPSc (;21 kDa, MV1) exhibited
deposition patterns reminiscent of MM1 individuals. How-
ever, PrPSc deposition was more abundant in the temporal
than in the occipital lobe, and deposits within the putamen
showed greater variability (Figure 1).

Patients with a faster-migrating unglycosylated band of
PrPSc (;19 kDa, MV2) exhibited abundant PrPSc deposition

in the putamen, thalamus, midbrain, and cerebellum, clearly
detectable deposits in the medulla, and, in addition, variable
deposits within the cerebral hemispheres (Figure 1). PrPSc

quantities for these two cohorts and for patients either
homozygous for methionine (MM2, n¼ 2) or valine (VV1, n¼
1) are listed in Table 2.
Because this method possesses some similarities with lesion

profiling, usually used to discriminate between sCJD types or
between prion strains in rodents, we have termed this method
‘‘PrPSc profiling’’ [8,17].

High Proportion of PrPSc Type Co-Existence in Patients

Expressing MV at Codon 129
Studies on relatively small cohorts of patients with sCJD

evidenced the co-occurrence of different PrPSc types within
one individual [16]. We analyzed nine distinct brain regions
of 50 patients with sCJD, resulting in a total of 450 analyzed
specimens. In patients where routine SDS-PAGE analysis

Figure 2. Western Blots Illustrating the Principle of PrPSc Profiling and the Co-Occurrence of Multiple PrPSc Types within One Patient with sCJD

(Upper panel) The PrPSc content in various central nervous system regions (indicated below respective lanes) was quantified by plotting the signal
intensity on a standard curve created by a serially diluted PrPSc standard (standard 1 to 3). Proteinase K digestion is indicated above lanes.
(Lower panel) Presence of a faster-migrating unglycosylated band of PrPSc (;19 kDa, PrPSc type 2, frontal and temporal cortex) and a slower-migrating
unglycosylated band of PrPSc (;21 kDa, PrPSc type 1, occipital cortex) within one patient with sCJD (codon 129 MM). Controls include PrPSc type 1 and 2
and a sample from a non prion-diseased individual. Proteinase K digestion is indicated above lanes.
DOI: 10.1371/journal.pmed.0030014.g002
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suggested possible co-occurrence of distinct PrPSc types,
high-resolution SDS-urea-PAGE was performed (n ¼ 13).

A total of nine sCJD individuals showed non-ambiguous co-
occurrence of distinct PrPSc types as evidenced by the
presence of a faster- and a slower-migrating unglycosylated
band of PrPSc, either in different brain areas or within one
brain region (Figure 2). In the remainder of the cases (n¼ 41),
only a single PrPSc type could be detected in all nine different
brain areas. In cases where more than one PrPSc type was
observed, the topological distribution of distinct strain types
revealed no obvious pattern (Table 3). However, the cerebral
hemispheres appeared to be less affected than the thalamus,
putamen, cerebellum, midbrain, and medulla oblongata.
Whereas co-occurrence of both PrPSc types was found in
only two cases within the frontal lobe, the midbrain was
affected in three cases, the medulla in four cases, and the
putamen, thalamus, and cerebellum each in five cases.

The most striking feature of patients harboring two PrPSc

types was their association with the methionine/valine poly-
morphism at codon 129. Six out of 11 methionine/valine
heterozygotes displayed both PrPSc types, whereas only three
of 32 individuals homozygous for methionine produced more
than one PrPSc type. In the groups of patients expressing
valine/valine on codon 129, we were not able to detect more
than one PrPSc type.

Neuropathological Analysis
The analysis of the neuropathological lesion pattern was

performed according to published protocols [8,13] with the
purpose to: (i) evaluate whether immunohistochemical PrP
staining and histological lesions (gliosis, spongiosis) correlate
with the absolute amount of biochemically assessed PrPSc,
and (ii) compare whether lesion profiles generated by
histological assessment parallel biochemically defined PrPSc

profiles. In order to facilitate these analyses, patients with
sCJD were subdivided into following groups: MM1, MV1,
MV2, VV2 [12]. Patients presenting with multiple PrPSc types
were allocated according to the dominating PrPSc type.

The MM1 group (n¼20) showed marked involvement of the
frontal and temporal cerebral cortex and slightly fewer
lesions in the cerebellum, whereas the putamen, thalamus,
midbrain, and medulla oblongata showed relatively modest
pathological alterations (see Figure 1).

In the MV1 cohort (n¼ 4), a similar lesion profile could be

observed (Figure 1). The observation that this group showed a
greater variability might in part be attributable to the smaller
sample size.
MV2-predominant patients (n¼ 4) exhibited a consistently

high degree of neuropathological lesions with relative sparing
of the occipital cortex and the cerebellum.
In the VV2 group (n ¼ 4), pathological alterations were

most pronounced in the cerebellum and in the cerebral
cortex, as well as in the thalamus and midbrain. The medulla
oblongata did not show a prominent involvement (Table S1).
The correlation between histological lesions as assessed by

lesion profiling and the presence of PrPSc evaluated by PrPSc

profiling was not striking. Although brain regions with
abundant PrPSc tend to show severe histopathological lesions,
the reverse does not always seem to be the case. Brain regions
with massive histopathological lesions (i.e., cortical regions in
VV2 patients) show only scarce depositions of PrPSc.
The comparison of lesion profiles to PrPSc profiles

demonstrates that the patterns obtained within the above-
mentioned groups are only roughly concurrent. Whereas
PrPSc profiles show marked differences between investigated
regions, lesion profiles tend to show a more homogeneous
picture with fewer marked regional differences.
In cases in which multiple PrPSc types could be observed,

we investigated whether the predominant deposition pattern
of PrPSc was associated with a particular biochemical type of
PrPSc. Areas with a predominance of PrPSc type 1 (;21-kDa
unglycosylated band of PrPSc) displayed diffuse, synaptic PrP
immunoreactivity, whereas areas with a PrPSc type 2 (;19-
kDa unglycosylated band of PrPSc), showed mainly periva-
cuolar or plaque-like deposits of PrP (Figure 3).

Discussion

The precise classification of sCJD by molecular, histopa-
thological, and clinical parameters is important for under-
standing the underlying pathogenesis, unraveling possible
etiological causes, and devising efficient therapeutic proto-
cols. Several classification systems for human prion diseases
have been proposed in the past [8,13]. Although the exact
number of molecular subtypes is still a matter of debate,
there is a consensus that these may be differentiated on the
basis of clinical data, histopathological analysis, codon-129
status of PRNP, and biochemical analysis of PrPSc.

Table 3. Different PrPSc Types in Defined Central Nervous System Regions of sCJD Patients

CJD type Age Gender Region

Frontal Temporal Parietal Occipital Putamen Thalamus Midbrain Medulla Cerebellum

MM1 65 F 2 2 2 1 2 2 1 þ 2 1 þ 2 1 þ 2

MM1 58 F 1 1 1 1 1 2 1 1 1

MM1 78 F 1 þ 2 ND 1 ND 1 1 þ 2 ND ND 1

MV1 54 M 1 þ 2 1 ND 1 1 þ 2 1 þ 2 1 1 1 þ 2

MV2 81 M 1 1 2 1 1 þ 2 1 þ 2 1 1 1

MV2 66 M 2 2 2 2 1 þ 2 2 2 2 2

MV2 73 M 2 2 2 2 2 2 2 1 þ 2 1 þ 2

MV2 63 M 2 2 2 2 1 þ 2 1 þ 2 1 þ 2 1 þ 2 1 þ 2

MV2 67 M 2 2 2 2 1 þ 2 1 þ 2 1 þ 2 1 þ 2 1 þ 2

ND, not detected (PrPSc content below the threshold of the assay).

DOI: 10.1371/journal.pmed.0030014.t003
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The approach described here represents a new method for
the discrimination of molecular subtypes of human prion
diseases. By quantifying PrPSc in nine brain regions of
patients with sCJD, we were able to determine the PrPSc

profile of 50 patients with sCJD. Because individual measure-
ments are calibrated to internal standards, this method
allows, for the first time, for absolute quantification of PrPSc

in prion-diseased individuals, and therefore enables the
direct comparison of individual PrPSc profiles, excluding
inter-observer and methodological variations. Detailed anal-
ysis of different molecular subtypes of sCJD confirmed the
feasibility of this method and showed subtype-specific differ-
ences in the regional distribution of PrPSc. Besides advancing
the molecular analysis of sCJD, these data demonstrate that if
confirmation of sCJD by brain biopsy is indispensable, it
should only be carried out taking into account the sCJD
subtype. In patients belonging to the MM1 groups [8], high
amounts of PrPSc are present in all cortical areas and would
favor a cortical biopsy site. In patients belonging to the VV2
group [8], minimal amounts of PrPSc in the cerebral cortex
would designate the cerebellum or the thalamus as sites for
successful confirmation of the disease by biopsy.

An earlier study that attempted to assess the distribution of
PrPSc within the central nervous system was performed only
on a small patient cohort and did not employ internal PrPSc

standards—thus impeding the direct comparison of analyses
[16]. In other studies, lesion profiles were based on
histological scores [8,13,17]. Although this histological,
score-based method has certain advantages and can be
carried out on fixed tissue, we believe that PrPSc profiling
will be a valuable tool for prion research. Since both our work
and other studies show that there is no strict correlation
between histopathological alterations and the presence of

PrPSc, one could assume that PrPSc profiling is superior since
it measures PrPSc, which is believed to constitute an essential
component of prion infectivity [4,16].
Even though experiments in rodents performed some years

ago demonstrated the phenomenon of multiple PrPSc types
within one animal [21], incongruity regarding the frequency
of co-occurrence of different PrPSc types in sCJD patients still
endures. Initial studies suggested that this is a relatively rare
event, occurring in less than 5% of patients [8]. This low
incidence may, at least partially, be attributed to the fact that
these analyses are routinely performed on a limited range of
distinct brain regions per patient [8,13]. The fact that region-
specific presence of distinct PrPSc types may occur in sCJD
was highlighted by a publication investigating ten defined
regions within the central nervous system in 14 patients with
sCJD [16]. The authors found more than one PrPSc type in five
individuals and hypothesized that the co-occurrence of more
than one PrPSc type could be the rule, rather than the
exception, if the entire central nervous system was inves-
tigated. In our analysis of nine distinct central-nervous-
system regions in 50 patients with sCJD using a standardized
protocol [22], we detected more than one PrPSc type in nine
individuals. The observation that most patients harboring
two PrPSc types are codon-129 methionine/valine hetero-
zygotes stresses the significance of this polymorphism in the
replicative cycle of PrPSc.
Analysis of the spatial distribution of PrPSc types revealed

that the putamen, thalamus, medulla oblongata, and cere-
bellum are prone to accommodate multiple PrPSc types
simultaneously, whereas this was rarely observed in the
cerebral cortex. The fact that central nervous system regions
which simultaneously harbor two PrPSc types are complex
structures containing diverse subsets of neuronal cells

Figure 3. Histological Analysis of Central-Nervous-System Sections in One Patient with sCJD with Co-Occurrence of Multiple PrPSc Types

H&E-stained (A and B) and PrP-immunostained (C and D) cortical areas showing pronounced spongiosis and deposition of PrPSc in a plaque-like (C; PrPSc

type 2, see Figure 2, frontal area on the lower panel) and synaptic (D; PrPSc type 1, see Figure 2, occipital area on the lower panel) pattern.
DOI: 10.1371/journal.pmed.0030014.g003
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indicates that susceptibility of target cells may, at least
partially, determine the type of PrPSc that is produced. This
finding is compatible with the target-cell hypothesis of prion-
strain diversity [23,24].

In conclusion, the present study has introduced a new
method for the characterization of human prion diseases.
The approach described here will aid in understanding the
molecular diversity of this disease entity. Furthermore, these
data imply that the subsets of cells present in specific brain
areas in concert with the polymorphism on codon 129 of
PRNP may have a fundamental role in determining which
PrPSc type is preferentially replicated.

Supporting Information

Table S1. Histological Assessment of the VV2 Subgroup of Patients

Cases 1 to 4: spongiosis is scored on a scale from 0–4; astrogliosis and
PrP immunoreactivity are scored on a scale from 0–3.

Found at DOI: 10.1371/journal.pmed.0030014.st001 (41 KB DOC).
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Patient Summary

Background. Prions cause neurodegenerative diseases in humans and in
animals like cows, sheep, or deer. In most cases, humans get sick
sporadically, when, for unknown reasons, normal proteins in the brain
(called PrPc) change to harmful prions (called PrPSc). The PrPSc proteins
then cause severe degeneration of the brain, which causes death within
a matter of months. The most common human prion disease is sporadic
Creutzfeld-Jacob Disease, or sCJD. The disease is rare (it affects roughly
one in a million people worldwide), and there is no cure or therapy.
Scientists still understand little about why and how, in some cases,
normal proteins change to the harmful prions that destroy the brain.
Although all patients with prion disease die, there are differences
between individual cases. Neurological symptoms, particularly early in
the disease, are variable. Scientists have also found that there are
different versions of the gene that codes for the normal PrPc protein.
Moreover, in some patients all of the prions found in the brain after
autopsy are alike, whereas in other patients there seem to be several
types of prions. In addition, brain autopsies have shown differences in
the amount of prions and in the extent of damage present in different
parts of the brain.

Why Was This Study Done? The hope is that understanding the
differences between individual cases might eventually provide some
insight into the causes of the disease and suggest ways to treat it. To
catalogue and examine those differences, however, it is important to
come up with standard assays that allow meaningful comparisons. The
authors of this study wanted to develop such assays.

What Did the Researchers Do and Find? They developed an assay,
which they called PrPSc profiling. The new assay measures the amount of
prions in different parts of the brain in a way that makes it easy to
compare autopsy samples from different patients analyzed at different
times and by different people. They then used this assay to study
autopsy samples from 50 patients for whom they knew the disease
symptoms and the genetic make-up. For each patient sample, they
examined nine different brain regions for the amount of prions present.
They also checked whether all of the prions were alike or whether there
were different types of prions. They found that there were distinct prion-
distribution patterns in different sCJD subtypes. In about 20% of the
patients, they found more than one prion type. Many of these patients
had a specific genetic make-up, and the mixture of prion types was
mostly seen in a few specific brain regions.

What Do These Findings Mean? PrPSc profiling should prove to be
useful for the classification of human prion diseases and should allow
scientists worldwide to compare their samples. The specific results in the
50 patient samples will encourage other researchers to look for
correlations between disease subtypes and prion-distribution patterns,
and to further explore the link between genetic make-up, specific brain
region, and the existence of more than one prion type. The hope is that
the combined data will help scientists to understand the disease and to
come up with ways to prevent or treat it.

Where Can I Get More Information Online? The following websites
provide information on prion diseases.
The National Creutzfeldt–Jakob Disease Surveillance Unit in Edinburgh,
United Kingdom:
http://www.cjd.ed.ac.uk
The European and Allied Countries Collaborative Study Group of CJD:
http://www.eurocjd.ed.ac.uk
US National Institute of Mental Health pages on prion diseases:
http://www.ninds.nih.gov/disorders/tse/tse.htm
US Centers of Disease Control and Prevention pages on prion diseases:
http://www.cdc.gov/ncidod/dvrd/prions
Helpguide pages on Creutzfeld-Jacob disease:
http://www.helpguide.org/elder/creutzfeldt_jakob.htm
Wikipedia pages on prions:
http://en.wikipedia.org/wiki/prions
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