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The first k-invariant of a double loop space is trivial 

By 

DOMINIQUE ARLETTAZ 

Introduction. Let X be a connected simple CW-complex and let X[n] denote the 
n-th Postnikov section of X: X [n] is a CW-complex obtained from X by adjoining 
cells of dimension > n + 2, such that ~iX [n] = 0 for i > n and zciX [n] ~ zhX for i < n 
(for example X [ I ] = K ( ~ a X ,  1)). The k-invariants k"+1(X) of X are maps 
X [ n -  1] ~ K(~,X,  n + 1) and therefore cohomology classes in H "+ I(X [ n -  1]; ~,X), 
n > 2. All spaces we consider in this paper are connected CW-complexes. Our main 
objective is to show the following 

Theorem A. I f  X is a connected double loop space, then its first k-invariant 
k3(X) ~ H3(K (Tcl X, 1); 7c2X ) satisfies 

k 3 ( X )  = O. 

We prove actually a more general result. Let us define, for each prime number p, Lp 
as the product of all primes q < p ( L  2 = 1). 

Theorem B. Let p be a prime number and n : = 2p - 2. I f  X is a connected n-fold 
loop space ( X ~ - Y P Y  for some CW-complex Y) such that ~ i X = O  for l < i < n  
(i.e., X [ n - 1 ] = K ( T c t X ,  1)), then the first non-trivial k-invariant of X, k"+a(X)~ 
H" + 1 (K (~ 1 X, 1); ~, X), satisfies 

Lpk"+ l(X) = O. 

Theorem A corresponds to the case p = 2. Both theorems are true without any finite- 
ness condition on the space X. 

The paper is organized as follows. In Sections 1 and 2 we establish some preliminaries 
which will be used in the proof  of the main theorems: in Section 1 we describe the 
homomorphism induced in homology by the diagonal map K --, (K x K, K v K), when 
K is an Eilenberg-MacLane space K (G, 2) and G an arbitrary abelian group; in Section 2 
we look at the corresponding homomorphism in cohomology and at the cohomology 
suspension or*: H*(K(G, 2); M ) ~  H * -  I(K(G, 1); M). Section 3 is then devoted to the 
proof of Theorems A and B. In Section 4 we give a second proof by showing that these 
theorems are actually equivalent to well-known results on classical cohomology opera- 
tions. Finally, some consequences concerning the Hurewicz homomorphism are dis- 
cussed in Section 5. 
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1. The integral homology of K(G, 2) and the diagonal map. The purpose of this section 
is to study the homomorphism induced in homology by the diagonal map 

d: K--*(K x K , K  v K), 

when K is an Eilenberg-MacLane space K(G,2) and G an arbitrary abelian group. 
This will be necessary in order to understand the (co)homology suspension, which we 
use in the proof of the main theorems. Note that d is actually the composition 2 o A, 
where A is the diagonal map K ~ K  x K = K(G|  and 2 the inclusion 
K x K ~ ( K  x K ,  K v K ) .  

Throughout this section we use Cartan's description of H,(K(G,2);~ r) [2, Ex- 
pos6 11] and the following notation: E(y, 2j + 1) denotes the exterior algebra (over 2g) 
generated by y of degree 2j + 1 and P(x, 2j) the divided power algebra with one gener- 
ator x of degree 2j (P(x, 2 j )=  ~ [y l (x )=  x ,  ~)2(x) . . . .  ] ,  deg ym(X ) = 2jm, 7m(X) yn(X)= 
(m + n)! 

- -  ?m+,(x)). We start by assuming that G is a cyclic group. 
m!n! 

Lemma 1.1. Let K be K(~,  2). Then the induced homomorphism 

d.: Hi(K;~ ) -~ Hi(K x K, K v K ;~ )  

maps Hi(K;Z ) injectively onto a direct summand of Hi(K x K, K v K;Z) /f i > 2 and 
d,(H2(K;ZT)) = O. 

P r o o f .  It is known that H,(K;Z ' )~P(x ,  2); the induced homomorphism 
A,: H , ( K ; Z ) ~ H , ( K  x K;Z) satisfies clearly A,(x) = x |  i + 1 |  and for m __> 1, 
according to [2, Expos6 7], 

A,(Ym(X))=ym(A,(x))=ym(x| l + l |  ~ ?k(X| l) ym k( I |  
k - O  

= Z ~k(x) | vm_k(x). 
k=O 

Since the homomorphism 2,: H2m(K x K;~g)-+Hzm(K x K, K v K ; ~  7) is surjective 
with kernel Hzm(K;;g) | Ho(K;Z ) | Ho(K;~) | Hz,,(K;~g), we get d,(ym(x)) = 

m - 1  

2,A,(?m(x))= ~2 ?k(X)| Consequently, d,(Hz(K;~g))=O but, if m >  1, 
k = l  

d,: H2m(K;~g)~Hzm(K x K, K v K;~)  is split injective. 

Lemma 1.2. Let p be a prime number, r a positive integer, K = K(~/pr,2) and let us 
consider the homomorphism d,: Hi(K;~ r) ~ Hi(K x K, K v K;~g). 

(a) d, is injective for 2 < i < 2p; d,(Hz(K;TZ)) = 0; /f i = 2p, the kernel of d, is the 
cyclic subgroup of order p of Hzv(K;~ r) ~- 7Z/pr+ l; 

(b) d, maps HI(K;~ r) onto a direct summand of HI(K x K, K v K;Z) for 0 <- i <- 2p. 

P r o o f. For i > 2, Hi(K;;g) is the p-torsion subgroup of H~(C | D), where C is the 
GO 

complex P(xo,2 ) | E(yo,3 ) with the differential 6(Xo) = 0, 6(Yo) = - prxo, D = | Dj 
j = l  

and for j > l ,  Dj is the complex E(xj, 2p j + l ) |  j + 2 )  with 6(x j )=0 ,  
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6(yj) = p x] (cf. [2, Expos6 11]). Thus, for 2 < i <- 2 p, Hi(K; ;g ) is the p-torsion subgroup 
of H,(C). Observe that 

~0, if i is odd, 

Hi(C) ~- (2g/mp r, generated by 7m(Xo), if i = 2m. 

In particular, H2m(K;~g ) is cyclic of order pr for 1 < m < p and of order pr+i if m = p. 
m--1 

Because d,(7m(Xo)) = 7~ 7k(Xo)| 7~_k(Xo) as in the previous proof, we conclude that 
k = l  

d , (H2(K;~) )  = 0 and that d , (H2~(K;~) )  is a cyclic direct summand of order pr of 
H2~(K x K, K v K ; Z )  for l < m <  p. 

We are now able to consider arbitrary abelian groups. 

Lemma 1.3. Let G be an abelian group, K = K (G, 2), p a prime and i an integer satisfying 
0 <- i <-- 2p. Let us call T (respectively S) the subgroup of  all torsion elements of  Hi(K;Z)  
(resp. of  HI(K x K, K v K;~) )  whose order is not divisible by p. Then the image of  the 
homomorphism H I ( K ; ~ ) / T ~  HI(K x K, K v K;~g)/S induced by d ,  is a direct summand 
of  Hi(K x K, K v K;~g)/S. 

P r o o f. For  finitely generated abelian groups G, the inclusion of the image of 
Hi(K;2~)/T into HI(K x K, K v K;~r)/S splits naturally by Lemmas 1.1 and 1.2. Now 
let G be an arbitrary abelian group and {G~} ~A the set of its finitely generated subgroups: 
G = lira G~ and K = lim K (G~, 2). The lemma follows from the fact that the diagonal 

) 
map and homology commute with direct limits. 

Lemma 1.4. Let G be an abelian group, K = K (G, 2) and p a prime number. 

(a) I f  z belongs to the kernel of  d, :  H2v_ 1 (K; ;g) ~ H2v_ 1 (K x K, K v K; ~),  then z 
is a torsion element whose order is not divisible by p. 

(b) I f  z belongs to the kernel of  d, :  H2p(K;~  ) ~ H2p(K x K, K v K;2g), then there 
exists an element y ~ H2p(K;Z ) such that z = py. 

P r o o f. (a) We first assume that G is finitely generated. Lemma 1.1 implies that z is 
a torsion element; let mp ~ be its order (with (m, p) = 1, r _>- 0). Since mz is a p-torsion 
element of the kernel of d , ,  we deduce from Lemma 1.2(a) that mz = 0, i.e., z is of order 
m. Now, if G is an arbitrary abelian group and {G~}~A the set of its finitely generated 
subgroups, let K s denote K(G~,2) and 0~: H , ( K ~ ; ; g ) - + H , ( K ; ~ )  the homomorphism 
induced by the inclusion G~ % G. If z ~ H2p_ l(K;;g) satisfies d , ( z ) =  0, there exists an 
a ~ A  and a z ~ e H 2 v _ l ( K ~ ; ~  r) such that d , ( z ~ ) = 0  and O~(z~)=z, because 
H 2 p _ t ( K ; ~  ) = lim H2p_I(K~;~  ). We have seen that the order of z~ is not divisible by 

p; of course the same is true for the order of z. 
(b) We start again by considering a finitely generated group G; let H 

2g/p ~ G "" �9 �9 ~/pr" be its p-torsion subgroup. As above, it is clear that z is a torsion 
element, of order mp ~ (with (m, p) = 1, r >_ 0). Assertion (b) is trivial when r = 0. If r is 
positive, it follows from Lemma 1.2(a) that mz is an element of H2p(K(2g/p~,2);~ r) 
�9 "'" GH2v(K(2g/P~',2); ~)  ~- 2g/P ~+1 | "'" | ~"+1 and that pmz  = O. Therefore 
mz = pw for some w ~ Hzp(K;;g); this proves (b) since (m, p) = 1. If G is an arbitrary 
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abelian group, we proceed as above. Let z be an element of H z p ( K ; Z  ) with d,(z) = O. 
There is an ~ ~ A and a z ,~  Hzp (Kz ;Z  ) such that  d,(z~) = 0 and O~(z,) = z. But we have 
just  established the existence of a y ~ H z p ( K , ; ~  r) satisfying z~ = py~; consequently, 
z = py  where y : =  O~(y~). 

Let us recall the following result on the stable homology  of Ei lenberg-MacLane spaces 
(cf. [2, Expos6 11, Thm. 2]). 

J 
Lemma 1.5. Let Mj  be the product of  all prime numbers q < ~ + 1, for j > I (M 1 = 1). 

Then for any abelian group G and for each integer n > 2, one has 

Mr n);Z ~) = 0 

i f  n < i < 2 n .  

Corollary 1.6. For a prime p, let us call L r the product of  all prime numbers q < p 
(L 2 = 1). Let G be an abelian group, p a prime number and n : =  2p - 2. Then the iterated 
homology suspension (a,)n: H,+ I (K(G , 1);~) -~ HE,+ I (K(G,n  + 1);~') satisfies 

Lp(a ,)"(H,+ 1 ( K  ( G, 1); ~7)) = 0. 

P r o o f. We use again the nota t ion  K = K(G, 2) and consider the sequence 

Hn+I(K(G, 1);~ r) ~* ' Hn+z(K;;g ) d* ' Hn+z(K x K, K v K ; ~  r) 

where d ,  o or, = 0 by [3, p. 382]. If x ~ H,+ a(K(G, 1);~),  Lemma 1.4(b) implies that  
M,  , M,  , 1 

a , ( x ) =  py  for some y ~ H , + 2 ( K ; Z  ). Consequently,  (cr,) ( x ) = - - ( o , )  - ( p y ) =  
P P 

M , ( o , ) " -  1 (y) = 0 in Hzn + 1 (K (G, n + 1); ~)  by the previous lemma. The corol lary is then 
M. 

proved s ince  Lp = 1 .  
P 

2. The cohomology suspension. In this section we are interested in the homomorph i sm 
induced in cohomology by the diagonal  map  d, in order to study the cohomology 
suspension a*: H* (K (G, 2); M) -~ H* - 1 (K (G, 1); M). 

Lemma 2.1. Let p be a prime number, G and M abelian groups, K = K(G,2)  and 
let d~: H o m ( H z p ( K  x K , K  v K ; ; g ) , M ) ~ H o m ( H z p ( K ; ~ r ) , M )  denote the homomor- 
phism induced by d. I f  x ~Hom(Hzp(K;~r ) ,M)  fulfills p x  = O, then there exists a 
w ~ Hom(H2v(K x K, K v K;zr ) ,M)  such that d~(w) = x and pw = O. 

P r o o f. We consider d , :  H 2 p ( K ; ~  r) -+ H2p(K • K, K v K;~ ' )  and call N its kernel, I 
its image, and ~ and q~ the inclusions N c~ HE p(K;~  ) and I c~ H2p(K • K, K V K ; ~ )  
respectively. We get the exact sequence 

0 , H o m ( I , M )  a~ , Hom(H2p(K;7Z) ,M ) ~ , H o m ( N , M )  >- . .  
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If z is an element of N, then O(z )=  py  for some y ~ H2p(K;~  ) by Lemma 1.4(b); 
therefore O"(x) (z) = x(O(z)) = x (py)  = px(y)  = 0. We obtain O~(x) = 0 and the exis- 
tence of an element v ~ Horn (I, M) with d ~ (v) = x and p v = 0. Now let R (respectively S) 
be the subgroup of all torsion elements o f I  (resp. ofHzp(K x K, K v K;2~)) whose order 
is not divisible by p and let us consider the diagram 

Hom ( H  2 p (K x K, K v K; Z)/S, M) , Horn (H 2 p(K x K, K v K; ~),  M) 

1r 1~" 
0 ~ Horn (I/R, M) " , H o m  (I, M) ~ , H o m  (R, M), 

where ~b" and ~b- are induced by ~b. Since multiplication by p: R ~ R is an isomorphism, 
multiplication by p: H o m ( R , M ) ~  Hom(R,M)  is also an isomorphism: consequently, 
v(v) = 0 because pv(v) = v(pv) = 0, and v belongs to the image of # by exactness of the 
bot tom sequence. Lemma 1.3 and the commutativity of the diagram complete the proof. 

Lemma 2.2. Let p be a prime number, G and M abelian groups, K = K (G, 2) and let 
de: Ex t (H2p_l (K x K, K v K;~r),M) ~ E x t ( H z p _ I ( K ; Z ) , M  ) denote the homomor- 
phism induced by d. I f  x ~ Ext (H 2 ;_ 1 ( K ; ~),  M) is such that p x = O, then x belongs to the 
image of  d ~ . 

P r o o f .  Let T (respectively S) be the subgroup of all torsion elements of 
Hzp I ( K ; ~ )  (resp. of H2p_I(K x K, K v K;2g)) whose order is not  divisible by p. 
Since px  = 0 a similar argument shows that x is in the image of the homomor-  
phism #: E x t ( H z p _ I ( K ; ~ r ) / T , M ) ~ E x t ( H z p _ I ( K ; ~ ) , M )  induced by the canonical 
surjection. According to Lemmas 1.3 and 1.4(a), the homomorphism 
d ~ : Ext (/-/2 p -  1 (K • K, K v K; 2~)/S, M) ~ Ext ( H  2 p _ 1 (K; ;g)/T, M) induced by d is sur- 
jective. Therefore x is an element of the image of # o d ~ and thus, also of the image of d * . 

Corollary2.3. Let p be a prime number, G and M abelian groups and let 
a*: HEp(K(G,2);M)-*  HEp-I(K(G,  1);M) denote the cohomology suspension. I f  
x E HEp(K(G, 2); M) satisfies px  = 0, then a*(x) = O. 

P r o o f .  Let d*: HEp(K x K , K  v K ; M ) - ~ H 2 p ( K ; M )  be the homomorphism in- 
duced by d, where K = K(G, 2), and let us look at the short exact sequence given by the 
universal coefficient theorem: 

Ext (H2 p- 1 (K; 2~), M) ~L~ H 2 v (K; M) ~ Horn (H2 p(K; 2~), M). 

By Lemma2.1,  there exists an element w ~ H 2 p ( K x K ,  K v K ; M )  such that 
o(d*(w)) = O(x) and pw = 0. Consequently, x - d*(w) belongs to the image of r and 
p(x - d*(w)) = 0. But Lemma 2.2 then implies that x - d*(w) (and, of course, also x) 
belongs to the image of d*. Finally the sequence 

H2p(K • K, K V K; M) d* H2p(K; M) ~* H2P-I(K(G,  1); M), 

where g* o d* = 0 (of. [3, p. 383]), produces the assertion. 
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3. Proof of Theorems A and B. 

Proposition 3.1. Let G and M be abelian groups, p a prime number, n : = 2p - 2 and 
Lp the product of all primes q < p. Then the n-fold iterated cohomology suspension 
(a*)": H2"+ I(K(G, n + 1);M) ~ H"+ I(K(G, 1);M) satisfies: 

Lp(G*)"(y)  = o 

for all y ~ H2"+I(K(G, n + I) ;M).  

P r o o f. Let us begin by noting that Lemma 1.5 and the universal coefficient theorem 
imply that M, y = 0 and, consequently, that M,(a*)"(y) = 0 (in the special case p = 2, 

that 2(cr*)Z(y) = 0). Now we want to show that, in fact, Lp(a*)"(y) = 0, where Lp M, 
P 

(in particular if p = 2, that (a*)2(y)= 0). Let us call x the element (a*)"- l(Lp y) 
H"+2(K(G,2);M); clearly, x fulfills px = 0. Thus we may apply Corollary2.3:  

Lp(a*)"(y) = a*(x) = O. 

This proposition enables us to prove Theorems A and B. Let p be a prime, n : = 2p - 2, 
Y an n-connected CW-complex and X = ~2" Y We assume that niX = 0 for 1 < i < n and 
define G : =  n x X = n, + x Y and M : =  n ,X  = n 2. Y The first non-trivial k-invariant of X, 
k"+ ~(X) ~ H"+ ~(K (G, 1);m), and that of Y,, k2"+ ~(Y) E Hz"+ I(K (G, n + 1);M), are relat- 
ed by the formula 

( ~ , ) . ( k 2 .  + l ( y ) )  = k" + ~(X),  

where (6*)" is the n-fold iterated cohomology suspension [3, p. 438]. Therefore, Proposi- 
tion 3.1 provides the assertion 

Lpk"+l(X) = O. 

For instance if p = 2, the conclusion is: k3(X) = 0. 

4. Classical cohomology operations. We have just established the equivalence of the 
assertions of Proposit ion 3.1 and Theorem B (respectively Theorem A if p = 2). The 
purpose of this section is to notice that these assertions are actually equivalent to known 
results on classical cohomology operations; this provides a second proof of our main 
theorems. 

Let G be an abelian group, p a prime number, n : =  2 p - 2 ,  and as usual let 
ppa ~ H2,+I(K(G, n + I);G/pG) denote the Steenrod operation of degree n (cf. [2, Ex- 
pos6 15]); ifp = 2, we interpret P21 as the Steenrod square Sq2e HS(K(G, 3); G/2G). This 
is a stable cohomology operation and it is well-known that 

( , )  ( ~ , ) . ( p 1 )  = o, 

where (~*)": H 2 n + 1 (K (G, n + 1); G/p G) ~ H" + I(K (G, 1); G/p G) is the n-fold iterated co- 
homology suspension. The vanishing of (a,)~(ppl) is equivalent to the following 
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Proposition 4.1. Let G and M be abelian groups, p a prime and n : = 2p - 2. I f  an element 
u e H 2" + 1 (K (G, n + 1); M) is such that p u = 0, then the n-fold iterated cohomology suspen- 
sion (tr*)n: H2n+I(K(G, n + I ) ;M) ~ Hn+I(K(G, 1);M) satisfies 

(~*)"(u)  = o.  

P r o o f. Consider the isomorphism given by the universal coefficient theorem 

Hzn+I(K(G, n + I ) ;M) ~ Hom(H2,+I(K(G, n + 1);~'), M) 
| Ext(H2n(K(G, n + l) ; :g),M), 

and note that the p-primary component  of H2,+I(K(G,n+ l);:g), respectively 
Ha,(K(G, n + 1);~), is G/pG, respectively 0 (cf. [2, Expos6 11]). Since pu = 0, u corre- 
sponds to an element ti of Hom(G/p G, M) and we write u .  for the induced homomor-  

phism H*(- ;  G/pG) ~ H*(- ;  M). For  instance, the element Ppl e Hom(G/pG, G/pG), cor- 
responding to Ppt, is the identity. Therefore, it turns out that u = ~,(Pp~). It  is then easy 
to complete the proof: (a*)"(u) = (a*)"(O.(P~l)) = O.((~r*)"(~l)) = 0. 

R e m a r k 4.2. Proposi t ion 3.1 is an immediate consequence of Proposit ion 4.1 be- 
cause pLpy = 0 for all y ~ H 2"+ I(K(G, n + 1); M). On the other hand, if u is an element 
ofH2n+I(K(G, n -t- I ) ;M) such that pu = 0, then p(a*)n(u) = 0 and Proposi t ion 3.1 (i.e., 
Lp(a*)"(u) = 0) implies that (a*)n(u) = 0 since p doesn't  divide Lp. Thus, the statements 
of Proposit ions 3.1 and 4.1 (and consequently also Theorem B and assertion (*)) are 
equivalent. 

In the case p = 2, Theorem A corresponds to the vanishing of (o'*)2(Sq2), where 
SqEeHS(K(G, 3); G/2G) is the Steenrod square and (o-*)2 is the double suspension 
HS(K(G, 3); G/2G) --, H~(K(G, 2); G/2G) ~ H3(K(G, 1); G/2G) (observe that ff*(Sq 2) is 
the cup-square). We close this section by mentioning related results on Postnikov and 
Pontryagin squares. 

Let Poe H3(K(G, 1); F(G)) be the Postnikov square and P1 e H4(K(G, 2); F(G)) the 
Pontryagin square; these cohomology operations are defined in [5, w Here G is an 
abelian group and F(G) is the group introduced in [4, Chapter  II].  

Lemma  4.3. Let a*: H4(K(G, 2); F(G)) ~ Ha(K(G, 1); F(G)) be the cohomology suspen- 
sion. Then a*(PO = PO. 

P r o o f. The path fibration K(G, 1 ) ~  PK(G, 2)& K(G,2) over K(G, 2) induces the 
diagram 

h* H~(K(G, 2); G) 

? 
Hg(K(G, 2); F(G)) 

, HE(pK(G, 2),K(G, 1);G)~ ~ H~(K(G, 1);G) 

h* ~ H3(K(G, 1); H4(PK (G,2), K (G, 1); r(G)), F(G)) 

where 6 is the connecting homomorph i sm of the cohomology sequence of the pair 
(PK(G, 2), K(G, 1)); 6 is an isomorphism since PK(G,  2) is a contractible space. The 
diagram commutes because P1 is natural  and P1 ~ 6 = 6 ~ PO by [5, (5.5)]. Recall that the 
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suspension a* is 6-1 o h* by definition [3, p. 373], and that a* maps the characteristic 
class of HZ(K (G, 2); G) onto the characteristic class of H ~ (K (G, 1); G). It is then obvious 
that a* (P1) = Po. 

The Whitehead exact sequences (cf. [4] and [3, p. 555, Thin. 3.12]) of the Eilenberg- 
MacLane spaces K(G,2) and K(G, 3), 

n#K(G, 2) --+ H4(K(G, 2);~ r) ~ F(G) -,  n3K(G, 2 ) ~ . . .  

and 
�9 . ~ nsK(G ,3) ~Hs(K(G,  3);~) ~ G/2G ~ n4K(G, 3) ~ . . . ,  

= 0  = 0  

yield the isomorphisms H4(K(G, 2);JE ) ~-F(G) and H5(K(G, 3);~ r) ~-G/2G. Thus, we 
may consider the homology suspension a , :  F (G) ~ G/2 G which induces the homomor- 
phism a : H*(-;  F(G)) ---> H*(-; G/2G). 

We are interested in a.(P 0 e H4(K(G,2); G/2G): we obtain the definition of this co- 
homology operation if we replace, in the definition of P1 given in [5, w 5], ?(g) and 
[g,g'] ~ F(G) by a,(7(g)) and a,([g,g']) respectively (cf. [4, w 5] for the notation 7(-) and 
[-,-]). It turns out that a,(?(g)) is the class of g in G/2G and consequently that 
a,([g,g']) = 0 (for any g,g'e G). Therefore, a.(P0 is exactly the cup-square cr*(Sq 2) 
H4(K(G, 2); G/2G) and our result for p = 2 (Theorem A) is equivalent to the assertion 
a*(a.(PO)= O, where a* denotes the cohomology suspension H4(K(G,2);G/2G)-~ 
H3(K(G, 1); G/2G). Since o.(Po) = a.(a*(P0) = cr*(o.(Pa)), we get: 

P r o p o s i t i o n  4.4. a.(Po) = a * ( a . ( P 0 )  = 0. 

5. The Hurewicz homomorphism. Let us close with some remarks on the Hurewicz 
homomorphism. The following conclusion follows immediately from Theorem A. 

Corollary 5.1. I f  X is a connected double loop space, then 

X[2] ~ K(nlX,  I ) x K(g2X, 2 ). 

Corollary 5.2. I f  X is a connected double loop space, then the Hurewicz homomorphism 
Hu: 7~2X -+ HE(X; ~7) iS split injeetive. 

P r o o f. The previous corollary implies the existence of a map f:  X ~ K ( T r 2 X  , 2), 
which induces an isomorphism f , :  n2X & n2 X. Therefore, the composition 

H u  f .  
g2 x > H2(X;Z) , H2(K(n2X,2);K ~) 

is also an isomorphism and Hu maps nzX injeetively onto a direct summand of 
H2(X;Z). 

In order to generalize this result to the situation of Theorem B, let us recall the 
following 
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Lemma 5.3 [1, Lemma 4]. Let X be a connected simple CW-complex and assume that the 
k-invariant k ~+ 1 (X) is a cohomology class of finite order s in Hn+ I (X  [n - 1]; ~z,X). Then 
there exists a map f:  X - ,  K ( ~  X,  n) such that the induced homomorphism f . :  ~z,X - ,  ~, X 
is multiplication by s. 

Corollary 5.4. Let p be a prime number, n : = 2p - 2 and Lp the product of all primes 
q < p. I f  X is a connected n-fold loop space such that ~ziX = 0 for 1 < i < n, then the 

/ r - - - 7 \  / r - ~ 7 \  

Hurewicz homomorphism Hu: ill)   s~l~ injective. 

P r o o f. We know from Theorem B that  the order  of k "+ 1 (X) divides Lp. Con- 
sequently, the map  f :  X-~K(TcnX,  n ) given by Lemma5.3  induces an isomorphism 

f , :  r c . ( X ; 2 g [ ~ l )  & ~ . ( K ( ~ . X , n ) ; Z I ~ l ) .  The argument used in the proof of Corol- 

lary 5.2 gives the desired assertion. 
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