# The first $k$-invariant of a double loop space is trivial 

By<br>Dominique Arlettaz

Introduction. Let $X$ be a connected simple $C W$-complex and let $X[n]$ denote the $n$-th Postnikov section of $X: X[n]$ is a $C W$-complex obtained from $X$ by adjoining cells of dimension $\geqq n+2$, such that $\pi_{i} X[n]=0$ for $i>n$ and $\pi_{i} X[n] \cong \pi_{i} X$ for $i \leqq n$ (for example $X[1]=K\left(\pi_{1} X, 1\right)$ ). The $k$-invariants $k^{n+1}(X)$ of $X$ are maps $X[n-1] \rightarrow K\left(\pi_{n} X, n+1\right)$ and therefore cohomology classes in $H^{n+1}\left(X[n-1] ; \pi_{n} X\right)$, $n \geqq 2$. All spaces we consider in this paper are connected $C W$-complexes. Our main objective is to show the following

Theorem A. If $X$ is a connected double loop space, then its first $k$-invariant $k^{3}(X) \in H^{3}\left(K\left(\pi_{1} X, 1\right) ; \pi_{2} X\right)$ satisfies

$$
k^{3}(X)=0 .
$$

We prove actually a more general result. Let us define, for each prime number $p, L_{p}$ as the product of all primes $q<p\left(L_{2}=1\right)$.

Theorem B. Let $p$ be a prime number and $n:=2 p-2$. If $X$ is a connected $n$-fold loop space $\left(X \cong \Omega^{n} Y\right.$ for some $C W$-complex $Y$ ) such that $\pi_{i} X=0$ for $1<i<n$ (i.e., $X[n-1]=K\left(\pi_{1} X, 1\right)$ ), then the first non-trivial $k$-invariant of $X, k^{n+1}(X) \in$ $H^{n+1}\left(K\left(\pi_{1} X, 1\right) ; \pi_{n} X\right)$, satisfies

$$
L_{p} k^{n+1}(X)=0 .
$$

Theorem A corresponds to the case $p=2$. Both theorems are true without any finiteness condition on the space $X$.

The paper is organized as follows. In Sections 1 and 2 we establish some preliminaries which will be used in the proof of the main theorems: in Section 1 we describe the homomorphism induced in homology by the diagonal map $K \rightarrow(K \times K, K \vee K)$, when $K$ is an Eilenberg-MacLane space $K(G, 2)$ and $G$ an arbitrary abelian group; in Section 2 we look at the corresponding homomorphism in cohomology and at the cohomology suspension $\sigma^{*}: H^{*}(K(G, 2) ; M) \rightarrow H^{*-1}(K(G, 1) ; M)$. Section 3 is then devoted to the proof of Theorems A and B. In Section 4 we give a second proof by showing that these theorems are actually equivalent to well-known results on classical cohomology operations. Finally, some consequences concerning the Hurewicz homomorphism are discussed in Section 5.

1. The integral homology of $K(G, 2)$ and the diagonal map. The purpose of this section is to study the homomorphism induced in homology by the diagonal map

$$
d: K \rightarrow(K \times K, K \vee K)
$$

when $K$ is an Eilenberg-MacLane space $K(G, 2)$ and $G$ an arbitrary abelian group. This will be necessary in order to understand the (co)homology suspension, which we use in the proof of the main theorems. Note that $d$ is actually the composition $\lambda \circ \Delta$, where $\Delta$ is the diagonal map $K \rightarrow K \times K=K(G \oplus G, 2)$ and $\lambda$ the inclusion $K \times K \hookrightarrow(K \times K, K \vee K)$.

Throughout this section we use Cartan's description of $H_{*}(K(G, 2) ; \mathbb{Z})$ [2, Exposé 11 ] and the following notation: $E(y, 2 j+1$ ) denotes the exterior algebra (over $\mathbb{Z}$ ) generated by $y$ of degree $2 j+1$ and $P(x, 2 j)$ the divided power algebra with one generator $x$ of degree $2 j\left(P(x, 2 j)=\mathbb{Z}\left[\gamma_{1}(x)=x, \gamma_{2}(x), \ldots\right]\right.$, $\operatorname{deg} \gamma_{m}(x)=2 j m, \gamma_{m}(x) \gamma_{n}(x)=$ $\left.\frac{(m+n)!}{m!n!} \gamma_{m+n}(x)\right)$. We start by assuming that $G$ is a cyclic group.

Lemma 1.1. Let $K$ be $K(\mathbb{Z}, 2)$. Then the induced homomorphism

$$
d_{*}: H_{i}(K ; \mathbb{Z}) \rightarrow H_{i}(K \times K, K \vee K ; \mathbb{Z})
$$

maps $H_{i}(K ; \mathbb{Z})$ injectively onto a direct summand of $H_{i}(K \times K, K \vee K ; \mathbb{Z})$ if $i>2$ and $d_{*}\left(H_{2}(K ; \mathbb{Z})\right)=0$.

Proof. It is known that $H_{*}(K ; \mathbb{Z}) \cong P(x, 2)$; the induced homomorphism $\Delta_{*}: H_{*}(K ; \mathbb{Z}) \rightarrow H_{*}(K \times K ; \mathbb{Z})$ satisfies clearly $\Delta_{*}(x)=x \otimes 1+1 \otimes x$ and for $m \geqq 1$, according to [2, Exposé 7],

$$
\begin{aligned}
\Delta_{*}\left(\gamma_{m}(x)\right) & =\gamma_{m}\left(\Delta_{*}(x)\right)=\gamma_{m}(x \otimes 1+1 \otimes x)=\sum_{k=0}^{m} \gamma_{k}(x \otimes 1) \gamma_{m-k}(1 \otimes x) \\
& =\sum_{k=0}^{m} \gamma_{k}(x) \otimes \gamma_{m-k}(x)
\end{aligned}
$$

Since the homomorphism $\lambda_{*}: H_{2 m}(K \times K ; \mathbb{Z}) \rightarrow H_{2 m}(K \times K, K \vee K ; \mathbb{Z})$ is surjective with kernel $\quad H_{2 m}(K ; \mathbb{Z}) \otimes H_{0}(K ; \mathbb{Z}) \oplus H_{0}(K ; \mathbb{Z}) \otimes H_{2 m}(K ; \mathbb{Z})$, we get $d_{*}\left(\gamma_{m}(x)\right)=$ $\lambda_{*} \Delta_{*}\left(\gamma_{m}(x)\right)=\sum_{k=1}^{m-1} \gamma_{k}(x) \otimes \gamma_{m-k}(x)$. Consequently, $d_{*}\left(H_{2}(K ; \mathbb{Z})\right)=0$ but, if $m>1$, $d_{*}: H_{2 m}(K ; \mathbb{Z}) \rightarrow H_{2 m}(K \times K, K \vee K ; \mathbb{Z})$ is split injective.

Lemma 1.2. Let $p$ be a prime number, $r$ a positive integer, $K=K\left(\mathbb{Z} / p^{r}, 2\right)$ and let us consider the homomorphism $d_{*}: H_{i}(K ; \mathbb{Z}) \rightarrow H_{i}(K \times K, K \vee K ; \mathbb{Z})$.
(a) $d_{*}$ is injective for $2<i<2 p ; d_{*}\left(H_{2}(K ; \mathbb{Z})\right)=0$; if $i=2 p$, the kernel of $d_{*}$ is the cyclic subgroup of order $p$ of $H_{2 p}(K ; \mathbb{Z}) \cong \mathbb{Z} / p^{r+1}$;
(b) $d_{*}$ maps $H_{i}(K ; \mathbb{Z})$ onto a direct summand of $H_{i}(K \times K, K \vee K ; \mathbb{Z})$ for $0 \leqq i \leqq 2 p$.

Proof. For $i \geqq 2, H_{i}(K ; \mathbb{Z})$ is the $p$-torsion subgroup of $H_{i}(C \otimes D)$, where $C$ is the complex $P\left(x_{0}, 2\right) \otimes E\left(y_{0}, 3\right)$ with the differential $\delta\left(x_{0}\right)=0, \delta\left(y_{0}\right)=-p^{r} x_{0}, D=\bigotimes_{J=1}^{\infty} D_{j}$ and for $j \geqq 1, D_{j}$ is the complex $E\left(x_{j}, 2 p^{j}+1\right) \otimes P\left(y_{j}, 2 p^{j}+2\right)$ with $\delta\left(x_{j}\right)=0$,
$\delta\left(y_{j}\right)=p x_{j}\left(\right.$ cf. [2, Exposé 11]). Thus, for $2 \leqq i \leqq 2 p, H_{i}(K ; \mathbb{Z})$ is the $p$-torsion subgroup of $H_{\imath}(C)$. Observe that

$$
H_{i}(C) \cong\left\{\begin{array}{l}
0, \text { if } i \text { is odd, } \\
\mathbb{Z} / m p^{r}, \text { generated by } \gamma_{m}\left(x_{0}\right), \text { if } i=2 m
\end{array}\right.
$$

In particular, $H_{2 m}(K ; \mathbb{Z})$ is cyclic of order $p^{r}$ for $1 \leqq m<p$ and of order $p^{r+1}$ if $m=p$. Because $d_{*}\left(\gamma_{m}\left(x_{0}\right)\right)=\sum_{k=1}^{m-1} \gamma_{k}\left(x_{0}\right) \otimes \gamma_{m-k}\left(x_{0}\right)$ as in the previous proof, we conclude that $d_{*}\left(H_{2}(K ; \mathbb{Z})\right)=0$ and that $d_{*}\left(H_{2 m}(K ; \mathbb{Z})\right)$ is a cyclic direct summand of order $p^{r}$ of $H_{2 m}(K \times K, K \vee K ; \mathbb{Z})$ for $1<m \leqq p$.

We are now able to consider arbitrary abelian groups.
Lemma 1.3. Let $G$ be an abelian group, $K=K(G, 2), p$ a prime and $i$ an integer satisfying $0 \leqq i \leqq 2 p$. Let us call $T$ (respectively $S$ ) the subgroup of all torsion elements of $H_{i}(K ; \mathbb{Z})$ (resp. of $H_{i}(K \times K, K \vee K ; \mathbb{Z})$ ) whose order is not divisible by $p$. Then the image of the homomorphism $H_{i}(K ; \mathbb{Z}) / T \rightarrow H_{i}(K \times K, K \vee K ; \mathbb{Z}) / S$ induced by $d_{*}$ is a direct summand of $H_{i}(K \times K, K \vee K ; \mathbb{Z}) / S$.

Proof. For finitely generated abelian groups $G$, the inclusion of the image of $H_{i}(K ; \mathbb{Z}) / T$ into $H_{i}(K \times K, K \vee K ; \mathbb{Z}) / S$ splits naturally by Lemmas 1.1 and 1.2. Now let $G$ be an arbitrary abelian group and $\left\{G_{\alpha}\right\}_{\alpha \in A}$ the set of its finitely generated subgroups: $G=\underline{\longrightarrow} G_{\alpha}$ and $K=\xrightarrow{\lim } K\left(G_{\alpha}, 2\right)$. The lemma follows from the fact that the diagonal map $\vec{\rightarrow}$ and homology commute with direct limits.

Lemma 1.4. Let $G$ be an abelian group, $K=K(G, 2)$ and $p$ a prime number.
(a) If $z$ belongs to the kernel of $d_{*}: H_{2 p-1}(K ; \mathbb{Z}) \rightarrow H_{2 p-1}(K \times K, K \vee K ; \mathbb{Z})$, then $z$ is a torsion element whose order is not divisible by $p$.
(b) If $z$ belongs to the kernel of $d_{*}: H_{2 p}(K ; \mathbb{Z}) \rightarrow H_{2 p}(K \times K, K \vee K ; \mathbb{Z})$, then there exists an element $y \in H_{2 p}(K ; \mathbb{Z})$ such that $z=p y$.
Proof. (a) We first assume that $G$ is finitely generated. Lemma 1.1 implies that $z$ is a torsion element; let $m p^{\mu}$ be its order (with $(m, p)=1, r \geqq 0$ ). Since $m z$ is a $p$-torsion element of the kernel of $d_{*}$, we deduce from Lemma 1.2(a) that $m z=0$, i.e., $z$ is of order $m$. Now, if $G$ is an arbitrary abelian group and $\left\{G_{\alpha}\right\}_{\alpha \in A}$ the set of its finitely generated subgroups, let $K_{\alpha}$ denote $K\left(G_{\alpha}, 2\right)$ and $\theta_{\alpha}: H_{*}\left(K_{\alpha} ; \mathbb{Z}\right) \rightarrow H_{*}(K ; \mathbb{Z})$ the homomorphism induced by the inclusion $G_{\alpha} \hookrightarrow G$. If $z \in H_{2 p-1}(K ; \mathbb{Z})$ satisfies $d_{*}(z)=0$, there exists an $\alpha \in A$ and a $z_{\alpha} \in H_{2 p-1}\left(K_{\alpha} ; \mathbb{Z}\right)$ such that $d_{*}\left(z_{\alpha}\right)=0$ and $\theta_{\alpha}\left(z_{\alpha}\right)=z$, because $H_{2 p-1}(K ; \mathbb{Z})=\xrightarrow{\lim } H_{2 p-1}\left(K_{\alpha} ; \mathbb{Z}\right)$. We have seen that the order of $z_{\alpha}$ is not divisible by $p$; of course the same is true for the order of $z$.
(b) We start again by considering a finitely generated group $G$; let $H \cong$ $\mathbb{Z} / p^{r_{1}} \oplus \cdots \oplus \mathbb{Z} / p^{r_{n}}$ be its $p$-torsion subgroup. As above, it is clear that $z$ is a torsion element, of order $m p^{r}$ (with ( $m, p$ ) $=1, r \geqq 0$ ). Assertion (b) is trivial when $r=0$. If $r$ is positive, it follows from Lemma 1.2(a) that $m z$ is an element of $H_{2 p}\left(K\left(\mathbb{Z} / p^{r_{1}}, 2\right) ; \mathbb{Z}\right)$ $\oplus \cdots \oplus H_{2 p}\left(K\left(\mathbb{Z} / p^{r_{n}}, 2\right) ; \mathbb{Z}\right) \cong \mathbb{Z} / p^{r_{1}+1} \oplus \cdots \oplus \mathbb{Z} / p^{r_{n}+1}$ and that $p m z=0$. Therefore $m z=p w$ for some $w \in H_{2 p}(K ; \mathbb{Z})$; this proves (b) since $(m, p)=1$. If $G$ is an arbitrary
abelian group, we proceed as above. Let $z$ be an element of $H_{2 p}(K ; \mathbb{Z})$ with $d_{*}(z)=0$. There is an $\alpha \in A$ and a $z_{\alpha} \in H_{2 p}\left(K_{\alpha} ; \mathbb{Z}\right)$ such that $d_{*}\left(z_{\alpha}\right)=0$ and $\theta_{\alpha}\left(z_{\alpha}\right)=z$. But we have just established the existence of a $y_{\alpha} \in H_{2 p}\left(K_{\alpha} ; \mathbb{Z}\right)$ satisfying $z_{\alpha}=p y_{\alpha}$; consequently, $z=p y$ where $y:=\theta_{\alpha}\left(y_{\alpha}\right)$.

Let us recall the following result on the stable homology of Eilenberg-MacLane spaces (cf. [2, Exposé 11, Thm. 2]).

Lemma 1.5. Let $M_{j}$ be the product of all prime numbers $q \leqq \frac{j}{2}+1$, for $j \geqq 1\left(M_{1}=1\right)$. Then for any abelian group $G$ and for each integer $n \geqq 2$, one has

$$
M_{i-n} H_{i}(K(G, n) ; \mathbb{Z})=0
$$

if $n<i<2 n$.
Corollary 1.6. For a prime $p$, let us call $L_{p}$ the product of all prime numbers $q<p$ $\left(L_{2}=1\right)$. Let $G$ be an abelian group, $p$ a prime number and $n:=2 p-2$. Then the iterated homology suspension $\left(\sigma_{*}\right)^{n}: H_{n+1}(K(G, 1) ; \mathbb{Z}) \rightarrow H_{2 n+1}(K(G, n+1) ; \mathbb{Z})$ satisfies

$$
L_{p}\left(\sigma_{*}\right)^{n}\left(H_{n+1}(K(G, 1) ; \mathbb{Z})\right)=0 .
$$

Proof. We use again the notation $K=K(G, 2)$ and consider the sequence

$$
H_{n+1}(K(G, 1) ; \mathbb{Z}) \xrightarrow{\sigma_{*}} H_{n+2}(K ; \mathbb{Z}) \xrightarrow{d_{*}} H_{n+2}(K \times K, K \vee K ; \mathbb{Z})
$$

where $d_{*}{ }^{\circ} \sigma_{*}=0$ by [3, p. 382]. If $x \in H_{n+1}(K(G, 1) ; \mathbb{Z})$, Lemma 1.4(b) implies that $\sigma_{*}(x)=p y$ for some $y \in H_{n+2}(K ; \mathbb{Z})$. Consequently, $\frac{M_{n}}{p}\left(\sigma_{*}\right)^{n}(x)=\frac{M_{n}}{p}\left(\sigma_{*}\right)^{n-1}(p y)=$ $M_{n}\left(\sigma_{*}\right)^{n-1}(y)=0$ in $H_{2 n+1}(K(G, n+1) ; \mathbb{Z})$ by the previous lemma. The corollary is then proved since $L_{p}=\frac{M_{n}}{p}$.
2. The cohomology suspension. In this section we are interested in the homomorphism induced in cohomology by the diagonal map $d$, in order to study the cohomology suspension $\sigma^{*}: H^{*}(K(G, 2) ; M) \rightarrow H^{*-1}(K(G, 1) ; M)$.

Lemma 2.1. Let $p$ be a prime number, $G$ and $M$ abelian groups, $K=K(G, 2)$ and let $d^{\natural}: \operatorname{Hom}\left(H_{2 p}(K \times K, K \vee K ; \mathbb{Z}), M\right) \rightarrow \operatorname{Hom}\left(H_{2 p}(K ; \mathbb{Z}), M\right)$ denote the homomorphism induced by $d$. If $x \in \operatorname{Hom}\left(H_{2 p}(K ; \mathbb{Z}), M\right)$ fulfills $p x=0$, then there exists a $w \in \operatorname{Hom}\left(H_{2 p}(K \times K, K \vee K ; \mathbb{Z}), M\right)$ such that $d^{\natural}(w)=x$ and $p w=0$.

Proof. We consider $d_{*}: H_{2 p}(K ; \mathbb{Z}) \rightarrow H_{2 p}(K \times K, K \vee K ; \mathbb{Z})$ and call $N$ its kernel, $I$ its image, and $\psi$ and $\phi$ the inclusions $N \hookrightarrow H_{2 p}(K ; \mathbb{Z})$ and $I \hookrightarrow H_{2 p}(K \times K, K \vee K ; \mathbb{Z})$ respectively. We get the exact sequence

$$
0 \longrightarrow \operatorname{Hom}(I, M) \xrightarrow{d^{\natural}} \operatorname{Hom}\left(H_{2 p}(K ; \mathbb{Z}), M\right) \xrightarrow{\psi^{\natural}} \operatorname{Hom}(N, M) \longrightarrow \cdots
$$

If $z$ is an element of $N$, then $\psi(z)=p y$ for some $y \in H_{2 p}(K ; \mathbb{Z})$ by Lemma 1.4(b); therefore $\psi^{\mathrm{h}}(x)(z)=x(\psi(z))=x(p y)=p x(y)=0$. We obtain $\psi^{\natural}(x)=0$ and the existence of an element $v \in \operatorname{Hom}(I, M)$ with $d^{\natural}(v)=x$ and $p v=0$. Now let $R$ (respectively $S$ ) be the subgroup of all torsion elements of $I$ (resp. of $H_{2 p}(K \times K, K \vee K ; \mathbb{Z})$ ) whose order is not divisible by $p$ and let us consider the diagram

where $\phi^{\natural}$ and $\phi^{\sim}$ are induced by $\phi$. Since multiplication by $p: R \rightarrow R$ is an isomorphism, multiplication by $p: \operatorname{Hom}(R, M) \rightarrow \operatorname{Hom}(R, M)$ is also an isomorphism: consequently, $v(v)=0$ because $p v(v)=v(p v)=0$, and $v$ belongs to the image of $\mu$ by exactness of the bottom sequence. Lemma 1.3 and the commutativity of the diagram complete the proof.

Lemma 2.2. Let $p$ be a prime number, $G$ and $M$ abelian groups, $K=K(G, 2)$ and let $d^{*}: \operatorname{Ext}\left(H_{2 p-1}(K \times K, K \vee K ; \mathbb{Z}), M\right) \rightarrow \operatorname{Ext}\left(H_{2 p-1}(K ; \mathbb{Z}), M\right)$ denote the homomorphism induced by d. If $x \in \operatorname{Ext}\left(H_{2 p-1}(K ; \mathbb{Z}), M\right)$ is such that $p x=0$, then $x$ belongs to the image of $d^{\#}$.

Proof. Let $T$ (respectively $S$ ) be the subgroup of all torsion elements of $H_{2 p-1}(K ; \mathbb{Z})$ (resp. of $H_{2 p-1}(K \times K, K \vee K ; \mathbb{Z})$ ) whose order is not divisible by $p$. Since $p x=0$ a similar argument shows that $x$ is in the image of the homomorphism $\mu: \operatorname{Ext}\left(H_{2 p-1}(K ; \mathbb{Z}) / T, M\right) \rightarrow \operatorname{Ext}\left(H_{2 p-1}(K ; \mathbb{Z}), M\right)$ induced by the canonical surjection. According to Lemmas 1.3 and 1.4(a), the homomorphism $d^{\sim}: \operatorname{Ext}\left(H_{2_{p-1}}(K \times K, K \vee K ; \mathbb{Z}) / S, M\right) \rightarrow \operatorname{Ext}\left(H_{2_{p-1}}(K ; \mathbb{Z}) / T, M\right)$ induced by $d$ is surjective. Therefore $x$ is an element of the image of $\mu \circ d^{\sim}$ and thus, also of the image of $d^{\#}$.

Corollary 2.3. Let $p$ be a prime number, $G$ and $M$ abelian groups and let $\sigma^{*}: H^{2 p}(K(G, 2) ; M) \rightarrow H^{2 p-1}(K(G, 1) ; M)$ denote the cohomology suspension. If $x \in H^{2 p}(K(G, 2) ; M)$ satisfies $p x=0$, then $\sigma^{*}(x)=0$.

Proof. Let $d^{*}: H^{2 p}(K \times K, K \vee K ; M) \rightarrow H^{2 p}(K ; M)$ be the homomorphism induced by $d$, where $K=K(G, 2)$, and let us look at the short exact sequence given by the universal coefficient theorem:

$$
\operatorname{Ext}\left(H_{2 p-1}(K ; \mathbb{Z}), M\right) \stackrel{\mathfrak{\tau}}{\rightarrow} H^{2 p}(K ; M) \xrightarrow{\varrho} \operatorname{Hom}\left(H_{2 p}(K ; \mathbb{Z}), M\right)
$$

By Lemma 2.1, there exists an element $w \in H^{2 p}(K \times K, K \vee K ; M)$ such that $\varrho\left(d^{*}(w)\right)=\varrho(x)$ and $p w=0$. Consequently, $x-d^{*}(w)$ belongs to the image of $\tau$ and $p\left(x-d^{*}(w)\right)=0$. But Lemma 2.2 then implies that $x-d^{*}(w)$ (and, of course, also $x$ ) belongs to the image of $d^{*}$. Finally the sequence

$$
H^{2 p}(K \times K, K \vee K ; M) \xrightarrow{d^{*}} H^{2 p}(K ; M) \xrightarrow{\sigma^{*}} H^{2 p-1}(K(G, 1) ; M),
$$

where $\sigma^{*} \circ d^{*}=0$ (cf. [3, p. 383]), produces the assertion.

## 3. Proof of Theorems $A$ and B.

Proposition 3.1. Let $G$ and $M$ be abelian groups, $p$ a prime number, $n:=2 p-2$ and $L_{p}$ the product of all primes $q<p$. Then the $n$-fold iterated cohomology suspension $\left(\sigma^{*}\right)^{n}: H^{2 n+1}(K(G, n+1) ; M) \rightarrow H^{n+1}(K(G, 1) ; M)$ satisfies:

$$
L_{p}\left(\sigma^{*}\right)^{n}(y)=0
$$

for all $y \in H^{2 n+1}(K(G, n+1) ; M)$.
Proof. Let us begin by noting that Lemma 1.5 and the universal coefficient theorem imply that $M_{n} y=0$ and, consequently, that $M_{n}\left(\sigma^{*}\right)^{n}(y)=0$ (in the special case $p=2$, that $2\left(\sigma^{*}\right)^{2}(y)=0$ ). Now we want to show that, in fact, $L_{p}\left(\sigma^{*}\right)^{n}(y)=0$, where $L_{p}=\frac{M_{n}}{p}$ (in particular if $p=2$, that $\left(\sigma^{*}\right)^{2}(y)=0$ ). Let us call $x$ the element $\left(\sigma^{*}\right)^{n-1}\left(L_{p} y\right)$ $\in H^{n+2}(K(G, 2) ; M)$; clearly, $x$ fulfills $p x=0$. Thus we may apply Corollary 2.3: $L_{p}\left(\sigma^{*}\right)^{n}(y)=\sigma^{*}(x)=0$.

This proposition enables us to prove Theorems A and B. Let $p$ be a prime, $n:=2 p-2$, $Y$ an $n$-connected $C W$-complex and $X=\Omega^{n} Y$. We assume that $\pi_{i} X=0$ for $1<i<n$ and define $G:=\pi_{1} X \cong \pi_{n+1} Y$ and $M:=\pi_{n} X \cong \pi_{2 n} Y$. The first non-trivial $k$-invariant of $X$, $k^{n+1}(X) \in H^{n+1}(K(G, 1) ; M)$, and that of $Y, k^{2 n+1}(Y) \in H^{2 n+1}(K(G, n+1) ; M)$, are related by the formula

$$
\left(\sigma^{*}\right)^{n}\left(k^{2 n+1}(Y)\right)=k^{n+1}(X)
$$

where $\left(\sigma^{*}\right)^{n}$ is the $n$-fold iterated cohomology suspension [3, p. 438]. Therefore, Proposition 3.1 provides the assertion

$$
L_{p} k^{n+1}(X)=0
$$

For instance if $p=2$, the conclusion is: $k^{3}(X)=0$.
4. Classical cohomology operations. We have just established the equivalence of the assertions of Proposition 3.1 and Theorem B (respectively Theorem A if $p=2$ ). The purpose of this section is to notice that these assertions are actually equivalent to known results on classical cohomology operations; this provides a second proof of our main theorems.

Let $G$ be an abelian group, $p$ a prime number, $n:=2 p-2$, and as usual let $P_{p}^{1} \in H^{2 n+1}(K(G, n+1) ; G / p G)$ denote the Steenrod operation of degree $n$ (cf. [2, Exposé 15]); if $p=2$, we interpret $P_{2}^{1}$ as the Steenrod square $S q^{2} \in H^{5}(K(G, 3) ; G / 2 G)$. This is a stable cohomology operation and it is well-known that

$$
\begin{equation*}
\left(\sigma^{*}\right)^{n}\left(P_{p}^{1}\right)=0, \tag{}
\end{equation*}
$$

where $\left(\sigma^{*}\right)^{n}: H^{2 n+1}(K(G, n+1) ; G / p G) \rightarrow H^{n+1}(K(G, 1) ; G / p G)$ is the $n$-fold iterated cohomology suspension. The vanishing of $\left(\sigma^{*}\right)^{n}\left(P_{p}^{1}\right)$ is equivalent to the following

Proposition 4.1. Let $G$ and $M$ be abelian groups, $p$ a prime and $n:=2 p-$ 2. If an element $u \in H^{2 n+1}(K(G, n+1) ; M)$ is such that $p u=0$, then the $n$-fold iterated cohomology suspension $\left(\sigma^{*}\right)^{n}: H^{2 n+1}(K(G, n+1) ; M) \rightarrow H^{n+1}(K(G, 1) ; M)$ satisfies

$$
\left(\sigma^{*}\right)^{n}(u)=0
$$

Proof. Consider the isomorphism given by the universal coefficient theorem

$$
\begin{aligned}
H^{2 n+1}(K(G, n+1) ; M) \cong & \operatorname{Hom}\left(H_{2 n+1}(K(G, n+1) ; \mathbb{Z}), M\right) \\
& \oplus \operatorname{Ext}\left(H_{2 n}(K(G, n+1) ; \mathbb{Z}), M\right),
\end{aligned}
$$

and note that the $p$-primary component of $H_{2 n+1}(K(G, n+1) ; \mathbb{Z})$, respectively $H_{2 n}(K(G, n+1) ; \mathbb{Z})$, is $G / p G$, respectively 0 (cf. [2, Exposé 11]). Since $p u=0, u$ corresponds to an element $\bar{u}$ of $\operatorname{Hom}(G / p G, M)$ and we write $\bar{u}_{*}$ for the induced homomorphism $H^{*}(-; G / p G) \rightarrow H^{*}(-; M)$. For instance, the element $\frac{*}{P_{p}^{1}} \in \operatorname{Hom}(G / p G, G / p G)$, corresponding to $P_{p}^{1}$, is the identity. Therefore, it turns out that $u=\bar{u}_{*}\left(P_{p}^{1}\right)$. It is then easy to complete the proof: $\left(\sigma^{*}\right)^{n}(u)=\left(\sigma^{*}\right)^{n}\left(\bar{u}_{*}\left(P_{p}^{1}\right)\right)=\bar{u}_{*}\left(\left(\sigma^{*}\right)^{n}\left(P_{p}^{1}\right)\right)=0$.

Remark 4.2. Proposition 3.1 is an immediate consequence of Proposition 4.1 because $p L_{p} y=0$ for all $y \in H^{2 n+1}(K(G, n+1) ; M)$. On the other hand, if $u$ is an element of $H^{2 n+1}(K(G, n+1) ; M)$ such that $p u=0$, then $p\left(\sigma^{*}\right)^{n}(u)=0$ and Proposition 3.1 (i.e., $L_{p}\left(\sigma^{*}\right)^{n}(u)=0$ ) implies that $\left(\sigma^{*}\right)^{n}(u)=0$ since $p$ doesn't divide $L_{p}$. Thus, the statements of Propositions 3.1 and 4.1 (and consequently also Theorem B and assertion (*)) are equivalent.

In the case $p=2$, Theorem A corresponds to the vanishing of $\left(\sigma^{*}\right)^{2}\left(S q^{2}\right)$, where $S q^{2} \in H^{5}(K(G, 3) ; G / 2 G)$ is the Steenrod square and $\left(\sigma^{*}\right)^{2}$ is the double suspension $H^{5}(K(G, 3) ; G / 2 G) \rightarrow H^{4}(K(G, 2) ; G / 2 G) \rightarrow H^{3}(K(G, 1) ; G / 2 G)$ (observe that $\sigma^{*}\left(S q^{2}\right)$ is the cup-square). We close this section by mentioning related results on Postnikov and Pontryagin squares.

Let $P_{0} \in H^{3}(K(G, 1) ; \Gamma(G))$ be the Postnikov square and $P_{1} \in H^{4}(K(G, 2) ; \Gamma(G))$ the Pontryagin square; these cohomology operations are defined in [5, §5]. Here $G$ is an abelian group and $\Gamma(G)$ is the group introduced in [4, Chapter II].

Lemma 4.3. Let $\sigma^{*}: H^{4}(K(G, 2) ; \Gamma(G)) \rightarrow H^{3}(K(G, 1) ; \Gamma(G))$ be the cohomology suspension. Then $\sigma^{*}\left(P_{1}\right)=P_{0}$.

Proof. The path fibration $K(G, 1) \rightarrow P K(G, 2) \xrightarrow{h} K(G, 2)$ over $K(G, 2)$ induces the diagram

where $\delta$ is the connecting homomorphism of the cohomology sequence of the pair ( $P K(G, 2), K(G, 1)) ; \delta$ is an isomorphism since $P K(G, 2)$ is a contractible space. The diagram commutes because $P_{1}$ is natural and $P_{1} \circ \delta=\delta \circ P_{0}$ by [5, (5.5)]. Recall that the
suspension $\sigma^{*}$ is $\delta^{-1} \circ h^{*}$ by definition [3, p. 373], and that $\sigma^{*}$ maps the characteristic class of $H^{2}(K(G, 2) ; G)$ onto the characteristic class of $H^{1}(K(G, 1) ; G)$. It is then obvious that $\sigma^{*}\left(P_{1}\right)=P_{0}$.

The Whitehead exact sequences (cf. [4] and [3, p. 555, Thm. 3.12]) of the EilenbergMacLane spaces $K(G, 2)$ and $K(G, 3)$,

$$
\cdots \rightarrow \underbrace{\pi_{4} K(G, 2)}_{=0} \rightarrow H_{4}(K(G, 2) ; \mathbb{Z}) \rightarrow \Gamma(G) \rightarrow \underbrace{\pi_{3} K(G, 2)}_{=0} \rightarrow \cdots
$$

and

$$
\cdots \rightarrow \underbrace{\pi_{5} K(G, 3)}_{=0} \rightarrow H_{5}(K(G, 3) ; \mathbb{Z}) \rightarrow G / 2 G \rightarrow \underbrace{\pi_{4} K(G, 3)}_{=0} \rightarrow \cdots,
$$

yield the isomorphisms $H_{4}(K(G, 2) ; \mathbb{Z}) \cong \Gamma(G)$ and $H_{5}(K(G, 3) ; \mathbb{Z}) \cong G / 2 G$. Thus, we may consider the homology suspension $\sigma_{*}: \Gamma(G) \rightarrow G / 2 G$ which induces the homomorphism $\sigma: H^{*}(-; \Gamma(G)) \rightarrow H^{*}(-; G / 2 G)$.

We are interested in $\sigma\left(P_{1}\right) \in H^{4}(K(G, 2) ; G / 2 G)$ : we obtain the definition of this cohomology operation if we replace, in the definition of $P_{1}$ given in [5,§5], $\gamma(g)$ and [ $\left.g, g^{\prime}\right] \in \Gamma(G)$ by $\sigma_{*}(\gamma(g))$ and $\sigma_{*}\left(\left[g, g^{\prime}\right]\right)$ respectively (cf. [4, §5] for the notation $\gamma(-)$ and $[-,-])$. It turns out that $\sigma_{*}(\gamma(g))$ is the class of $g$ in $G / 2 G$ and consequently that $\sigma_{*}\left(\left[g, g^{\prime}\right]\right)=0$ (for any $\left.g, g^{\prime} \in G\right)$. Therefore, $\sigma_{.}\left(P_{1}\right)$ is exactly the cup-square $\sigma^{*}\left(S q^{2}\right) \in$ $H^{4}(K(G, 2) ; G / 2 G)$ and our result for $p=2$ (Theorem A) is equivalent to the assertion $\sigma^{*}\left(\sigma .\left(P_{1}\right)\right)=0$, where $\sigma^{*}$ denotes the cohomology suspension $H^{4}(K(G, 2) ; G / 2 G) \rightarrow$ $H^{3}(K(G, 1) ; G / 2 G)$. Since $\sigma .\left(P_{0}\right)=\sigma .\left(\sigma^{*}\left(P_{1}\right)\right)=\sigma^{*}\left(\sigma .\left(P_{1}\right)\right)$, we get:

Proposition 4.4. $\sigma\left(P_{0}\right)=\sigma^{*}\left(\sigma .\left(P_{1}\right)\right)=0$.
5. The Hurewicz homomorphism. Let us close with some remarks on the Hurewicz homomorphism. The following conclusion follows immediately from Theorem A.

Corollary 5.1. If $X$ is a connected double loop space, then

$$
X[2] \cong K\left(\pi_{1} X, 1\right) \times K\left(\pi_{2} X, 2\right)
$$

Corollary 5.2. If $X$ is a connected double loop space, then the Hurewicz homomorphism $\mathrm{Hu}: \pi_{2} X \rightarrow H_{2}(X ; \mathbb{Z})$ is split injective.

Proof. The previous corollary implies the existence of a map $f: X \rightarrow K\left(\pi_{2} X, 2\right)$, which induces an isomorphism $f_{*}: \pi_{2} X \xlongequal{\rightrightarrows} \pi_{2} X$. Therefore, the composition

$$
\pi_{2} X \xrightarrow{\mathrm{Hu}} H_{2}(X ; \mathbb{Z}) \xrightarrow{f_{*}} H_{2}\left(K\left(\pi_{2} X, 2\right) ; \mathbb{Z}\right)
$$

is also an isomorphism and Hu maps $\pi_{2} X$ injectively onto a direct summand of $H_{2}(X ; \mathbb{Z})$.

In order to generalize this result to the situation of Theorem B, let us recall the following

Lemma 5.3[1, Lemma 4]. Let $X$ be a connected simple CW-complex and assume that the $k$-invariant $k^{n+1}(X)$ is a cohomology class of finite order $\sin H^{n+1}\left(X[n-1] ; \pi_{n} X\right)$. Then there exists a map $f: X \rightarrow K\left(\pi_{n} X, n\right)$ such that the induced homomorphism $f_{*}: \pi_{n} X \rightarrow \pi_{n} X$ is multiplication by $s$.

Corollary 5.4. Let $p$ be a prime number, $n:=2 p-2$ and $L_{p}$ the product of all primes $q<p$. If $X$ is a connected $n$-fold loop space such that $\pi_{i} X=0$ for $1<i<n$, then the Hurewicz homomorphism $\mathrm{Hu}: \pi_{n}\left(X ; \mathbb{Z}\left[\frac{1}{L_{p}}\right]\right) \rightarrow H_{n}\left(X ; \mathbb{Z}\left[\frac{1}{L_{p}}\right]\right)$ is split injective.

Proof. We know from Theorem B that the order of $k^{n+1}(X)$ divides $L_{p}$. Consequently, the map $f: X \rightarrow K\left(\pi_{n} X, n\right)$ given by Lemma 5.3 induces an isomorphism $f_{*}: \pi_{n}\left(X ; \mathbb{Z}\left[\frac{1}{L_{p}}\right]\right) \cong \pi_{n}\left(K\left(\pi_{n} X, n\right) ; \mathbb{Z}\left[\frac{1}{L_{p}}\right]\right)$. The argument used in the proof of Corollary 5.2 gives the desired assertion.

## References

[1] D. Arlettaz, On the homology of the special linear group over a number field. Comment. Math. Helv. 61, 556-564 (1986).
[2] H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie. Sém. H. Cartan Ecole Norm. Sup. (1954/1955).
[3] G. W. Whitehead, Elements of Homotopy Theory. Graduate Texts in Math. 61, New York-Heidelberg-Berlin 1978.
[4] J. H. C. Whitehead, A certain exact sequence. Ann. of Math. 52, 51-110 (1950).
[5] J. H. C. Whitehead, On the theory of obstructions. Ann. of Math. 54, 68-84 (1951).
Eingegangen am 9.6.1987*)
Anschrift des Autors:
D. Arlettaz

Institut de mathématıques
Université de Lausanne
CH-1015 Lausanne, Switzerland

[^0]
[^0]:    *) Eine Neufassung ging am 15. 4. 1988 ein.

