The Hurewicz homomorphism in algebraic K-theory

Dominique Arlettaz
Institut de Mathématiques. Université de Lausanne, CH-1015 Lausanne. Suitzerland
Communicated by J.D. Stasheff
Received 2 February 1990

Abstract

Arlettaz, D.. The Hurewicz homomorphism in algebraic K-theory. Journal of Pure and Applied Algebra 71 (1991) 1-12. This paper investigates the Hurewicz homomorphism $h_{n}: K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z})$ between the algebraic K-theory of a ring A and the homology of the linear group $E(A)$ generated by elementary matrices over A. The main theorem asserts that for any $n \geq 2$, the kernel of h_{n} is a torsion group of finite exponent, and provides an upper tound, independent of A. for its exponent. The proof of this uses the fact that $B E(A)^{+}$is an infinite ionp space. because its basic idea is to observe that the result follows from the study of the kernel of the Hurewicz homomorphism in the range of stability. The discussion oi the problem involves then the description of the relationship between the Hurewicz map and the k-invariants of the space $B E(A)^{\dagger}$. Finally, some partial information on the cokernel of h_{n} is also obtained.

Introduction

Let $\operatorname{GL}(A)$ be the infinite general linear group (considered as a discrete group) over the ring with identity $A, E(A)$ its subgroup generated by elementary matrices, and $B G L(A)^{+}$and $B E(A)^{+}$the infinite loop spaces obtained by performing the plus construction on the classifying spaces of $\operatorname{GL}(A)$ and $E(A)$ respectively. The purpose of this paper is to investigate the Hurewicz homomorphism between algebraic K-theory and linear group homology. Since $B E(A)^{+}$ is the universal cover of $B \mathrm{GL}(A)^{+}$, we concentrate actually our attention to the Hurewicz homomorphism

$$
h_{n}: K_{n} A=\pi_{n} B E(A)^{+} \rightarrow H_{n}\left(B E(A)^{+} ; \mathbb{Z}\right) \cong H_{n}(E(A) ; \mathbb{Z})
$$

for $n \geq 2$. Obviously, h_{2} is an isomorphism and h_{3} is surjective since the space $B E(A)^{+}$is simply-connected.
In [10, Proposition 3] Soulé has shown that the kernel of h_{n} is a torsion group
that involves at most the prime numbers p satisfying $p \leq(n+1) / 2$, but his argument does not imply the this group has finite exponent. The special case $n=3$ was first considered by Suslin [11, p. 370] who has obtained the result 2 ker $h_{3}=0$ by exhibiting ker h_{3} as a quotient of $K_{2} A \otimes \mathbb{Z} / 2$. Recently, Sah [9 , Proposition 2.5] has also established that $2 \mathrm{ker} h_{3}=0$ for any ring A (unfortunately, there is a gap in his proof: see Remark 1.9).

In the first section of this paper, we prove that for any n, ker $\boldsymbol{h}_{\boldsymbol{n}}$ is effectively a torsion group of finite exponent and we give a universal bound for its exponent. More precisely, we define integers $R_{j}(j \geq 1)$ which are independent of A and such that for any $n \geq 2$,

$$
R_{n-1} \operatorname{ker} h_{n}=0
$$

for any ring A (in particular. we do not assume any finiteness condition). Observe that this implies Soulés assertion because the integers R_{n-1} have the property that a prime p divides R_{n-1} if and only if $p \leq(n+1) / 2$. Notice also that our result is a generalization of Suslin and Sah's computation in relation to all dimensions since $R_{2}=2$. In order to get our theorem, we show that ker h_{n} is a quotient of a homology group of a space having only finitely many nontrivial homotopy groups, and then, the delooping of the space $B E(A)^{+}$enables us to compare ker h_{n} with a finite number of stable homology groups of Eilenberg-Mac Lane spaces.

Our method works similarly for the Hurewicz homomorphism

$$
h_{n}: K_{n} A=\pi_{n} B \operatorname{St}(A)^{+} \rightarrow H_{n}\left(B \operatorname{St}(A)^{+} ; \mathbb{Z}\right) \cong H_{r}(\operatorname{St}(A) ; \mathbb{Z})
$$

for $n \geq 3$, where $\operatorname{St}(A)$ is the infinite Steinberg group of A. Remember that $B \operatorname{St}(A)^{+}$is a 2-connected infinite loop space: therefore, h_{3} is an isomorphism and h_{4} is surjective. Here, our result is:

$$
R_{n-2} \operatorname{ker} h_{n}=0
$$

for any ring A and for any integer $n \geq 3$.
The remainder of Section 1 is devoted to the study of the kernel of the Hurewicz homomorphism in low dimensions: for $n \leq 5$, we are able to describe its exponent more precisely.

In Section 2, we look at the same problem from another point of view: we examine the k-invariants of the spaces $B E(A)^{+}$and $B \operatorname{St}(A)^{+}$, and exhibit a relationship between their order and the knowledge of the Hurewicz homomorphism. We also prove the following statement: if F is an aigebraicaily closed field and n an even integer, the k-invariant $k^{n+1}\left(B \operatorname{SL}(F)^{+}\right)$is trivial and the Hurewicz homomorphism $h_{n}: K_{n} F \rightarrow H_{n}(\mathrm{SL}(F) ; \mathbb{Z})$ is split injective.

Finally, the cokernel of the Hurewicz homomorphism is the purpose of Section 3, but our method provides an upper bound for its exponent only in small dimensions, for instance for $n \leq 6$ in th, case of $h_{n}: K_{n} A \rightarrow H_{n}(\operatorname{St}(A) ; \mathbb{Z})$.

Throughout the paper, we first formulate our results in general, i.e.. for any m-connected CW-complex, and then apply them to algebraic K-theory. Note that all spaces considered here are connected CW-complexes, and that if the coefficients of homology (or homotopy) groups are not written explictly. integral coefficients must be understood.

1. The kernel of the Hurewicz homonıorphism

The main objective of this section is to show the existence of upper bounds for the exponent of the kerrel of the Hurewicz homomorphisms $h_{n}: K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z}), n \geq 2$, and $h_{n}: K_{n} A \rightarrow H_{n}(\operatorname{St}(A) ; \mathbb{Z}), n \geq 3$. We start by looking at the general situation. If Y is a connected CW-complex and i a positive integer, let us denote by $Y \rightarrow Y[i]$ its i th Postnikov section: $Y[i]$ is a CW-complex obtained from Y by adjoining cells of dimension $\geq i+2$ such that $\pi_{k} Y[i]=0$ for $k>i$ and $\pi_{k} Y \xlongequal{\rightrightarrows} \pi_{k} Y[i]$ for $k \leq i$.

Theorem 1.1. Let Y be a connected simple CW-complex, X the r-fold loop space $\Omega^{r} Y(r \geq 0)$, and n a positive integer. The kernel of the Hurewicz homomorphism $h_{n}: \pi_{n} X \rightarrow H_{n}(X ; \mathbb{Z})$ is a subgroup of

$$
H_{n+r+1}(Y[n+r-1] ; \mathbb{Z}) / \Theta\left(H_{n+r+1}(Y[n+r] ; \mathbb{Z})\right)
$$

where Θ is the homomorphism induced by the inclusion $Y[n+r] \hookrightarrow Y[n+r-1]$.
Proof. Consider the exact integral homology sequence of the pair $(X[n-1], X[n])$:

$$
\begin{aligned}
\cdots & \rightarrow H_{n+1} X[n] \rightarrow H_{n+1} X[n-1] \\
& \rightarrow H_{n+1}(X[n-1], X[n]) \xrightarrow{\rightrightarrows} H_{n} X[n] \rightarrow \cdots
\end{aligned}
$$

It is clear that $H_{n} X[n] \cong H_{n} X$; on the other hand, according to [15, p. 422], there is a natural isomorphism $H_{n+1}(X[n-1], X[n]) \cong \pi_{n} X$ and ∂ corresponds under this isomorphism to the Hurewicz homomorphism $h_{n}: \pi_{n} X \rightarrow H_{n} X$. Thus, the analogous exact sequence for the pair $(Y[n+r-1], Y[n+r])$ produces the commutative diagram

where the vertical arrows are the r-fold suspensions, the left one being an
isomorphism. Consequently, the kernel of h_{n} is a subgroup of the kernel of h_{n+r}, which is isomorphic to $H_{n+r+1} Y[n+r-1] / \Theta\left(H_{n+r+1} Y[n+r]\right)$.

Definition 1.2. Let $L_{1}:=1$ and for $k \geq 2$ let L_{k} be the product of all prime numbers p for which there exists a sequence of nonnegative integers ($a_{1}, a_{2}, a_{3}, \ldots$) satisfying:
(a) $a_{1} \equiv 0 \bmod 2 p-2, a_{i} \equiv 0$ or $1 \bmod 2 p-2$ for $i \geq 2$,
(b) $a_{i} \geq p a_{i+1}$ for $i \geq 1$,
(c) $\sum_{i=1}^{x} a_{i}=k$.

Observe that L_{k} divides the product of all primes $p \leq(k / 2)+1$. These integers occur in the determination of the stable homology groups of Eilenberg-Mac Lane spaces [3, Théorème 7]: for any abelian group G and for any integer $s \geq 2$, one has $L_{i-s} H_{i}(K(G, s) ; \mathbb{Z})=0$ if $s<i<2 s$.

Definition 1.3. $R_{j}:=\prod_{k=1}^{j} L_{k}$ for $j \geq 1$. For example, $R_{1}=1, R_{2}=2, R_{3}=4$, $R_{4}=24, R_{5}=144, R_{6}=288, \ldots$ It turns out that a prime p divides R_{j} if and only if $p \leq(j / 2)+1$.

Lemma 1.4. Let Z be a space with finitely many nontrivial homotopy groups: $\pi_{q} Z=0$ if $q \leq m$ or $q>t$, where m and t are integers satisfying $t>m \geq 1$. If $i=t+1$ or $t+2$ and if $i<2 m+2$, then $R_{i-m-1} H_{i}(Z ; \mathbb{Z})=0$.

Proof. Let us consider the fibrations $K\left(\pi_{s+1} Z, s+1\right) \rightarrow Z[s+1] \rightarrow Z[s]$ for $s=$ $m+1, m+2, \ldots, t-1$, and apply the Serre spectral sequence: we get the exact sequences

$$
H_{i} K\left(\pi_{s+1} Z, s+1\right) \rightarrow H_{i} Z[s+1] \rightarrow H_{i} Z[s]
$$

which give inductively the exponent $L_{i-m-1} \cdot L_{i-m-2} \cdots \cdots L_{i-t+1} \cdot L_{i-t}=R_{i-m-1}$ (since $i-t=1$ or 2 according to $i=t+1$ or $t+2$) for $H_{i} \mathcal{E}[t]$. This is exactly the assertion because $Z[t]=Z$.

Theorem 1.5. Let X be an m-connected r-fold loop space (with $m, r \geq 0$ but $m+r \geq 1$) and n an integer such that $m+1 \leq n \leq 2 m+r$. Then the Hurewicz homomorphism $h_{n}: \pi_{n} X \rightarrow H_{n}(X ; \mathbb{Z})$ has the following property:

$$
R_{n-m} \operatorname{ker} h_{n}=0
$$

Proof. Since the statement of the theorem is obvious for $n=m+1$, assume that $n \geq m+2$ and that $X \simeq \Omega^{r} Y$, where Y is an $(m+r)$-connected space. It follows from Theorem 1.1 that ker h_{n} is a subquotient of $H_{n+r+1} Y[n+r-1]$; it is then sufficient to show that this group is annihilated by R_{n-m}. But this is true by the previous lemma, because the space $Y[n+r-1]$ is $(m+r)$-connected and its homotopy groups are trivial in dimensions $>n+r-1$.

Notice that the upper bound R_{n-m} for the exponent of ker h_{n} does not depend on the space X (in particular, there is no finiteness condition on X). Now. let us apply this result to the infinite loop spaces $B E(A)^{+}$and $B S t(A)^{+}$.

Corollary 1.6. (a) F, r any ring A and for any integer $n \geq 2$, the Hurewicz homomorphism $h_{n}: K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z})$ fulfills $R_{n-1} \operatorname{ker} h_{n}=0$.
(b) For any ring A and for any integer $n \geq 3$, the Hurewicz homomorphism $h_{n}: K_{n} A \rightarrow H_{n}(\operatorname{St}(A) ; \mathbb{Z})$ fulfills $R_{n-2} \operatorname{ker} h_{n}=0$.

It is actually possible to get more details on the exponent of the kernel of h_{n} in low dimensions. For an abelian group G, we shall write $\exp (G)$ for the exponent of \boldsymbol{G}.

Theorem 1.7. Let X be an m-connected r-fold loop space. The kernel of the Hurewicz homomophism satisfies:
(a) if $m+r \geq 2$, thin $n \exp \left(\operatorname{ker} h_{m+2}\right)$ di $\cdot i d e s \exp \left(\pi_{m+1} X \otimes \mathbb{Z} / 2\right)$.
(b) if $m+r \geq 3$, then $\exp \left(\operatorname{ker} h_{m+3}\right)$ divides the product

$$
\exp \left(\pi_{m+2} X \otimes \mathbb{Z} / 2\right) \cdot \exp \left(\operatorname{Tor}\left(\pi_{m+1} X, \mathbb{Z} / 2\right)\right)
$$

Proof. Suppose that $X \simeq \Omega^{r} Y$, where Y is an $(m+r)$-connected space. In order to establish (a), we must determine $\exp \left(H_{m+r+3} Y[m+r+1]\right)$. But the equality $Y[m+r+1]=K\left(\pi_{m+1} X, m+r+1\right) \quad$ implies that $H_{m+r+3} Y[m+r+1] \cong$ $\pi_{m+1} X \otimes \mathbb{Z} / 2$.

Similarly, (b) follows from the computation of $H_{m+r+4} Y[m+r+2]$. The Serre spectral sequence of the fibration

$$
K\left(\pi_{m+2} X, m+r+2\right) \rightarrow Y[m+r+2] \rightarrow K\left(\pi_{m+1} X, m+r+1\right)
$$

gives the exact sequence

$$
\begin{aligned}
& H_{m+r+4} K\left(\pi_{m+2} X, m+r+2\right) \rightarrow H_{m+r+4} Y[m+r+2] \\
& \quad \rightarrow H_{m+r+4} K\left(\pi_{m+1} X, m+r+1\right) .
\end{aligned}
$$

Remember first the isomorphism $H_{m+r+4} K\left(\pi_{m+2} X, m+r+2\right) \cong \pi_{m+2} X \otimes \mathbb{Z} / 2$. Observe then that the third group in the exact sequence may be calculated by using the isomorphism [3, Corollaire of Théorème 7]

$$
H_{m+r+4} K\left(\pi_{m+1} X, m+r+1\right) \cong H_{m+r+4}\left(K(\mathbb{Z}, m+r+1) ; \pi_{m+1} X\right)
$$

(since $m+r \geq 3$), the universal coefficient theorem

$$
\begin{aligned}
& H_{m+r+4}\left(K(\mathbb{Z}, m+r+1) ; \pi_{m+1} X\right) \\
& \quad \cong \operatorname{Hom}\left(H_{m+r+4} K(\mathbb{Z}, m+r+1), \pi_{m+1} X\right) \\
& \quad \oplus \operatorname{Tor}\left(H_{m+r+3} K(\mathbb{Z}, m+r+1), \pi_{m+1} X\right),
\end{aligned}
$$

and the facts that $H_{m+r+4} K(\mathbb{Z}, m+r+1)=0$ and $\left.H_{m+r+3}{ }^{\prime} ; \mathbb{Z}, m+r+1\right)=$ $\mathbb{Z} / 2$.

Corollary 1.8. Let A be any ring with iuentity.
(a) If h_{n} denotes the Hurewicz homomorphism $K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z})$, then $\exp \left(\operatorname{ker} h_{3}\right)$ divides $\exp \left(K_{2} A \otimes \mathbb{Z} / 2\right)$ and $\exp \left(\operatorname{ker} h_{4}\right)$ divides the product $\exp \left(K_{3} A \otimes \mathbb{Z} / 2\right) \cdot \exp \left(\operatorname{Tor}\left(K_{2} A, \mathbb{Z} / 2\right)\right)$.
(b) If h_{n} denotes the Hurewicz homomorphism $K_{n} A \rightarrow H_{n}(\operatorname{Si}(A) ; \mathbb{Z})$, then $\exp \left(\operatorname{ker} h_{4}\right)$ divides $\exp \left(K_{3} A \otimes \mathbb{Z} / 2\right)$ and $\exp \left(\right.$ ker $\left.i_{5}\right)$ divides the product $\exp \left(K_{4} A \otimes \mathbb{Z}!2\right) \cdot \exp \left(\operatorname{Tor}\left(K_{3} A, \mathbb{Z} / 2\right)\right)$.

Remark 1.9. In the case of the space $B E(A)^{+}$and $n=3$, our argument uses the fact that $B E(A)^{+}$is a loop space ($r=1$): consequently, ker h_{3} is a subquotient of $H_{5} K\left(K_{2} A, 3\right)$, and the result follows from the isomorphism $H_{5} K\left(K_{2} A, 3\right) \cong K_{2} A \otimes \mathbb{Z}: 2$ (this is a stable homolegy group). The proof of the assertion 2 ker $h_{3}=0$ given by Sah in [9, Proposition 2.5] is not complete because he tries to deduce it from the observation that $\operatorname{ker} h_{3}$ is a quotient of $H_{4} K\left(K_{2} A, 2\right)$, instead of going to the range oí stabiity and comparing ker \dot{n}_{3} with $H_{5} K\left(K_{2} A, 3\right)$.

Exampis 1.10. Let F be a fieid of characteristic 2. For $n=2$ and $3, K_{n} F$ is 2-torsion-free (cf. [14, Theorem 1.10] for $n=2$ and [7, Corollary 4.13] for $n=3$), and the groups $K_{n} F \otimes \mathbb{Z} / 2$ are well understood: $K_{2} F \otimes \mathbb{Z} / 2 \cong_{2} \operatorname{Br}(F)$ (the 2torsion subsroup of the Brauer group of F), and $K_{3} F \otimes \mathbb{Z} / 2 \cong K_{3} F / 2 \cong K_{3}^{\mathrm{M}} F / 2$ $\cong I^{3} / I^{4}$, where $K_{3}^{\mathrm{M}} F$ is the third Milnor K-group of F and I the unique maximal ideal of the Witt ring $W(F)$ of nondegenerate symmetric bilinear forms over F (cf. [6] and [7, Corollary 4.13]). Consequently, we deduce from the previous corollary the following assertions:
(a) in the case of the Hurewicz homomorphism $h_{n}: K_{n} F \rightarrow H_{n}(\operatorname{SL}(F) ; \mathbb{Z})$, $\exp \left(\operatorname{ker} h_{3}\right)$ is a divisor oí $\exp \left({ }_{2} \operatorname{Br}(F)\right)$ and $\exp \left(\operatorname{ker} h_{4}\right)$ a divisor of $\exp \left(I^{3} / I^{4}\right)$,
(b) in the case of the Hurewicz homomorphism $h_{n}: K_{n} F \rightarrow H_{n}(\operatorname{St}(F) ; \mathbb{Z})$, $\exp \left(\operatorname{ker} h_{4}\right)$ is a divisor of $\exp \left(I^{3} / I^{4}\right)$ and $\exp \left(\operatorname{ker} h_{5}\right)$ a divisor $\operatorname{of} \exp \left(K_{4} F \otimes \mathbb{Z} / 2\right)$.

Remark 1.11. If the 2 -adic Quillen-Lichtenbaum conjecture (in the sense of Dwyer and Friedlander) is true for the ring \mathbb{Z}, then it follows from [4, Corollary 4.3] that $H^{*}(\operatorname{SL}(\mathbb{Z}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{2}, w_{3}, w_{4}, \ldots\right] \otimes \Lambda\left(u_{3}, u_{5}, u_{7}, \ldots\right)$, with $\operatorname{deg} w_{i}=i$ (w_{i} is the i th Stiefel-Whitney class), $\operatorname{deg} u_{i}=i$, and consequently that $H^{+}(\operatorname{St}(\mathbb{Z}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2, H^{5}(\operatorname{St}(\mathbb{Z}) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2$ because of [1, Lemma 2.8]. Since $H_{3}(\operatorname{St}(\mathbb{Z}) ; \mathbb{Z}) \cong K_{3} \mathbb{Z} \cong \mathbb{Z} / 48$, the 2-torsion subgroup of $H_{4}(\operatorname{St}(\mathbb{Z}) ; \mathbb{Z})$ would then vanish. Fiut we have proved in [1, Theorem 1.3] that the Hurewicz homomorphism $h_{4}: K_{4} \mathbb{Z} \rightarrow H_{4}(\mathrm{St}(\mathbb{Z}) ; \mathbb{Z})$ is an isomorphism. Therefore, we obtain the following:

Conjecture A. The 2 orsion subgroup of $K_{4} \not{ }^{Z}$ is trivial.
In dimension 5, the 2 -adic Quilen-Lichtenbaum conjecture would imply that $\operatorname{Hom}\left(\mathcal{H}_{5}(\mathrm{St}(\mathbb{Z}) ; \mathbb{Z}), \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2$, in other words that the 2 -torsion subgroup of $\boldsymbol{H}_{5}(\mathrm{St}(\mathbb{Z}) ; \mathbb{Z})$ is trivial, because it is known that $\boldsymbol{H}_{5}(\mathrm{St}(\mathbb{Z}) ; \mathbb{Z}) \cong \mathbb{Z} \oplus$ torsion group, and we would conclude that the kernel of the Hurewicz homomorphism $h_{5}: K_{5} \mathbb{Z} \rightarrow H_{5}(S t(\mathbb{Z}) ; \mathbb{Z})$ would be annihilated by 2 , because of Corollary 1.8(b):

Conjecture B. The exponent of the 2 -torsion subgroup of $K_{5} \mathbb{Z}$ is at $\cdot \omega$ st 2 .
As inentioned in the Introduction, Sah has examined the kernel of $h_{3}: K_{3} \mathcal{A} \rightarrow H_{3}(E(A) ; \mathbb{Z})$: he has snown in particular that h_{3} is injective if $K_{2} A$ is 2-divisible [9, Proposition 2.5]. The end of this section is devoted to a generalization of this result in relation to all dimensions.

Theorem 1.12. (a) Let A be a riig, n an integer ≥ 3, and p a prime number. Assume thai $K_{j} A$ is uniquely p-divisible if $2 \leq j<n-2 p+3$, and p-divisible if $j=n-2 p+3 \geq 2$. Then the kernel of $h_{n}: K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z})$ contains no p torsion.
(b) The same result ho:ids for $h_{n}: K_{n} A \rightarrow H_{n}(\operatorname{St}(A) ; \mathbb{Z}), n \geq 4$, given the condition that $K_{j} A$ is uniquely p-divisible if $3 \leq j<n-2 p+3$ and p-divisible if $j=$ $n-2 p+3 \geq 3$.

In order to prove this theorem we first need to recall some information on the torsion in the stable homology of Eilenberg-Mac Lane spaces.

Lemma 1.13. Let G be an abelian group, s and i two integers with $2 \leq s<i<2 s$, and p a prime. Then $H_{i}(K(G, s) ; \mathbb{Z})$ is p-torsion-free if one of the following conditions is satisfied:
(a) $i-s<2 p-2$,
(b) $i-s=2 p-2$ and G is p-divisible,
(c) $i-s>2 p-2$ and G is uniquely p-divisible.

Proof. Let us suppose that $s+2 \leq i<2 s$ since the result is trivial for $i=s+1$. We use the isomorphism $H_{i}(K(G, s) ; \mathbb{Z}) \cong H_{i}(K(\mathbb{Z}, s) ; G)$ [3, Corollaire of Théorème 7] and the universal coefficient theorem

$$
H_{i}(K(\mathbb{Z}, s) ; G) \cong H_{i} K(\mathbb{Z}, s) \otimes G \oplus \operatorname{Tor}\left(H_{i-1} K(\mathbb{Z}, s), G\right)
$$

It is known by $\left\{3\right.$, Théorème 7] that the stable homology groups $H_{s+k} K(\mathbb{Z}, s)$ are finite cyclic groups whose order divides L_{k} (for $1 \leq k<s$). In particular, $H_{s+k} K(\mathbb{Z}, s)$ contains no p-torsion if $k<2 p-2$: this implies (a). In order to get (b), we then only have to look at $H_{s+(2 p-2)} K(\mathbb{Z}, s) \otimes!\left\{: H_{s+(2 p-2)} K(\mathbb{Z}, s)\right.$ is cyclic
of order $p \cdot t$, with t not divisible by p, but $H_{s+(2 p-2)} K(\mathbb{Z}, s) \otimes G$ is p-torsion-free since G is p-divisible. Similarly, if $i-s>2 p-2$ there is p-torsion neither in $H_{i} K(\mathbb{Z}, s) \otimes G$ nor in $\operatorname{Tor}\left(H_{i-1} K(\mathbb{Z}, s), G\right)$, because G is p-divisible, espectively uniquely p-divisible.

Proof of Theorem 1.12. Because $B E(A)^{+}$is a simply-connected infinite loop space, let us assume that $B E(A)^{+} \simeq \Omega^{n-2} Y$, where Y is an $(n-1)$-connected space. According to Theorem 1.1, it is sufficient to show that the p-torsion subgroup of $H_{2 n-1} Y[2 n-3]$ is trivial. But it turns out that this is equivalent to the fact that $H_{2 n-1} K\left(\pi_{s} Y, s\right) \cong H_{2 n-1} K\left(K_{s-n+2} A, s\right)$ contains no p-torsion for $s=n$, $n+1, n+2, \ldots, 2 n-3$. We may deduce this from assertion (a) of the lemma for $2 n-2 p+1<s \leq 2 n-3$, from (b) for $s=2 n-2 p+1$, because of the p-divisibility of $K_{n-2 p+3} A$, and finally from (c) for $n \leq s<2 n-2 p+1$, since $K_{s-n+2} A$ is uniquely p-divisible We proceed similarly for the space $B \operatorname{St}(A)^{+}$.

2. Postnikov-invariants

It is also possible to discuss the Hurewicz homomorphism $h_{n}: \pi_{n} X \rightarrow H_{n}(X, \mathbb{Z})$ by looking at the Postnikov k-invariants $k^{n+1}(X) \in H^{n+1}\left(X[n-1] ; \pi_{n} X\right)$. The method of the proofs of Theorems 1.1 and 1.5 provides in fact the following result: if X is an m-connected r-fold loop space, then $R_{n-m} k^{n+1}(X)=0$ for $m+1 \leq n \leq 2 m+r$ [2]. On the other hand, the finiteness of the order of the k-invriant $k^{n+1}(X)$ produces a map $f_{n}: X \rightarrow K\left(\pi_{n} X, n\right)$ inducing multiplication by this order, i.e., by a divisor of R_{n-m}, on $\pi_{n} X$, and the commutative diagram

Remark that this implies in particular that if $x \in \operatorname{ker} h_{n}$, then $R_{n-m} x=0$: this is another way to formulate the proof of Theorem 1.5 .

In the case of the algebraic K-theory, the upper bounds for the order of the k-invariants are given by

$$
R_{n-1} k^{n+1}\left(B E(A)^{+}\right)=0 \quad \text { for } n \geq 2
$$

and

$$
R_{n-2} k^{n+1}\left(B \operatorname{St}(A)^{+}\right)=0 \quad \text { for } n \geq 3
$$

for any ring A. Therefore, the next assertion is a direct consequence of the above diagram.

Theorem 2.1. For any ring \therefore there exist homomorphisms $\left(f_{n}\right)_{*}: H_{n}(E(A) ; \mathbb{Z})$ $\rightarrow K_{n} A$, respectively $\left(f_{n}\right)_{*}: H_{n}(\operatorname{St}(A) ; \mathbb{Z}) \rightarrow K_{n} A$ such that
(a) the composition $\left(f_{n}\right)_{*}{ }^{\circ} h_{n}: K_{n} A \rightarrow H_{n}(E(A) ; \mathbb{Z}) \rightarrow K_{n} A$ is multiplication by a divisor of R_{n-1} for $n \geq 2$,
(b) the composition $\left(f_{n}\right)_{*}{ }^{\circ} h_{n}: K_{n} A \rightarrow H_{n}(\operatorname{St}(A) ; \mathbb{Z}) \rightarrow K_{n} A$ is multiplication by a divisor of R_{n-2} for $n \geq 3$.

Remark 2.2. Consequently, for any ring A the Hurewicz homomorphism with coefficients

$$
h_{n}: K_{n}(A ; \mathbb{Z} / p) \rightarrow H_{n}(E(A) ; \mathbb{Z} / p)
$$

is split injective if p is a prime number $>(n+1) / 2(n \geq 2)$, because R_{n-1} is not divisible by p. Let us also recall that, if $A=\mathbb{R}, \mathbb{C}$ or \mathbb{H}, the Friedlander-Milnor conjecture holds for $B \mathrm{SL}(\mathrm{A}) \rightarrow B \mathrm{BL}(A)^{\text {top }}$, where $\operatorname{BSL}(A)^{\text {top }}$ denotes the classifying space of $\operatorname{SL}(A)$ with the given topology as a Lie group (cf. [8], [12, Corollary 4.6], [13, Proposition 3.5]): thus, we may conclude that $K_{n}(A ; \mathbb{Z} / p)$ is a direct summand of $H_{n}\left(E \operatorname{SL}(A)^{\text {top }} ; \mathbb{Z} / p\right)$ for $n \geq 2$ and $p>(n+1) / 2$.

Remark 2.3. The results of this paper may also be formulated for algebraic L-theory. In particular, the kernels of the Hurewicz homomorphisms $h_{n}:{ }_{1} L_{n} A \rightarrow H_{n}(O(A) ; \mathbb{Z})$ and $h_{n}:_{-1} L_{n} A \rightarrow H_{n}(\mathrm{Sp}(A) ; \mathbb{Z})$ are annihilated by R_{n} for any ring A and any integer $n \geq 1$. It is actually possible to replace the integers \boldsymbol{R}_{n} by smaller integers \bar{R}_{n} (cf. [2, Definition 2.3 and Theorem 2.4]). Kemark 2.2 holds also for L-theory since the Friedlander-Milnor conjecture is true in this situation for $A=\mathbb{R}$ or \mathbb{C} [5].

The main result of this section is the following theorem on the k-invariants of the space $B \operatorname{SL}(F)^{+}$for algebraically closed fields F.

Theorem 2.4. Let F be an algebraically closed field and n a positive even integer. Then,
(a) $k^{n+1}\left(B S L(F)^{+}\right)=0$ in $H^{n+1}\left(B S L(F)^{+}\left[n-1_{1}^{\prime} ; K_{n} F\right)\right.$,
(b) the Hurewicz homomorphism $h_{n}: K_{n} F \rightarrow H_{n}(\mathrm{SL}(F) ; \mathbb{Z})$ is split injective.

Proof. Since $B \mathrm{SL}(F)^{+}$is a simply-connected infinite loop space, we may consider an $(n-1)$-connected space Y with $B S L(F)^{+} \simeq \Omega^{n-2} Y$. The k-invariant $k^{n+1}\left(B \operatorname{SL}(F)^{+}\right)$is then the image of $k^{2 n-1}(Y)$ under the $(n-2)$-fold iterated cohomology suspension

$$
H^{2 n-1}\left(Y[2 n-3] ; K_{n} F\right) \rightarrow H^{n+1}\left(B \operatorname{SL}(F)^{+}[n-1] ; K_{n} F\right)
$$

[15, p. 438]. Now, look at the universal coefficient theorem

$$
\begin{aligned}
& H^{2 n-1}\left(Y[2 n-3] ; \bar{K}_{n} \bar{F}\right) \\
& \quad \cong \operatorname{Hom}\left(H_{2 n-1} Y[2 n-3], K_{n} F\right) \oplus \operatorname{Ext}\left(H_{2 n-2} Y[2 n-3], K_{n} F\right),
\end{aligned}
$$

and obscive that the group $\operatorname{Ext}\left(H_{2 n-2} Y[2 n-3], K_{n} F\right)$ vanishes because Suslin has proved that $K_{n} F$ is divisible for algebraically closed fields [13, Section 2]. Moreover, he has shown that $K_{n} F$ is torsion-free if n is an even integer: this and the fact that $H_{2 n-1} Y[2 n-3]$ is a torsion group (see Lemma 1.4) imply that $\operatorname{Hom}\left(H_{2 n-1} Y[2 n-3], K_{n} F\right)$ is trivial. Consequently, $H^{2 n-1}\left(Y[2 n-3] ; K_{n} F\right)=0$ and $k^{n+1}\left(B S L(F)^{+}\right)=0$. Assertion (b) follows then from tine commutative diagram introduced at the beginning of this section.

3. The cokernel of the Hurewicz homomorphism

Finally, we try to get some information on the cokernel of the Hurewicz homomorphism. We start again by looking at the general situation.

Theorem 3.1. If X is an m-connected space and n an integer such that $m+2 \leq n \leq$ $2 m+1(m \geq 1)$, then the cokernel of the Hurewicz homomorphism $h_{n}: \pi_{n} X$ $\rightarrow H_{n}(X ; \mathbb{Z})$ satisfies:
(a) $\operatorname{coker} h_{n} \cong H_{n}(X[n-1] ; \mathbb{Z})$,
(b) R_{n-m-1} coker $h_{n}=0$.

Proof. The exact integral homology sequence of the pair ($X[n-1], X[n]$) gives the following exact sequence (cf. Proof of Theorem 1.1):

$$
\cdots \rightarrow \pi_{n} X \xrightarrow{h_{n}} H_{n} X \rightarrow H_{n} X[n-1] \rightarrow \cdots,
$$

where the homomorphism $H_{n} X \rightarrow H_{n} X[n-1]$ is surjective by Whitehead's theorem. Thus, coker $h_{n} \cong H_{n} X[n-1]$. But the proof is then complete since the expenent of the group $H_{n} X[n-1]$ is finite and bounded by R_{n-m-1} as indicated in Lemma 1.4.

Example 3.2. The first interesting case is $n=m+3$ (assuming $m \geq 2$). It follows from the theorem that coker $h_{m+3} \cong H_{m+3} X[m+2]$ and the Serre spectral sequence of the fibration $K\left(\pi_{m+2} X, m+2\right) \rightarrow X[m+2] \rightarrow K\left(\pi_{m+1} X, m+1\right)$ produces the exact sequence

$$
\underbrace{H_{m+3} K\left(\pi_{m+2} X, m+2\right)}_{0} \rightarrow H_{m+3} X[m+2] \rightarrow \underbrace{H_{m+3} K\left(\pi_{m+1} X, m+1\right)}_{\cong \pi_{m+1} X \otimes \mathbb{Z} / 2}
$$

Consequently, the cokernel of h_{m+3} is isomorphic to a subgroup of $\pi_{m+1} X \otimes \mathbb{Z} / 2$.

Corollary 3.3. For any ring A, the cokernel of $h_{5}: K_{5} A \rightarrow H_{5}(\operatorname{St}(A) ; \mathbb{Z})$ is a subgroup of $K_{3} A \otimes \mathbb{Z} / 2$.

In general, our argument succeeds only up to dimension $2 m+1$. However, it also enables us to describe partially the case $n=2 m+2$ if the space we are looking at is a loop space.

Theorem 3.4. Let X be an m-connected loop space ($m \geq 0$) and $Q H_{*}(X ; \mathbb{Z})$ the indecomposables of $H_{*}(X ; \mathbb{Z})$. The cokernel of the composition

$$
\pi_{2 m+2} X \xrightarrow{h_{2 m+2}} H_{2 m+2}(X ; \mathbb{Z}) \longrightarrow Q H_{2 m+2}(X ; \mathbb{Z})
$$

is annihilated by R_{m+1}.
Proof. Let X be $\simeq \Omega Y$ with Y an $(m+1)$-connected space and $n=2 m+2$. The homology suspension σ provides the commutative diagram

If α is an element of $H_{n} X$, then $R_{m+1} \sigma(\alpha)$ belongs to the image of h_{n+1} by Theorem 3.1. Therefore, there exists an element $\beta \in \pi_{n} X$ such that ($h_{n}(\beta)-$ $\left.R_{m+1} \alpha\right) \in \operatorname{ker} \sigma$. But every element of ker σ is reductive [15, p. 383], and hence decomposable since it is in $H_{n} X$ and $H_{t} X=0$ for $t \leq(n / 2)-1$. It is then easy to conclude, because the images of $h_{n}(\beta)$ and $R_{m+1} \alpha$, under the surjection $H_{n} X \rightarrow Q H_{n} X$, coincide.

Corollary 3.5. For any ring A, the cokernel of the composition

$$
K_{4} A \xrightarrow{h_{4}} H_{4}(E(A) ; \mathbb{Z}) \longrightarrow Q H_{4}(E(A) ; \mathbb{Z}),
$$

respectively

$$
K_{6} A \xrightarrow{n_{6}} H_{6}(\operatorname{St}(A) ; \mathbb{Z}) \longrightarrow Q H_{6}(\operatorname{St}(A): \mathbb{Z}) .
$$

is annihilated by 2, respectively by 4 .

Acknowledgment

I would like to thank C.-H. Sah for his valuable comments.

References

[1] D. Arlettaz. On the algebraic K-theory of \mathbb{Z}. J. Pure Appl. Algebra 51 (1988) 53-64.
[2] D. Arlettaz, Cn the k-invariants of iterated loop spaces, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988) 343-350.
[3] H. Cartan, Sur les groupes d'Eilenberg-Mac Lane II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954) 704-707.
[4] W.G. Dwyer and E.M. Friedlander, Conjectural calculations of general linear group homology, in: Applications of Algebraic K-theory of Algebraic Geometry and Number Theory, Contemp. Math. 55 Part I (1986) 135-147.
[5] M. Karoubi, Relations between algebraic K-theory and Hermitian K-theory, J. Pure Appl. Algebra 34 (1984) 259-263.
[6] K. Kato, Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two, Invent. Math. 66 (1982) 493-510.
[7] A.S. Merkurjev and A.A. Susiin, On the K_{3} of a field, Preprint.
[8] J. Milnor. On the homclogy of Lie groups made discrete, Comment. Math. Helv. 58 (1983) 72-85.
[9] C.-H. Sah, Homology of classical groups made discrete III. J. Pure Appl. Algebra 56 (1989) 269-312.
[10] C. Soulé, Opérations en K-théorie algébrique, Canad. J. Math. 37 (1985) 488-550.
[11] A.A. Suslin, Homology of GL_{n}, characteristic classes and Milnci K-theory, in: Algebraic K-theory, Number Theory, Geometry and Analysis, Lecture Notes in Mathematics 1046 (Springer, Berlin, 1984), 357-375.
[12] A.A. Suslin, On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984) 301-318.
[13] A.A. Suslin, Algebraic K-theory of fields, in: Proceedings ICM Berkeley I (1986) 222-244.
[14] A.A. Suslin, Torsion in K_{2} of fields, K-theory 1 (1987) 5-29.
[15] G.W. Whitehead. Elements of Homotopy Theory, Graduate Texts in Mathematics 61 (Springer, Berlin, 1978).

