Journal of Pure and Applied Algebra 71 (1991) 1-12 1
North-Holland

The Hurewicz homomorphism in
algebraic K-theory

Dominique Arlettaz

Institut de Mathématiques, Université de Lausanne. CH-1015 Lausanne. Switzerland

Communicated by J.D. Stasheff
Received 2 February 1990

Abstract

Arlettaz, D., The Hurewicz homomorphism in algebraic K-theory. Journal of Pure and Applicd
Algebra 71 (1991) 1-12.

This paper investigates the Hurewicz homomorphism #,: K,A— H,(E(A); Z) between the
algebraic K-theory of a ring A and the homology of the linear group E(A) generated by
elementary matrices over A. The main theorem asserts that for any n =2, the kernel of &, is a
torsion group of finite exponent, and provides an upper tound. independent of A. for its
exponent. The proof of this uses the fact that BE(A)~ is an infinite ioop space. because its basic
idea is to observe that the rosult follows from the study of the kernel of the Hurewicz
homomorphism in the range of stability. The discussion ¢i the problem involves then the
description of the relationship between the Hurewicz map and the k-invariants of the space
BE(A)". Finally, some partial information on the cokernel of 4, is also obtained.

Introduction

Let GL(A) be the infinite general linear group (considered as a discrete group)
over the ring with identity A, E(A) its subgroup generated by elementary
matrices, and BGL(A)" and BE(A)" the infinite loop spaces obtained by
performing the plus construction on the classifying spaces of GL(A) and E(A)
respectively. The purpose of this paper is to investigate the Hurewicz homo-
morphism between algebraic K-theory and linear group homology. Since BE(A)"
is the universal cover of BGL(A)". we concentrate actually our attention to the
Hurewicz siomomorphism

h,:K,A=m BE(A)"— H,(BE(A)";Z)= H,(E(A): Z)
for n=2. Obviously, &, is an isomorphism and A, is surjective since the space
BE(A)" is simply-connected.

In [10, Proposition 3] Soulé has shown that the kernel of &, is a torsion group
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2 D. Arlettaz

that involves at most the prime numbers p satisfying p <(n+1)/2, but his
argument does not imply thzt this group has finite exponent. The special case
n =3 was first considered by Suslin [11, p. 370] who has obtained the result
2ker h, =0 by exhibiting ker &, as a quotient of K,A®Z/2. Recently, Sah [9,
Proposition 2.5] has also established that 2 ker 4; = 0 for any ring A (unfortunate-
ly, there is a gap in his proof: see Remark 1.9).

In ihe first section of this paper, we prove that for any n, ker A, is effectively a
torsion group of finite exponent and we give a universal bound for its exponent.
More precisely, we define integers R; (j = 1) which are independent of A and
such that for any n =2,

R,_kerh,=0

n-1
for any ring A (in particular. we do not assume any finiteness condition). Observe
that this implies Soulé’s assertion because the integers R, _, have the property
that a prime p divides R, _, if and only if p = (»# + 1)/2. Notice also that our result
is a generalization of Suslin and Sah’s computation in relation to al/l dimensions
since R, =2. In order to get our theorem, we show that ker 4, is a quotient of a
homology group of a space having only finitely many nontrivial homotopy groups,
and then, the delooping of the space BE(A " enables us to compare ker h, with a
finite number of stable homology groups of Eilenberg-Mac Lane spaces.
Our method works similarly for the Hurewicz homomorphism

h,:K,A=m BSt(A)* — H, (BSt(A)";Z) = H,(St(A); Z)

for n =3, where St(A) is the infinite Steinberg group of A. Remember that
BSt(A)" is a 2-connected infinite loop space: therefore, A, is an isomorphism and
h, is surjective. Here, our result is:

R, _.kerh,=0

for any ring A and for any integer n =3.

The remainder of Section 1 is devoted to the study of the kernel of the
Hurewicz homomorphism in low dimensions: for n <5, we are able to describe its
exponent more precisely.

In Section 2, we look at the same problem from another point of view: we
examine the k-invariants of the spaces BE(A)" and BSt(A)", and exhibit a
relationship between their order and the knowledge of the Hurewicz homo-
morphism. We also prove the following statement: if F is an aigebraicaily closed
field and n an even integer, the k-invariant k"*'(BSL(F)") is trivial and the
Hurewicz homomorphism 4, : K,F— H,(SL(F); Z) is split injective.

Finally, the cokernel of the Hurewicz homomorphism is the purpose of Section
3, but our method provides an upper bound for its exponent only in small
dimensions, for instance for n <6 in tk. case of 4, : K,A— H,(5t(A); Z).
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Throughout the paper, we first formulate our results in general, i.e.. for any
m-connected CW-complex, and then apply them to algebraic K-theory. Note that
all spaces considered here are connected CW-complexes. and that if the coeftici-

ents of homology (or homotopy) groups are not written explictly. integral
coefficients must be understood.

1. The kernel of the Hurewicz homonmiorphism

The main objective of this section is to show the existence of upper bounds
for the exponent of the kernel of the Hurewicz homomorphisms
h,:K,A— H (E(A);Z), n=2, and h,: K,A— H,(St(A); Z), n = 3. We start by
looking at the general situation. If Y is a connected CW-complcx and i a positive
integer, let us denote by Y— Y[i] its ith Postnikov section: Y[{] is a CW-complex
obtained from Y by adjoining cells of dimension =i + 2 such that =, Y[i] =0 for
k>iand m Y= Y[i] for k=<i.

Theorem 1.1. Let Y be a connected simple CW-complex, X the r-fold loop space
Q'Y (r=0), und n a positive integer. The kernel of the Hurewicz homomorphism
h,:w,X— H,(X;Z) is a subgroup of

Hn+r+I(Y[n tr— 1]; Z)/@(Hn+r+l(y[n + r]; Z)) °
where @ is the homomorphism induced by the inclusion Y{n +rl< Y[n+r—1].
Proof. Consider the exact integral homology sequence of the pair (X[n — 1], X[n]):

e Hn+IX[n]_) Hn+1X[n - 1]
- Hn+l(X[n - 1]’ X[n])i> H"X[H]—> e

It is clear that H X[n] = H,X; on the other hand, according to [15, p. 422], there
is a natural isomorphism H, . ,(X[n — 1}, X[n]) = 7, X and 9 corresponds under
this isomorphism to the Hurewicz homomorphism h,:#7,X— H,X. Thus. the
analogous exact sequence for the pair (Y[n +r—1], Y[n+r]) produces the
commutative diagram

~--————>H,,HX[n]—>H,,+‘X[n—l] >, X >H X — -

hyor
.._)H1+r+lY{n+rlfi)pr+r+lY[n+r—1]_>1r Y-_—>Hn+rY—-)

¥ n+r

where the vertical arrows are the r-fold suspensions, the left one being an
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The Rurewicz homomorphism 5

Notice that the upper bound R,, _,, for the exponent of ker h,, does not depend
on the space X (in particular, there is nc finiteness condition on X'). Now, let us
apply this result to the infinite loop spaces BE(A)" and BSt(4)".

Corollary 1.6. (a) F.r any ring A and for any integer n =2, the Hurewicz
homomorphism h,: K,A— H,(E(A); Z) fulfills R, _, ker h, =0.

(b) For any ring A and for any integer n =3, the Hurewicz homomorphism
h,:K,A— H, (St(A); Z) fulfills R, _.kerh,=0. O

n-

It is actually possible to get more details on the exponent of the kernel of £, in
low dimensions. For an abelian group G, we shall write exp(G) for the exponent
of G.

Theorem 1.7. Let X be an m-connected r-fold loop space. The kernel of the
Hurewicz homomophism satisfies:

(@) if m+ r=2, then exp(ker b, ,) divides exp(=,, ., X ®Z/2),

(b) if m + r=3, then exp(ker h,, ) divides the product

exp(m,,..X®2Z/2)-exp(Tor(m,, ., X, Z/2)).

Proof Suppose that X =Q'Y, where Y is ani {(m + r)-connected space. In order
to establish (a), we must determine exp(H,,,,..Y[m + r + 1]). But the equality
Y[m+r+1]=K(w,,, X,m+r+1) implies that H, . Y[m+r+1]=
Ty X Z/2.

Similarly, (b) follows from the computation of H,, ., ,Y[m + r + 2]. The Serre
spectral sequence of the fibration

K(Tp s X, m+ 1 +2)= Y[m+r+2]— K(m,. , X.m+r+1)
gives the exact sequence
H, . .K#&, .X,m+r+2)—-H  Yim+r+2]
—-H, . . K#7, X, m+tr+l).

Remember first the isomorphism H,, ., , K(w, . X,m+r+2)=x, . X®Z/2.
Observe then that the third group in the exact sequence may be calculated by
using the isomorphism [3, Corollaire of Théoréme 7]

Hn+r+4K(7Tm+lX’ m+r+ 1) = Hm+r+4(K(Z’ m+r+ 1)’ W"’*‘X)

(since m + r = 3), the universal coefficient theorem
H,, (KZm+r+1);7,.,X)
=Hom(H,,,,..,K(Z, m+r+1), 7, X)
@®Tor(H,,.,..K(Z, m+r+1),7,,,X),
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and the facts that K, ,,,K(Z.m+r+1)=0 and H, ., ¥ Z m+r+1)=
Z/2. O

Corollary 1.8. Let A be any ring with identity.

(@) If h, denotes the Hurewicz homomorphism K,A— H, (E(A);Z), then
exp(ker h,) divides exp(K,A®Z/2) and exp(kerh,) divides the product
exp(K;A®2Z/2)-exp(Tor(K,A, Z/2)).

(b) If h, denotes the Hurewicz homomorphism K,A— H,(Si(A);Z), then
exp(ker h,) divides exp(K;A®Z/2) and exp(kers.) divides the product
exp(K,A®2Z!2)-exp(Tor(K;A. Z/2)). O

Remark 1.9. In the case of the space BE(A)™ and n = 3, our argument uses the
fact that BE(A)" is a loop space (r =1): consequently, ker ki, is a subquotient
of H.K(K,A,3), and the result follows from the isomorphism
H.K(K,A,3)= K,AKQZ!/2 (this is a stable homolegy group). The proof of the
assertion 2 ker &, = 0 given by Sah in [9, Proposition 2.5] is not complete because
he tries to deduce it from the observation tha: kerh, is a quotient of
H,K(K,A, 2), inst=ad of going to the range of stabiiity and comparing ker 72, with
H.K(K,A, 3).

Exampiz 1.10. Let F be a field of characteristic 2. For n=2 and 3, K,F is
2-torsion-free (cf. [14, Theorem 1.10] for n =2 and [7, Corollary 4.13] for n = 3),
and the groups K,F®Z/2 are well understood: K,F®Z/2= ,Br(F) (the 2-
torsion subgroup of the Brauer group of F), and K,F®Z/2= K ,F/2=KYFi2
= I/I', where KY'F is the third Milnor K-group of F and / the unique maximal
ideal of the Witt ring W(F) of nondegenerate symmetric bilinear forms over F (cf.
[6] and [7, Corollary 4.13]). Consequently, we deduce from the previous corollary
the following assertions:

(a) in the case of the Hurewicz homomorphism h_: K, ,F— H,(SL(F); Z),
exp(ker k) is a divisor of exp(,Br(F)) and exp(ker h,) a divisor of exp(I'/I*),

(b) in the case of the Hurewicz homomorphism h,:K,F— H (St(F); Z),
exp(ker h,) is a divisor of exp(/>'I*) and exp(ker k) a divisor of exp(K,F 8 Z/2).

Remark 1.11. If the 2-adic Quillen-Lichtenbaum conjecture (in the sense of
Dwyer and Friedlander) is true for the ring Z, then it follows from [4, Corollary
4.3] that H*(SL(Z);Z/2)=Z/2[{w,, w;, w,,...]® A(us, 45, U5,...), Wwith
deg w, =i (w; is the ith Stiefel-Whitney class), deg u, = i, and consequently that
H'(St(Z);Z2/2)=2Z/2, H(SY(Z);Z/2)=Z/2 because of [1, Lemma 2.8]. Since
H,(St(Z); Z)= K Z = Z/48, the 2-torsion subgroup of H,(St(Z); Z) would then
vanish. Fut we have proved in {1, Theorem 1.3] that the Hurewicz homo-

morphism h,: K, Z— H,(St(Z); Z) is an isomorphism. Therefore, we obtain the
following:
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Conjecture A. Thc 2-torsion subgroup of K,Z is trivial.

In dimension 5. the 2-adic Quulen-Lichtenbaum conjecture would imply that
Hom(15(St(Z); Z), Z/2) =Z/2, in other words that the 2-torsion subgroup of
H(St(Z); Z) is trivial, because it is known that H;(St(Z); Z) = Z @ torsion group,
and we would conclude that the kernel of the Hurewicz homomorphism
hs: K Z— H,(St{Z); Z) would be annihilated by 2, because of Corollary 1.8(b):

Conjecture B. The exponent of the 2-torsion subgroup of K Z is at “.acst 2.

As inentioned in the Iatroduction, Sah has examined the kernel of
hy: K;A— H,(E(A); Z): he has shown in particular that A, is injective f K,A is
2-divisible [9, Proposition 2.5]. The end of this section is devoted to a generaliza-
tion of this result in relation to all dimensions.

Theorem 1.12. (a) Let A be a riiig, n un integer =3, and p a prime number.
Assume thac K;A is uniquely p-divisible if 2<j<n—2p+3, and p-divisible if
Jj=n-2p+3=2. Then the kernel of h,:K,A— H, (E(A):Z) contains no p-
torsion.

(b) The same iesult hoids for h,: K,A— H,(St(A); Z). n =4, given the condi-
tion that K,A is uniquely p-divisible if 3<j<n—2p+3 and p-divisible if j =
n—2p+3=3.

In order to prove this theorem we first need to recall some information on the
torsion in the stable homology of Eilenberg-Mac Lane spaces.

Lemma 1.13. Let G be an abelian group, s and i two integers with 2 <5 <[ <2s.
and p a prime. Then H(K(G, s);Z) is p-torsion-free if one of the following
conditions is satisfied:

(@ i—-s<2p-2,

(b) i—s=2p—2 and G is p-divisible,

(c) i—s>2p—2 and G is uniquely p-divisible.

Proof. Let us suppose that s + 2 < i <2s since the result is trivial for i =s + 1. We
use the isomorphism ,(K(G, s); Z) = H(K(Z, s); G) [3. Corollaire of Théoreme
7] and the universal coefficient theorem

H(K(Z,s); G)= HK(Z,s)® G®Tor(H,_,K(Z,s), G).

It is known by 3, Théoréme 7] that the stable homology groups H,,,K(Z, 5) are
finite cyclic groups whose order divides L, (for 1=k <s). In particular,
H_.,,K(Z, s) contains no p-torsion if k <2p —2: this implies (a). In order to get
(b), we then only have to look at H, ., »,K(Z, 5)® 5: H,, (5,-2K(Z, 5} is cyclic
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of order p - t, with ¢ not divisible by p, but H,, ,,_,,K(Z, s)® G is p-torsion-free
since G is p-divisible. Similarly, if i —s>2p —2 there is p-torsion neither in
H,K(Z,s)® G nor in Tor(H,_,K(Z, s), G), because G is p-divisible, .cspectively
uniquely p-divisible. [

Proof of Theorem 1.12. Because BE(A)” is a simply-connected infinite loop
space, let us assume that BE(A)" =2""Y, where Y is an (n — 1)-connected
space. According to Theorem 1.1, it is sufficient to show that the p-torsion
subgroup of H,,_,Y[2n — 3] is trivial. But it turns out that this is equivalent to the
fact that H,,_K(#,Y,s)=H,,_,K(K,_,.,A,s) contains no p-torsion for s =n,
n+1,n+2,...,2n — 3. We may deduce this from assertion (a) of the lemma for
2n—2p +1<s=2n -3, from (b) for s =2n — 2p + 1, because of the p-divisibili-
ty of K, _,,.3A, and finally from (c) for n=s5s<2n-2p+1, since K,_,,,A is
uniquely p-divisible. We proceed similarly for the space BSt(A)*. O

2. Postnikov-invariants

It is also possible to discuss the Hurewicz homomorphism 4, : 7,X— H, (X, Z)
by looking at the Postnikov k-invariants k"*'(X)€ H""'(X[n — 1]; m,X). The
method of the proofs of Theorems 1.1 and 1.5 provides in fact the following
result: if X is an m-connected r-fold loop space, then R,_, k" '(X)=0 for
m+1=n<=2m+r [2]. On thke other hand, the finiteness of the order of the
k-invriant k" *'(X) produces a map f, : X— K(m, X, n) inducing multiplication by
this order, i.e., by a divisor of R on 7, X, and the commutative diagram

n—m?>

(f)+ ~
7, X——— 7, K(7w, X, n)= 7, X

hy, 1 zlll n

H,(X; 2)"5H,(K(7,X, n); Z) .

Remark that this implies in particular that if x € ker h

another way to formulate the proof of Theorem 1.5.

In the case of the algebraic K-theory, the upper bounds for the order of the
k-invariants are given by

then R, __x =0: this is

n? n—m

R,_\k""Y(BE(A)"')=0 forn=2
and

R, k"' (BSt(A)")=0 forn=3,

for any ring A. Therefore, the next assertion is a direct consequence of the above
diagram.
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Theorem 2.1. For any ring .*. there exist homomorphisms (f,).: H,(E(A).Z)
— K, A, respectively (f,).:H,(St(A); Z)— K,A such that

(@) the composition (f,).°h,:K,A— H,(E(A);Z)— K,A is multiplication by
a divisor of R,,_, for n=2,

(b) the composition (f,).°h,: K,A— H,(St(A); Z)— K, A is multiplication by
a divisor of R, _, for n=3. 0O

Remark 2.2. Consequently. for any ring A the Hurewicz homomorphism with
coefficients

h,:K,(A;Z/p)— H,(E(A);Z/p)

is split injective if p is a prime number >(n + 1)/2 (n =2), because R, _, is not
divisible by p. Let us also recall that, if A =R, C or H, the Friedlander—Milnor
conjecture holds for BSL(A)— BSL(A)"", where BSL(A)"”® denotes the classify-
ing space of SL(A) with the given topology as a Lie group (cf. [8], [12, Corollary
4.6], [13, Proposition 3.5]): thus, we may conclude that K, (A;Z/p) is a direct
summand of H (BSL(A)°?;Z/p) for n=2 and p>(n+1)/2.

Remark 2.3. The results of this paper may also be formulated for algebraic
L-theory. In particular, the kernels of the Hurewicz homomorphisms
h,:,L,A— H,(O(A);Z) and h,:_,L,A— H,(Sp(A); Z) are annihilated by R,
for any ring A and any integer n = 1. It is actually possible to replace the integers
R, by smaller integers R, (cf. [2, Definition 2.3 and Theorem 2.4]). Remark 2.2
holds also for L-theory since the Friedlander—Milnor conjecture is true in this
situation for A =R or C [5].

The main result of this section is the following theorem on the k-invariants of
the spuce BSL(F)" for algebraically closed fields F.

Theorem 2.4. Let F be an algebraically closed field and n a positive even integer.
Then,

(@) k" (BSL(F)*)=0 in H"*'(BSL(F)"[n —1}; K,F),

(b) the Hurewicz homomorphism h,: K, F— H,(SL(F); Z) is split injective.

Proof. Since BSL(F)" is a simply-connected infinite loop space, we may consider
an (n—1)-connected space Y with BSL(F)" = 0"7’Y. The k-invariant
k"*'(BSL(F)") is then the image of k™ '(Y) under the (n —2)-fold iterated
cohomology suspension

H™ '(Y[2n - 3); K,F)— H""Y(BSL(F)"[n - 1]: K,F)

[15, p. 438]. Now, look at the universal coefficient theorem
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H¥ '(Y[2n - 3}; K,,F)
= Hom(H,, ,Y[2n - 3], K,F)®Ext(H,,_,Y[2n - 3], K,F),

and obscivz that the group Ext(H,,_.Y([2n — 3], K,F) vanishes because Suslin
has proved that K, F is divisible for algebraically closed fields [13, Section 2].
Moreover, he has shown that K, F is torsion-free if » is an even integer: this and
the fact that H, _,Y[2n—3] is a torsion group (see Lemma 1.4) imply that
Hom(H,, _,Y[2n - 3), K, F) is trivial. Consequently, H*'~'(Y[2n - 3]; K,F) =0
and k" '(BSL(F)")=0. Assertion (b) follows then from ine commutative dia-
gram introduced at the beginning of this section. [

3. The cokernel of the Hurewicz homomorphism

Finally, we try to get some information on the cokernel of the Hurewicz
homomorphism. We start again by looking at the general situation.

Theorem 3.1. If X is an m-connected space and n an integer such thatm +2=n=
2m+1 (m=1), then the cokernel of the Hurewicz homomorphism h,:m, X
— H (X; Z) satisfies:

(@) coker h, = H, (X[n - 1]; Z),

(b) R,_,,_,cokerh, =0.

Proof. The exact integral homology sequence of the pair (X[n — 1], X[n]) gives
the following exact sequence (cf. Proof of Theorem 1.1):

h,,
o7 X— H X—>HX[n-1]----,

where the homomorphism H,X— H,X[n —1] is surjective by Whitehead’s
theorem. Thus, coker h, = H, X[n — 1]. But the proof is then complete since the

expenent of the group H, X[n — 1] is finite and bounded by R,,_,, _, as indicated in
Lemma 1.4. O

Example 3.2. The first interesting case is n = m + 3 (assuming m =2). It follows
from the theorem that coker 4,,,,= H,,,,X[m +2] and the Serre spectral se-
quence of the fibration K(m,,,,X, m+2)— X[m +2]— K(=n,,,,X, m +1) pro-
duces the exact sequence

H,. .K(7, ., X,m+2)—-H, X[m+2]->H, K=, , X,m+1).

~ —

0 ‘-:—: 77'"1+TX"®Z/2

Consequently, the cokernel of 4,,, , is isomorphic to a subgroup of 7, I X®Z/2.
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Corollary 3.3. For any ring A, the cokernel of h.:K.A— H,(St(A);Z) is a
subgroup of K;A®Z/2. O

In general, our argument succeeds only up to dimension 2m + 1. However, it
also enables us to describe partiaily the case n=2m +2 if the space we are
looking at is a loop space.

Theorem 3.4. Let X be an m-connected loop space (m =0) and QH . (X; Z) the

indecomposables of H (X;Z). The cokernel of the composition

hlm +2

7TZm+2’Y_') H2m+2(X; Z)—'» QHZm+2(X; Z)
is annihilated by R, . ,.

Proof. Let X be =Y with Y an (m + 1)-connected space and n =2m + 2. The
homology suspension ¢ provides the commutative diagram

h,
7TuX I H"X

;l 1.,

",1+l
T, Y—H, Y.

n+1

If a is an element of H, X, then R, ,0(a) belongs to the image of h,,, by
Theorem 3.1. Therefore, there exists an element 8 € 7, X such that (h,(B) —
R,,.,a) Eker o. But every element of ker o is reductive [15, p. 383], and hence
decomposable since it is in H,X and H X =0 for t =(n/2) — 1. It is then easy to
conclude, because the images of 4,(B) and R, @, under the surjection
H,X-> QH, X, coincide.

Corollary 3.5. For any ring A, the cokernel of the composition

K, A— H (E(A); Z)—» OH,(E(A); Z) ,

respectively

K A—2> H (St(A); Z)—> QH(St(A): Z) .

is annihilated by 2, respectively by 4. [
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