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Introduction 

For any prime p let T’(p) denote the congruence subgroup of SL,@) of level 

p: T,(p) is the kernel of the surjective homomorphism SL,(iz)*SL,JFJ induced 

by the reduction modp ([FP is the field with p elements). The groups T,(p) are 

torsion-free for all odd primes p. 

Recent results of Charney [4] and Suslin [14] provide examples of coefficient 

groups M such that the groups T,(p) are homology stable with M-coefficients and 

that SL(IF,) acts trivially on H&T(p); M) : M= Q, z[l/p] or B/m (p not dividing 

m). For this choice of M we compare the stable homology groups of T,(p) with 

those of SL,(z) (Theorems 1.4 and 1.5). We then study the stable homology 

groups H;(T’(p); L/qd) (p#q primes, dr 1) for Osis5 (Section 2). 

Finally we look at the cohomology with 7?-coefficients and prove that the restric- 

tion homomorphism ZZ4(SL,(;2); Z)+H4(rn(p); Z) is zero for all odd primes p and 

n?9 (Corollary 3.3). This is an immediate consequence of the following result on 

the second Chern class of F”(p) : c,(T,,(p)) =0 for all odd primes p and n22. 

1. The stable homology groups of the congruence subgroups 

Let R be a commutative ring with unit and Z an ideal in R. We assume throughout 

this section that SL(R/Z) (= 15 SL,(R/Z)) is generated by elementary matrices 

(i.e., SK,(R/Z) =O). The projection R -R/Z induces then a surjective homomor- 

phism SL,(R) * SL,(R/Z) for n L 2. We define the congruence subgroup Z,(Z) as 

the kernel of SL,(R)*SL,(R/Z) and Z(Z) := li$Z,(Z). We get the short exact se- 
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4 D. Arlettaz 

quence T(I) H SL(R) -+ SL(R/I) and, in this section, we want to give cases in which 

SL(R/I) acts trivially on the homology of I(I). 
We recall the definition of the homology stability: a sequence of groups G, C 

G,cG3c... is homology stable with M-coefficients if for all i 2 0 there exists an in- 

teger no(i) such that the inclusions induce isomorphisms H,(G,; M)sHHi(G,+ i; M) 

for n?n,(i). It is easy to prove the following result due to Charney [4]. 

Lemma 1.1. If the groups T,(I) (n =2,3,4, . . . , ) are homology stable with M- 
coefficients, then the action (induced by conjugation) of the group SL(R/I) on 
H,(I(I); M) is trivial. 

The short exact sequence T(I) ti SL(R) + SL(R/I) induces the fibration BT(I) + 
BSL(R)+BSL(R/I). By performing the + construction we get the following com- 

mutative diagram where F(I) denotes the fiber of the map BSL(R)+ +BSL(R/Z)‘: 

BI(I) - BSL(R) - BSL(R/I) 

II I+ I+ 
F(I) - BSL(R)+ - BSL(R/I)+ 

Because SK,(R/I) =0 the group SL(R/I) is perfect and the space BSL(R/I)+ is 

simply connected; therefore F(I) is connected. 

Lemma 1.2. The two following conditions are equivalent: 
(a) the action of SL(R/I) on H,(T(I); M) is trivial; 
(b) the map f induces an isomorphism f* : H,(BIJI); M) 5 H*(F(I); M). 

Proof. If the condition (a) is satisfied, then we can apply the comparison theorem 

for spectral sequences on the above diagram and we obtain (b). Conversely, if (b) 

holds, then the action of SL(R/I) on H*(BI(I); M) is trivial since BSL(R/I)+ is 

simply connected. 

Remark. If the conditions of Lemma 1.2 are satisfied for M=Z and if the com- 

mutator subgroup [T(I), I(I)] is perfect, then we have a homotopy equivalence 

F(I) = RU$.&, r(l)]. 

We now restrict our attention to the case R = Z, I=pZ where p is a prime number 

and denote the kernel of SL,(Z)+SL,(FP) by I,(p) (n>2). Recall that the groups 

SL,(Z) are homology stable with Z-coefficients (cf. [15] or [lo]): H;(SL,(L); a)= 

H,(SL, + 1(Z); 77) for n 2 2i + 1. The congruence subgroups r,(p) are also homology 

stable with some coefficient groups. More precisely, if M= Q, Z[l/p] or L/m for 

all integers m with (m,p)= 1, then Hj(I,(p);M)=Hi(I,+l(p);M) for nz2i+5 
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(cf. [4, Theorem 5.2 and Example 5.41). By Lemma 1 .l this stability result provides 

conditions on M for the triviality of the action of SL(F,) on H,(T(p); M). 

Corollary 1.3. Let p be a prime and M= Q, Z[ l/p] or Z/m for all integers m with 
(m,p) = 1. Then the action of the group SL(lF,) on H,(T(p); M) is trivial. 

Remark 1. The statement of Corollary 1.3 is also proved by Suslin (cf. [14, Proposi- 

tion 1.31) for Z/m and we can modify this proof to get the same assertion for M= Q 
or Z[l/p]. 

Remark 2. Let F(p) denote the fiber of BSL(Z)+ +BSL(lF,)+; since K2Fp=0, F(p) 
is simply connected and therefore H,(F(p); Z) = 0. On the other hand H,(f’(p); Z) 
is a (non-trivial) p-group for all nz3 (cf. [7, Theorem 1.11). We then deduce from 

Lemma 1.2 that for M=Z or Z/p, the action of SL(ffJ on H,(T(p); M) cannot be 

trivial, and from Lemma 1.1 that the groups T,(p) are not homology stable with 

M-coefficients. 

Our next objective is to compare the stable homology groups of T,(p) with those 

of SL,(Z); we consider coefficients in Q and in Z/m ((m,p) = 1). 

Theorem 1.4. Let p be a prime. Then for i 2 0 the inclusion r,,(p)c,SL,(Z) induces 
an isomorphism 

WG(P); Q)%(SW); Q) 

for nr2i+ 5. 

Proof. By Corollary 1.3, SL(Fp) acts trivially on H@(p); Q). Since 

H,(SL(F,,); Q) = 0 for i > 0 the theorem follows from a spectral sequence argument 

and homology stability. 

Remark. Theorem 1.4 is also proved in [3] where the stable rational homology of 

these groups is computed: H,(T(p); Q)zH,(SL@); Q)=A(x,,x9, . . ..X~k+l. . ..I 

with degXqk+r =4k+ 1 for krl. 

Theorem 1.5. Let p and q be primes (p#q) and s the least integer 2 2 such that 
ps=l modq. 

(a) For 05 is 2s- 3 the inclusion r,(p&SL,(Z) induces an isomorphism 

H;(T,(p); Z/q~)~i;(SL,(Z); Z/qd) 

for nr2i+5 and dz 1. 

(b) The following sequence is exact for d I 1: 

H&,(T(p); z/qd)+H&I(SL(L); Z/qd)+Z/(pS- l)@Z/qd+ 
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Proof. Our argument is based on the calculation of the E2-term of the 

Hochschild-Serre spectral sequence of the extension T(p) ti SL(Z) + SL( FP): Etj = 
H,(SL(E,,,); Hj(T(P); Z/#)) (by Corollary 1.3, Hj(T(p); Z/qd) is a trivial SL(EJ- 

module). If r denotes the least positive integer such that pr= 1 mod q then, accord- 

ing to [II], H,(SL(E& Z/qd)=O for O<is2r-2 and H2r_l(SL(FP); Z/qd)z 
Z/(p’- l)@Z!/qd. But H,(SL(FP); Z)=H,(SL(EJ; Z)=O since SL(EJ is perfect 

and K2FP=0. Therefore we may conclude that Hj(SL(ffP); Z/qd) =0 for 

O<is2s-2 where s=max{r,2}. 

Thus we have E~j =0 for O<i<2s-2, which implies (a) by homology stability, 

and the exact sequence 

H~sm ,(UP); ~/qd)4H2sdW0 ~/qd>+H2sdSL(Q; Z/q? 

+H2s-2(Qp); iUqd)+H2s_2(SL(Z); Uqd)-0. 

The assertion (b) follows from 

Hz,_, (SL(EJ; Z/q”) = 
Z/(p”- l)@Uqd, if s=r, 

K,F~@OLqd~Z/(p2- l)@Z/q”, if s=2. 

Finally we mention the following result on the homology of T(p’) for t 2 1. 

Lemma 1.6. Let p be a prime and m an integer such that (m, p) = 1. Then 

H,(T(p’); Z/m)= H&-(p); Z/m) for aN t 2 1. 

Proof. Let t be a given integer z 1. The projection Z/p’ + Z/p induces a surjective 

homomorphism SL(Z/p’)+ SL(Z/p) whose kernel will be called K. It follows 

from [14, Lemma 1.71 that &*(K; Urn) = 0 and therefore the induced homomor- 

phism H,(SL(Z/p’); Z/m) + H,(SL(Z/p); Z/m) is an isomorphism. By Corollary 

1.3 we may apply the comparison theorem for spectral sequences to the com- 

mutative diagram 

SL(Z) A SL(.Up’) 

which implies the desired isomorphism. 

2. Calculations in low dimensions 

In order to compute homology groups of T,(p) using the previous section let us 
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recall the following results on the homology of SL(Z). 

Lemma 2.1 [2]. H,(SL(Z); Z)=O, H,(SL(Z); Z)=Z/2, Hs(SL(Z); 2)~:2/24. 

Lemma 2.2. Let C denote the Serre class of all finite abelian groups containing only 
2- and 3-torsion. 

(a) H&WQ; Z) E C, 
(b) H,(SL(Z); Z) E Z @ H, where HE C. 

Proof. Let X be the simply connected space BSL(H)+. Because K2Z~Z/2, 

K,ZrZ/48 [8] and K,ZE C (cf. [9] and [13]) the homology groups H,(X; Z)Z 

H,(SL(Z); Z) are also elements of C for O<i~4 and the Hurewicz homomorphism 

nsX+Hs(X; Z) is a C-isomorphism. This implies (b) because rcsX= K,Z= 

Z@ (finite group E C) (cf. [9] and [ 131). 

Throughout this section we assume that p and q are prime numbers such that 

p#q. We are now able to compute the stable homology groups H,(T(p); Z/qd), 
d 2 1, for 0 5 is 3 and to obtain partial results for i = 4 and 5. 

A direct consequence of Theorem 1.5 is that H,(T(p); Z/q) =O. Note that this 

result is obvious by the computation of Hr (m(p); Z) for n L 3 by Lee and Szczarba 

[7, Theorem 1.11: H,(T,(p); Z) is isomorphic to the additive group of all n x n 
matrices with entries in [F, and trace zero. 

For i = 2 and 3 we can again use Theorem 1.5 but we get more information by look- 

ing at the homotopy exact sequence of the fibration F(p)+BSL(Z)f&BSL(5P)f 

(cf. Section 1). Since K2EP = K4E,, = 0 the fiber F(p) is simply connected and for all 

primes q we obtain the exact sequence 

O-+(~~F(P))~ + (KJ)q+(K&)q+ &F(P)), -(KzQ -+O (*I 

where ( & denotes the q-primary component. We have proved (cf. [l, Satze 2.5, 

2.6, 2.81) that the induced homomorphism rr *: K,EGZL~~+K~E~GZ//(~~- 1) is 

surjective for p = 2 and p = 3 and that its image is a cyclic group of order 24 if p 2 5. 

Theorem 2.3. Let p and q be primes such that p#q and q#2. 
(a) For n r9 and d 2 1: H,(T,(p); Z/qd)=Z/((p2 - 1)/3, qd), if pf3 and 

H,(r,(3); z/qd) = 0. 
(b) For nrll and dzl: H,(T,(p);Z/qd)=Z/((p2-1)/3,qd), if p#3 and 

H&(3); Z/qd) =O. 

Proof. We first consider the case q= 3 (p# 3). We have the exact sequence (*) 

(~~F(P)),~~/~~(UP~-~)),+(~~F(P))~ 

and TC* is injective since p # 3. Consequently (rr3 F(P))~ = 0 and (n2F(p))s 3 
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(Z/Q* - 1)/3)s. Because F(p) is simply connected the Hurewicz homomorphism 

n;F(p) -+H;(F(p); Z) is surjective for i = 3 and an isomorphism for i = 2. It follows 

that H2(F(p); Z), G (Z/(p* - 1)/3)s and Hs(F(p); Z)s = 0. We deduce from Lemma 

1.2 and the universal coefficient theorem (for d 2 1): 

H,(r(p); z/3d)=H2(F(p); Z/39=z/((p*- 1)/3,39, 

H,(T(p); Z/3d)=HH,(F(p); Z/3d)nZ/((p2- 1)/3,39. 

Now for qr 5 (K,Z), = (K2Z& = 0 and the exact sequence (*) gives us: 

(nsF(p)), = 0 and 

(712maq z (~4P2 - l)), = 

i 

(Z/(p*- 1)/3), for p+3, since qZ3, 
o 

for p=3, since qZ2. 

As above we get: 

and 

H,(T(p); Z/qd)=H3(T(p); Z/qd)= Z/((p*- 1)/3,qd) for pf3 

H,(r(3); i2/qd) =H,(r(3); L/#) =O. 

The proof is then complete by homology stability. 

We also discuss the case q=2 which is more complicated. 

Theorem 2.4. Let p be a prime 22. 
(a) If p*- lf0 mod 16, then H,(T,(p); Z/2d)zZ/2 for nr9 and dz 1. 

(b) If p* - 1 = 0 mod 16, then one has the following short exact sequence for 
nr9: 

@/(p*- l)/8)2>-tH2(T,(p); Z)2+Z/2. 

(c) For nz 11 and dz 1: H,(I”(p); i7/2d)rH2(r,(p); Z/2d)@fZ/2 where I=0 
or 1. 

Proof. We use again the exact sequence (*): 

(n~F(p))2~~/16~(Z/(p2-l))2-t(~2F(p))2~~/2. 

The image of n* is cyclic of order 8 since p#2. If p*- 1 f0 mod 16, then 

(7r2F(p))*=Z/2 and, as in the proof of the previous theorem, 

H,(T(p); Z/2d)~H2(F(p); Z/2d)~Z/2 for d2 1. 

If p*- 1~0 mod 16, then we get the short exact sequence 

(Z/(p*-1)/8)2*H2(F(p);&+Z/2 

and H,(F(p); 12),~H,(T(p); Z)* since p#2 (cf. Lemma 1.2). The exact sequence 
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(*) also implies that (TC~F(~))~ZZ/~ and therefore H,(F(p); QEO or Z/2 since 

the Hurewicz homomorphism is surjective. By the universal coefficient theorem we 

may conclude that H,(T(p); Z’/2d)=HH,(r(p); Z/2d)@ 12/2 with 1=0 or 1. Again 

the homology stability completes the proof. 

Remark. It is actually possible to show that f=O. 

We finally look at the cases i=4 and i= 5. 

Theorem 2.5. Let p and q be primes such that pf q, (p2 - 1, q) = (p3 - 1, q) = 1. 

Then 
(a) H,(T’(p);Z/qd)=Ofor n213 and drl, 

(b) H,(f’(p); L/qd)=.Z/qd for n2 15 and d> 1. 

Proof. By Theorem 1.5 we have for Osis5: H;(r,(p); Z/qd)zHj(SL,(Z); Z/qd) 
for nz2i+5 and dzl. The prime q must be 25 because (p2-l,q)=l and 

p#q. Consequently by Lemma 2.1 and Lemma 2.2, H,(SL,(Z); Z’/qd) =0 and 

H,(SL,(Z); Z/qd)sZ@i7/qdzZ/qd and the theorem is proved. 

3. The restriction in cohomology with integral coefficients 

In this section we study the restriction homomorphism 

res : H’(SL,(Z); if+ H’(T,(p); Z) 

for is4, p an odd prime and n large. We do not consider the prime 2 which is the 

unique case where I”(p) is not torsion-free. 

The problem is trivial for i= 1 and 2 because H’(SL(Z); Z) = H2(SL(Z); Z) = 0 

(cf. Lemma 2.1). Note that since H,(T,(p); Z) is a finite p-group [7, Theorem 1.11 

H’(T,(p); Z)=O and H2(&(p); Z)rH,(f’(p); Z) for large n. 

The first nontrivial case occurs for i= 3. Because H3(SL,(Z); 2)~:2/2 (Lemma 

2.1) the study of res : H3(SL,(Z); Z)+H3(r,(p); Z) (n 2 11) is a 2-torsion problem 

and we can use in cohomology the argument explained in Section 1 for homology, 

since p#2: we get easily the injectivity of the restriction H3(SL,(Z); Z[l/p])-+ 

H3(r,(p); Z[l/p]); therefore, for all odd primes p, it follows from H3(SL,(Z); Z)E 

H3(SL,(Z); Z[l/p]) that res : H3(SL,(H); Z)-+H3(r,(p); Z) is injective. 

More interesting is the study of res : H4(SL,(Z); Z)+H4(r,(p); Z). We 

have proved in [2] that for n 19, H4(SL,(Z); Z) is a cyclic group of order 24, 

generated by the second Chern class c2(SLn(Z)) which is defined as follows: the 

inclusion @ : SL,(Z)GGL,(C) induces a homomorphism Q*: H*(BGL,(C); Z) = 
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for pf2 we look at c*(&(p)). 
If p is a prime 2 5, then we have shown that cz(rn(p)) = 0 for n 22 [2, Satz 3.21; 

therefore the restriction is zero (for n~9). If p= 3 we know from [2, Satz 3.31 that 

3c,(r,(3)) = 0 for n~2. (These results are also consequence of [5].) It remains to 

determine if c,(r,(3)) is 0 or an element of order 3 in H4(r,,(3); Z). This question 

is more difficult because it is a 3-torsion problem and p = 3. Therefore we cannot 

use the method developed in Section 1; in particular the (co)homology stability fails 

and we cannot apply Corollary 1.3. 

In order to solve this problem (Theorem 3.2) we start with the exact sequence 

r,(3)*SL,(Z)ASL,([F,) where rr,, denotes the surjective homomorphism in- 

duced by the reduction mod 3. For nz2 we define U, as the subgroup of SL,(LF,) 

consisting of all upper triangular matrices with l’s on the diagonal (U, is a 3-Sylow 

subgroup of SL,(K-s)). We also define G, := {XE SL,(L) 1 n,(x) E U,}. Obviously the 

kernel of ~7, : G, --H (I,, is r,(3). We have the following commutative diagram (G, is 

a pull-back): 

r,(3) w SLAZ) 
=ll 

-SOL 

We first consider the short exact sequence (n = 2) 

Lemma 3.1. For i 2 3 the homomorphism TK~ induces an isomorphism 

n;: H’(U,; Z)qH'(G2; Z). 

Proof. By [12, p. 5051, r,(3) is a free group with 3 generators which are given in [7]: 

a=(: z), b=(: y), c=(_: _:). 
The &-term E$j = H’( U2; Hj(r,(3); Z)) of the Hochschild-Serre spectral sequence 

is zero for j 12 since r*(3) is free. The group U, is cyclic of order 3, generated by 

x=(h ;) which acts nontrivially on r,(3):x_iax=a, xP1bx=c-‘, x-‘cx=a-‘bcC’. 
The computation of Ej I = H’(U,; Hom(T’(3)Ab, Z)) gives the following result: 

Ej’=O for i>O and E$‘=Z. Finally E$‘=Hi(U,;Z)~Hi(Z/3;Z). 

Ejj: 0 0 0 0 0 0 
00 0 0 0 0 
zo 0 0 0 0 
z 0 z/3 0 z/3 0 
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Consequently rc: : Hi(U2; Z)+Hi(G2; Z) is an isomorphism for iz3. 

We are now able to prove the main theorem of this section. 

Theorem 3.2. c,(r,(3))=0 for nz2. 

Proof. (a) For n12 let c2(Gn) be the image of c,(SL,(Z)) by the restriction 

H4(SL,(Z); Z)+H”(G,; Z). Note that the commutativity of 

r,(3) c, SLZ) 

implies that the restriction H4(G,; Z)-+H4(&(3); Z) maps c2(Gn) onto c2(&(3)). 

The order of c2(G2) in H4(G2; Z)=Z/3 is equal to 3 because G2 contains a cyclic 

group of order 3 generated by (1: f ) (cf. [6, Proposition 3.71). Now let nr2 be a 

given integer and @ denote the inclusion G,c+G,,. The 3-primary component 

H4(SL(Z); Z), is cyclic of order 3 generated by &(SL(Z)) because c2(SL(iZ)) is of 

order 24. The composition of restrictions 

H4(SL(Z); i& = Z/3 + H4(G,; Z), 2 H4(G2; Z) z Z/3 

maps 8c,(SL(Z)) onto 8c,(Gz), which is also of order 3, and is therefore an isomor- 

phism. We may conclude that H4(G,; Q = ker @*@A, where A =Z/‘/3 is generated 

by 8c,(G,) and @*(A)E H4(G2; Z). 

(b) By Lemma 3.1 it is clear that 8c,(G2) belongs to the image of Y$ : H4(U,; Z) 5 

H4(G2; Z); the next step of the proof will establish the same property for 8c,(G,): 

there exists an element o in H4(U,,; Z) such that n,*(o) = 8c,(G,). This follows 

from the commutative diagram 

H4(U,,; Z) ” ------+ H4(G,; T& = ker @*@A 

___* H4(G2; Z) zZ/3 

where I//* is induced by the inclusion U, C% U,,. There exists an obvious homo- 

morphism x : U,, + U, such that x 0 v/ is the identity; this implies that I,U* is surjec- 

tive. Therefore @* 0 rcx . IS also surjective which proves the existence of an element 

o E H4(U,,; Z) such that z,*(o) = 8c,(G,). 

(c) The composition 

H4(U,,; Z) ” - H4(G,; Z) = H4(T,(3); Z) 
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is zero since &(3)2-t G, % U,, is exact. We get 8c,(r,(3)) = res(8c,(G,)) = 

res 0 n,*(o)= 0. The proof is then complete because we have shown (cf. [2, Satz 

3.31) that 3c,(r,(3)) =0 for nr2. 

Since c,(SL,(Z)) generates H4(SL,(Z); Z) E Z/24 for n 2 9 the following corollary 

is an immediate consequence of the vanishing of c*(&(p)) for all odd primes. 

Corollary 3.3. For all odd primes p the restriction homomorphism 

res : H4(SL,(Z); Z) + H4(I”(p); Z) 

is zero for n29. 

Remark. This assertion is not true for p = 2: since r,,(2) contains a cyclic subgroup 

of order 2, the order of c2(m(2)) is a positive multiple of 2; therefore the image of 

res : H4(SL,,(Z); Z)-+H4(r,(2); Z) contains a cyclic subgroup of order 2 for nz2. 
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