Chern-Klassen von ganzzahligen und rationalen Darstellungen diskreter Gruppen

Dominique Arlettaz

Mathematisches Seminar, ETH-Zentrum, CH-8092 Zürich, Schweiz

Einleitung

Gruppen.

G bezeichne eine diskrete Gruppe und BG ihren klassifizierenden Raum; BG ist ein Eilenberg-MacLane-Raum K(G,1) und für alle $n \ge 0$ ist die singuläre Cohomologiegruppe $H^n(BG; \mathbb{Z})$ natürlich isomorph zur algebraisch definierten Cohomologiegruppe $H^n(G; \mathbb{Z})$ der Gruppe G. Es sei $\rho: G \to GL\mathbb{C} = \bigcup_{m=1}^{\infty} GL_m\mathbb{C}$ eine Darstellung von $G; B\rho: BG \to BGL\mathbb{C}$ induziert den Homomorphismus

$$B \rho^* : H^*(BGL\mathbb{C}; \mathbb{Z}) = \mathbb{Z}[c_1, c_2, c_3, ...] \to H^*(BG; \mathbb{Z}),$$

wobei die Klassen c_j $(j \ge 1)$ die universellen Chern-Klassen sind. Für $j \ge 1$ ist die j-te Chern-Klasse der Darstellung ρ folgenderweise definiert: $c_j(\rho) := B \, \rho^*(c_j) \in H^{2j}(BG; \mathbb{Z})$. Die Chern-Klassen von ρ sind die Chern-Klassen des zu ρ assoziierten flachen komplexen Vektorbündels $\xi(\rho)$ über dem klassifizierenden Raum BG.

Sei nun ρ eine ganzzahlige Darstellung der diskreten Gruppe G:

$$\rho: G \xrightarrow{\phi} GL\mathbb{Z} \xrightarrow{i} GL\mathbb{C},$$

wobei i die übliche Inklusion bezeichnet. Diese Darstellung induziert den Homomorphismus

$$B\,\rho^*\colon \ H^*(BGL\mathbb{C}\,;\mathbb{Z}) \xrightarrow{Bi^*} H^*(BGL\mathbb{Z}\,;\mathbb{Z}) \xrightarrow{B\phi^*} H^*(BG\,;\mathbb{Z}).$$

Wir definieren $c_j(GL\mathbb{Z}) := c_j(i) = Bi^*(c_j) \in H^{2j}(BGL\mathbb{Z}; \mathbb{Z}), \ j \geq 1$. Diese Chern-Klassen $c_j(GL\mathbb{Z})$ sind Torsionsklassen für alle $j \geq 1$ (vgl. [8] oder [10]). Wegen $c_j(\rho) = B\phi^*(c_j(GL\mathbb{Z}))$ ist die Ordnung von $c_j(GL\mathbb{Z})$ eine obere Schranke für die Ordnung von $c_j(\rho)$. Da die Inklusion $GL\mathbb{Z} \xrightarrow{i} GL\mathbb{C}$ selbst auch eine ganzzahlige Darstellung ist, ergibt die Ordnung von $c_j(GL\mathbb{Z})$ die beste obere Schranke für die Ordnung von $c_j(\rho)$ für alle ganzzahligen Darstellungen ρ von diskreten

Deswegen interessieren wir uns in dieser Arbeit für die Ordnung von $c_j(GL\mathbb{Z})$ in $H^{2j}(BGL\mathbb{Z};\mathbb{Z}), j \geq 1$. Es ist schon bekannt, daß $c_j(GL\mathbb{Z})$ die Ordnung 2 besitzt, wenn j eine ungerade Zahl ist; das kommt aus der Untersuchung der Chern-Klassen der Darstellungen der zyklischen Gruppe der Ordnung 2 und aus der Tatsache, daß $c_j(GL\mathbb{Z}) = (-1)^j c_j(GL\mathbb{Z})$ für alle $j \geq 1$, d.h. $2c_j(GL\mathbb{Z}) = 0$ für ungerade j ist.

Es genügt also dieses Problem für gerade j zu behandeln. In diesem Fall haben wir schon einige Informationen. Eckmann und Mislin haben die Ordnung der Chern-Klassen der Darstellungen endlicher Gruppen untersucht (vgl. [7]). Daraus folgt, daß die Ordnung von $c_j(GL\mathbb{Z})$ ein positives Vielfaches von E_j für gerade j ist, wobei E_j den Nenner von $\frac{B_j}{j}$ bezeichnet (B_j) ist die j-te Bernoullische Zahl: $B_2 = \frac{1}{6}$, $B_4 = \frac{1}{30}$,...; $E_2 = 12$, $E_4 = 120$,...). Andererseits ist $2E_j$ eine obere Schranke für die Ordnung von $c_j(GL\mathbb{Z})$ nach [8] oder [10]. Für gerade j stellt sich also die Frage, ob $c_j(GL\mathbb{Z})$ die Ordnung E_j oder $2E_j$ in $H^{2j}(BGL\mathbb{Z};\mathbb{Z})$ besitzt.

Der erste Teil der Arbeit befaßt sich mit dem Fall j=2 ($E_2=12$): wir bestimmen die Cohomologiegruppe $H^4(BGL\mathbb{Z};\mathbb{Z})$ und zeigen, daß $c_2(GL\mathbb{Z})$ ein Element der Ordnung 24 in $H^4(BGL\mathbb{Z};\mathbb{Z})$ ist. In dem zweiten Teil beantworten wir die obige Frage für $j\equiv 2 \mod 4: c_j(GL\mathbb{Z})$ hat die Ordnung $2E_j$ in $H^{2j}(BGL\mathbb{Z};\mathbb{Z})$. Als Anwendung betrachten wir in dem dritten Teil die ganzzahligen Darstellungen der Kongruenzuntergruppen Γ_m ($m\geq 2$) und beweisen gewisse Resultate über die Ordnung ihrer Chern-Klassen, besonders der zweiten. Schließlich behandeln wir im Anhang das analoge Problem der Ordnung der Chern-Klassen von rationalen Darstellungen diskreter Gruppen.

Die vorliegende Arbeit ist eine Zusammenfassung meiner Dissertation [2], die ich unter der Leitung von Herrn Professor Guido Mislin ausgeführt habe. An dieser Stelle möchte ich ihm für seine Anregungen und wertvollen Ratschläge meinen herzlichen Dank aussprechen.

1. Die Ordnung von $c_2(GL\mathbb{Z})$ in $H^4(BGL\mathbb{Z}; \mathbb{Z})$

Wir wollen zuerst bestimmen, ob die Ordnung von $c_2(GL\mathbb{Z})$ in $H^4(BGL\mathbb{Z}; \mathbb{Z})$ gleich 12 oder 24 ist. Dafür benötigen wir einige Vorbereitungen.

Lemma 1.1.
$$H^4(BGL\mathbb{Z}; \mathbb{Z}) \cong H_3(BGL\mathbb{Z}; \mathbb{Z})$$
.

Beweis. Aus einem Ergebnis von Borel [3] folgt, daß $H^4(BGL\mathbb{Z};\mathbb{Z})$ und $H_3(BGL\mathbb{Z};\mathbb{Z})$ Torsionsgruppen sind; da $BGL\mathbb{Z}$ ein CW-Komplex mit endlichen Skeletten ist, sind diese Gruppen endlich. Die Behauptung folgt dann aus dem universellen Koeffizienten-Theorem.

Um die ersten Homologiegruppen von $BGL\mathbb{Z}$ und $BSL\mathbb{Z}$ zu berechnen, betrachten wir die +Konstruktion von Quillen, welche die Räume $BGL\mathbb{Z}^+$ und $BSL\mathbb{Z}^+$ liefert. Aus den Eigenschaften der + Konstruktion folgt:

$$\boldsymbol{\Pi}_1 \boldsymbol{B} \boldsymbol{G} \boldsymbol{L} \boldsymbol{\mathbb{Z}}^+ \cong \boldsymbol{G} \boldsymbol{L} \boldsymbol{\mathbb{Z}} / \boldsymbol{S} \boldsymbol{L} \boldsymbol{\mathbb{Z}} \cong \boldsymbol{\mathbb{Z}} / 2 \, \boldsymbol{\mathbb{Z}} \quad \text{und} \quad \boldsymbol{\Pi}_1 \boldsymbol{B} \boldsymbol{S} \boldsymbol{L} \boldsymbol{\mathbb{Z}}^+ \cong \boldsymbol{S} \boldsymbol{L} \boldsymbol{\mathbb{Z}} / \boldsymbol{S} \boldsymbol{L} \boldsymbol{\mathbb{Z}} = 0.$$

An dieser Stelle brauchen wir folgendes Lemma.

Lemma 1.2. $BGL\mathbb{Z}^+ \simeq BSL\mathbb{Z}^+ \times B\mathbb{Z}/2\mathbb{Z}$.

Beweis. Aus [2], S. 7 oder [14], S. 351, (d) folgt die Homotopie-Äquivalenz $BSL\mathbb{Z}^+ \simeq \widetilde{BGL}\mathbb{Z}^+$. Wir haben also die Faserung $BSL\mathbb{Z}^+ \to BGL\mathbb{Z}^+ \to B\mathbb{Z}/2\mathbb{Z}$. Weil $BGL\mathbb{Z}^+$ ein H-Raum ist und weil es einen Schnitt $B\mathbb{Z}/2\mathbb{Z} \to BGL\mathbb{Z}^+$ gibt, gilt dann $BGL\mathbb{Z}^+ \simeq BSL\mathbb{Z}^+ \times B\mathbb{Z}/2\mathbb{Z}$.

Wegen Lemma 1.2 gilt $\Pi_n BSL\mathbb{Z}^+ \cong K_n\mathbb{Z}$ für $n \ge 2$, insbesondere $\Pi_2 BSL\mathbb{Z}^+ \cong \mathbb{Z}/2\mathbb{Z}$ und $\Pi_3 BSL\mathbb{Z}^+ \cong \mathbb{Z}/48\mathbb{Z}$ (vgl. [12]).

Lemma 1.3.

$$H_1(BSL\mathbb{Z}; \mathbb{Z}) \cong H_1(BSL\mathbb{Z}^+; \mathbb{Z}) = 0$$

 $H_2(BSL\mathbb{Z}; \mathbb{Z}) \cong H_2(BSL\mathbb{Z}^+; \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}.$

Beweis. Da $BSL\mathbb{Z}^+$ einfach zusammenhängend ist, gilt $H_1(BSL\mathbb{Z}^+;\mathbb{Z})=0$ und der Hurewicz-Homomorphismus liefert einen Isomorphismus

$$H_2(BSL\mathbb{Z}^+;\mathbb{Z}) \cong \Pi_2BSL\mathbb{Z}^+ \cong \mathbb{Z}/2\mathbb{Z}.$$

Lemma 1.4. $H_3(BGL\mathbb{Z}; \mathbb{Z}) \cong H_3(BSL\mathbb{Z}; \mathbb{Z}) \oplus 2\mathbb{Z}/2\mathbb{Z}$.

Beweis. Nach Lemma 1.2 und dem Künneth-Theorem gilt:

$$\begin{split} &H_3(BGL\mathbb{Z};\mathbb{Z})\\ &\cong H_3(BSL\mathbb{Z}^+;\mathbb{Z}) \oplus H_2(BSL\mathbb{Z}^+;\mathbb{Z}) \otimes \mathbb{Z}/2\,\mathbb{Z} \oplus H_0(BSL\mathbb{Z}^+;\mathbb{Z}) \otimes \mathbb{Z}/2\,\mathbb{Z}\\ &\cong H_3(BSL\mathbb{Z};\mathbb{Z}) \oplus 2\,\mathbb{Z}/2\,\mathbb{Z}. \end{split}$$

Bemerkungen. a) Es genügt also $H_3(BSL\mathbb{Z};\mathbb{Z})$ zu bestimmen, um $H^4(BGL\mathbb{Z};\mathbb{Z})$ zu kennen. Analog wie oben können wir zeigen, daß $H_3(BSL\mathbb{Z};\mathbb{Z})\cong H^4(BSL\mathbb{Z};\mathbb{Z})$ ist. Der nächste Satz wird diese Gruppe bestimmen.

- b) Wie für $GL\mathbb{Z}$ definieren wir $c_j(SL\mathbb{Z})$ als die j-te Chern-Klasse der Inklusion $SL\mathbb{Z} \hookrightarrow GL\mathbb{C}$, $j \ge 1$. Wegen $H^2(BSL\mathbb{Z}; \mathbb{Z}) \cong H_1(BSL\mathbb{Z}; \mathbb{Z}) = 0$ ist $c_1(SL\mathbb{Z}) = 0$. Sonst gelten die folgenden Resultate auch für $c_j(SL\mathbb{Z})$:
- Die Ordnung von $c_i(SL\mathbb{Z})$ ist gleich 2 für ungerade $j, j \ge 3$.
- Die Ordnung von $c_j(SL\mathbb{Z})$ ist gleich E_j oder $2E_j$ für gerade j; insbesondere ist die Ordnung von $c_2(SL\mathbb{Z})$ gleich 12 oder 24.

Wir können nun den Hauptsatz dieses Abschnitts beweisen.

Satz 1.5. $H^4(BSL\mathbb{Z}; \mathbb{Z})$ ist eine zyklische Gruppe der Ordnung 24, erzeugt durch $c_2(SL\mathbb{Z})$.

Beweis. a) Es bezeichne K den Raum $BSL\mathbb{Z}^+$. Weil K ein einfach zusammenhängender CW-Komplex ist, können wir folgende exakte Sequenz von Whitehead $\lceil 16 \rceil$ verwenden:

$$\begin{split} \dots \to H_{n+1}(K; \mathbb{Z}) \to & \varGamma_n(K) \stackrel{\phi}{\longrightarrow} \varPi_n K \stackrel{Hu}{\longrightarrow} H_n(K; \mathbb{Z}) \to \dots \\ \dots \to & \varGamma_3(K) \stackrel{\phi}{\longrightarrow} \varPi_3 K \stackrel{Hu}{\longrightarrow} H_3(K; \mathbb{Z}) \to 0 \to \varPi_2 K \stackrel{Hu}{\longrightarrow} H_2(K; \mathbb{Z}) \to 0. \end{split}$$

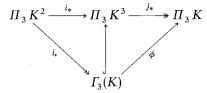
Hier bezeichnet $\Gamma_n(K)$ das Bild des durch die Inklusion $K^{n-1} \hookrightarrow K^n$ induzierten Homomorphismus $\Pi_n K^{n-1} \to \Pi_n K^n$, wobei K^n das *n*-Skelett von K ist; Hu ist der Hurewicz-Homomorphismus und ϕ wird durch die Inklusion $K^n \hookrightarrow K$ induziert. Um $H_3(K; \mathbb{Z})$ zu bestimmen, betrachten wir diese exakte Sequenz

$$\dots \to \Gamma_3(K) \xrightarrow{\phi} \Pi_3 K \xrightarrow{Hw} H_3(K; \mathbb{Z})$$

und untersuchen das Bild von ϕ . Der Homomorphismus ϕ ist folgenderweise definiert (vgl. [16]): die Inklusionen $K^2 \stackrel{i}{\hookrightarrow} K^3 \stackrel{j}{\hookrightarrow} K$ induzieren

$$\Pi_3 K^2 \xrightarrow{i_*} \Pi_3 K^3 \xrightarrow{j_*} \Pi_3 K;$$

 $\Gamma_3(K) = \text{Bild } i_* \text{ und } \phi \text{ ist die Zusammensetzung der Inklusion } \Gamma_3(K) \hookrightarrow \Pi_3 K^3 \text{ mit } j_*$:



bezeichnen wir mit α die Inklusion $K^2 \hookrightarrow K$, so gilt Bild $\phi = \text{Bild}\,(j_* \cdot i_*) = \text{Bild}\,\alpha_*$.

Weil $K = BSL\mathbb{Z}^+$ ein einfach zusammenhängender CW-Komplex ist, existiert eine homologische Zerlegung von K (vgl. [6]). Es ist möglich, die Homotopie-Äquivalenz $K^2 \simeq S^2$ für eine geeignete Zellenzerlegung von K zu beweisen. Deswegen ist $\Pi_3 K^2 \cong \Pi_3 S^2 \cong \mathbb{Z}$.

Es bezeichne $[\theta]$ eine beliebige Homotopieklasse von $\Pi_3 K^2$, repräsentiert durch $\theta: S^3 \to S^2$ und $[\alpha]$ die Klasse von $\Pi_2 K$, welche durch α repräsentiert wird. Da $\alpha_*: \Pi_3 K^2 \to \Pi_3 K$ durch α induziert ist, haben wir $\alpha_*([\theta]) = [\alpha] \cdot [\theta]$.

Es gilt die Gleichung $(2\lceil\alpha]) \cdot [\theta] = 2(\lceil\alpha] \cdot [\theta]) + H_0(\lceil\theta]) \cdot [\lceil\alpha], \lceil\alpha],$ wobei $H_0(\lceil\theta])$ die Hopf-Invariante von $[\theta]$ und $[\cdot,\cdot]$ das Whitehead-Produkt bezeichnet (vgl. [15], S. 494). Wegen $\Pi_2 K \cong \mathbb{Z}/2\mathbb{Z}$ ist aber $2\lceil\alpha] = 0$ und es gilt $[\lceil\alpha], \lceil\alpha\rceil] = 0$, da K ein H-Raum ist (vgl. [15], S. 475). Folglich ist $2\alpha_*(\lceil\theta]) = 0$ in $\Pi_3 K$ für alle $[\theta] \in \Pi_3 K^2$, d.h. Bild $\phi = \text{Bild } \alpha_* \cong \mathbb{Z}/2\mathbb{Z}$ oder 0.

in $\Pi_3 K$ für alle $[\theta] \in \Pi_3 K^2$, d.h. Bild $\phi = \text{Bild } \alpha_* \cong \mathbb{Z}/2\mathbb{Z}$ oder 0. Die exakte Sequenz ... $\to \Gamma_3(K) \xrightarrow{\phi} \Pi_3 K \xrightarrow{Hu} H_3(K; \mathbb{Z})$ liefert uns dann wegen $\Pi_3 K \cong \mathbb{Z}/48\mathbb{Z}$, daß $H_3(K; \mathbb{Z})$, also auch $H^4(BSL\mathbb{Z}; \mathbb{Z})$, eine zyklische Gruppe der Ordnung 24 oder 48 ist.

b) Schließlich betrachten wir die Reduktion modulo 2

$$\operatorname{red}_2: H^4(BSL\mathbb{Z}; \mathbb{Z}) \to H^4(BSL\mathbb{Z}; \mathbb{Z}/2\mathbb{Z}),$$

deren Bild isomorph zu $\mathbb{Z}/2\mathbb{Z}$ ist. Die Chern-Klasse $c_2(SL\mathbb{Z}) \in H^4(BSL\mathbb{Z}; \mathbb{Z})$ ist eigentlich so definiert: $c_2(SL\mathbb{Z}) := c_2(i^*(\gamma) \otimes \mathbb{C})$, wobei γ das reelle universelle Bündel und i die Abbildung $BSL\mathbb{Z} \to BGL\mathbb{R}$ bezeichnet. Bekanntlich gilt dann $\operatorname{red}_2(c_2(SL\mathbb{Z})) = w_2^2(i^*(\gamma))$. Aus [13], S. 1011 ist $w_2^2(i^*(\gamma)) \neq 0$, also $\operatorname{red}_2(c_2(SL\mathbb{Z})) \neq 0$ in $H^4(BSL\mathbb{Z}; \mathbb{Z}/2\mathbb{Z})$. Sei nun ω ein erzeugendes Element von $H^4(BSL\mathbb{Z}; \mathbb{Z})$ und sei $c_2(SL\mathbb{Z}) = l\omega$, so muß l eine ungerade Zahl sein.

Wir wissen aber, daß die Ordnung von $c_2(SL\mathbb{Z})$ gleich 12 oder 24 in $H^4(BSL\mathbb{Z};\mathbb{Z})$ ($\cong \mathbb{Z}/24 \mathbb{Z}$ oder $\mathbb{Z}/48 \mathbb{Z}$) ist. Deswegen ist $H^4(BSL\mathbb{Z};\mathbb{Z})$ eine zyklische Gruppe der Ordnung 24 und $c_2(SL\mathbb{Z})$ erzeugt diese Gruppe.

Aus diesem Satz folgt unmittelbar das folgende Korollar, welches die Frage über die Ordnung von $c_2(GL\mathbb{Z})$ beantwortet.

Korollar 1.6. $H^4(BGL\mathbb{Z}; \mathbb{Z}) \cong \mathbb{Z}/24\mathbb{Z} \oplus 2\mathbb{Z}/2\mathbb{Z}$ und $c_2(GL\mathbb{Z})$ hat die Ordnung 24 in $H^4(BGL\mathbb{Z}; \mathbb{Z})$.

2. Die Ordnung von $c_{4k+2}(GL\mathbb{Z})$ in $H^{8k+4}(BGL\mathbb{Z};\mathbb{Z}), k \ge 0$

In der Einleitung haben wir gesehen, daß $c_{4k+2}(GL\mathbb{Z})$ für alle $k \ge 0$ die Ordnung E_{4k+2} oder $2E_{4k+2}$ besitzt. Aus der Zahlentheorie ist Folgendes bekannt: $E_{4k+2} = 4S_{4k+2}$, wobei S_{4k+2} eine ungerade Zahl ist. Wir wollen nun bestimmen, ob die Ordnung von $c_{4k+2}(GL\mathbb{Z})$ gleich $4S_{4k+2}$ oder $8S_{4k+2}$ ist.

In diesem Abschnitt arbeiten wir mit Homologie- und Cohomologiegruppen mit Koeffizienten in $\mathbb{Z}/8\mathbb{Z}$. Wir betrachten die Reduktion modulo $8 \operatorname{red}_8$ und folgende Bezeichnungen

$$\begin{split} c_j^{(8)}\!:=&\operatorname{red}_8(c_j)\!\in\! H^{2j}(BGL\mathbb{C}\,;\,\mathbb{Z}/8\,\mathbb{Z}),\\ c_j^{(8)}(GL\mathbb{Z})\!:=&\operatorname{red}_8(c_j(GL\mathbb{Z}))\!\in\! H^{2j}(BGL\mathbb{Z}\,;\,\mathbb{Z}/8\,\mathbb{Z}). \end{split}$$

Die übliche H-Raum-Struktur von $BGL\mathbb{C}$ induziert eine kommutative Ring-Struktur in $H_*(BGL\mathbb{C};\mathbb{Z})$. Der Ring $H_*(BGL\mathbb{C};\mathbb{Z})$ besitzt eine additive Basis, die aus Monomen

$$b_1^{v_1} b_2^{v_2} b_3^{v_3} \dots (b_0 = 1, b_i \in H_{2i}(BGL\mathbb{C}; \mathbb{Z}))$$

besteht, für welche das Folgende gilt: es seien die Elemente der dualen Basis von $H^*(BGL\mathbb{C};\mathbb{Z})$ mit

$$C_{(v_1, v_2, v_3, ...)} \in H^{2(v_1 + 2v_2 + 3v_3 + ...)}(BGL\mathbb{C}; \mathbb{Z})$$

bezeichnet (wobei nur endlich viele Zahlen $v_j \neq 0$ sind), dann ist $c_{(j,0,0,\ldots)} = c_j$, die j-te universelle Chern-Klasse (vgl. [1], S. 8). Die Monome $\beta_1^{v_1} \beta_2^{v_2} \beta_3^{v_3} \ldots$ bezeichnen schließlich $\operatorname{red}_8(b_1^{v_1} b_2^{v_2} b_3^{v_3} \ldots)$ in $H_{2(v_1+2v_2+3v_3+\ldots)}(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$; sie bilden eine additive Basis von $H_*(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$.

Es sei nun X ein Raum und R ein kommutativer Ring mit 1; für alle $n \ge 0$ gibt es einen Homomorphismus $h: H^n(X; R) \to \operatorname{Hom}_R(H_n(X; R), R)$, welcher bezüglich X natürlich ist. Für alle $a \in H^n(X; R)$ bezeichne \bar{a} das Bild h(a) in $\operatorname{Hom}_R(H_n(X; R), R)$.

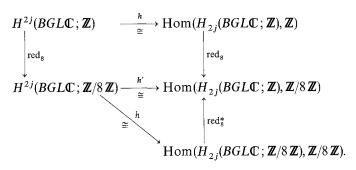
Bemerken wir an dieser Stelle, daß der Homomorphismus

$$h: H^n(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z}) \to \text{Hom}(H_n(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z}), \mathbb{Z}/8\mathbb{Z})$$

für alle $n \ge 0$ ein Isomorphismus ist (vgl. [2], S. 17).

Lemma 2.1. Die Elemente $c_j^{(8)} \in H^{2j}(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$ und $\beta_1^j \in H_{2j}(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$ sind für alle $j \geq 1$ (streng) dual zueinander, d.h. $c_j^{(8)}(\beta_1^j) = 1$ und $c_j^{(8)}$ nimmt auf allen anderen Basiselementen von $H_{2j}(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$ den Wert 0 an.

Beweis. Wir betrachten das kommutative Diagramm



Dabei wird der Isomorphismus h' von dem universellen Koeffizienten-Theorem gegeben und der Homomorphismus red_8^* durch

$$\operatorname{red}_8: H_{2i}(BGL\mathbb{C}; \mathbb{Z}) \to H_{2i}(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$$

induziert.

Die Elemente $c_j \in H^{2j}(BGL\mathbb{C}; \mathbb{Z})$ und $b_1^j \in H_{2j}(BGL\mathbb{C}; \mathbb{Z})$ sind (streng) dual zueinander, d.h. $\overline{c_j}(b_1^j) = 1$ und $\overline{c_j}$ hat den Wert 0 auf allen anderen Basiselementen von $H_{2j}(BGL\mathbb{C}; \mathbb{Z})$. Die Kommutativität des oberen Teils des Diagramms liefert:

$$h'(c_j^{(8)})(b_1^j) = \text{red}_8(\overline{c_j}(b_1^j)) = 1 \in \mathbb{Z}/8\mathbb{Z}$$

und $h'(c_j^{(8)})$ nimmt den Wert 0 auf allen anderen Basiselementen an. Wegen der Kommutativität des unteren Teils des Diagramms gilt dann:

$$\overline{c_j^{(8)}}(\beta_1^j) = \overline{c_j^{(8)}}(\text{red}_8(b_1^j)) = \text{red}_8^*(\overline{c_j^{(8)}})(b_1^j)
= h'(c_i^{(8)})(b_1^j) = 1 \in \mathbb{Z}/8 \mathbb{Z}$$

und $\overline{c_i^{(8)}}$ ist 0 auf allen anderen Basiselementen von $H_{2j}(BGL\mathbb{C};\mathbb{Z}/8\mathbb{Z})$.

Um den Hauptsatz dieses Abschnitts zu beweisen, werden wir folgende Idee benutzen: $\beta_1^2 \in H_4(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$ ist im wesentlichen das Bild eines Elementes von $H_4(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z})$ unter dem durch die Inklusion $GL\mathbb{Z} \hookrightarrow GL\mathbb{C}$ induzierten Homomorphismus

$$i_*: H_*(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z}) \rightarrow H_*(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z}).$$

Genauer ist es möglich, das nächste Lemma mit Hilfe von Satz 1.5 zu beweisen (vgl. [2], S. 20).

Lemma 2.2. Es gibt ein Element $\xi \in H_4(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z})$, so da β

$$i_*(\xi) = \beta_1^2 + l \beta_2 \in H_4(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$$
 mit $l = 0$ oder 4.

Lemma 2.3. Seien X und Y zwei Räume, R ein kommutativer Ring mit 1, h der oben eingeführte Homomorphismus und f eine Abbildung $X \to Y$. Betrachten wir die durch f induzierte Homomorphismen $f_*\colon H_*(X;R) \to H_*(Y;R)$ und $f^*\colon H^*(Y;R) \to H^*(X;R)$ und die Elemente $a \in H^n(Y;R)$ und $b \in H_n(X;R)$. Dann gilt: $\overline{f^*(a)}(b) = \overline{a}(f_*(b))$.

Beweis. Wegen der Natürlichkeit von h ist das folgende Diagramm kommutativ:

$$H^{n}(Y;R) \xrightarrow{h} \operatorname{Hom}_{R}(H_{n}(Y;R),R)$$

$$\downarrow^{f^{*}} \qquad \qquad \downarrow^{f^{*}}$$

$$H^{n}(X;R) \xrightarrow{h} \operatorname{Hom}_{R}(H_{n}(X;R),R)$$

d.h. $\overline{f^*(a)}(b) = (f^* \overline{a})(b)$. Dabei ist f^* der durch $f_* \colon H_n(X; R) \to H_n(Y; R)$ induzierte Homomorphismus, d.h. $(f^* \overline{a})(b) = \overline{a}(f_*(b))$. Daraus folgt die Behauptung.

Bemerkung. Die Elemente $a \in H^n(X; \mathbb{R})$ und $b \in H_n(X; \mathbb{R})$ heißen schwach dual zueinander, falls $\bar{a}(b) = 1 \in \mathbb{R}$. Setzen wir $R = \mathbb{Z}/8\mathbb{Z}$; sind nun a und b schwach dual zueinander, so besitzen $a \in H^n(X; \mathbb{Z}/8\mathbb{Z})$ und $b \in H_n(X; \mathbb{Z}/8\mathbb{Z})$ die Ordnung 8.

Wir können nun den Hauptsatz des Abschnitts beweisen.

Satz 2.4. $c_{2m}^{(8)}(GL\mathbb{Z})$ hat die Ordnung 8 in $H^{4m}(BGL\mathbb{Z};\mathbb{Z}/8\mathbb{Z})$ für alle $m \ge 1$.

Beweis. Wir setzen $X = BGL\mathbb{Z}$, $Y = BGL\mathbb{C}$, $R = \mathbb{Z}/8\mathbb{Z}$ und $f = i : BGL\mathbb{Z} \to BGL\mathbb{C}$, die Abbildung, welche durch die Inklusion $GL\mathbb{Z} \hookrightarrow GL\mathbb{C}$ induziert wird. Nach Lemma 2.2 existiert $\xi \in H_4(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z})$ mit $i_*(\xi) = \beta_1^2 + l\,\beta_2$ (l = 0 oder 4). $H_*(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z}) \cong H_*(BGL\mathbb{Z}^+; \mathbb{Z}/8\mathbb{Z})$ besitzt eine kommutative Ring-Struktur, welche durch die H-Raum-Struktur von $BGL\mathbb{Z}^+$ induziert wird und der Homomorphismus

$$i_*: H_*(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z}) \rightarrow H_*(BGL\mathbb{C}; \mathbb{Z}/8\mathbb{Z})$$

ist ein Ring-Homomorphismus.

Wir können also das Element $\xi^m \in H_{4m}(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z})$ betrachten. Dann ist

$$i_*(\xi^m) = (\beta_1^2 + l \, \beta_2)^m = \beta_1^{2m} + m \, l \, \beta_1^{2m-2} \, \beta_2 \in H_{4m}(BGL\mathbb{C}\,; \mathbb{Z}/8\,\mathbb{Z})$$

wegen $l^2 \equiv 0 \mod 8$.

Nach Lemma 2.1 sind $c_{2m}^{(8)}$ und β_1^{2m} (streng) dual zueinander; daraus folgt:

$$\overline{c_{2m}^{(8)}}(i_*(\xi^m)) = \overline{c_{2m}^{(8)}}(\beta_1^{2m} + m \, l \, \beta_1^{2m-2} \, \beta_2) = 1 \in \mathbb{Z}/8 \, \mathbb{Z}.$$

Dann ist auch $i^*(c_{2m}^{(8)})(\xi^m) = 1 \in \mathbb{Z}/8\mathbb{Z}$ nach Lemma 2.3. Das Element $i^*(c_{2m}^{(8)}) = c_{2m}^{(8)}(GL\mathbb{Z})$ hat also die Ordnung 8 in $H^{4m}(BGL\mathbb{Z}; \mathbb{Z}/8\mathbb{Z})$ für alle $m \ge 1$.

Korollar 2.5. $c_{4k+2}(GL\mathbb{Z})$ besitzt die Ordnung $2E_{4k+2}$ in $H^{8k+4}(BGL\mathbb{Z};\mathbb{Z})$ für alle $k \ge 0$.

Beweis. Nach Satz 2.4 ist die Ordnung von $c_{2m}(GL\mathbb{Z})$ ein positives Vielfaches von 8 für alle $m \ge 1$. Wir wissen schon, daß $c_{4k+2}(GL\mathbb{Z})$ ein Element der Ord-

nung $E_{4k+2}=4S_{4k+2}$ oder $2E_{4k+2}=8S_{4k+2}$ für alle $k\ge 0$ ist, wobei S_{4k+2} eine ungerade Zahl ist. Das liefert die Behauptung.

Bemerkungen. a) Dasselbe Resultat gilt auch für die Chern-Klassen von $SL\mathbb{Z}$: $c_{4k+2}(SL\mathbb{Z})$ besitzt die Ordnung $2E_{4k+2}$ in $H^{8k+4}(BSL\mathbb{Z};\mathbb{Z})$, $k \geq 0$. b) Die Ordnung von $c_j(GL\mathbb{Z})$ in $H^{2j}(BGL\mathbb{Z};\mathbb{Z})$ ist also jetzt bekannt, falls

b) Die Ordnung von $c_j(GL\mathbb{Z})$ in $H^{2j}(BGL\mathbb{Z};\mathbb{Z})$ ist also jetzt bekannt, falls $j \not\equiv 0 \mod 4$ ist. Es bleibt noch eine offene Frage: ist die Ordnung von $c_{4k}(GL\mathbb{Z})$ gleich E_{4k} oder $2E_{4k}$ $(k \ge 1)$?

3. Chern-Klassen von Kongruenzuntergruppen

In diesem dritten Teil betrachten wir die Kongruenzuntergruppen Γ_m von $SL_n\mathbb{Z}$, welche so definiert sind: Γ_m ist der Kern der natürlichen Projektion $SL_n\mathbb{Z}$ $\twoheadrightarrow SL_n\mathbb{Z}/m\mathbb{Z}$, $m\geq 2$. Dabei ist n immer groß genug vorausgesetzt, so daß die singulären Homologie- und Cohomologiegruppen von $BSL_n\mathbb{Z}$, $BGL_n\mathbb{Z}$ und $BGL_n\mathbb{F}_p$ (für alle Primzahlen p) im Stabilitätsbereich liegen (vgl. [4]); diese Voraussetzung gilt für den ganzen Abschnitt. Es ist noch zu bemerken, daß die Gruppe Γ_m torsionsfrei ist, falls $m \neq 2$ ist. Es bezeichne i_m die Inklusion $\Gamma_m \hookrightarrow GL_n\mathbb{Z}$ und i_m^* den induzierten Homomorphismus $H^*(BGL_n\mathbb{Z};\mathbb{Z}) \to H^*(B\Gamma_m;\mathbb{Z})$. Für $j\geq 1$ definieren wir die j-te Chern-Klasse der Kongruenzuntergruppe Γ_m : $c_j(\Gamma_m):=i_m^*(c_j(GL_n\mathbb{Z}))$.

Für alle $m \ge 2$ gilt zum Beispiel $c_1(\Gamma_m) = 0$, weil

$$H^2(BSL\mathbb{Z};\mathbb{Z}) \cong H_1(BSL\mathbb{Z};\mathbb{Z}) = 0$$

ist. Wir interessieren uns für die Ordnung dieser Chern-Klassen $c_j(\Gamma_m)$, $j \ge 2$, und untersuchen in diesem Abschnitt die Ordnung von $c_2(\Gamma_m)$ für alle $m \ge 2$.

Sei nun p eine Primzahl und \mathbb{F}_p der Körper mit p Elementen. Für den nächsten Satz müssen wir den Hurewicz-Homomorphismus Hu: $K_3\mathbb{F}_p \to H_3(BGL\mathbb{F}_p^+;\mathbb{Z})$ kennen. Nach Quillen ist $K_3\mathbb{F}_p \cong \mathbb{Z}/(p^2-1)\mathbb{Z}$ und nach [11] gilt

$$H_3(BGL\mathbb{F}_p^+; \mathbb{Z}) \cong \mathbb{Z}/(p^2-1)\mathbb{Z} \oplus 2\mathbb{Z}/(p-1)\mathbb{Z}.$$

Sei $\pi \colon BGL\mathbb{F}_p^+ \to BU$ der Brauer-Lift und c_n die n-te universelle Chern-Klasse in $H^{2n}(BU; \mathbb{Z})$; wir definieren $\hat{c}_n := \pi^*(c_n) \in H^{2n}(BGL\mathbb{F}_p^+; \mathbb{Z})$. Die Ordnung von \hat{c}_n ist gleich p^n-1 (vgl. [9], S. 45 oder [11], Theorem B). Zum Beispiel hat \hat{c}_2 die Ordnung p^2-1 .

Wegen

$$H^4(BGL\mathbb{F}_p^+; \mathbb{Z}) \cong \operatorname{Ext}(H_3(BGL\mathbb{F}_p^+; \mathbb{Z}), \mathbb{Z})$$

 $\cong \operatorname{Hom}(H_3(BGL\mathbb{F}_p^+; \mathbb{Z}), \mathbb{Q}/\mathbb{Z})$

können wir \hat{c}_2 als ein Element der Ordnung p^2-1 in $\operatorname{Hom}(H_3(BGL\mathbb{F}_p^+;\mathbb{Z}),\mathbb{Q}/\mathbb{Z})$ interpretieren. Sei \hat{c}_2^* ein Element von $H_3(BGL\mathbb{F}_p^+;\mathbb{Z})$ mit

$$\hat{c}_2(\hat{c}_2^*) = \frac{1}{p^2 - 1} \in \mathbb{Q}/\mathbb{Z};$$

 \hat{c}_2^* besitzt natürlich auch die Ordnung p^2-1 . Es gilt (vgl. [2], S. 29):

Lemma 3.1. Es gibt ein erzeugendes Element α von $K_3 \mathbb{F}_p \cong \mathbb{Z}/(p^2-1)\mathbb{Z}$ mit

$$\operatorname{Hu}(\alpha) = \hat{c}_{2}^{*} + \eta \in H_{3}(BGL\mathbb{F}_{p}^{+}; \mathbb{Z}),$$

wobei (p-1) $\eta = 0$ ist.

Satz 3.2. $c_2(\Gamma_p) = 0$ für alle Primzahlen p mit $p \neq 2$, $p \neq 3$.

Beweis. a) Sei p eine Primzahl mit p + 2, p + 3; die natürliche Projektion π_p : $GL\mathbb{Z} \to GL\mathbb{F}_p$ induziert den Homomorphismus $\pi_{p_*}\colon K_3\mathbb{Z} \to K_3\mathbb{F}_p$. Es ist möglich zu zeigen (vgl. [2], S. 34), daß für ein beliebiges erzeugendes Element ε von $K_3\mathbb{Z} \cong \mathbb{Z}/48\mathbb{Z}$ die Ordnung von $\pi_{p_*}(\varepsilon)$ in $K_3\mathbb{F}_p \cong \mathbb{Z}/(p^2-1)\mathbb{Z}$ gleich 24 ist; sei $\lambda := \frac{p^2-1}{24} \in \mathbb{N}$, so ist $\pi_{p_*}(\varepsilon) = l\lambda\alpha$, wobei (l, 24) = 1 und α das erzeugende Element von $K_3\mathbb{F}_p$ ist, welches wir wie in Lemma 3.1 wählen.

b) Betrachten wir nun das kommutative Diagramm

Wegen

$$H^4(BGL\mathbb{Z}^+; \mathbb{Z}) \cong \operatorname{Ext}(H_3(BGL\mathbb{Z}^+; \mathbb{Z}), \mathbb{Z})$$

 $\cong \operatorname{Hom}(H_3(BGL\mathbb{Z}^+; \mathbb{Z}), \mathbb{Q}/\mathbb{Z})$

können wir $c_2(GL\mathbb{Z})$ als ein Element der Ordnung 24 in $Hom(H_3(BGL\mathbb{Z}^+; \mathbb{Z}), \mathbb{Q}/\mathbb{Z})$ interpretieren. Sei $c_2^*(GL\mathbb{Z})$ ein Element von $H_3(BGL\mathbb{Z}^+; \mathbb{Z})$ mit

$$c_2(GL\mathbb{Z})(c_2^*(GL\mathbb{Z})) = \frac{1}{24} \in \mathbb{Q}/\mathbb{Z}.$$

Nach Satz 1.5 gibt es ein erzeugendes Element ε von $K_3\mathbb{Z}$ mit $\operatorname{Hu}(\varepsilon) = c_2^*(GL\mathbb{Z})$. Die Kommutativität liefert dann:

$$\pi_{p_*}(c_2^*(GL\mathbf{Z})) = \pi_{p_*}(\operatorname{Hu}(\varepsilon)) = \operatorname{Hu}(\pi_{p_*}(\varepsilon)) = \operatorname{Hu}(l\lambda\alpha) = l\lambda(\hat{c}_2^* + \eta)$$

wegen Lemma 3.1 $((p-1)\eta=0)$. Also hat $\pi_{p_*}(c_2^*(GL\mathbb{Z}))$ die Ordnung 24 in $H_3(BGL\mathbb{F}_p^+;\mathbb{Z})$.

Wenn wir dann π_p^* : $H^4(BGL\mathbb{Z}_p^+; \mathbb{Z}) \to H^4(BGL\mathbb{Z}^+; \mathbb{Z})$ betrachten, folgt daraus, daß $\pi_p^*(\hat{c}_2)$ in $H^4(BGL\mathbb{Z}^+; \mathbb{Z}) \cong \mathbb{Z}/24\mathbb{Z} \oplus 2\mathbb{Z}/22\mathbb{Z}$ ebenfalls die Ordnung 24 besitzt, d.h. $\pi_p^*(\hat{c}_2) = kc_2(GL\mathbb{Z}) + t$ mit (k, 24) = 1 und 2t = 0. Folglich gilt $\pi_p^*(k\hat{c}_2) = c_2(GL\mathbb{Z}) + kt$ wegen $k^2 \equiv 1 \mod 24$.

c) Wir betrachten schließlich die exakte Sequenz

$$\Gamma_p \xrightarrow{i_p} GL_n \mathbb{Z} \xrightarrow{\pi_p} GL_n \mathbb{F}_p.$$

Der Homomorphismus i_p^* ist eigentlich die Zusammensetzung

Deswegen gilt $i_p^*(c_2(GL_n\mathbb{Z})+kt)=i_p^*(c_2(GL_n\mathbb{Z}))+0=c_2(\Gamma_p)$, also $i_p^*\cdot\pi_p^*(k\hat{c}_2)=c_2(\Gamma_p)$. Die Zusammensetzung $\pi_p\cdot i_p$ ist trivial, also auch $i_p^*\cdot\pi_p^*$, was uns die Behauptung liefert: $c_2(\Gamma_p)=0$.

(Dieser Satz folgt auch aus [5].)

Analog können wir folgenden Satz beweisen.

Satz 3.3.

a)
$$3c_2(\Gamma_3) = 0$$
,

b)
$$8c_2(\Gamma_2) = 0$$
.

Bemerkung. Da Γ_2 eine zyklische Untergruppe der Ordnung 2 enthält, ist die Ordnung von $c_2(\Gamma_2)$ in $H^4(B\Gamma_2; \mathbb{Z})$ ein positives Vielfaches von 2, also gleich 2, 4 oder 8.

Wir besitzen nun einige Informationen über die Ordnung von $c_2(\Gamma_m)$, wenn m eine Primzahl ist. Damit können wir Resultate über den allgemeinen Fall $m \ge 2$ leicht bekommen (vgl. [2], S. 40-41), zum Beispiel:

Korollar 3.4. $c_2(\Gamma_m) = 0$ für alle natürlichen Zahlen m, welche keine Zweierpotenz und keine Dreierpotenz sind.

Bemerkung. Bei dieser Untersuchung der Ordnung von $c_2(\Gamma_m)$, $m \ge 2$, bleiben also noch zwei Fragen offen:

- Ist die Ordnung von $c_2(\Gamma_2)$ gleich 2, 4 oder 8 in $H^4(B\Gamma_2; \mathbb{Z})$?
- Ist $c_2(\Gamma_3)$ gleich 0 oder ein Element der Ordnung 3 in $H^4(B\Gamma_3; \mathbb{Z})$?

Die zweite Frage ist besonders interessant, weil Γ_3 eine torsionsfreie Gruppe ist. Wäre die Ordnung von $c_2(\Gamma_3)$ gleich 3, dann hätten wir ein Beispiel einer ganzzahligen treuen Darstellung einer torsionsfreien Gruppe, deren zweite Chern-Klasse nicht Null ist. Ein solches Beispiel würden wir auch bekommen, wenn für m eine Dreierpotenz oder eine von 2 verschiedene Zweierpotenz $c_2(\Gamma_m) \neq 0$ wäre.

Anhang: Chern-Klassen von rationalen Darstellungen diskreter Gruppen

Wir haben die Chern-Klassen der ganzzahligen Darstellungen diskreter Gruppen untersucht. Wir können uns auch für rationale Darstellungen von diskreten Gruppen interessieren und die beste obere Schranke für die Ordnung ihrer Chern-Klassen suchen.

Für alle $j \ge 1$ definieren wir $c_j(GL\mathbb{Q})$ bzw. $c_j(SL\mathbb{Q})$ als die j-te Chern-Klasse der Inklusion $GL\mathbb{Q} \hookrightarrow GL\mathbb{C}$ bzw. $SL\mathbb{Q} \hookrightarrow GL\mathbb{C}$, wobei wir die Gruppen $GL\mathbb{Q}$ und $SL\mathbb{Q}$ als diskrete Gruppen auffassen; wir probieren Aussagen über die Ordnung dieser Chern-Klassen zu bekommen. Wie vorher ist es hier auch klar, daß die Chern-Klassen $c_j(GL\mathbb{Q})$ die Ordnung 2 besitzen, falls j eine ungerade Zahl ist.

Das Problem ist aber schwieriger, falls j gerade ist. Dazu betrachten wir die profiniten Chern-Klassen $\hat{c}_j(GL\mathbb{Q})$, welche folgenderweise definiert sind (vgl. [8]). Es bezeichne $\hat{\mathbf{Z}}$ den Ring der profiniten ganzen Zahlen ($\hat{\mathbf{Z}} = \underline{\lim} \, \mathbf{Z}/m\mathbf{Z}$)

und ϕ den natürlichen Homomorphismus $\mathbb{Z} \to \widehat{\mathbb{Z}}$, welcher

$$\phi_{\star}: H^{2j}(BGL\mathbb{Q}; \mathbb{Z}) \to H^{2j}(BGL\mathbb{Q}; \widehat{\mathbb{Z}})$$

induziert. Dann ist $\hat{c}_j(GL\mathbb{Q}) := \phi_*(c_j(GL\mathbb{Q}))$. Nach [8] gilt $2E_j\hat{c}_j(GL\mathbb{Q}) = 0$, d.h. $2E_jc_j(GL\mathbb{Q}) \in \text{Kern } \phi_*$ für gerade j. Es ist einfach zu sehen, daß Kern ϕ_* die Menge aller ∞ -divisiblen Elemente von $H^{2j}(BGL\mathbb{Q};\mathbb{Z})$ ist. Wir bekommen also den folgenden Satz.

Satz 4.1. Für alle geraden Zahlen j gilt: die Elemente $2E_jc_j(GL\mathbb{Q})$ in $H^{2j}(BGL\mathbb{Q};\mathbb{Z})$ und $2E_jc_j(SL\mathbb{Q})$ in $H^{2j}(BSL\mathbb{Q};\mathbb{Z})$ sind ∞ -divisibel.

Das Element 0 ist natürlich immer ∞ -divisibel. Um die Ordnung von $c_{2k}(SL\mathbb{Q})$ und $c_{2k}(GL\mathbb{Q})$ zu kennen, untersuchen wir, ob die Gruppen $H^{4k}(BSL\mathbb{Q}; \mathbb{Z})$ und $H^{4k}(BGL\mathbb{Q}; \mathbb{Z})$ andere ∞ -divisible Elemente besitzen $(k \ge 1)$.

Lemma 4.2. Sei T eine Torsionsgruppe. Dann enthält die Gruppe $\operatorname{Ext}(T; \mathbb{Z})$ keine ∞ -divisiblen Elemente außer 0.

Beweis. Da T eine Torsionsgruppe ist, gilt $\operatorname{Ext}(T, \mathbb{Z}) \cong \operatorname{Hom}(T, \mathbb{Q}/\mathbb{Z})$. Sei f ein ∞ -divisibles Element von $\operatorname{Hom}(T, \mathbb{Q}/\mathbb{Z})$; für alle natürlichen Zahlen m existiert also ein $g_m \in \operatorname{Hom}(T, \mathbb{Q}/\mathbb{Z})$, so daß $f = mg_m$. Sei nun x ein beliebiges Element der Torsionsgruppe T und s seine Ordnung: $s \cdot x = 0$. Wegen $f = sg_s$ nimmt f an der Stelle x den Wert $f(x) = sg_s(x) = g_s(sx) = g_s(0) = 0$ an. Es gilt also: f(x) = 0 für alle $x \in T$. Das einzige ∞ -divisible Element von $\operatorname{Hom}(T, \mathbb{Q}/\mathbb{Z}) \cong \operatorname{Ext}(T, \mathbb{Z})$ ist 0.

Korollar 4.3. Sei X ein Raum. Falls $H_{i-1}(X; \mathbb{Q}) = 0$, dann enthält $H^i(X; \mathbb{Z})$ keine ∞ -divisiblen Elemente außer 0.

Beweis. Wegen $H_{i-1}(X; \mathbb{Q}) = 0$ ist $H_{i-1}(X; \mathbb{Z})$ eine Torsionsgruppe. Nach dem universellen Koeffizienten-Theorem gilt

$$H^i(X; \mathbb{Z}) \cong \operatorname{Hom}(H_i(X; \mathbb{Z}), \mathbb{Z}) \oplus \operatorname{Ext}(H_{i-1}(X; \mathbb{Z}), \mathbb{Z}).$$

Die von 0 verschiedenen Elemente von $\operatorname{Hom}(H_i(X; \mathbb{Z}), \mathbb{Z})$ nehmen ihre Werte in \mathbb{Z} an und sind deshalb nicht ∞ -divisibel. Die Behauptung folgt dann aus Lemma 4.2.

Also fragen wir uns: gibt es natürliche Zahlen k mit $H_{4k-1}(BSL\mathbb{Q}; \mathbb{Q}) = 0$? Dazu betrachten wir ein Resultat von Borel [3]: $H_*(BSL\mathbb{Q}; \mathbb{Q})$ ist eine äußere Algebra:

$$H_*(BSL\mathbb{Q}; \mathbb{Q}) = \wedge (x_5, x_9, x_{13}, ..., x_{4l+1}, ...)$$

mit Grad $x_{4l+1} = 4l+1$ für $l \ge 1$.

Für k=1, 2, 3, 4, 5 und 6 ist folglich $H_{4k-1}(BSL\mathbb{Q}; \mathbb{Q})=0$, also besitzt $H^{4k}(BSL\mathbb{Q}; \mathbb{Z})$ keine ∞ -divisiblen Elemente außer 0; wegen Satz 4.1 ist dann $2E_{2k} c_{2k}(SL\mathbb{Q})=0$. Da die Ordnung von $c_{2k}(SL\mathbb{Q})$ notwendigerweise ein positives Vielfaches der Ordnung von $c_{2k}(SL\mathbb{Z})$ ist, liefern die zwei ersten Teile dieser Arbeit folgendes Resultat.

Satz 4.4. a) Die Ordnung von $c_{2k}(SL\mathbb{Q})$ ist gleich $2E_{2k}$ für k=1, 3, 5. b) Die Ordnung von $c_{2k}(SL\mathbb{Q})$ ist gleich E_{2k} oder $2E_{2k}$ für k=2, 4, 6.

Bemerkungen. a) Für $k \ge 7$ ist $H_{4k-1}(BSL\mathbb{Q}; \mathbb{Q}) \ne 0$, weil $Grad(x_5 \wedge x_9 \wedge x_{4(k-4)+1}) = 4k-1$ ist. Unsere Methode liefert also keine obere Schranke für die Ordnung von $c_{2k}(SL\mathbb{Q})$, falls $k \ge 7$ ist.

b) Als Hilfsmittel für die Untersuchung der Ordnung von $c_{2k}(GL\mathbb{Q})$ können wir analog zu Lemma 1.2 die Homotopie-Äquivalenz $BGL\mathbb{Q}^+ \simeq BSL\mathbb{Q}^+ \times B\mathbb{Q}^*$ beweisen. Damit ist es zum Beispiel möglich zu zeigen, daß die Ordnung von $c_2(GL\mathbb{Q})$ in $H^4(BGL\mathbb{Q}; \mathbb{Z})$ gleich 24 ist (vgl. [2], S. 48).

Literatur

- Adams, J.F.: Stable Homotopy and Generalised Homology. Chicago Lectures in Mathematics Series (1974)
- Arlettaz, D.: Chern-Klassen von ganzzahligen und rationalen Darstellungen diskreter Gruppen. Dissertation Nr. 7301 ETH Zürich (1983)
- 3. Borel, A.: Cohomologie réelle stable de groupes S-arithmétiques classiques. C.R. Acad. Sci. Paris Sér A 274, 1700–1702 (1972)
- 4. Charney, R.M.: Homology stability of GL_n of a Dedekind domain. Bull. Amer. Math. Soc. (N.S.) 1 428-431 (1979)
- Deligne, P., Sullivan, D.: Fibrés vectoriels complexes à groupe structural discret. C.R. Acad. Sci. Paris Sér. A 281, 1081-1083 (1975)
- Eckmann, B., Hilton, P.J.: On the homology and homotopy decomposition of continous maps. Proc. Nat. Acad. Sci. USA 45, 372–375 (1959)
- 7. Eckmann, B., Mislin, G.: Chern classes of group representations over a number field. Compositio Math. 44, 41-65 (1981)
- Eckmann, B., Mislin, G.: Profinite Chern classes for group representations. Topological Topics. London Math. Soc. Lecture Note Ser. 86. Cambridge: Cambridge University Press 1983
- Fiedorowicz, Z., Priddy, S.: Homology of classical groups over finite fields and their associated infinite loop spaces. Lecture Notes in Math. 674. Berlin-Heidelberg-New York: Springer 1978
- Grothendieck, A.: Classes de Chern et représentations linéaires des groupes discrets. Dans: Dix exposés sur la cohomologie des schémas. Amsterdam-New York-Oxford: North-Holland 1968
- 11. Hübschmann, J.: The cohomology of $F\Psi^q$, the additive structure. Preprint, Forschungsinstitut für Mathematik ETH Zürich (1982)
- 12. Lee, R., Szczarba, R.H.: The group $K_3(\mathbb{Z})$ is cyclic of order forty-eight. Ann. of Math. 104, 31–60 (1976)
- Soulé, C.: Classes de torsion dans la cohomologie des groupes arithmétiques. C.R. Acad. Sci. Paris Sér. A, 284, 1009–1011 (1977)
- 14. Wagoner, J.B.: Delooping classifying spaces in algebraic K-theory. Topology 11, 349-370 (1972)
- Whitehead, G.W.: Elements of Homotopy Theory. Graduate Texts in Math. 61. Berlin-Heidelberg-New York: Springer 1978
- 16. Whitehead, J.H.C.: A certain exact sequence. Ann. of Math. 52, 51-110 (1950)