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Abstract: Offshore wind is expected to play a key role in future energy systems. Wind energy
resource studies often call for long-term and spatially consistent datasets to assess the wind potential.
Despite the vast amount of available data sources, no current means can provide relevant sub-daily
information at a fine spatial scale (~1 km). Synthetic aperture radar (SAR) delivers wind field
estimates over the ocean at fine spatial resolution but suffers from partial coverage and irregular
revisit times. Physical model outputs, which are the basis of reanalysis products, can be queried
at any time step but lack fine-scale spatial variability. To combine the advantages of both, we
use the framework of multiple-point geostatistics to realistically reconstruct wind speed patterns
at time instances for which satellite information is absent. Synthetic fine-resolution wind speed
images are generated conditioned to coregistered regional reanalysis information at a coarser scale.
Available simultaneous data sources are used as training data to generate the synthetic image time
series. The latter are then evaluated via cross validation and statistical comparison against reference
satellite data. Multiple realizations are also generated to assess the uncertainty associated with
the simulation outputs. Results show that the proposed methodology can realistically reproduce
fine-scale spatiotemporal variability while honoring the wind speed patterns at the coarse scale and
thus filling the satellite information gaps in space and time.

Keywords: multiple-point statistics (MPS); multivariate patterns; geostatistical simulation;
spatiotemporal data; synthetic aperture radar (SAR)

1. Introduction

Renewable energy sources (RES) appear as a solution for decarbonizing the energy
sector. Offshore wind has been recognized as a key contributor to a more sustainable green
energy production worldwide. A substantial increase in annual installed capacity in the
last decade demonstrates the promising potential for such energy systems [1,2]. A critical
step prior to exploiting wind energy is the assessment of the wind resource potential at
regional and local scales using long-term datasets. While originally developed for weather
forecasting, numerical weather prediction (NWP) mesoscale models are routinely used to
obtain the required wind speed distributions [3,4]. When the model outputs are combined
with observations via a data assimilation process to account for biases, the resulting gridded
datasets are referred to as reanalysis data [5]. Despite their temporally continuous and spa-
tially exhaustive coverage, computational and other constraints limit the spatial resolution of
reanalysis data (ranging between 5 and 50 km), thus hindering their utility in the assessment
of wind resources at the local scale, for which finely resolved data products are needed [5–7].
Therefore, the inherent spatiotemporal variability of wind speed cannot be derived from such
coarse-scale models. Furthermore, NWP-derived wind profile uncertainty cannot be directly
quantified and propagated to subsequent wind energy analyses [8].
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Given the limitations of reanalysis-based estimates, alternative data sources have
been used to supplement the information provided by mesoscale models. Because in situ
measurements over the ocean are rather sparse, satellite-based remote sensing has been
widely exploited to acquire detailed knowledge of offshore wind speed spatiotemporal
variations. Active microwave sensors, such as synthetic aperture radar (SAR) and Scat-
terometers (SCATs) have been providing images pertaining to offshore wind for more than
20 years, and future satellite missions are already being planned or considered [9]. This
cost-efficient information is vital for a plethora of energy-related applications ranging from
pinpointing ideal wind farm siting locations [10–12] to identifying wake effects down-
stream of offshore wind farms [13,14]. While both SAR and SCAT sensors retrieve wind
speed information in a similar way via the inversion of an empirical geophysical model
function (GMF) relating backscattered normalized radar cross section (NRCS) to incidence
angle and near-surface wind speed and direction, they mainly differ in terms of spatial
resolution [15]. SAR has prevailed over SCAT for wind speed retrievals due to its relatively
fine spatial resolution and consequent ability to detect small-scale offshore wind variations,
in particular close to the coast [16,17]. SAR sensors, such as those mounted on ERS-1 and
2, ENVISAT, RADARSAT-1 and 2, TerraSAR-X and, most recently, on Sentinel-1A and 1B
satellites, have been operating at different wavelength bands to provide the means for
retrieving wind speed over the ocean surface. The exploitation of Sentinel-1 SAR data,
in particular, has been attracting increasing interest in an attempt to obtain an accurate
characterization of offshore wind regimes. Relevant examples include the recent work
of [18] focused on the offshore area around Cyprus, as well as the case studies of [19]
and [20] assessing wind resource potential using Sentinel-1 SAR estimates northwest and
northeast of Sardinia and offshore Ireland, respectively. The main drawback of utilizing
Sentinel-1 SAR data for wind resource potential assessment, as concluded in all the studies
mentioned above, is the relatively short data time series (2014-present) and the limited
number of estimates derived from the sensors, as the satellite orbit leads to gaps between
consecutive passes [21]. In the absence of such information, spatiotemporal prediction or
simulation methods must be employed to form a complete and consistent image time series,
thus filling the missing satellite information (gaps) necessary for a thorough wind resource
assessment while preserving the local wind features. To the best of our knowledge, few
studies have attempted to address this problem by assimilating coarse-scale remote sensing
or reanalysis data via a simulation approach [22,23] and even fewer within a geostatistical
context. Moreover, existing studies have focused on reconstructing missing values due to,
for example, cloud contamination (in the case of optical sensing) or systematic errors in the
relevant satellite images rather than simulating large continuous patterns or even entire
images in the time series. Although this literature gap was first identified by [24], referred
to as “weakly constrained gap-filling problems”, limited progress has been made since.

The applicability of multiple-point (geo)statistics (MPS) in the reconstruction of spatial
and/or temporal patterns across multiple scales has been previously demonstrated in a
variety of fields. [24] pioneered the use of MPS simulation to fill artificially imposed gaps of
weather research and forecasting (WRF) simulation outputs pertaining to latent heat flux,
surface temperature and soil moisture. [25] followed a similar approach using a 20-year time
series of both coarse- and fine-spatial-resolution WRF outputs as training data to simulate
fine-scale data for future dates for which only coarse-scale outputs were available. The
work was later extended in an attempt to downscale temperature, along with a highly non-
stationary variable (i.e., precipitation), considering their interdependencies [26]. Although
the above studies proved that MPS can simultaneously account for complex structural
and textural properties, as well as non-linear dependencies among multiple interrelated
variables, they involve coarse-resolution model-derived data that do not exhibit strong
temporal variability. Moreover, in the former case, relatively small gaps were filled, whereas
in the latter two cases, a fully informed and sufficiently long time series is assumed to be
available as training data. [27] study based on Landsat 7 imagery was the only attempt
involving satellite data in the MPS gap-filling simulation process. In this case, however,
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single images were considered rather than image time series, with the study being focused
on highlighting the method’s ability to reconstruct spatial heterogeneity across different
regions. Most recently, [28] investigated the efficiency of MPS to simulate rainfall fields
using radar images as training data. The main novelty of this work is related to the
classification of weather patterns using a set of climate indicators and their subsequent
use to create conditional training image sets (CTIS). Daily rainfall was then simulated
conditionally on a selected CTIS with a similar weather state.

In a similar way, we formed a multivariate CTIS by selecting pairs of uncertainties in
ensembles of regional reanalyses (UERRA) and Sentinel-1 images to simulate the missing
Sentinel-1 information. However, the underlying physical laws of wind fields are not
described using a set of climate data but considered to be expressed by the physics-based
UERRA model outputs. Therefore, no multiple-point statistics are required to generate the
TIs, which are directly selected by the historical record using a statistical metric instead.
The selected CTIS for each gap datetime is then used to simulate the missing wind fields at
the fine scale.

Accordingly, the aim of this work was to further advance the use of MPS for spatiotem-
poral gap filling by simulating fine-scale offshore wind speed patterns around Cyprus via
the combined use of fine-scale satellite-derived wind speed estimates, thus retaining the
spatial variability of wind speed at the local scale, with physics-informed reanalysis model
data, from which coarse-scale wind speed pattern norms are inherited. The contribution of
this work is summarized in the following points:

• A novel TI selection method is presented to form the CTIS used to simulate the
missing patterns at each time step. This method is based on the dependence between
the coregistered coarse- and fine-scale information included in the training images.
Once the CTIS is formed, fine-scale patterns are simulated and locally conditioned to
the coarse-scale data.

• An MPS algorithm recently developed by [29], namely quick sampling (QS), is ex-
ploited for the first time in a spatiotemporal gap-filling application. The precise aim of
this study is to take advantage of the robustness and computational efficiency of the
algorithm to investigate its potential to provide realistic reconstructions of spatially
complex patterns of continuous fields.

• A first real-world case study of image time-series expansion is provided in an offshore
wind speed context by generating wind fields of realistic spatial and temporal vari-
ability while preserving the complex multivariate wind relationships. Considering the
complex variability and dynamic nature of wind speed both in space and time, this
endeavor is rather challenging and often fails to reproduce the inherent variability at
the fine scale, especially when long-term training datasets are not available.

The remainder of this paper is structured as follows. The data sources and the study
area considered in this work are described in the subsequent section. The adopted method-
ological framework and the validation tools employed in this study are presented in
Section 3. Section 4 presents and analyzes the simulation outputs and the evaluation results.
Finally, Sections 5 and 6 are dedicated to discussion, as well as conclusions and future
research outlooks.

2. Area of Study and Training Datasets

Despite being generalizable to any area of interest and conditions, the method pro-
posed in this study focuses on the offshore area around Cyprus (Figure 1) to simulate wind
speed at datetimes when Sentinel-1 information is absent or partly recorded over the study
area. As latest statistical indications from the [30] conclude, Cyprus lags in the exploitation
of renewable energy sources; thus, remedial steps should be taken in this direction. The
remote location of the island further highlights the need for disengagement from fossil fuels,
as high dependence on such energy sources has kept electricity cost at peak levels, placing
Cyprus among the most expensive EU member states in terms of electricity prices [31]. The
dynamic climate conditions due to mesoscale influences in the southeastern Mediterranean
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region cause variable winds, which are further influenced by the orographic effects of the
Cyprus mainland [32]. This fact alone provides an added value to the current work, as
typically exploited wind field datasets are unable to identify fine-scale spatial patterns of
interannual and intraseasonal variability [33] and accurately assess the wind resources in
the study area.
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sources is provided in Figure 2. 

Figure 1. Outline of the study area (red polygon) and typical Sentinel tiles within a one-week period
(white polygons). (Satellite base map is hosted by Esri).

Data consist of image time series from UERRA-HARMONIE [34] regional reanaly-
sis and Sentinel-1 SAR Level-2 OCN datasets [35], which were initially made available
at the spatial resolutions of 11 km and 1 km, respectively. As both datasets originally
come as gridded products, the study area is discretized into 132 × 242 cells of 0.009◦

(~1 km), matching the spatial resolution of the finest-scale product (Sentinel-1). Onshore
(land) areas of Cyprus where SAR wind retrievals are not available are masked-out. The
sample period for both datasets extends from 1 June 2017 to 31 May 2019, encompassing
two (2) full season cycles. A visual depiction of the image time series derived from the
two data sources is provided in Figure 2.
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2.1. Sentinel-1A/B SAR Wind Retrievals

The Sentinel-1 near-polar, sun-synchronous-orbiting satellite constellation operates
during both day and night to acquire C-band (5.405 GHz) SAR imagery unaffected by
daylight and cloud conditions. Each satellite has a 12-day repeat cycle, reducing the
combined repeat cycle to 6 days. Satellites share the same orbital plane, albeit with a 180◦

orbital phasing difference. Sentinel-1 wind retrieval is achieved via the inversion of the
estimated NRCS using CMOD-IFR2 GMF by default and a priori wind information obtained
from the European Centre for Medium Forecast (ECMWF) atmospheric model. Bayesian
inference is then used to estimate the wind vectors in each grid cell [36]. Images in the
offshore area around Cyprus are acquired by both satellites in an interferometric wide (IW)-
swath mode and under vertical–vertical (VV) + vertical–horizontal (VH) dual polarization
operation at approximately 3:45 and 15:45 coordinated universal time (UTC). Therefore,
one to two scenes partially cover the study area each day within a 4-day run, leaving
3 days in-between without a scene. The ability of Sentinel-1 C-band SAR instruments to
acquire simultaneous co- and cross-polarization imagery, in combination with the fine
spatial resolution of the final products, offers a great potential for retrieving the spatial
variability of offshore wind at a high level of detail, especially in areas such as coastal
waters, where small-scale wind features cannot be revealed by other means [37]. Hence,
Sentinel-1 data can serve as primary input for offshore wind resource assessment studies or
for the validation of wind speed estimates derived from other data sources (e.g., physical
model outputs).

In this work, Sentinel-1 Level-2 OCN products from 483 tiles were acquired in bulk via
the Alaska Satellite Facility (ASF). Ocean wind field (OWI) geophysical component data,
in particular, refer to fine-spatial-resolution (1 km) ground-range gridded estimates of the
surface wind speed a height of 10 m above the sea surface. Sentinel-1 Level 2 OCN wind
fields are associated with a quality flag at the pixel level, ranging between 0 and 3 (high
to low quality). The flag value communicates the inversion quality but is also related to
the geophysical quality of the product, as well as the estimated NRCS quality [38]. Low-
quality wing flag values, typically found around the coastline, were completely discarded.
Sentinel-1 SAR images also exhibit systematic border noise [39], resulting in artefacts along
the east and west image edges. The problematic image rows/columns were completely
removed from these images. Sentinel pixel values are resampled to the closest regular
square grid node, and a maximum distance of 1 pixel (0.009◦) is set to prevent long-distance
allocation of remote pixel values. The regular grid-bounding box and Sentinel tiles recorded
around the study area within a one-week period are indicated by red and white outlines,
respectively, in Figure 1. Tiles tilting to the right occur during descending orbits, whereas
tiles tilting to the left occur when the satellites are ascending. The tilting of Sentinel products
and the spatial microvariability related to satellite images specify different pseudo-grids
for almost every tile.

2.2. UERRA-HARMONIE Regional Reanalysis

Reanalysis methods attempt to provide a comprehensive description of the atmo-
spheric state by reconstructing past weather conditions via a data assimilation scheme.
The provision of estimates at each grid point in a region (e.g., Europe) for each regular
output time over a long period and always using the same format makes reanalyses very
convenient and popular datasets to work with. Regional reanalyses are also produced
within the context of the UERRA project and delivered by the Copernicus Climate Change
Service. The UERRA-HARMONIE three-dimensional variational data assimilation system
delivers pan-European reanalysis gridded data that are made available online by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) [40]. The selected dataset
refers to a single pressure level, providing wind speed estimates at a height of 10 m above
the sea surface every 6 h, starting from 00:00 UTC each day and at a horizontal spatial
resolution of 11 km. Therefore, UERRA data were also clipped and resampled via linear
interpolation to the Sentinel-1 grid to provide both coarse- and fine-scale information in
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the same spatial domain. Model outputs for the 2-year period between June 2017 and May
2019 are used in this work as auxiliary data, initially for TI selection and subsequently to
locally constrain the simulation outputs. It should be stressed here that the Sentinel-1 and
UERRA datasets are produced by different means and with different purposes; therefore,
they are not considered to represent the same type of information at two different scales.
Rather, their complementarity is used to realistically reconstruct the wind speed patterns
for the dates and times for which fine-scale information is not available.

3. Methodology
3.1. Multiple-Point Statistical (MPS) Simulation Framework

Geostatistical simulation provides an attractive means of estimating spatiotempo-
ral distributions, taking into consideration local variability, thus avoiding the smoothing
effects of kriging interpolation [41]. Falling in the realm of stochastic approaches, simu-
lation aims to produce multiple realizations (2D or 3D synthetic representations) of the
considered attribute, thus also providing a measure of spatial uncertainty [42]. However,
simulation methods based on two-point (pairwise) measures of spatial heterogeneity, such
as variograms or correlograms do not adequately reproduce complex patterns in simu-
lated realizations [43,44] such as those characterizing highly variable climate parameters
(e.g., wind and precipitation), nor do they account for non-linear dependencies among
multiple variables. Therefore, higher-order statistics are required [45].

MPS, having undergone remarkable progress since their first introduction, replace
two-point variograms with training images (TIs). The latter are considered repositories
of spatial patterns from which one infers higher-order (multiple-point) statistics, e.g., in-
volving triplets, quadruplets or more complex combinations of attribute values [46,47],
without adopting a random function model [48]. MPS can simultaneously account for
spatial dependence between attribute values involving multiple points at a time based
on higher-order (multiple-point) statistics extracted from TIs, while respecting data; im-
posing constraints of data fidelity/reproduction is termed conditioning [47]. As natural
phenomena, such as wind, present continually recurrent spatial patterns, one or more
representative TI can adequately describe a time-varying dataset. Once identified, these
patterns can be used in the gap-filling process to simulate the missing information. MPS
have been alternatively (to traditional stochastic simulation techniques) exploited to re-
construct complex patterns using samples of historical data, while respecting the spatial
variability of the phenomenon under consideration. This data-driven approach falls in the
same realm as analog forecasting, the main idea being that weather patterns reoccur in time,
and therefore, long-term forecasting of probability distribution functions (PDFs) is feasible
using relevant prior information [49]. This is achieved in MPS by computing the conditional
probability of joint combinations of attribute values (known as data events) occurring based
on patterns contained in the selected TI, such as higher-order (beyond bivariate) statistical
dependencies. The conditional cumulative distribution function (CCDF) estimated for the
simulation of random variable Z(x) at each successive location is expressed as:

F(z, x|dn) = Prob{Z(x) ≤ z|dn} , dn = {z(x1), . . . , z(xn) }, (1)

where x is the pixel where simulation is to be performed, and dn represents the data
events consisting of z values in the n neighboring pixels (local conditioning; either data
or simulated values at previously visited nodes). Pixels are simulated sequentially in a
random order called the simulation path. The above formula can be extended to meet the
requirements of multivariate cases of m variables as:

F
(

z, x
∣∣∣d1

n1
, . . . , dm

nm

)
= Prob

{
Zv(x) ≤ z

∣∣∣d1
n1

, . . . , dm
nm

}
, v = 1, . . . , m (2)
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Because different neighborhoods and data events can be defined for each variable (Zk),
the definition of a joint data event for a simulation node (x) involves the computation of
lag vectors (Lv) such as:

dn(x) =
{

d1
n1

(
x, L1

)
, . . . , dm

nm(x, Lm)
}

(3)

For a single variable, the lag vectors at each node (x) in the simulation path are
therefore computed by means of subtraction considering the n closest grid nodes as
L = {x1 − x, . . . , xn − x}. The distance (dissimilarity) between the simulation grid (SG)
and the TI joint data events can be subsequently evaluated as the weighted average of
distances/dissimilarities between joint data events for each variable using various metrics
(e.g., Euclidean, Manhattan, etc.).

3.2. Quick Sampling (QS) Algorithm

A comprehensive description of existing MPS algorithms is given provided by [50].
Despite the high degree of similarity among the majority of them, they mainly differ in terms
of the means extracting and storing the pattern information from the TI [51]. SNESIM [52],
ENESIM [46], IMPALA [53] and direct sampling (DS) [54] are the most widespread pixel-
based MPS simulation algorithms. The latter abandons the concept of explicitly computing
the conditional probability distribution in each sequential step but rather directly samples
from the TI. This provides the flexibility to deal with one or multiple continuous and/or
categorical variables of any structure while accounting for their complex relationships in
a computationally efficient way. However, this efficiency has been proven quite sensitive
to the selection of the appropriate distance/dissimilarity threshold best-suited for each
application, as well as the fraction of the TI to be scanned [55]. In the same vein, quick
sampling (QS) [29] computes a mismatch map between the searched pattern and each
location in the TI to determine the k best candidates for the node to be simulated, bypassing
the computation of the conditional probability distribution. Like in DS, the mismatch
refers to the distance/dissimilarity between the data event contained in the SG and the
corresponding data events in the TI. The contribution of QS lies in the decomposition of
the distance norms and the computation of the mismatch map using fast Fourier transform
(FFT), as well as the optimized partial sorting technique applied for ranking the k best
candidates, enabling improved scalability and computational efficiency for the performance
of MPS simulations. The construction of a mismatch map for each node in the TI instead of
relying on a distance threshold to sample the best candidate allows for the simulation of
more representative patterns in constant and predictable computation time. The inherent
ability of QS to deal with multiple continuous variables is key in addressing the “weakly
constrained gap-filling problem” in our work due to the low temporal sampling frequency
of Sentinel-1. A predefined kernel (ki) of any type (e.g., exponential or uniform) can be
used in QS to apply a weighting scheme to account for both the spatial (auto)correlation
between the simulation node and neighboring node values and to assign relative weights
to different variables in the multivariate case. More specifically, the QS algorithm consists
of the steps described in Algorithm 1 (Inputs, parameters and pseudocode of the quick
sampling (QS) algorithm).
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Algorithm 1: Quick Sampling

Inputs and parameters:

ti(s): training image(s), di: destination image (or simulation grid),
sp: simulation path,
dt: data type, k: number of best candidates, n: number of closest
neighbors, ki: kernel

Step 1: For every uninformed node x in the defined path (sp)
Step 2: Retrieve data event dn(x) in the di within the predefined radius

Step 3:
Compute the mismatch map by calculating the
distance/dissimilarity between data event dn(x) in di and dn(y)
for every node in ti

Step 4:
Rank distances in the mismatch map using quantile sorting to
determine the k best candidate(s)

Step 5:
Sample among the k best candidates and assign the selected value
to node x in the di

3.3. Parametrization

A full list of mandatory and optional QS parameters is provided in the online doc-
umentation of the algorithm available at https://gaia-unil.github.io/G2S/ (accessed
2 December 2022), where the latest open-source distribution of QS is also available. These
include parameters that can vary and others that are commonly set for the whole configura-
tion. The former include the number of neighbors (n), the kernel (ki) and the data type (dt),
whereas the most important among the global parameters is the number of best candidates
(k). The remaining parameters used in this study, namely training images (ti), destination
image (di) and simulation path (sp) are described in the following section. The rationale
behind the choice of both the individual parameter set for each variable (Table 1) and the
global parameters is explained in the remainder of this section.

Table 1. Parameters used in QS for each variable.

Variables

Parameter UERRA Sentinel-1 Longitude Latitude Distance to the Coast

n 25 75 1 1 1

ki 103 × 103 RBF
(h = 0.001, w = 0.01)

103 × 103 RBF
(h = 0.001, w = 1)

103 × 103 RBF
(h = 0.001, w = 0.1)

103 × 103 RBF
(h = 0.001, w = 0.1)

103 × 103 RBF
(h = 0.001, w = 0.1)

All the variables included in the model setup are continuous. The data type (dt) for
each variable is set to 0, which appropriately adjusts the distance (dissimilarity) metric
applied; Euclidean distance is used in this case. One of the most important parameters
in QS—and MPS in general—is the number of closest neighbors (n) to be accounted for.
As n highly depends on the application at hand, it was defined for UERRA and Sentinel-1
variables via trial and error after simulating a subset of the image time series and calculating
mismatch statistics between the reference and simulated Sentinel-1 images. The simulated
node is therefore conditioned to a pattern consisting of the 25 closest neighbors for UERRA
and the 75 closest neighbors for Sentinel-1. A high number of neighbors is required for
Sentinel to adequately characterize a specific pattern due to the complex heterogeneity
and variability of wind speed, whereas for UERRA, n must be large enough to represent
the large-scale wind speed fluctuations detected in the images to properly condition the
simulation on the coarse-scale patterns. The rest of the variables, namely longitude, latitude
and distance to the coast, are used in this study to account for the non-stationary nature
of the wind speed patterns following previous MPS-related applications [26,28]. This is
achieved by defining the position of a simulation node (x) in order to guarantee that both
the location and the orientation of the wind speed patterns are consistent between the TIs
and the simulation output. Therefore, a value of n = 1 is used to restrict the nodes among
which the mismatch between di and ti is computed to 1. The spatial continuity of the wind

https://gaia-unil.github.io/G2S/
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speed patterns and the relative weighting of each variable were considered by defining a
radial basis function (RBF) kernel expressed by:

K = we(−h·d)2
(4)

where h is the bandwidth parameter adjusting for the relative weighting between large-
and small-scale variations, and d is the Euclidean (geographical) distance from the center
of the kernel. Higher h values translate into a narrow kernel in which only pixels close to
the center can significantly contribute. As bandwidth value increases, the relative weight
of distant points increases exponentially. The amplitude of the Kernel was adjusted by
defining relative weights (w) for each variable, as shown in Table 1. In this study, h was
set to 0.001 to account for the gradual decrease in the spatial continuity of the wind speed
patterns, whereas a different w value was set for each variable. In the case of Sentinel-1,
a weight of 1 was used to account for the complex variability of wind speed. A reduced
weight of 0.01 was defined for the UERRA auxiliary variable, whereas a 0.1 weight was
defined for the three constant variables in time (latitude, longitude and distance to coast).

The number of best candidates (k) parameter can take any value, including decimals.
When k is an integer, the sample is derived from a uniform distribution such that every
candidate has an equal probability to be drawn. In the case of non-integer k values, the
probabilities are defined as follows: First, k is split into integer (int) and decimal (dec)
parts. The number of candidates is then defined as int + 1. Each of the candidates except
the last one then has a probability of 1/k of being selected, whereas the last candidate
has a probability proportional to the decimal part, which equals 1− (1/k ∗ int). Using
k 6= 1 prevents borrowing of identical patterns from the TI, a phenomenon commonly
termed verbatim copying. In this study, the number of k best candidates was set to
1.2 to avoid borrowing of large-scale patterns from the TIs while still selecting among the
two candidates with the lowest distance between multivariate patterns. Therefore, the
selected candidate is chosen among the 2 best (i.e., those with the lowest distance values in
the mismatch map), with probabilities of occurrence of 83.33% and 16.67%, respectively.
It should be stressed that the selection of n and ki parameters is based on the sensitivity
analysis conducted by [29] and was fine-tuned via the examination of the simulated nodes
index for the case study presented here.

3.4. Conditional Training Image Set (CTIS)

Highly complex wind field spatial patterns reoccur at different times and locations
and under different weather conditions within the study region. The non-stationary nature
of such structures cannot be modeled or simulated using the complete Sentinel-1 image
record but must be reconstructed using a representative sample of the fine-scale satellite
imagery. The selected multivariate image set for each gap to be simulated is hereafter
termed CTIS. A two-step image classification process was followed in this study to form
the CTIS for each gap to be simulated. The first step involves pairing between UERRA
and Sentinel-1 training images. To form the UERRA-Sentinel-1 training image pairs while
accounting for possible time lags between both datasets, their mismatch within a 12 h time
interval is summarized via the root mean square error (RMSE). As UERRA model outputs
are available every 6 h, the aforementioned interval involves 3 UERRA images. The UERRA
image corresponding to the lowest RMSE is then selected and paired with the informed
Sentinel-1 image. Once all the TI pairs have been determined, these are stacked with the
rest of the auxiliary variables, namely longitude, latitude and distance from the coast, to
form a multivariate TI candidate. The second step involves the computation of RMSE
between each pair of UERRA images at Sentinel-1-informed and gap datetimes to identify
similar wind speed conditions as those observed in the simulation time steps. Because no
Sentinel-1 image is available for these time steps, UERRA is used as a criterion to match
the wind speed conditions. The entries of the resulting RMSE matrix are then ranked in
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ascending order to allow for the selection of Tis, which will form the CTIS at each iteration.
A visual example of a CTIS formation is depicted in Figure 3.
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3.5. Offshore Wind Speed Image Time Series Simulation

Once Sentinel-UERRA pairs have been formed and the ranked RMSE values between
pairs of UERRA images at gap and Sentinel-1-informed datetimes have been generated,
the proposed methodology proceeds with TI set selection and the sequential simulation of
the missing Sentinel-1 images. As part of the simulation process, the number of training
images in the CTIS for each gap to be simulated is determined by an RMSE threshold of
1.5 m/s determined via stepwise optimization on a subset of images.

Despite the threshold set, the number of TIs cannot go below 8 or exceed 13. This range
was also determined via trial and error and may vary in different applications depending,
among other factors, on the multivariate relationship between the selected variables. Here,
having either a lower or higher number of TIs than the aforementioned thresholds can lead
to misrepresentation of the fine-scale wind speed patterns to be simulated. Moreover, using a
high number of TIs to simulate a single image could significantly increase the computation
time without providing added value in terms of the realistic reconstruction of the non-
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stationary wind fields. If no representative UERRA image can be identified to be used in the
CTIS, the gap is not simulated. Once the CTIS has been defined and QS parameters have
been set as described in Section 3.3, fine-scale offshore wind speed images are simulated in
sequence until all Sentinel-1 image time-series gaps have been filled. Figure 4 provides a
step-by-step schematic workflow of the proposed methodological framework.
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Figure 4. Methodological workflow.

3.6. Evaluation Metrics

A set of statistical measures were used to evaluate the simulation performance. Sentinel-
1-informed images were previously validated [18] against coastal meteorological stations
and are thus considered reference data against which the simulation outputs are evaluated.
To allow for comparisons between the simulated and reference images, the leave-one (image)-
out cross-validation (LOOCV) technique was employed. This evaluation measure refers
to the splitting of the dataset into test (used for validation) and training data, the latter
of which is used to train the model. In this work, LOOCV refers to leaving an informed
Sentinel-1 image out at each iteration and attempting to reconstruct it anew by selecting
among the remaining Sentinel-1-informed images to form the CTIS. The process is repeated
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until all Sentinel-1-informed images are left out once, except when the RMSE threshold is
exceeded, in which case image simulation is skipped. The following statistical measures are
then used to compare the spatiotemporal distributions of the image time series.

3.6.1. Similarity and Divergence Measures

The Perkins skill score (PSS) and Kullback–Leibler (KL) divergence are used to statis-
tically compare the reference and simulation distributions in each grid cell. The PSS [56]
provides a similarity measure by quantifying the overlapping area between two probability
density functions (PDFs). This allows for evaluation of the resemblance of the reference
distribution by the generated realizations while comparing across entire PDFs. PSS is
formulated as follows:

PSS =
B

∑
b=1

minimum(qb(x), pb(x)) (5)

where qb(x) and pb(x) are the simulation and reference distributions, respectively, and
B is the total number of bins. As the PSS provides a calculation of the cumulative min-
imum value of two distributions by bins, possible values range between 0 and 1, with
the former suggesting no overlap between the distributions and the latter indicating a
perfect distribution match. KL divergence (or relative entropy), on the other hand, uses
the same frequencies on the log scale to quantify the divergence between two probability
distributions. This is essentially an indicator of how the two distributions differ or how
much information is lost during the attempt to match the reference probability distribution.
As opposed to PSS, a KL value of 0 indicates two identical distributions; otherwise, the
larger the value, the more different the distributions are supposed to be. KL divergence, in
its most common form, is expressed as:

DKL(p||q) =
B

∑
b=1

pb(x)· log
(

pb(x)
qb(x)

)
(6)

Note that DKL(p||q) is a non-negative measure. Moreover, zero (0) values in either
the reference or simulation distribution would lead to complications in the computation
of log

(
pb(x)
qb(x)

)
. This issue is addressed here by smoothing both distributions via the intro-

duction of a small constant (c (c = 10−3)) such as pb(x) > 0 and qb(x) > 0. Furthermore,
PSS, DKL(p||q) and B can vary from one location to another; however, for notational sim-
plicity, we do not explicate the dependence of B on x. Despite being visually presented
in the following section in the form of maps, both measures described above implicitly
characterize the temporal behavior of wind speed time series in each grid cell. This is par-
ticularly important because most applications related to wind resource evaluation focus on
cumulative wind resources over specific areas rather than wind speed values at particular
time instances.

3.6.2. Spatial Correlation

Experimental (sample) semi-variograms of reference and simulated Sentinel-1 images
are compared for the two example dates provided in Section 4. Variograms allow for
comparison of spatial correlation (or continuity) of the related structures by quantifying
the average similarity among attribute values separated by given distance lags. To examine
whether spatial correlation varies with direction, one can compute directional variograms
along different directions. Here, both omnidirectional and directional variograms along
90◦ and 180◦ directions are computed to evaluate the capability of the proposed method to
capture the spatial correlation in the wind speed field on target (training) dates.

3.6.3. Relative Bias (%)

A simple yet useful spatiotemporal metric to evaluate the performance of the simula-
tion technique used in this study is the relative bias (RB) in percent. For every informed
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Sentinel-1 image, a bias map is computed by subtracting the reference image from the mean
of the realizations generated for this datetime at the pixel level. By dividing the result by
the reference value and multiplying by 100, we obtain a relative bias for each evaluation
time step. The bias associated with each grid cell with respect to the reference value is
computed as follows:

RB =
∑N

i=1(z
s(xi)− z(xi))

∑N
i=1 z(xi)

·100 (7)

where zs(xi) is the mean of realizations in the ith grid cell, and z(xi) is the corresponding
reference wind speed value. This study makes use of the median relative bias (MRB) which
refers to the ensemble median of the estimated relative bias maps.

4. Results and Evaluation

A visual comparison between simulated wind fields and reference Sentinel-1 images
precedes the statistical comparison using the abovementioned indicators. Two selected
examples are demonstrated in Figures 5 and 6 to showcase the ability of the proposed
methodology to reconstruct the reference wind speed patterns. The selection of these cases
is based on the wind speed pattern structure and variability characterizing the two refer-
ence images, which are representative of low-to-moderate and high-intensity wind speed
events over the study area. The cases also highlight the ability of MPS and the proposed
method to simulate complex spatial patterns. Note that the reference image depicted in the
two examples was not included in the training dataset used for the simulation, as this
would lead to biased estimates. It is also important to mention here that a larger part of
the image is simulated in the second case, in which the Sentinel-1-informed image covers
almost the entire area of interest. Therefore, larger-scale wind speed patterns have to be
identified in the CTIS and matched by the QS algorithm for the simulation.
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Figure 5 depicts an example in which UERRA coarse-scale wind speed patterns
spatially cluster in accordance with Sentinel-1 estimates, albeit generally exhibiting slightly
higher wind speed values. Therefore, simulated realizations are able to reconstruct the
reference spatial variability while reproducing the structure, location and orientation of
wind speed patterns. Such realistic patterns are evident in the realizations presented in
Figure 5. However, in Figure 6, not only the variability but also the wind speed patterns
differ in space between UERRA and Sentinel-1. Whereas wind speed in UERRA is spatially
clustered in low- and moderate-wind-speed blobs close to and further from the coast,
respectively, Sentinel-1 images present with complex wind speed spatial heterogeneity and
no clear structure regarding the wind speed intensity. As the simulation is conditioned
to UERRA, this difference is also reflected in the three generated realizations, as well as
in the average of the realization ensemble, in which the wind speed intensity appears
smooth across the entire area of interest. However, our aim was to reproduce fine-scale
wind speed pattern variability and spatiotemporal heterogeneity rather than to recreate the
exact reference field, as this also largely depends on the dependence between primary and
auxiliary information—Sentinel-1 and UERRA in this case.

The scatterplots and marginal distributions presented in Figure 7 are used to compare
the reference and simulated fields, as well as the UERRA auxiliary variable at the same
datetimes. The two rows of subfigures refer to the wind speed values derived from the
images of the examples presented above. A linear relationship is quite evident in the first
example, in which all three variables seem to be pairwise-correlated. In the second example,
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however, there is no linear correlation between UERRA and the two fine-scale images, and
the simulated realization seems to generally overestimate the reference field. This is also
confirmed by the accompanying statistics (RMSE and MAE) computed between each pair
of wind speed images. Furthermore, the deviation largely originates from the high number
of zero (0)-wind-speed values only apparent in the Sentinel-1 image, the existence of which
should be further investigated, as they commonly appear in many reference images. A
slight overestimation of the reference wind speed values by the realization is evident in
both examples, which is also explained by the higher UERRA wind speed values compared
to the reference image. It should be noted that points depicted in the scatterplots between
the realization and the reference images (second column) are not expected to be aligned
on a 1:1 basis, as no reference conditioning data are available. It is anticipated, however,
that the correlation (dependence) between UERRA and reference images (first column) is
adequately reproduced in the realizations (third column).
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Sentinel-1 (reference) and one realization each on 10 June 2017 (first row) and 15 June 2017 (second row).

In contrast to previous metrics, the spatial dependence expressed in terms of omnidi-
rectional and anisotropic (along 90◦ and 190◦ directions) variograms between the reference
and simulated wind fields (Figure 8) appears to be better represented in the second ex-
ample. As previously mentioned, although wind speed patterns are not locally respected,
the spatial variability is well reproduced over the study area. The reference experimental
variogram thus appears close to the middle of the 5%–95% envelope both for the omni-
and the directional realization variograms. However, the corresponding variograms on
10 June 2017 present a slight semi-variance overestimation compared to the reference image,
spanning across different ranges according to the direction. A better reproduction of the
spatial dependence of the reference wind field by the realizations is evident along the 180◦
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direction in distances greater than 0.3 degrees. Furthermore, there is small-scale variability
for negligibly small distances in the reference variograms of both dates, a phenomenon
that is commonly termed a nugget effect in geostatistics. Because the simulated fields are
conditioned to UERRA coarse-scale patterns, they cannot easily reconstruct this variability
in such small distances. As the distance increases, however, the reconstruction appears
to better reproduce the reference spatial variability. Nonetheless, realizations seem to
generally respect the spatial dependence characterizing Sentinel-1 wind speed images.
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Kullback–Leibler divergence and Perkins skill score plots (Figure 9) also indicate an
overall convergence between the reference and simulation distributions. Both metrics
were computed over the full reference and simulation image time series (461 images). The
highest KL values (and lowest PSS values) are observed around the northeast edge of the
study area, where pattern matches are limited by the spatially discontinuous subdomain
due to Cyprus mainland and edge effects. Moreover, the substantial number of missing
values close to the coast (discarded due to low-quality flag values) does not allow for an
efficient reconstruction. Conversely, the highest number of Sentinel-1 nodes is within the
area enclosed by the sharp edges evident in the east of the study area. There, both metrics
indicate a better agreement between the two distributions in comparison to the rest of
the domain, indicating the potential for the reconstruction of longer time series as more
Sentinel-1-informed images become available.
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Figure 9. Kullback–Leibler divergence (left) and Perkins skill score (right) used to quantify the
divergence and similarity of the reference and simulation distributions per grid cell, respectively.

The sharp boundaries due to the difference of Sentinel-1 samples in each node are
more evident in Figure 10, which depicts the median relative bias plot. Whereas KL and
PSS plots were computed by per-pixel comparisons of the distributions in time, the MRB
plot results from the subtraction of the reference and simulation spatial distributions at
each simulation time step. This is more useful to assess the reconstruction of the reference
wind fields in space. In general, an overestimation of the reference spatial distribution
by the simulation can be concluded. The opposite is true for the northern areas of the
domain, especially close to the coastline. The southeastern part of the study area, where
the fewest Sentinel-1-informed nodes reside, presents the highest positive bias of the order
of 5–10%. Nevertheless, the bias ranges between −5 and 0% in most of the study area,
indicating a relatively low MRB between the reference and the mean of 50 realizations at
each simulation time step.
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5. Discussion
5.1. Challenges and Emerging Opportunities

QS—and MPS in general—attempts to reconstruct image patterns by resampling values
from the available training dataset. The simulation of values beyond the range of the TIs is
thus not possible without involving parametric approaches [57]. This makes the algorithm
inefficient when called to simulate extreme or rare events, as the pool of relative values in the
TI set is small. A longer image time series including more representative values for every
class would eventually lead to a better representation of infrequent wind speed patterns
and more accurate image reconstructions by the proposed technique. Sentinel-1 satellites
already count more than 5 years of lifetime providing fine-spatial-resolution wind speed
estimates on a global scale. The resulting image time series can serve as primary data in
the proposed simulation framework to provide realistic reconstruction of the wind speed
patterns in time instances for which no information is available. It should be stressed that the
examples provide a demonstration of the ability of the proposed method to simulate wind
speed patterns at fine spatial resolution while reproducing the fine-scale variability of the
reference fields. As the study area grows and Sentinel-1 continues spanning the earth, more
TIs and therefore more patterns will be available to avoid wind field gaps where they exist.

Apart from the long-term statistical outputs, intermittency is also important when
assessing the wind speed and, more importantly, the wind energy potential. Although
a seasonal analysis goes beyond the scope of this study, it could further reveal how well
the proposed methodology can reproduce the wind speed conditions in each season. A
deeper study of the physical processes driving the wind fields would shed light on the
reoccurrence of wind speed patterns, which is crucial for selecting the appropriate TIs.
However, given that Sentinel-1 SAR can only provide estimates of near-surface wind fields,
no safe conclusions can be drawn regarding the variations in wind speed at different
pressure levels (i.e., upper-level and turbine-height level). For example, diurnal cycles
are known to vary depending on the height, although offshore sites tend to exhibit less
significant variations [58]. Although various techniques have been applied to extrapolate
near-surface offshore wind speed at different heights using mathematical functions [59–61],
diurnal variations at different altitudes cannot be resolved in such datasets.

The fact that Sentinel-1 (reference) images in the examples presented in Section 4 are
only partially informed over the study area makes the reconstruction of such fine-scale
wind speed fields even more challenging. The resulting spatially discontinuous fields do
not offer a complete set of possible pattern matches, especially when searching within
a defined radius. A possible solution would be to extend the spatial domain of interest,
although this would lead to an increase in the computation time linearly analogous to the
increase in SG size and following a power function of n ∗ log(n) with respect to the increase
in TI size [29]. Low correlation between UERRA and Sentinel-1 pairs in the formed CTIS
due to inconsistent wind speed patterns can also lead to poor simulation performance. The
simulated fields in such cases mostly follow the structure of the coarse-spatial-resolution
product. However, the spatial variability of Sentinel-1 images can be reproduced well in
the simulated images.

Lastly, the proposed framework uses a configuration that has been fine-tuned for
the specific area of interest and conditions. Although the method is flexible enough to be
employed in any region, both the method and QS setup should be adapted to the selected
area of interest after careful consideration of the climate conditions.

5.2. Alternative Auxiliary Data Sources

A plethora of regional and global reanalysis datasets at different temporal and spatial
resolutions exists. Once validated against more accurate measurements, such auxiliary
datasets can be used alone or combined in the proposed simulation framework. This
will allow for the selection of the most informative long-term dataset to supplement the
fine-scale Sentinel-1 SAR information and subsequently lead to better-informed simulation
outputs. Nevertheless, the proposed method of TI selection to form the CTIS for the
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simulation of each datetime gap appears to be quite efficient despite the bias between
Sentinel-1 and UERRA images. The use of additional covariates that may possess high
correlation with wind speed (e.g., elevation and temperature) can also be investigated,
although this may prove computationally demanding. Highly correlated variables may
also be involved in the process of TI selection and the formation of the CTIS. A weather
classification technique can be also applied once the appropriate climate variables have
been defined and used as auxiliary data. A similar approach was carried out in [28].

6. Conclusions

In this work, we propose a novel geostatistical simulation framework to reconstruct
fine-scale offshore wind speed patterns and gap fill Sentinel-1 image time series. The pro-
posed method is based on a statistical classification scheme for TI selection and an MPS
algorithm, namely QS, to generate multiple wind field realizations on time instances for
which relevant Sentinel-1 information is not available. Evaluation results highlight the ability
of the proposed method to realistically simulate wind speed patterns at fine spatial resolution
while reproducing the reference variability. Based on our analysis, we conclude that the
simulation performance using the technique proposed herein can be further improved. The
formation of a CTIS for each simulated gap rather than using the complete image time series
as TIs has been proven efficient to adequately characterize the spatial heterogeneity of the
underlying wind fields. This technique can also be employed to simulate similarly complex
spatial fields (e.g., rainfall) exhibiting non-linear multivariate dependencies.

The overarching objective of a resource assessment is to accurately assess wind energy
potential and identify potential hot spots for wind farms siting within an area of interest.
This involves the fitting of statistical distributions known to follow wind speed time
series, e.g., Weibull and gamma, the parameters of which are used for wind power density
estimation. Therefore, future work will focus on taking advantage of the simulated fine-
spatial-resolution wind speed time series to estimate the wind power potential in the
offshore area around Cyprus and identify hot spots for wind farm project development.
Once clusters of high wind speed are identified, local assessment and feasibility analysis
will be conducted to assist micrositing studies. Short-term wind speed forecasting using
the proposed simulation framework can also be employed to inform current coarse-scale
datasets. Seasonal analyses, along with intermittent energy storage plans, will additional
areas of future focus.
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Nomenclature
x Pixel location in the simulation grid
y Pixel location in the training image
F(·) Conditional cumulative distribution function (CCDF)
Z(x) Random variable at location x
z Outcome of random variable Z, an attribute value
n Subscript indicating the number of neighboring pixels
i Subscript indicating the index of a pixel over the entire image
dn Data event (z values) of n neighboring pixels
L Lag vectors of data events
m Superscript indicating multiple variables
v Variable index
h Kernel bandwidth (degrees)
d Euclidean distance from kernel center (degrees)
w Relative variable weight
DKL(p||q) Kullback–Leibler divergence (relative entropy) from q to p
pb(x) Reference distribution for bth bin at location x
qb(x) Simulation distribution for bth bin at location x
B Number of bins
b Subscript indicating the index of a bin
zs(xi) Mean of realizations at ith grid cell
z(xi) Reference attribute value at ith grid cell
N Number of pixels over the entire image

Abbreviations
SAR Synthetic aperture radar
MPS Multiple-point statistics
NWP Numerical weather prediction
SCAT Scatterometers
GMF Geophysical model function
NRCS Normalized radar cross section
WRF Weather research and forecasting
TI Training image
CTIS Conditional training image set
UERRA Uncertainties in ensembles of regional reanalyses
QS Quick sampling
EU European Union
ECMWF European Centre for Medium Forecast
IW Interferometric wide
VV Vertical–vertical
VH Vertical–horizontal
UTC Coordinated universal time
ASF Alaska Satellite Facility
OWI Ocean wind fields
PDF Probability distribution function
CCDF Conditional cumulative distribution function
SG Simulation grid
DS Direct sampling
FFT Fast Fourier transform
RBF Radial basis function
RMSE Root mean square error
MAE Mean absolute error
LOOCV Leave-one-out cross validation
PSS Perkins skill score
KL Kullback–Leibler
MRB Median relative bias
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