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Abstract

Functional connectivity (FC) is among the most informative features derived from EEG.

However, the most straightforward sensor-space analysis of FC is unreliable owing to vol-

ume conductance effects. An alternative—source-space analysis of FC—is optimal for

high- and mid-density EEG (hdEEG, mdEEG); however, it is questionable for widely used

low-density EEG (ldEEG) because of inadequate surface sampling. Here, using simula-

tions, we investigate the performance of the two source FC methods, the inverse-based

source FC (ISFC) and the cortical partial coherence (CPC). To examine the effects of locali-

zation errors of the inverse method on the FC estimation, we simulated an oscillatory source

with varying locations and SNRs. To compare the FC estimations by the two methods, we

simulated two synchronized sources with varying between-source distance and SNR. The

simulations were implemented for hdEEG, mdEEG, and ldEEG. We showed that the per-

formance of both methods deteriorates for deep sources owing to their inaccurate localiza-

tion and smoothing. The accuracy of both methods improves with the increasing between-

source distance. The best ISFC performance was achieved using hd/mdEEG, while the

best CPC performance was observed with ldEEG. In conclusion, with hdEEG, ISFC outper-

forms CPC and therefore should be the preferred method. In the studies based on ldEEG,

the CPC is a method of choice.

Introduction

Cognitive functions are implemented via coordinated activity of the neural modules distrib-

uted in the brain [1, 2]. The coordination of modular activity is analyzed within the framework

of a concept of the functional connectivity (FC) [3–5]. Among various methods for measuring

the FC, electroencephalography- (EEG-) based techniques are unique in that they provide

tools to evaluate the FC dynamics on a millisecond time scale inherent in cognitive processes.

Some of these techniques estimate synchronization of distributed EEG signals recorded from

the head surface [6, 7].

However, well-known limitations of this method include the lack of information about

locations of the brain sources of EEG together with the signal mixing owing to the volume con-

ductance and reference electrode, making interpretation of the sensor-space synchronization
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measures problematic [8–10]. Several strategies have been proposed to minimize the effect of

volume conductance including estimation of FC from surface Laplacian [11], employment of

FC measures robust to this effect (e.g., [12]), or estimation of FC limited to its changes in

experimental contrasts [8]. However, such approaches can neither completely eliminate the

effects of volume conductance, nor localize the EEG sources related the FC dynamics.

To overcome these limitations, source EEG has been used for the FC analysis [13, 14].

These methods can be divided into two main groups. One group, based on a biophysical gen-

erative model, which describes how the neural source dynamics and interactions can produce

scalp EEG [15, 16], aims at direct estimation of the FC between sources from the sensor-space

data and requires prior assumptions on the network structure.

The other group of methods, which exploit a two-step procedure, is model-free and does

not need any assumptions on the network structure. In the first step, source signals are de-

termined using an inverse solution. The latter can be based on distributed source models

(Weighted Minimum Norm (WMN), Low Resolution Electromagnetic Tomography (LOR-

ETA), Local Auto Regressive Averaging (LAURA), etc.) or on dipolar source models. Different

approaches can be applied prior to dipole fitting to separate sources of activity and to deter-

mine the number of dipoles [17–20]. In the second step, the FC is estimated between distrib-

uted or dipole sources ([21–23], for review see [24]).

These techniques provide an acceptable accuracy if applied to the high-density EEG

(hdEEG) [17]. However, in clinical neuroscience, the mid-density (mdEEG) or low-density

EEG (ldEEG) is frequently used, thus limiting the application of both groups of methods. A

new technique of the cortical partial coherence (CPC) analysis, which reportedly can be used

even with ldEEG, has been proposed by [25]. Its allegedly high potential for estimating the FC

with ldEEG attracted our attention. The CPC method estimates the source FC through the par-

tial coherence matrix of the sensor-space EEG. Unfortunately, the authors tested the perfor-

mance of the method by a simple simulation of ldEEG, leaving out of consideration different

signal-to-noise ratios (SNR) and source locations, which can strongly influence the accuracy of

estimations.

Because of the strong interest in the FC concept in clinical neuroscience, where ldEEG is

being routinely used, here we analyze the performance of the CPC method in comparison with

the conventional two-step inverse-based source FC (ISFC) strategy using ldEEG (18 sensors),

mdEEG (61 sensors), and hdEEG (110 sensors) in our simulations. To comprehensively con-

sider the factors that can affect the accuracy of FC estimation, we implemented two simula-

tions. In the first one, we addressed the accuracy of source localization, which can affect the

FC estimation by the ISFC method and its interpretation. To this end, we modeled a single

oscillatory time series as a source with varying location. In the second simulation, we modeled

two synchronized time series, one of which had fixed and the other one, varying location. In

both cases, we also varied SNR and localized EEG sources by means of different inverse

solutions.

Methods

Source FC analysis

In order to compare the accuracy of the ISFC and CPC methods, we applied them to simulated

EEG signals with known parameters (Fig 1). Specifically, for simulated EEGs we determined

(I) forward solution for both methods; (II) inverse solution for ISFC; (III) source cross-spec-

trum (SCS) matrix for ISFC; (IV) source partial coherence (SPC) matrix for CPC; and (V) the

source FC based on CSC and SPC matrices. The details of the steps (I)–(V) are explained in

the following paragraphs.

Functional connectivity in source EEG
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(I) The forward solution estimates how cortical currents generate scalp voltages. For the

EEG data at a time point t, (φt�R
NC�1), where R indicates real numbers, and Nc is the number

of channels, the forward solution is defined as

φt ¼ KJt; ð1Þ

Fig 1. Methods for source FC estimation and EEG simulations. A. The block diagram represents principal steps for the source FC analysis by

means of the ISFC (solid arrows) and CPC (dotted arrows) methods. Arrows indicate the steps of the analyses; the numbers in brackets refer to the

paragraphs of the Method section describing these steps. The gray circles refer to the steps with more than one input. The gray rectangles represent

the input/output of analysis steps. B. The procedures for one- and two-source EEG simulations are presented. First, one and two oscillatory time series

were generated for one and two source simulations, respectively (left). Then, source current densities were generated by placing these signals in the

source grid and adding the first level noise (middle). Finally, the source current densities were multiplied by the lead field matrix to generate the sensor-

level signal, to which the second-level noise was added. C. Sensor layouts with 110, 61, and 18 sensors (in red) that were used in the simulations.

https://doi.org/10.1371/journal.pone.0181105.g001
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where K 2 RNC�3:NS is the lead field matrix, NS is the number of sources. As the source current

densities are estimated in three directions, one dimension of the lead field matrix is 3×NS, and

Jt 2 R3:NS�1 is the source current density at a time point t.
The lead field matrix was estimated for 640 source points, uniformly distributed over a grid

of cells ~12x12x12 mm3 in size, using Locally Spherical Model with Anatomical Constraints

method [26]. The grid covered the gray matter of the Montreal Neurological Institute’s average

brain [27].

(II) The inverse solution estimates current source densities, which generate scalp potentials

recorded by EEG. It is defined as

Jt ¼ Tφt; ð2Þ

where T 2 R3:NS�NC is the inverse matrix. The estimation of this matrix is an ill-posed problem,

which requires additional assumptions. Here, we used the WMN method [28, 29], which esti-

mates sources by minimizing the solution power and using Tikhonov regularization [30]. This

method applies weighting to the lead field matrix for balancing the estimations of superficial

and deep sources. To test the consistency of our findings across different methods of source

reconstruction, we added the LAURA [31] and LORETA [32] inverse solutions, the descrip-

tion of which is given in the S1 File. All the forward and inverse solutions have been imple-

mented with Cartool toolbox [26].

(III) To estimate the source cross-spectrum (SCS) matrix by the ISFC method, the sensor

cross-spectrum matrix (CSφðf ; eÞ 2 ℂ
NC�NC , where ℂ represents complex numbers, was calcu-

lated as

CSφ f ; eð Þ ¼
2

df
φf ;eφf ;e

�; ð3Þ

where φf 2 ℂ
NC�1 is the Fourier transformation of the EEG signal at an epoch e and frequency

f, df is the frequency resolution, and superscript ‘�’ represents complex conjugate. Then, the

source cross-spectrum matrix SCSðf ; eÞ 2 ℂ3:NS�3:NS at frequency f and epoch e was calculated

as

SCSðf ; eÞ ¼ T CSφðf ; eÞ T
0

: ð4Þ

(IV) The source partial coherence SPCðf ; eÞ 2 ℂ3:NS�3:NS matrix at frequency f and epoch e
for CPC method was calculated as

SPCðf ; eÞ ¼ K 0 CSφðf ; eÞ
þ K; ð5Þ

where K is the lead field matrix calculated from (1), CSφ is the sensor cross-spectrum defined

in (3), and ‘+’ represents Moore-Penrose generalized inverse.

(V) Various methods of FC estimation take into account different aspects of dependences

between signals including linear, nonlinear, or information-based, as well as directed or undi-

rected relationships and calculate the FC in frequency or time domains [7, 33–36]. We used an

undirected linear frequency-domain measure of lagged dependence [37] that describes the

lagged components of functional interactions (LFC). The LFC was estimated for each source

pair based on SPC and SCS matrices. If we consider two sources X and Y, then the LFC at a
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frequency f and epoch e is calculated as
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where |M| indicates the determinant of a complex-valued matrix M, Re(M) is the real value of

M, SXY(f,e) represents the element in the row X and column Y of the SCS(f,e) or SPC(f,e)

matrices (for ISFC and CPC methods, respectively). Then, the LFC values, which ranged

between 0 (for two uncorrelated time series) and 1 (for two identical time series), were aver-

aged over 10 epochs.

EEG simulations

The first step in the source FC estimation with the ISFC method is to calculate the source

cross-spectrum matrix. The accuracy of an inverse solution in localizing sources of EEG can

affect this matrix and the following FC estimations. Therefore, initially, we evaluated the accu-

racy of source localization in the ISFC method using a single-source simulated EEG signal

with a varying location in the source grid and with different SNRs (Fig 1B). Owing to the direct

calculation of source partial coherence, in the CPC method, source current densities are not

estimated and therefore the localization error of the method cannot be evaluated. To evaluate

the accuracy of the FC estimation in the ISFC and CPC methods, we simulated EEG signals

from two interacting sources located in different cortical regions and having different SNRs.

For the single oscillatory source, we generated an 8-Hz sinusoid time series with 10000 time

samples at a sampling frequency of 1000 Hz. We placed this signal in the source grid using a

spatial 3D Gaussian function with diagonal covariance matrix (SDO = 10 mm) and centered it

on each of 640 grid cells. In the two-source simulation, for the first source (S1), we used the

same signal as described above, whereas, for the second source (S2), we generated a sinusoid

signal with the same frequency and relative phase of 90˚ to the signal S1. The S1 location was

fixed in the center of the middle frontal gyrus (MFG), whereas S2 had varying location in the

source grid with a minimum distance of 20 mm from S1. To place these signals in the source

space, we used a Gaussian function with the diagonal covariance matrix as in the single source

simulation. In both simulations, we added zero-mean Gaussian noise that represented biologi-

cal noise to each source potential.

To generate EEG time series, we multiplied the source current densities by the lead-field

matrix at each time point according to (1). Finally, to approximate the measurement noise, we

added zero-mean Gaussian noise to the simulated sensor potentials. The SNR for the biological

and measurement noise levels was defined as

SNR ¼ 10 log
Powersimulated signal

Powernoise

� �

dB: ð7Þ

The SNR varied between 0 and 20 dB.

We simulated the one-source and two-source EEGs for the sensor arrays representing

hdEEG (110 sensors), mdEEG (61 sensors) and ldEEG (18 sensors). To obtain more sparse

arrays, the 110-channel set of sensors was down-sampled to 61 and further to 18 sensors, uni-

formly distributed over scalp (Fig 1C).

Functional connectivity in source EEG
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Evaluation of ISFC and CPC methods

To evaluate the localization error of WMN inverse solution, used in the ISFC method in

one-source simulation, we used two error measures. The first one—the error distance (ED)—

calculates a Euclidean distance between the original source location and the maximum of the

reconstructed power current density. This error has been extensively used to evaluate the per-

formance of several methods in localizing EEG sources [17, 38, 39]. To obtain the second one

—error standard deviation (ESD)—the estimated standard deviation of a Gaussian function

centered on the maximum of reconstructed power current density (SDR) was divided by the

same measure of original power current density (SDO), i.e., ESD = SDR/SDO. The ED and ESD

were calculated for each SNR and sensor set.

In order to compare the performance of the ISFC and CPC methods in the two-source sim-

ulation, the FC error (FCE) for the S1-S2 pair was defined as

FCE ¼
Pp

n¼1
jLFCs1ðnÞ:ds2ðnÞjPp

n¼1
jds2ðnÞj

; ð8Þ

where ds2(n) is the distance between S2 and source n, and LFCS1(n) is the estimated LFC

between S1 and source n. For calculation of the FCE, the LFCs1 values were normalized over all

p sources of the source grid, so that the maximum was set to 1 and minimum, to 0. The FCE

calculates the average FC error for source points, weighted by their distances from the S2. It

has a minimum value of about 0 and maximum value of 1.

Results

We obtained similar results for the WMN, LORETA, and LAURA methods in one- and two-

source simulations. Here we present the WMN results, whereas the comparative analysis of

the effects of these methods on the FC estimation can be found in the S1 File.

For the analysis of one-source EEG simulations, we considered superficial sources located

at 20–40 mm from the head surface, medium ones, at 40–60 mm, and deep sources at a dis-

tance of 60–80 mm. The deep sources reconstructed with the WMN had higher ED and ESD

than superficial sources with all SNRs (Fig 2). The ED for superficial sources were on average,

around 11 mm, which is equal to the displacement by 0-to-1 unit of the 12x12x12 mm3 source

grid for hdEEG. For EEG arrays with 61 and 18 sensors, this error was about 20–30 mm, i.e.,

equal to the displacement by 2–3 grid units. For the sources at medium distances, the ED for

hdEEG was about 30 mm (2–3 grid units displacement) and 40–50 mm for mdEEG and

ldEEG (the displacement by > 3 grid units). The deep sources could not be localized, since the

ED> 50 mm for all sensor arrays (the displacement by� 5 grid units).

The ESD values showed a 2-3-time increase of smoothness for superficial sources with all

sensor densities, whereas for all other sources they showed more than a 4-time increase with

hdEEG and mdEEG and a 2-3-time increase with ldEEG. An example of inaccurate source

reconstruction for the source located at a distance of 50 mm from head surface is presented in

Fig 3. The increase of smoothness can be clearly seen in this case (ED = 24 mm or 2 grid units

and ESD = 3.6).

The two-source simulations indicated that the FC accuracy depended on the SNR and the

sensor density (Fig 4). For the ISFC method, the FCE decreased with the increasing number of

sensors. In addition, the FCE increased with increasing SNR. Therefore, this method per-

formed best with relatively weak sources reconstructed from hdEEG.

The CPC method was highly affected by the SNR (Fig 4). At low SNRs (< 6 dB), it was less

accurate than the ISFC method. However, for EEG simulated with high SNR (> 6 dB), the

Functional connectivity in source EEG
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CPC performance was superior to that of the ISFC for mdEEG and ldEEG. For all tested SNRs,

the CPC method performed best with with ldEEG.

The performance of both methods also depended on the between-source distance, the mean

value of which was 90 mm. If the two sources were located at a close distance from each other

(< 90 mm), the FCE was higher than if there was a long distance between them (> 90 mm) (Fig

3). We observed this effect with all the SNRs and sensor arrays. For example, when the fixed

source (S1) was placed in the middle frontal gyrus (MFG), we obtained the smallest FCE—if the

source S2 was located in the posterior cortices, i.e., at the longest distance from MFG (Fig 5).

Finally, to check whether the FCE (for the FC assessed with the ISFC method) depends on

the error of source localization (ED) in the WMN method, we applied a linear regression anal-

ysis (Fig 6). As can be seen from the values of R-squared presented in this figure, in hdEEG,

around 40% of the FCE variance can be explained by source mislocalization, while, in md/

ldEEG, this value is less than 5% against much higher FCE values. This was true for all the

tested SNR levels (0–10 dB with a step of 2 dB).

Fig 2. Localization errors of WMN method. The error distance (ED) and error standard deviation (ESD) for

each sensor array is presented with a heat map as a function of SNR and source distances. The color bars on

the right show the ED and ESD scales.

https://doi.org/10.1371/journal.pone.0181105.g002
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Discussion

The studied factors that affect the accuracy of source FC estimation by means of the CPC and

ISFC methods can be summarized as follows. The performance of the methods depends on the

number of EEG sensors, on the source depth and between-source distances, and on the SNR

level. For both methods, the increase of the source depth deteriorates the accuracy of FC esti-

mations owing to the decreased accuracy of source localization and size. The FC can be more

precisely estimated between distant sources than between close ones, independent of the

method used. For the ISFC method, specifically, the FC accuracy increases with increasing sen-

sor density, but not with SNR. In contrast, the performance of the CPC method improves with

increasing SNR, but mildly declines with increasing the number of sensors.

Effects of source localization

The FC analysis in the brain source space should answer at least two questions: how the FC is

changing in the condition or the group in question, and what structures are responsible for

these changes. Our findings demonstrate that the mislocalization of EEG sources is likely to

affect both estimation and interpretation of the FC.

The one-source simulation showed that the localization error (ED) of WMN and other

inverse solutions conventionally used in the ISFC method depends on the source depth, the

SNR, and sensor density, thus confirming previous results [38, 40, 41]. Deep sources cannot be

localized accurately with any EEG density. For instance, in spite of weighting used in the

WMN, this method has the tendency to map the signal of deep sources to the superficial ones

(Fig 3). The same tendency is also characteristic for other methods (Fig A in S1 File). The fail-

ure of these inverse solutions to provide accurate information about source depth results in

underestimating the FC between deeper sources and other regions, and in overestimating the

FC between spurious superficial sources propagated from strong deep sources to the scalp

Fig 3. Source localization error for deep sources using WMN inverse solution. The original source

power map before forward modeling (top row), and the reconstructed source power map after inverse

modeling (bottom row) are presented for one-source simulation with 111-sensor EEG array and SNR = 4 dB.

The source power maps are rendered on the MNI average brain and presented in four views (the posterior

and top views of the whole brain and the mid-sagittal views of the right and left hemispheres). In this

simulation, S1 was originally centered in the cuneus, at a distance of 45 mm from the scalp surface. The

reconstructed current sources were localized more superficially in the superior occipital gyrus at a distance of

25 mm between the source with maximum power and the scalp surface. The color bar on the right shows the

normalized power scale.

https://doi.org/10.1371/journal.pone.0181105.g003
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surface. The regression analysis confirmed strong relationship between the ED and FC estima-

tion errors (FCE), especially, for hdEEG, where the FC measures are more reliable, pointing to

the important role of source localization for the FC estimation.

A possible solution for minimizing the effect of inaccurate source localization is choosing

an appropriate cortical parcellation, i.e., fine subdivision of superficial regions and relatively

coarse subdivision of deeper ones [42]. Furthermore, applying the new methods that include

additional priors from structural and functional MRI would improve source localization of

EEG/MEG for the cortical and subcortical regions [43, 44].

The increased spatial extent of reconstructed sources, especially of deep ones shown here in

the one-source simulation can be also attributed to the WMN limitations in localizing deep

sources. Because of the effect of volume conductance, the signal of a deep source propagates to

many sensors and therefore is being reconstructed as enlarged and more superficial than the

Fig 4. Functional connectivity error (FCE) of CPC and ISFC methods. The FCE is presented with a heat

map as a function of SNR and between-source distances for each sensor array. The color bar on the right

shows the FCE scale.

https://doi.org/10.1371/journal.pone.0181105.g004
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original one (Fig 3). The increased smoothness of the reconstructed sources highlights the

importance of selecting an appropriate FC measure. Specifically, instantaneous indexes of FC

would overestimate the interactions between close sources, providing undesirable conse-

quences for further analysis. For instance, in the network-based analysis, the local connectivity

Fig 5. Topography of functional connectivity error (FCE) for CPC and ISFC methods. The FCE maps for the three sensor arrays at

SNR = 0 dB (A) and SNR = 10 dB (B) are presented. The FCE for the S2 locations that cover the entire source grid (except the vicinity of S1

shown in gray) is rendered on the average MNI brain and presented in three views (the left hemisphere, the top view of the whole brain, and the

right hemisphere). The color bars indicate the scaling of FCE.

https://doi.org/10.1371/journal.pone.0181105.g005
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measured with clustering coefficient may be overestimated [23, 34]. Measures immune to the

instantaneous interactions of signals e.g., lagged indexes of FC [12, 37], as well as new methods

of EEG source estimation, which reduce the ESD error [45], can be recommended.

Effects of sensor density

The studies based on the simulated and recorded EEG showed that the between-sensor dis-

tance of 2–3 cm, corresponding to approximately 128 channels (hdEEG), is required for the

accurate spatial sampling [46, 47]. However, [17] showed that various inverse solutions pro-

vide adequate source localization accuracy starting with mdEEG (� 60 channels). In [41], Soh-

rabpour with colleagues were able to refine that both localization and effective connectivity

errors decrease with increasing the number of channels, although this effect is small if the latter

is more than 64.

In agreement with these findings, we have shown the improved performance of the ISFC

method with increased sensor density providing the same SNR [39, 48, 49]. In the hdEEG sim-

ulations, the ISFC method outperformed the CPC technique at different SNR levels. In con-

trast, the performance of the CPC method was superior to the ISFC one with ldEEG, once the

SNR was high; however, it deteriorated with increasing sensor density. A similar effect, i.e., the

disadvantage of the increasing the number of sensors for the methods that rely on an accurate

Fig 6. Functional connectivity error (FCE) of ISFC method as a function of source mislocalization. The

scatterplots of FCE as a function of ED are shown for the three sensor arrays at three levels of SNR. Each

data point (a circle) on the scatterplots represents the FCE and ED of a source. The regression of the FCE as

a dependent variable on the ED as an explanatory variable is shown with red lines. For all R-squared (R2)

values, P < 0.01.

https://doi.org/10.1371/journal.pone.0181105.g006
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estimation of the lead field matrix was discussed in [34]. This can be one aspect of the explana-

tion for worsening the performance of the CPC with hdEEG.

Effects of between-source distance

In the two-source simulation, the accuracy of FC estimation improved by increasing the

between-source distance in both CPC and ISFC methods under all tested SNRs and sensor

densities. This effect can be explained by the above discussed localization and spatial smooth-

ing errors owing to volume conductance and by imprecise source un-mixing by means of the

inverse solution. The longer the distance between sources, the less the superposition of the

signals in the sensor space and more successful the inverse solution in un-mixing source sig-

nals. [8, 23] used simulations to show that although source estimation can reduce the artificial

synchronization detected in sensor space, residual spurious FC can be present in the recon-

structed source space. The effect of the between-source distance on the FC can be minimized

by selecting a robust FC estimator, appropriate cortical parcellation, and inverse solution.

Effects of SNR

We used SNR for defining two levels of noise, at the sensor and source level. The noise at the

sensor level can originate, for instance, from muscle activity or eye movements. Contamina-

tion of EEG signal with such noise can result in the underestimation of FC [50]. The noise at

the source level can also influence the estimation of FC. In particular, high-amplitude uncorre-

lated noise dominating the signal from synchronized sources would result in the underestima-

tion of FC as discussed in [8]. Recently similar effects of noise on source localization and

effective connectivity have been shown [41, 51].

In our analysis, the higher SNR results in a more accurate FC estimation with the CPC

method and a slightly less accurate FC estimation with the ISFC method, all other factors

being equal. The high sensitivity of the CPC method to the SNR level is apparently owed to

the lack of regularization in the process of source FC estimation, as the source partial coher-

ence is calculated directly from sensor coherence. Regularization, being an important part of

inverse solution algorithms, serves to model the data in the presence of noise [52]. Several

methods may be applied for reducing the noise of different origin in EEG signal, including

blind source separation techniques based on PCA or ICA [53]. Nonetheless, if the noise level is

significant, which might be the case for real EEG, the FC estimations by the CPC method can

be inaccurate.

At high SNRs, the performance of the CPC method surpasses the ISFC one, all other factors

being equal. This is likely attributable to partializing the coherence values that reduces the

effects of volume conductance [25]. In contrast, the ISFC method cannot un-mix sources

completely, if the amplitudes of synchronized sources are high compared to uncorrelated

sources, as their signals are propagated in all directions because of volume conductance.

Conclusion

The methods for source FC studies should be carefully chosen with regard to the most impor-

tant factors that affect the FC measurements and are comprehensively analyzed and discussed

here. In general, the ISFC method compared to the CPC one is a more accurate technique that

is relatively immune to noise, given the high number of sensors used. Yet, for conventional

ldEEG, the CPC method is an optimal choice, provided appropriate precautions are taken to

ensure high SNR. In addition, independent of the method, the FC findings should not be over-

interpreted considering the limitations inherent for deep and /or close sources.
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Supporting information

S1 File. (Fig A.) Error distance (ED) of ISFC method with WMN, LORETA, and LAURA

inverse solutions. The error distance (ED) for each sensor array and inverse solution is pre-

sented with a heat map as a function of SNR and source distance. The color bar on the right

shows the ED scale in mm.

(Fig B.) Functional connectivity error (FCE) of ISFC method with WMN, LORETA, and

LAURA inverse solutions. The FCE is presented with a heat map as a function of SNR and

between-source distances (vertical axis) for each sensor array. The color bar on the right shows

the FCE scale.
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