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Retinoic acid inhibits the fixation of initial transformational
damage in X-irradiated Balb/3T3 mouse fibroblasts in vitro
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We have examined the effects of all-trans retinoic acid (RA)
on confluent holding recovery (cell survival) and on the
fixation of initial transformational damage expressed as the
ultimate yield of transformed foci following X-irradiation of
density-inhibited cultures of Balb/3T3 cells. Non-cytotoxic
concentrations of RA suppressed both recovery of potentially
lethal damage and neoplastic transformation in a dose-
dependent manner when added for 24 h during post-
irradiation confluent holding after a dose of 5 Gy. At 100 xM,
RA inhibited the fixation of initial transformational damage
by 80%. These findings are discussed in terms of the
hypothesis that retinoids may allow a selective enhancement
of the inactivation of certain irradiated tumor cells in vivo
while reducing the risk of secondary malignancies in success-
fully treated patients.

Introduction

Vitamin A and certain of its natural and synthetic analogs,
collectively called retinoids, are potent inhibitors of carcino-
genesis at many tissue and organ sites in both rodents (1—3) and
humans (4 —6). They also inhibit chemically (7—9) and radiation-
induced (10,11) transformation in vitro, as well as transformation
by transfection with human oncogenes (12). The use of retinoids
in cancer prevention has therefore become a promising field of
investigation (4 ~6). The mechanisms of this inhibition, however,
are not yet fully understood.

Malignant transformation develops in two distinct phases: the
first is the production and fixation of initial transformational
damage as a heritable cellular property, and the second is the
phenotypic expression of this damage as a morphologically altered
cell (13). Several studies have reported effects of retinoids on
cells in culture which result in a stabilization of the non-trans-
formed phenotype; these include effects on cell growth, adhesion
to the culture substrate, cell morphology, cytoskeleton, protein-
phosphorylation, expression of cellular proto-oncogenes,
expression of receptors, differentiation, membrane function,
inhibition of the protein kinase C cascade system, and blocking
of the Gg to G, transition in the mitotic response of initiated cells
to growth factors which act as endogenous promoters of
transformation (14 —23). However, little is known about effects
of retinoids on cellular recovery mechanisms underlying the
fixation of initial transformational damage.

Cellular recovery processes mitigate the cytotoxic (repair of
potentially lethal damage or PLD* repair) and clastogenic (repair
of chromosomal aberrations) effects of carcinogen exposure; they

*Abbreviations: PLD, potentially lethal damage; RA, all-trans retinoic acid
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are involved in the fixation of DNA sequence alterations resulting
in mutants as well as in neoplastic transformation through
processes leading to the fixation of initial transformational damage
(24). Cellular repair can be studied in confluent holding recovery
experiments with density-inhibited, confluent cultures of
mammalian cells (25,26).

In such experiments, DNA repair processes can act to remove
damage in the absence of ongoing DNA replication. Subculture
to low density at various times after exposure stimulates the
initiation of DNA synthesis, allowing resumption of active
traversal of the cell cycle. When confluent cultures are
immediately subcultured to low density after exposure to
radiation, a dose-dependent induction of effects such as cell
killing, mutagenesis, transformation and chromosomal
rearrangement occurs. These toxic effects are reduced when post-
irradiation recovery periods of 24 h or longer are allowed prior
to subculture (24 —29). Such recovery has not been observed in
certain repair-deficient cell strains (30—32), suggesting the
involvement of DNA repair in the confluent holding recovery
phenomenon.

In the present investigation, we have examined effects of a24 h
post-irradiation exposure to all-trans retinoic acid (RA) on
confluent holding recovery (PLD repair) and on the fixation of
initial transformational damage expressed as the ultimate yield
of transformed foci in Balb/3T3 mouse fibroblasts.

Materials and methods

Cells and culture conditions, irradiation, confluent holding

The Balb/3T3 cell system and the procedures for the maintenance of these cells,
as well as the radiation source, have been described in detail elsewhere (33).
The cells were grown in Eagle’s minimum essential medium supplemented with
10% serum. This serum was Biocell VSP neonate calf serum lot no. 211200 for
experiments I—III, Biocell VSP neonate bovine serum lot no. 36211A182 for
experiment [V, and Gibco heat-inactivated calf serum, cat. no. 230-6170AJ for
experiments V—VII.

All experiments were carried out with density-inhibited, confluent cultures.
Three daily medium changes after reaching confluence allowed the cells to approach
a steady state. They were irradiated in conditioned medium 24 h after the last
medium change with a dose of 5 Gy. Survival was determined by a routine colony-
formation assay (33). The cloning efficiency in these experiments ranged from
83.5 to 97.5%. Survival and the transformation frequency were determined
immediately following irradiation. An additional set of similarly treated cultures
was used to examine the effects of post-irradiation incubation with RA on confluent
holding recovery and on the fixation of initial transformational damage.

RA, received from Sigma (cat. no. R-2625), was dissolved in ethanol (10 mM
stock solution) and stored at 4°C in the dark. From this solution, RA was diluted
into complete medium. The conditioned medium was removed immediately after
irradiation and replaced with fresh medium containing various concentrations of
RA up to 100 pM. After 24 h, the cells were subcultured into medium without
RA at low density (200 viable cells/dish) to determine survival and at a higher
density (10 000 viable cells/dish) for the transformation assay. The effect of a
24 h treatment with RA on the cloning efficiency of non-irradiated cultures was
determined in a parallel set of dishes. The number of colonies with > 50 viable
appearing cells was scored after 810 days.

Transformation assay

Cell numbers were adjusted in each treatment group such that ~ 10 000 viable
(colony forming) cells from the same confluent cultures as those used to measure
survival were seeded in each of 20—60 100-mm Lux Petri dishes. The nutrient
medium was renewed on the third or fourth day after irradiation. In experiments
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Fig. 1. Survival of density-inhibited, confluent cultures of Balb/3T3 mouse

fibroblasts following a 24 h incubation with RA. Data points are the mean
of three independent experiments. Error bars indicate one SD.
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Fig. 2. Inhibitory effect of RA on confluent holding recovery in Balb/3T3
cells irradiated with a dose of 5 Gy. RA was present only during the 24 h
post-irradiation recovery period. Dashed line: survival of cells subcultured to
low density immediately following irradiation. The data points were
calculated from six independent experiments. Error bars indicate one SD.

I-1II, the medium was subsequently changed every 10 days; in experiments
IV —VII, twice each week. After 4 weeks, the cultures were fixed and stained.
Transformed foci were scored as described by Kakunaga (34). Since previous
transformation studies have shown that the number of foci appearing per dish
is independent of the number of cells initially seeded (33,35), the results are
expressed in terms of the number of foci per dish (35).

Statistical analysis

For the estimation of the effects of RA on PLD repair and on survival of
unirradiated Balb/3T3 cells, we calculated the mean + one SD from six (PLD
repair) or three (RA toxicity) independent experiments. The effects of RA on
the fixation of initial transformational damage were calculated from the fraction
of dishes without foci of transformed cells arising from irradiated cells which
were exposed to various concentrations of RA during 24 h of post-irradiation
confluent holding. Statistical analysis was calculated as described by Han and
Elkind (36) and Balcer-Kubiczek er al. (37). The data from experiments II - VII
were pooled to calculate the transformation frequencies. The resulis of experiment
I were excluded from this study because of an unusually high background frequency
of transformation; foci of transformed cells appeared in 18 of 19 non-irradiated
control dishes. These results (in terms of the actual number of foci per dish),
however, were qualitatively similar to those of the other six experiments.

Results

Effects of RA on confluent holding recovery

Treatment of non-irradiated confluent cultures with RA alone for
24 h had no significant effect on survival for all concentrations
studied (Figure 1). Figure 2 shows the inhibitory effect of RA
on confluent holding recovery. Survival of cells subcultured
immediately after irradiation (initial survival) was 16 + 3%
(dotted line in Figure 2). During the 24 h confluent holding
period, survival increased to 27.5 + 2.5% in the absence of RA,
reflecting the repair of PLD. RA suppressed the recovery in a
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Fig. 3. Effect of RA on the fixation of initial transformational damage
expressed in terms of the ultimate yield of transformed foci/dish in
Balb/3T3 mouse fibroblasts irradiated with a dose of 5 Gy and held under
confluent holding conditions during a 24 h post-irradiation recovery period.
Dashed line: background transformation frequency of untreated controls.
Data points were calculated from the pooled data of experiments II—VII as
described elsewhere (36,37). Error bars indicate one SD.

Table I. Number of dishes, transformation frequencies, and the percentage
inhibition of the fixation of initial transformational damage by retinoic acid
in X-irradiated Balb/3T3 mouse fibroblasts®

Treatment Concentration of Dishes without foci/ Foci per dish® Inhibition

retinoic acid total no. (x 18SD) (%)
uM) of dishes
control - 74/118 0.47 + 0.07 -
5 Gy, i.s. — 31/129 142 £ 0.15 -~
5Gy,ds. O 20/113 1.73 £ 020 0
5Gy,ds. 5 27/108 1.39 + 0.17 27.7
5 Gy, ds. 10 20/58 1.06 = 0.18 522
5 Gy, ds. 25 25/77 1.12 + 0.16 48.4
5 Gy, d.s. 50 31/105 1.22 + 0.15 452
5 Gy, d.s. 100 35/71 0.71 = 0.12 80.9

Cells in density-inhibited, confluent cultures were X-irradiated in the
absence of RA and subcultured immediately after irradiation (i.s.) or after a
post-irradiation confluent holding period of 24 h (d.s.) in the presence of
various concentrations of RA. The fixation of initial transformational
damage was expressed as the ultimate yield of foci per dish. The inhibition
is calculated in terms of percentage inhibition of the transformation
frequency observed in cells reincubated without RA, after subtracting the
background transformation frequency observed in non-irradiated controls.
bCalculated from the number of dishes without foci as described elsewhere
(36,37).

dose-dependent fashion. This trend was evident in all six
experiments, and is consistent with previous observations in
human cells (38).



Effects of RA on the fixation of initial transformational
damage
Figure 3 shows the inhibitory effect of RA on the fixation of
initial transformational damage when it is present during the 24 h
period of post-irradiation confluent holding. Table I shows this
suppression in terms of percentage inhibition of the transformation
frequency observed in cells reincubated without RA, after
subtracting the background transformation frequency observed
in non-irradiated controls. At 100 uM, RA suppressed the
ultimate yield of transformed foci by 80%. Table I also shows
the total number of dishes from which these data were calculated.
A 24 h exposure of non-irradiated cells to RA did not affect
the spontaneous formation of foci of transformed cells (data not
shown). Hence, the suppression by RA of PLD repair leading
to enhanced killing of non-cycling cells (Figure 2) is accompanied
by a suppression of the fixation of initial transformational damage
leading to a reduction in the induced frequency of transformation
(Figure 3, Table I).

Discussion

Non-cytotoxic concentrations of RA (Figure 1) suppressed both
recovery (Figure 2) and neoplastic transformation (Figure 3)
when added to the medium during a 24 h post-irradiation
confluent holding period. These observations suggest that RA
is not only suppressing later events in neoplastic transformation
involved with the expression of a transformed phenotype as
reported by other investigators (7—11, 14—23), but also inhibits
an early event. This may be caused by a relatively simple
interaction such as a change in chromatin structure (39) or may
involve more complex events, as for example an inhibition of
sister chromatid exchanges which has been observed after
exposure to cytotoxic drugs (40), or the inhibition of molecular
error-prone mechanisms for the repair of X-ray-induced DNA
damage (38).

The activity of such a mechanism in the fixation of initial
transformational damage has been postulated based on the kinetics
of transformation during confluent holding recovery in X-
irradiated C3H 10T1/2 mouse cells (27). An inhibition of error-
prone repair may be a causal molecular link between the inhibition
of PLD repair by RA and the suppression of transformation.
However, an alternative explanation for these results can be
derived from the hypothesis that ionizing radiation causes two
types of damage, namely potentially lethal and potentially
transforming damage. RA could be causing decreased
transformation, not by suppressing an error-prone repair
mechanism but by decreasing the number of cells with
transforming damage that escape the cytotoxic effects of
potentially lethal damage.

The findings of this study are of particular interest as regards
a possible application of retinoids in radiation therapy: they may
not only allow a selective enhancement in the inactivation of
certain irradiated cancer cells as compared to normal cells (38),
but also reduce the risk of secondary tumors (41) in successfully
treated patients. On the other hand, the toxic side-effects of RA
(4 —6) may limit the usc of this drug as modifier for radiotherapy,
since effective concentrations in the present study were well above
physiological levels. Hypervitaminosis A also prohibited the use
of clinically effective doses of RA for the systemic treatment of
dermatological disorders (42 —45). However, it may be possible
to identify retinoids with a better therapeutic index for clinical
use as a biological response modifier for radiation therapy, as

Retinoic acid inhibition of X-ray damage

has been successfully done in the search for effective retinoids
in dermatology (46).
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