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Abstract

This paper provides a new and accessible approach to establishing certain results

concerning the discounted penalty function. The direct approach consists of two

steps. In the first step, closed form expressions are obtained in the special case

where the claim amount distribution is a combination of exponential distributions.

A rational function is useful in this context. For the second step, one observes that

the family of combinations of exponential distributions is dense. Hence, it suffices

to reformulate the results of the first step to obtain general results. The surplus

process has downward and upward jumps, modeled by two independent compound

Poisson processes. If the distribution of the upward jumps is exponential, a series
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of new results can be obtained with ease. Subsequently, certain results of Gerber

and Shiu (1998) can be reproduced. The two step approach is also applied when

an independent Wiener process is added to the surplus process. Certain results

are related to Zhang et al. (2010), which uses different methods.

1 Introduction

This paper provides a new and accessible approach to establishing certain results con-

cerning the discounted penalty function. The method consists of two steps. In the first

step, results are derived for the case where the claim amount distribution is a combi-

nation of exponential distributions. A rational function is a handy tool in this context.

The second step is based on the observation that any claim amount distribution can be

obtained as a limit of a sequence of combinations of exponential distributions. Thus

it suffices to translate in general terms the results of the first step, in order to obtain

results for an arbitrary claim amount distribution. The approach of this paper is partly

inspired by Dufresne and Gerber (1989), which features the first step in the special case

of the probability of ruin function.

The paper considers a model for the surplus process with downward and upward

jumps, given by two independent compound Poisson processes. It is noted that the

classical model with deterministic premiums can be retrieved as a limit. The two step

approach is particularly fruitful in the case where the upward jumps are exponentially

distributed. The corresponding results are believed to be new, and several of the results

in Gerber and Shiu (1998) can be found as limits. However, it should be mentioned
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that in Gerber and Shiu (1998), the penalty may also depend on the surplus prior to

ruin, which is not the case in this paper. In the last section, the two step approach is

applied to the model, where an independent Wiener process is added. Again, some of

the results are new, and some are somewhat related to results of Zhang et al. (2010),

which uses different methods.

In the literature, sophisticated methods have been developed and applied, such as

renewal theory, Laplace transforms, and deep analytical tools. In contrast, the two step

approach of this paper appears simple.

In the following, we give an incomplete account of the literature of two sided jump

models. Ruin theory for a compound Poisson risk model with two-sided jumps is a clas-

sical object of study, see for instance Segerdahl (1939) and Cramér (1955). Boucherie

and Boxma (1996) noticed in a queueing context that upward jumps can be interpreted

as an increase of interarrival times (during which the premiums are collected with con-

stant intensity) in a risk model with negative jumps only. Hence, quantities that are

invariant with respect to scaling of the time axis can equivalently be obtained from

the corresponding renewal model with appropriately adjusted interarrival times and

negative jumps. In particular, a Pollaczek-Khintchine formula for the ruin probability

for the model with two-sided jumps was obtained in Boucherie et al. (1997). If one is

interested in time-dependent quantities such as the time of ruin, the analysis is usually

more delicate. Based on martingale techniques, some first-exit problems for compound

Poisson processes and, more generally, for Lévy processes with two-sided jumps were

recently, among others, studied by Perry et al. (2002), Kou and Wang (2003), Jacob-

sen (2005) and Xing et al. (2008) under certain types of assumptions on the jump

distributions. For related results on explicit Wiener-Hopf factorization for classes of
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Levy models with two-sided jumps and applications to mathematical finance, see e.g.

Levendorskii (2004), Lewis and Mordecki (2008) and Asmussen et al. (2008). Cai et

al. (2009) apply results on two-sided exponential jumps to the pricing of perpetual

American put options.

Risk models without a deterministic premium component, where both the premium

income and the aggregate claim process are modelled by (independent) compound Pois-

son processes, recently were investigated in several papers. Temnov (2004) compares

the resulting ruin probabilities with the ones of the classical risk model. Defective re-

newal equations for the discounted penalty function in such models were studied in Bao

(2006), Labbé and Sendova (2009) and Zhang et al. (2010). See also Schmidli (2010)

for a general approach using a change of measure. For an extension to renewal models

see Zhang and Yang (2010).

2 The two-sided jumps model

Let U(t) denote the surplus of a company at time t. We model the surplus process as

U(t) = u + S(t), t ≥ 0.

Here, u ≥ 0 is the initial surplus, and {S(t)} is a compound Poisson process with

positive and negative jumps. We prefer the alternative but mathematically equivalent

formulation

U(t) = u− S1(t) + S2(t), t ≥ 0. (2.1)

4



Here, {S1(t)} and {S2(t)} are independent compound Poisson processes, each with

positive jumps only. The first represents the aggregate claims; it is given by the Poisson

parameter λ and the probability density function p(x), x ≥ 0. The second is given by

the Poisson parameter ν and the probability density function q(x), x ≥ 0. We interpret

S2(t) as the aggregate income, which includes premiums and gains. We prefer not to

have a term with deterministic premium income c t in (2.1). This facilitates some of

the calculations, and the case with deterministic premiums can always be retrieved as

a limiting case.

We introduce the discounted penalty function φ(u) in this model. The penalty at

ruin is given by a penalty function w(x), x ≥ 0: if the deficit at ruin is x, the penalty

is w(x). In the following, δ > 0 is a constant force for discounting the penalty, and T

is the time of ruin. Then

φ(u) = E
[
e−δT w(−U(T )) I(T < ∞) |U(0) = u

]

is the expectation of the discounted penalty at ruin, considered as a function of the

initial surplus u.

Let h > 0. By distinguishing according to the time and the amount of the first

jump before time h (if there is such a jump), we see by conditioning that

φ(u) = λ
∫ h

0
e−(λ+ν+δ)t

∫ u

0
φ(u− x)p(x)dxdt + λ

∫ h

0
e−(λ+ν+δ)t

∫ ∞

u
w(x− u)p(x)dxdt

+ν
∫ h

0
e−(λ+ν+δ)t

∫ ∞

0
φ(u + x)q(x)dxdt + e−(λ+ν+δ)hφ(u). (2.2)

We differentiate this equation with respect to h and set h = 0 in the resulting equation.

This yields the equation

λ
∫ u

0
φ(u− x)p(x)dx + λ

∫ ∞

u
w(x− u)p(x)dx
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+ν
∫ ∞

0
φ(u + x)q(x)dx− (λ + ν + δ)φ(u) = 0 (2.3)

(see also equation (4.2) of Labbé and Sendova (2009)). The function φ(u) can be

characterized as the unique solution of this integral equation. To see this, consider the

mapping

φ(u) → λ

λ + ν + δ

∫ u

0
φ(u− x)p(x)dx +

λ

λ + ν + δ

∫ ∞

u
w(x− u)p(x)dx

+
ν

λ + ν + δ

∫ ∞

0
φ(u + x)q(x)dx,

which is a contraction and has a unique fixed point. This is based on the Contraction

Mapping Theorem, which can be found in many textbooks, for example Burden and

Faires (1989).

3 Combination of exponentials

We make the additional assumption that the claim size distribution is a combination

of n exponential distributions,

p(x) =
n∑

i=1

Aiβie
−βix, x > 0, (3.1)

where β1 < β2 < ... < βn and A1 + ... + An = 1. This differs from a mixture, as some

of the A′
is can be negative as long as p(x) ≥ 0. For the time being, no restriction is

imposed on q(x). Then the discounted penalty function is of the form

φ(u) =
n∑

k=1

Cke
−rku, u ≥ 0. (3.2)

Indeed, the function (3.2) satisfies equation (2.3), if r1, . . . , rn, C1, . . . , Cn are properly

chosen. To obtain the conditions for these 2n coefficients, we substitute (3.1) and (3.2)
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in (2.3). In the resulting equation, we compare the coefficients of e−rku to see that

r1, ..., rn must be solutions of the equation

λ
n∑

i=1

Ai
βi

βi − r
+ ν

∫ ∞

0
e−rxq(x)dx− (λ + ν + δ) = 0. (3.3)

This is a generalized Lundberg’s equation. The proof in Section 2 of Zhang et al.

(2010) can be adapted to show that (3.3) has exactly n solutions with a positive real

part (the latter property is necessary in (3.2) because φ(u) → 0 for u → ∞). One of

these solutions is real-valued, say r1 = R, with 0 < R < β1. The other n− 1 solutions

r2, ..., rn have a real part exceeding R. Hence, the first term of the sum in (3.2) is

dominating for u → ∞. We exclude the unlikely case where some of the r′ks coincide.

A comparison of the coefficients of e−βiu yields the condition

n∑

k=1

Ck

βi − rk

=
Πi

βi

, i = 1, ..., n, (3.4)

with the notation

Πi = βi

∫ ∞

0
w(x)e−βixdx. (3.5)

This is a system of n linear equations to determine C1, ..., Cn. Its coefficient matrix is

the Cauchy matrix, which has a known inverse. However, we prefer to solve (3.4) by

a more direct method. We note that the parameter ν and the function q(x) do not

appear explicitly in (3.4). This explains why (3.4) is formally the same as that in the

classical case. The formula corresponding to (3.4) in the classical case can be found,

for example, in Gerber et al. (2006) (see formula (42)).
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4 The trick with the rational function

We define a rational function Q(r) that is associated to φ(u) in (3.2):

Q(r) =
n∑

k=1

Ck

r − rk

. (4.1)

If we know the function Q(r), information concerning φ(u) can readily be obtained

according to the formulas

Ch = lim
r→rh

(r − rh)Q(r), h = 1, ..., n, (4.2)

φ(0) = lim
r→±∞ rQ(r) (4.3)

To verify the latter, observe that φ(0) =
∑n

k=1 Ck. Moreover, if

φ̂(ξ) =
∫ ∞

0
e−ξuφ(u)du = −

n∑

k=1

Ck

ξ + rk

, ξ > 0 (4.4)

denotes the Laplace transform of the function φ(u), we have

φ̂(ξ) = −Q(−ξ), ξ > 0. (4.5)

The trick is now to find equivalent and more useful expressions for the function Q(r),

and to apply (4.2), (4.3) and (4.5) to these expressions. For this purpose, we note that

the function Q(r) is completely determined by the following three properties:

• P1) It is a rational function of the type with a polynomial of degree at most n−1

divided by one of degree n.

• P2) Its poles are r1, ..., rn.

• P3) Q(βi) = Πi

βi
, i = 1, ..., n, according to (3.4).
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As a first application of this idea, we define the rational function

Q1(r) =

n∑
j=1

Πj

βj

n∏
k=1

(βj − rk)
n∏

i=1,i6=j

r−βi

βj−βi

n∏
k=1

(r − rk)
. (4.6)

This function satisfies properties P1) − P3) above, which shows that Q1(r) = Q(r).

Applying (4.2) to Q1(r), we find that

Ch =

n∑
j=1

Πj

βj

n∏
k=1

(βj − rk)
n∏

i=1,i 6=j

rh−βi

βj−βi

n∏
k=1,k 6=h

(rh − rk)
, h = 1, ..., n (4.7)

which is the solution of the system of linear equations (3.4). In the following we shall

consider the special case where q(x) is exponential, in order to obtain more attractive

results.

5 Exponential gains

In this and the next sections we consider the special case where q(x) = αe−αx for some

α > 0. Then (3.3) becomes the equation

λ
n∑

i=1

Ai
βi

βi − r
+ ν

α

α + r
− (λ + ν + δ) = 0. (5.1)

This equation has exactly n + 1 solutions, namely r1, ..., rn (introduced earlier) and a

unique negative solution −ρ. Consider now the rational function

Q2(r) =
λ

α + r

(α + r)
n∑

i=1
Ai

Πi

βi−r
− (α− ρ)

n∑
i=1

Ai
Πi

βi+ρ

λ
n∑

i=1
Ai

βi

βi−r
+ ν α

α+r
− (λ + ν + δ)

. (5.2)
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We note that r = −ρ is a common zero of the numerator and the denominator. With

this, one verifies that conditions P1) − P3) are satisfied, from which it follows that

Q2(r) = Q(r). From (4.2) and L’Hospital’s rule we get

Ch =
λ

α + rh

(α + rh)
n∑

i=1
Ai

Πi

βi−rh
− (α− ρ)

n∑
i=1

Ai
Πi

βi+ρ

λ
n∑

i=1
Ai

βi

(βi−rh)2
− ν α

(α+rh)2

(5.3)

which is an alternative to (4.7). Furthermore, an application of (4.3) leads to

φ(0) =
λ

λ + ν + δ

[ n∑

i=1

AiΠi + (α− ρ)
n∑

i=1

Ai
Πi

βi + ρ

]
, (5.4)

which simplifies to

φ(0) =
λ

λ + ν + δ

n∑

i=1

AiΠi
βi + α

βi + ρ
. (5.5)

6 General claim amount distributions

Because any claim amount distribution can be obtained as a limit from an appropri-

ate sequence of combinations of exponential distributions (see for example, Dufresne

(2007)), certain results of Section 5 lead to results for an arbitrary p(x). The recipe is

simple: rewrite the results in terms of p(x) and w(x), instead of Ai, βi, Πi. For example,

by observing that for r < β1

n∑

i=1

Ai
Πi

βi − r
=

n∑

i=1

Ai

∫ ∞

0
βiw(x)e−βixdx

∫ ∞

0
e−(βi−r)ydy

=
n∑

i=1

∫ ∞

0
w(x)Aiβi

∫ ∞

0
erye−βi(x+y) dy dx

=
∫ ∞

0
w(x)

∫ ∞

0
eryp(x + y) dy dx,

10



������������ �� ��ρ� ��� α λ+δ λ ��
λ���� λ+ν+δ-ν   α α+ r 

Figure 1: The zeros of the Lundberg function

we can rewrite (5.4) as

φ(0) =
λ

λ + ν + δ

[∫ ∞

0
w(x)p(x)dx + (α− ρ)

∫ ∞

0
w(x)

∫ ∞

0
e−ρyp(x + y)dydx

]
. (6.1)

Here −ρ is now the negative zero of the Lundberg function

L(r) = λM(r) + ν
α

α + r
− (λ + ν + δ), (6.2)

where M(r) =
∫∞
0 erxp(x)dx is the moment generating function of p(x), see Figure 1.
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The function L(r) is defined for r in the interval where M(r) exists. Note that λ/(λ +

ν + δ) is the discounted probability that the surplus process has a downward jump

before the first upward jump; this explains the first integral in (6.1). Let g(x) denote

the discounted probability density function of the deficit at ruin for initial surplus zero.

Because (6.1) holds for arbitrary w(x), it follows that

g(x) =
λ

λ + ν + δ

[
p(x) + (α− ρ)

∫ ∞

0
e−ρyp(x + y)dy

]
, x > 0. (6.3)

Formula (5.2) can be rewritten as

Q2(r) =
1

α + r

(α + r)N(r)− (α− ρ)N(−ρ)

L(r)
, (6.4)

with the auxiliary function

N(r) = λ
∫ ∞

0
w(x)

∫ ∞

0
eryp(x + y)dydx, (6.5)

and L(r) as given in (6.2). In general, Q2(r) is not a rational function, and its use

should be restricted, for example to r < 0. According to (4.5), the Laplace transform

of φ(u) is

φ̂(ξ) =
1

α− ξ

(α− ρ)N(−ρ)− (α− ξ)N(−ξ)

L(−ξ)
, ξ > 0 (6.6)

for an arbitrary p(x).

We note that (6.1) can be recovered from (6.4) by means of (4.3). For this, it is

important to take the limit as r → −∞.

Now we turn to formula (5.3). In general, it is not useful unless h = 1. Assuming

the existence of R (the positive zero of L(r)), we have the asymptotic formula

φ(u) ∼ Ce−Ru for u →∞, (6.7)
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with

C =
1

α + R

(α + R)N(R)− (α− ρ)N(−ρ)

L′(R)
. (6.8)

Let us consider the special case where w(x) = 1. Then φ(u) is the expected present

value of 1 payable at the time of ruin. From (6.1) we have

φ(0) =
λ

λ + ν + δ

[
1 + (α− ρ)

∫ ∞

0

∫ ∞

0
e−ρyp(x + y)dydx

]
. (6.9)

To evaluate this expression, we use the formula
∫ ∞

0

∫ ∞

0
eryp(x + y)dydx =

1

r
[M(r)− 1] (6.10)

for r = −ρ and the fact that L(−ρ) = 0. After simplification we find that

φ(0) = 1− αδ

ρ(λ + ν + δ)
. (6.11)

The negative term of this surprisingly simple formula shows the effect of discounting

and the possibility of survival.

7 The classical model

In the classical model, the surplus at time t is U(t) = u + ct − S1(t). This model can

be obtained as a limit from the model of Section 6. For ν → ∞, α → ∞ such that

ν/α = c, we have S2(t) = ct in the limit. By taking this limit, we can retrieve several

known results in a straightforward manner.

First, (6.2) becomes

L(r) = λM(r)− cr − (λ + δ) (7.1)
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in the limit. Then −ρ is the negative zero and R (if it exists) the positive zero of L(r).

Formula (6.1) leads to

φ(0) =
λ

c

∫ ∞

0
w(x)

∫ ∞

0
e−ρyp(x + y)dydx (7.2)

in the limit, while (6.3) yields

g(x) =
λ

c

∫ ∞

0
e−ρyp(x + y)dy, x > 0. (7.3)

This result is indeed formula (3.14) in Gerber and Shiu (1997) and also (3.4) in Gerber

and Shiu (1998). From (6.4) we see that Q2(r) can be written as

Q2(r) =
λ

L(r)

∫ ∞

0
w(x)

∫ ∞

0
(ery − e−ρy)p(x + y)dydx. (7.4)

The resulting formula for φ̂(ξ) = −Q2(−ξ) is contained in (2.48) together with (2.52)

and (2.56) of Gerber and Shiu (1998). Moreover, from (6.8) we get the limiting value

C =
λ

L′(R)

∫ ∞

0
w(x)

∫ ∞

0
(eRy − e−ρy)p(x + y)dydx (7.5)

which is formula (4.10) in Gerber and Shiu (1998).

Finally, if w(x) = 1, formula (6.11) yields

φ(0) = 1− δ

ρc
(7.6)

in the limit. This is formula (3.9) in Gerber and Shiu (1998). Furthermore, (7.5)

simplifies to

C =
δ

L′(R)

(
1

R
+

1

ρ

)
. (7.7)

To verify this, use (6.10) with r = R and −ρ and that L(R) = L(−ρ) = 0.

14



8 The probability of ruin

In the limit δ = 0 and the special case w(x) = 1, φ(u) becomes ψ(u), the probability

of ruin. We assume a positive loading, that is that ν/α > λp1 in Section 6 and c > λp1

in Section 7, where p1 denotes the mean claim amount. Then ρ = 0 in the limit. From

(6.1) we see that

ψ(0) =
λ

λ + ν
(1 + αp1), (8.1)

and (7.2) yields a classical result of ruin theory,

ψ(0) =
λp1

c
. (8.2)

Of course, this formula can also be obtained as a limit from (8.1). Formula (8.1) can

be reformulated as

1− ψ(0) =
α

λ + ν
(
ν

α
− λp1). (8.3)

Note that the expression ν/α − λp1 is the expected increase of the surplus per unit

time. To obtain (8.3) as a limit from (6.11), observe that δ/ρ → ν/α − λp1 for δ → 0.

Formula (8.1) can also be reformulated as

ψ(0) =
λ

λ + ν
+

ν

λ + ν

λp1

ν/α
=

λ

λ + ν
+

ν

λ + ν

E[S1(1)]

E[S2(1)]
, (8.4)

which has the following interpretation: The first term is the probability that S1(t) has a

jump before S2(t), in which case ruin occurs at that time. Given that S2(t) has a jump

before S1(t), the probability of which is ν/(λ + ν), the conditional probability of ruin

is E[S1(1)]/E[S2(1)]. Formula (8.4) appears to be a natural extension of the classical

result (8.2).
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From (6.3) we get

g(x) =
λ

λ + ν
[p(x) + α(1− P (x))], x > 0, (8.5)

which reduces to

g(x) =
λ

c
[1− P (x)], x > 0. (8.6)

in the classical model of Section 7. The latter formula can be found, for example, in

Theorem 13.5.1 of Bowers et al. (1997). The determination of the Laplace transform

is straightforward. In the classical model of Section 7, we get from (7.1)

ψ̂(ξ) =
λ

L(−ξ)

[
p1 −

∫ ∞

0

∫ ∞

0
e−ξyp(x + y)dydx

]
, ξ > 0, (8.7)

with L(r) = λM(r)− cr−λ. To reconcile (8.7) with formula (2.60) in Gerber and Shiu

(1998), use (6.10) with r = −ξ.

Finally, we turn to the asymptotic formula, ψ(u) ∼ Ce−Ru for u → ∞. The

coefficient C is obtained as a limit from (6.8). We have N(0) = λp1. By using (6.10)

with r = R and the fact that L(R) = 0, we find that N(R) = ν/(α + R). Hence,

C =
ν − λαp1

(α + R)L′(R)
(8.8)

by (6.8). In the classical model of Section 7, this yields the formula

C =
c− λp1

L′(R)
, (8.9)

which is a famous result of the Scandinavian school. To obtain (8.9) from (7.7), recall

that δ/ρ → c− λp1 for δ → 0.
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9 Perturbation by diffusion

The methodology can also be applied, if the surplus process (2.1) is perturbed by an

independent diffusion process. The steps are very similar. For this reason we sum-

marize them in a condensed form in a single section and highlight only the necessary

modifications. We assume that

U(t) = u− S1(t) + S2(t) + σW (t), t ≥ 0, (9.1)

where {W (t)} is an independent standard Wiener process. There are two kinds of ruin

in this model, by a claim (which results in a deficit at ruin) or by oscillation. The penalty

for the first is given by the function w(x). For the second, it is given by constant w0.

Instead of (2.3), the discounted penalty function now satisfies the functional equation

λ
∫ u

0
φ(u− x)p(x)dx + λ

∫ ∞

u
w(x− u)p(x)dx

+ν
∫ ∞

0
φ(u + x)q(x)dx− (λ + ν + δ)φ(u) + Dφ′′(u) = 0 (9.2)

with the notation D = σ2/2.

As in (3.1), we assume that the claim size distribution is a combination of n expo-

nential distributions. The discounted penalty function φ(u) is then of the form

φ(u) =
n+1∑

k=1

Cke
−rku, u ≥ 0. (9.3)

To determine r1, ..., rn+1, C1, ..., Cn+1, we substitute (9.3) in (9.2) and find that r1, ..., rn+1

are the n + 1 solutions with positive real part of the equation

λ
n∑

i=1

Ai
βi

βi − r
+ ν

∫ ∞

0
e−rxq(x)dx− (λ + ν + δ) + Dr2 = 0, (9.4)
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and C1, ..., Cn+1 are solutions of the following system of n + 1 equations:

n+1∑

k=1

Ck

βi − rk

=
Πi

βi

, i = 1, ..., n, (9.5)

C1 + ... + Cn+1 = w0. (9.6)

The latter condition follows from φ(0) = w0. We note that the solutions of (9.4) are

analyzed in Zhang et al. (2010).

In analogy to (4.1), we define the rational function Q(r) as

Q(r) =
n+1∑

k=1

Ck

r − rk

. (9.7)

Knowing this function, we can obtain

Ch = lim
r→rh

(r − rh)Q(r), h = 1, ..., n + 1, (9.8)

and

φ̂(ξ) = −Q(−ξ), ξ > 0, (9.9)

the Laplace transform of φ(u). The function Q(r) is characterized by the following four

properties:

• P1) It is a rational function of the type with a polynomial of degree at most n

divided by one of degree n + 1.

• P2) Its poles are r1, ..., rn+1.

• P3) Q(βi) = Πi

βi
, i = 1, ..., n, according to (9.5).

• P4) limr→±∞ rQ(r) = w0, according to (9.6).
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These properties are satisfied by the rational function

Q1(r) =

n∑
j=1

Πj

βj

n+1∏
k=1

(βj − rk)
n∏

i=1,i6=j

r−βi

βj−βi
+ w0

n∏
i=1

(r − βi)

n+1∏
k=1

(r − rk)
, (9.10)

and hence Q1(r) = Q(r). Application of (9.8) yields

Ch =

n∑
j=1

Πj

βj

n+1∏
k=1

(βj − rk)
n∏

i=1,i6=j

rh−βi

βj−βi
+ w0

n∏
i=1

(rh − βi)

n+1∏
k=1,k 6=h

(rh − rk)
, h = 1, ..., n + 1. (9.11)

As in Section 5, we make the additional assumption that q(x) = αe−αx. Then (9.4)

reduces to the equation

λ
n∑

i=1

Ai
βi

βi − r
+ ν

α

α + r
− (λ + ν + δ) + Dr2 = 0. (9.12)

This is equivalent to a polynomial equation of degree n + 3. Its n + 3 solutions are

r1, ..., rn+1 with a positive real part and the two negative solutions −ρ and −ρd with

−∞ < −ρd < −α < −ρ < 0. Then the function

Q2(r) =
1

α + r

λ(α + r)
n∑

i=1
Ai

Πi

βi−r
− λ(α− ρ)

n∑
i=1

Ai
Πi

βi+ρ
+ Dw0(r + ρ)(r + κ)

λ
n∑

i=1
Ai

βi

βi−r
+ ν α

α+r
− (λ + ν + δ) + Dr2

(9.13)

satisfies properties P1) − P4), provided that κ is chosen such that the numerator

vanishes for r = −ρd.

For an arbitrary p(x), the function Q2(r) can be written as

Q2(r) =
1

α + r

(α + r)N(r)− (α− ρ)N(−ρ) + Dw0(r + ρ)(r + κ)

L(r)
, (9.14)
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Figure 2: The zeros of L(r)

where N(r) is defined as in (6.5),

κ = ρd +
(α− ρ)N(−ρ)− (α− ρd)N(−ρd)

Dw0(ρ− ρd)
, (9.15)

and

L(r) = λM(r) + ν
α

α + r
− (λ + ν + δ) + Dr2. (9.16)

The zeros of L(r) are illustrated by Figure 2.

From (9.13) or (9.14) combined with (9.8) and (9.9), expressions for the Laplace

transform and the asymptotic formula of φ(u) can be calculated in a straightforward

manner.

As in Section 7, we consider the model with deterministic premium ct, that is now

U(t) = u + ct− S1(t) + σW (t). (9.17)
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This is the model examined by Gerber and Landry (1998). Now

Q2(r) =
λ

n∑
i=1

Ai
Πi

βi−r
− λ

n∑
i=1

Ai
Πi

βi+ρ
+ Dw0(r + ρ)

λ
n∑

i=1
Ai

βi

βi−r
− cr − (λ + δ) + Dr2

(9.18)

does the job, that is Q2(r) = Q(r). It is possible to show that the function (9.13)

converges to the function (9.18) if α → ∞, ν → ∞ with ν/α = c. For this one has to

show that ρd/α → 1, if α →∞. This is proved in the Appendix.

For an arbitrary p(x), (9.18) becomes

Q2(r) =
N(r)−N(−ρ) + Dw0(r + ρ)

L(r)
, (9.19)

with L(r) given by

L(r) = λM(r)− cr − (λ + δ) + Dr2, (9.20)

N(r) defined as in (6.5), and −ρ the negative zero of L(r). From (9.9) we obtain the

Laplace transform of φ(u):

φ̂(ξ) =
N(−ρ)−N(−ξ)−Dw0(ρ− ξ)

L(−ξ)
, ξ > 0. (9.21)

From (9.8) with h = 1 (r1 = R), we obtain

C =
N(R)−N(−ρ) + Dw0(R + ρ)

L′(R)
, (9.22)

which is needed in the asymptotic formula for φ(u). Let us consider the special case

w(x) = w0 = 1. Then (9.22) simplifies to

C =
δ

L′(R)

(
1

R
+

1

ρ

)
. (9.23)

21



To see this, use (6.10) for r = R and r = −ρ and remember that L(R) = L(−ρ) = 0.

Note that (9.23) is formally the same as (7.7). Of course the D is contained implicitly

in R, ρ and L′(R).

To obtain results for the probability of ruin, we assume c > λp1 and take the limit

δ → 0. Then ρ → 0 and δ/ρ → c− λp1. We take the limit in (9.22) and see that in the

asymptotic formula,

ψ(u) ∼ Ce−Ru for u →∞,

the coefficient C has formally the same value as in (8.9). The Laplace transform of

ψ(u) is

ψ̂(ξ) =
N(0)−N(−ξ) + Dξ

L(−ξ)
, ξ > 0 (9.24)

with

L(−ξ) = λM(−ξ) + cξ − λ + Dξ2,

N(0) = λp1,

N(−ξ) = −λ

ξ
[M(−ξ)− 1].

As a check, set λ = 0. Then (9.24) reduces to

ψ̂(ξ) =
D

c + Dξ
=

1

R + ξ
, ξ > 0, (9.25)

with R = c/D. This is indeed the Laplace transform of the well-known expression

ψ(u) = e−Ru for a diffusion process. For another check, consider the limit D → 0 in

(9.24). We obtain the well-known expression for Laplace transform of the probability

of ruin in the classical model, see, for example (2.60) in Gerber and Shiu (1998), or

formula (2.9) in Chapter XIV.3 of Feller (1971).
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As in Dufresne and Gerber (1991), the probability of ruin is decomposed as

ψ(u) = ψs(u) + ψd(u), (9.26)

the probability of ruin by a claim plus the probability of ruin by oscillation. (The index

s is from the French word for claim, sinistre, and d stands for diffusion). To obtain

ψd(u), we set w(x) = 0, w0 = 1. This leads to

ψ̂d(ξ) =
Dξ

L(−ξ)
, ξ > 0. (9.27)

For the asymptotic formula ψd(u) ∼ Cde
−Ru, u →∞, we find

Cd =
DR

L′(R)
. (9.28)

From (9.24) and (9.26) it follows that

ψ̂s(ξ) =
N(0)−N(−ξ)

L(−ξ)
, ξ > 0. (9.29)

Furthermore Cs = C − Cd for the asymptotic formula. The expressions for C, Cd and

Cs can be found as formulas (7.30) − (7.32) in Dufresne (1989).

One should note that the diffusion perturbation W (t) in (9.1) could itself be obtained as

a limit of a family of independent compound Poisson processes, see for instance Sarkar

and Sen (2005).

10 Concluding Remarks

This paper presents a new and in some sense elementary and pedagogical approach to

obtain a series of results for the discounted penalty function. The method could be
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applied directly in the classical model of collective risk theory. However, we prefer to

explain the method in a model where the deterministic premium income is replaced

by an independent compound Poisson process with exponentially distributed jumps,

because this more advanced model can be treated with the same direct approach and it

contains the classical model as a limit. Also, because there are upward and downward

jumps in this model, the results may have applications in finance, in particular the

pricing of barrier and other American options. Finally, we note that this more general

model facilitates a simple interpretation of the dividends-penalty identity, again with

the classical identity as a natural limit, see Gerber and Yang (2010).

The method consists of two steps. In the first step, results are obtained for the

special case where the claim amount distribution is a combination of exponential dis-

tributions. This family is dense in the set of all claim amount distributions. Since the

discounted penalty function can be expressed solely through the negative root of the

generalized Lundberg equation, one can then in a second step express the results in

general terms to obtain the results for an arbitrary claim amount distribution. This

recipe works for all sufficiently well-behaved penalty functions and in particular for all

those of practical interest. The method can in principle be extended to the case where

the distribution of the upward jumps is a combination of m exponential distributions.

Then, the resulting expression depends on the m zeros with negative real part of the

generalized Lundberg equation, and the results are not nearly as elegant as in the case

m = 1.
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Appendix: Proof of ρd/α → 1

Let r1, ..., rn+1,−ρ be the solutions of the equation

λ
n∑

i=1

Ai
βi

βi − r
− cr − (λ + δ) + Dr2 = 0. (A.1)

By Vieta’s rule (for the product of the solutions of a polynomial equation) we have

ρ
n+1∏

k=1

rk = δ
n∏

i=1

βi/D. (A.2)

Now, let r1(α), ..., rn+1(α),−ρ(α),−ρd(α) denote the solutions of the equation

λ
n∑

i=1

Ai
βi

βi − r
+ ν

α

α + r
− (λ + ν + δ) + Dr2 = 0, (A.3)

with ν/α = c, such that rk(α) → rk and ρ(α) → ρ for α → ∞. Using again Vieta’s

rule and (A.2) we see that

ρ(α)ρd(α)
n+1∏

k=1

rk(α) = αδ
n∏

i=1

βi/D = αρ
n+1∏

k=1

rk. (A.4)

Now divide this equation by α and let α → ∞ to see that ρd(α)/α → 1 for α → ∞.

This shows that (9.18) follows from (9.13) as a limit.
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