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Abstract

Participating life insurance contracts and pension plans often include a return guarantee

and participation in the surplus of the institution’s result. The final account value in such

contracts depends on the investment policy driven by solvency requirements, as well as on

the level of market returns, the guarantee and the participation rates. Using a contingent

claim model for such contracts, we assume a competitive market with minimum solvency

requirements similar to Solvency II. We consider solvency requirements on maturity and

one-year time horizons, as well as contracts with single and periodic premium payments.

Through numerical analyses, we link the expected returns for equity holders and policy-

holders in various situations. Using the return on equity and policyholder internal rate of

return along with utility measures, we assess which contract settings optimize the return

compromise for both stakeholders in a low-interest-rate environment. Our results extend

the academic literature by building on the work by Schmeiser and Wagner (2015) and are

relevant for practitioners, given the current financial market environment and difficulties in

insurance-linked savings plans with guarantees.

Key words life insurance products · interest rate guarantee · policyholder participation ·

return on investment

1 Introduction

Defined-contributions-funded pension plans in many old-age provision systems, as well as the

traditional with-profits endowment insurance policies sold in German-speaking countries include

interest rate guarantees and profit participation for the insureds. The guaranteed interest is

based on the value of the savings and credited on a yearly basis to the policyholders’ accounts.

In life insurance policies, the interest rate for this “cliquet-style” guarantee is typically set for

the whole contract duration at inception; in pension plans, this rate is adapted periodically

and called “technical interest”. The profit participation is calculated as a share of the pension

scheme or insurance company surplus. Technical rates for reserving and profit participation are

regulated by supervisory authorities and/or the government. For example, authorities typically

set a maximum value for the technical interest rate to limit the solvency hazards for providers.
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Furthermore, there is often a minimum value for profit participation to grant the insureds ade-

quate participation in their provider’s excess return.1 These traditional life insurance products

are very popular among customers; products with guarantees account for approximately 75

percent of the market in Germany (International Association of Insurance Supervisors, 2016,

Table 1).

Participating life insurance contracts and funded pension plans feature a combination of

the following components: yearly interest credited to the savings account, participation in the

insurer’s profit, and a high level of safety through imposed solvency requirements. To limit

the risk exposure for companies offering interest rate guarantees, the technical interest rate is

limited (see Grosen and Jorgensen, 2002, and Eling and Holder, 2013a, for an overview).2 In fact,

given that the rates applied mostly do not need approval by the financial market authorities,

the latter prescribe certain special requirements, including those for technical interest rates

and surrender values. In the European Union (E.U.) and Switzerland, technical interest rates

are limited to the 60 percent 10-year rolling average return of local government bonds (see

European Union, 1992, Art. 18, European Union, 2002, Art. 20, and Swiss Federal Council,

2005, Art. 121). We illustrate the evolution of the situation in Switzerland in Figure 1. The

return of 10-year Swiss government bonds decreased from approximately 6% in the early 1990s

to negative yields in 2015. We observe that the adaptation of the maximum technical interest

has been relatively slow. In January 2016, the rate was set to 0.75 percent in Switzerland; in

2015 it was 1.25 percent in Germany (German Federal Ministry of Justice, 2014b). In the past,

given intuitive sales arguments and naive contract valuation (i.e., that “contracts with higher

guarantees are better”), most market players offered the maximum allowed technical rate as

guarantee to their individual customers. This led Schmeiser and Wagner (2015) to investigate

raising the optimal level for the upper boundary rate set by the regulator (also see below). The

current development in the financial markets with lower interest rates accompanied by relatively

higher return volatility makes guarantees more difficult for insurers to manage. Currently, most

companies have stopped offering the maximum allowed, and they often offer guarantees below

the nominal value of the customer savings premiums. Some firms have even stopped offering

products with guarantees or have sold their traditional business to investors (see, e.g., Baloise

Group, 2015, in Germany).

The holders of traditional life insurance policies participate in the insurer’s surplus, an

important component of the final payoff to policyholders. The minimum surplus participation

rate in German life insurance contracts is defined at 90% (German Federal Ministry of Justice,

2014a). This also holds for Swiss collective life insurance (see Federal Assembly of the Swiss

Confederation, 2004, Art. 37, and Swiss Federal Council, 2005, Art. 147). This rate, the so-

called “legal quote,” has been a subject of discussion in recent years (Killer, 2015). Furthermore,

to ensure an adequate safety level for insurance companies, regulatory authorities require a

certain equity level for firms to operate. Their solvency level is monitored on a yearly basis.

The Swiss Solvency Test (SST), which has been in force since 2011 (see Swiss Financial Market

1In this paper, we focus on the products offered in Switzerland and Germany, where participating life insurance
with guarantees is very popular. In Swiss collective life insurance contracts, the interest rate defined by the
authorities is to be followed exactly. The lower bound for policyholders’ profit participation holds in German
participating life insurance contracts and in Swiss collective life insurance.

2A short review of insurer defaults linked to interest rate guarantees is provided, for example, in the Intro-
duction in Schmeiser and Wagner (2015). The references cited therein (see their Footnote 2) give more detailed
information. Following the introduction of the Solvency II regulation in the European Union, some of the condi-
tions, in particular those linked to the asset allocation have been relaxed and replaced by a more comprehensive
risk assessment, see, e.g., Braun et al. (2018).
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Figure 1: Illustration of the historical 10-year Swiss Government Bond yields (in %) from 1988
to 2017 and the maximum technical interest rate defined by the 60% of the 10-year rolling
average on the bond’s return.
Note: Data from FINMA (see www.finma.ch/en/supervision/insurers/sector-specific-tools/individual-

life-insurance) and Swiss National Bank (see data.snb.ch/en).

Supervisory Authority, FINMA, and, e.g., Eling et al., 2008, for a discussion), is considered

equivalent (European Commission, 2015) to the Solvency II framework of the E.U. enforced

since January 2016. Through its value-at-risk approach, the latter explicitly requires that risk

capital maintain the annual probability of ruin lower than 0.5 percent (see, European Union,

2009, Art. 64, European Union, 2014).

Our research focus is as follows. Building on Schmeiser and Wagner (2015), we aim to

analyze the link between the main insurance contract features – the levels of interest rate

guarantee and policyholder participation – and equity holder and policyholder returns. In

fact, under a competitive market assumption and solvency requirements, both contract features

entail a unique optimal solution for the required initial equity and asset allocation strategy. We

compare the results obtained in the earlier paper, assuming upfront premiums and default at

maturity to situations with periodic monitoring. The model framework that we use is similar

to the one introduced by Schmeiser and Wagner (2015) and a recent working paper by Braun

et al. (2015). Unlike the first study, which focuses on the maximum technical interest rate fixed

by the regulator, we consider both contract parameters and guarantee and participation rates

and analyze their interaction. We also introduce two different cases, allowing us to compare

contracts with single upfront premiums, with default at maturity, with overall ruin probability,

and with a single investment decision on one hand and with periodic premiums, with yearly

control of defaults, with annual safety level monitoring and annual adaptation of asset allocation

on the other. Braun et al. (2015) also build on the model framework introduced by Schmeiser

and Wagner (2015). They extend the earlier analysis by including regular premiums, death and

surrender payouts, stochastic interest rates and early defaults. In contrast to the two above
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studies, we consider the effective rate of return on the policyholders’ savings premiums beyond

the utility assessment, focus on the participation rates offered to clients and consider the equity

holder’s position not only by requiring fairly valued contracts but also by analyzing the expected

return on the invested equity.

Our study, as well as the two works cited above, are part of the literature on participating life

insurance contracts. Given the model framework used in the analyses, the stream of literature

includes works focusing on the fair valuation of insurance liabilities (e.g., Grosen and Jorgensen,

2000, Gatzert and Kling, 2007), on the contingent claim approach (e.g., Briys and de Varenne,

1997, Grosen and Jorgensen, 2002), and on the value creation for customers (e.g., Gatzert

et al., 2012). A numerical analysis of the interaction of guarantees, surplus distribution and

asset allocation can be found in Kling et al. (2007a) and Kling et al. (2007b). The recent work

by Eling and Holder (2013b) analyzes alternative guarantee designs. We refer the reader to the

references contained in the above papers for a larger overview.

Our three main results are as follows: (1) we confirm the study by Schmeiser and Wagner

(2015) concluding that lower guarantees can lead to higher values for customers and extend

their model including periodic premiums, yearly solvency restrictions and asset allocation; (2)

we observe that, in the set of fairly priced contracts, the interaction of guarantees, participation,

solvency considerations and asset allocation must be carefully analyzed and handled in the

development of new product offerings; (3) we conclude that contract parameterizations that

offer constant returns on equity to equity holders while preserving (or even increasing) average

return rates for policyholders are available. More specifically, we find that lower policy interest

rate guarantees and lower participation rates offered to customers lead, on average, to higher

customer returns and to higher return on equity (see also the conclusion detailed in Section 5).

Our results can be applied to individual life, collective life and pension insurance featuring

guarantees and participation components.

The remainder of this article is organized as follows. In Section 2, we outline the model

framework. We introduce the insurer investment and policyholder accounts and the payoffs

under default risk, and we describe the market constraints and regulatory requirements con-

sidered. We also define how we measure the returns and the utility for both equity holders

and policyholders. In Section 3, we describe the model parameterization. Section 4 reports the

results obtained in our models and provides detailed sensitivity analyses. We conclude in Sec-

tion 5. The Appendix gives detailed notes on the model implementation and provides further

results.

2 Model Framework

The guaranteed interest, the underlying investment and policyholder participation in the surplus

are closely linked to the savings component of life insurance policies. Thus, we follow the

exposition of Schmeiser and Wagner (2015) and consider a basic life insurance model, putting

our focus on policyholders’ savings accounts. We focus on the savings premium, that is, the

premium amount available for investment after deducting transaction costs and the term life

premium (we suppose that mortality risk is diversified).

Because we want to consider default risk explicitly in our model, we use the contingent claim

model framework first introduced by Doherty and Garven (1986) and Briys and de Varenne

(1997). In their setup, insolvency risk is considered at the end of the contract (see our model A).

This model is justifiable as long as payouts occur only at the maturity of the contract. In the

second model, we introduce (see model B) solvency testing and shortfalls on a yearly basis, as
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it is done in current solvency frameworks (see also Grosen and Jorgensen, 2002, Bernard et al.,

2005, and, more recently, Braun et al., 2015). This model setup will allow us to monitor solvency

levels on a yearly basis (and allow for defaults, i.e., no negative equity capital allowed) and to

adapt asset allocation. Following the previous models, we consider complete and arbitrage-free

capital markets. Finally, we require risk-adequate positions for equity holders and policyholders

and assume solvency regulation, defining an upper bound for the ruin probability (at maturity

in model A and on a yearly basis in model B).

2.1 Insurer’s Investment and Policyholders’ Accounts

In both models, we consider that the policyholder pays a stream of previously known savings

premiums Πt, t = 0, . . . , T − 1, at the beginning of each year during the whole contract dura-

tion T . In model (A), we assume a single upfront premium can be deduced by setting Πt = 0

for t = 1, . . . , T − 1. At contract inception in t = 0, the insurance company investors provide

an amount of equity capital that we denote with E0. The initial insurer’s assets A0 correspond

to the equity capital E0. At the beginning of every period, the savings premium Πt is added to

company assets, and the whole amount is invested in the capital market, leading to a stochastic

value of assets At for t = 1, . . . T .

We follow the two-asset model introduced in Merton (1969) and assume that the assets At

at times t = 0, . . . , T − 1, are invested in two asset classes. For the first class (I), we consider

a risk-free asset with returns r
(I)
t in the periods t = 1, . . . , T . For the second class (II), we

consider a risky asset with returns r
(II)
t , t = 1, . . . , T . The portfolio return is given by a mix of

two asset returns as follows: in each period t = 1, . . . , T , we assume that a share γt of the assets

At−1 available at the beginning of the periods is invested in class (I) and that the remaining

part (1 − γt) is invested in class (II). Because we do not consider interim assessments in the

model (A), we have γt = γ, where γ is fixed at the beginning of the contract and for the whole

duration. In model (B), γt will be reviewed yearly on the basis of previous asset performance,

the accruing asset value from additional premium payments and with respect to the limit on the

probability of ruin. We show how to calculate γt for model (B) in Section 3. In both cases (A)

and (B), the periodic portfolio return in periods t = 1, . . . , T can be written as

Rt = γt e
r
(I)
t + (1 − γt) e

r
(II)
t − 1, (1)

and, combining the asset returns and the premium payments, the value of the portfolio assets

in times t = 1, . . . , T is given by

At = (At−1 + Πt−1) · (1 + Rt). (2)

Following Schmeiser and Wagner (2015), we suppose that the risk-free asset has a constant

return rf over the whole period, i.e., r
(I)
t = rf . We consider the returns from the risky asset (II)

to be normally distributed. We set W P
t , t = 0, . . . , T a standard geometric Brownian motion

on a probability space (Ω,Φ,P) with Φt, t = 0, . . . , T the generated filtration of the Brownian

motion and P the real-world measure. The stochastic process is determined by a given drift µB

and volatility σB, which gives us the return r
(II)
t = µB−σ2

B/2+σB
(

W P
t −W P

t−1

)

, for t = 1, . . . , T .

This leads us to the recursive formula defining the evolution of the insurer’s asset portfolio at

times t = 1, . . . , T ,

At = (At−1 + Πt−1) ·
[

γt e
rf + (1 − γt) e

µB−σ2
B/2+σB(W P

t −W P
t−1)

]

(3)

5



C. Mirza and J. Wagner – Participating Life Insurance: Which Contracts Are Win-Win?

with initial condition A0 = E0 and given savings premiums Πt, t = 0, . . . , T −1. We call [1+RP
t ]

the expression in brackets [·] in Equation (3), i.e.,

RP
t = γt e

rf + (1 − γt) e
µB−σ2

B/2+σB(W P
t −W P

t−1) − 1. (4)

Thus, the actual asset value is calculated from the risk-free and risky investment returns, given

the portfolio asset allocation defined through γt.

The policyholder savings account value Pt, t = 0, . . . , T , i.e., the insurer’s liabilities, evolves

as follows. The premiums Πt are added to the savings account. The insurer yearly guarantees a

minimum interest rate of g on the account value over the whole contract duration. Furthermore,

the policyholder participates at a rate α in the insurer’s investment returns RP
t .

3 At the end

of the period the savings account is credited with the greater rate between g and αRP
t . Hence,

the evolution of the policyholder account Pt, t = 1, . . . , T is given by

Pt = (Pt−1 + Πt−1) ·
[

1 + max
(

g, αRP
t

)]

, (5)

where P0 = 0. In the case where the company remains solvent during the whole contract

duration, the policyholder gets the payout PT .

2.2 Policyholder and Investor Payoffs under Default Risk

Model (A). In Schmeiser and Wagner (2015) and our model (A), the main concern is the

solvency at time t = T . In fact, we consider no payouts until T , and shortfall happens only at

maturity. The insurer is said to be solvent at time T if the value of the insurance assets AT

is higher than the value of the liabilities PT . The cost of the insolvency DT or the default put

option (cf. Doherty and Garven, 1986; Butsic, 1994) is the value of the deficit of the company

when bankruptcy occurs. We can write out

DT = (PT −AT )+, (6)

where (·)+ stands for max(·; 0). DT = 0 when the assets AT exceed the liabilities PT . If the

assets are insufficient to cover the liabilities, DT yields the difference PT −AT > 0. By allowing

for defaults at contract maturity T , the final policyholder payoff LT is

LT = PT −DT = PT − (PT −AT )+. (7)

The equity holder stake ET at time T is given by the remaining assets after the policyholder

has been paid out, i.e.,

ET = AT − LT = (AT − PT )+. (8)

Model (B). In reality, solvency regulation requires insurance companies to control safety

levels on a yearly basis. Thus, monitoring possible defaults and considering the consequences

when business activity stops extends the model (A). If bankruptcy occurs at some time t∗ > 0,

we assume that the contract is stopped and the policyholder is paid out the available funds.

3In this simple setup, following Schmeiser and Wagner (2015), we directly link the investment return to the
return credited to the policyholder account. Since in practice smoothing mechanisms for the surplus distribution
are in place, our results overestimate the asset volatility. We show that our conceptual findings remain valid by
comparing our results with simulations using a much lower asset volatility (compare the results from Tables 4
and 5 in Section 4.1 with Tables 8 and 9 reported in the Appendix).
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Furthermore, we suppose that the payoff in t∗ is then invested at the risk-free rate rf until time

T .4 In analogy to the notations above, the cost of the insurer insolvency at time t∗ is defined

by D∗
t ,

Dt∗ = Pt∗ −At∗ > 0. (9)

While taking into account the amount of losses when insolvency occurs at t∗, the amount due

to the policyholder LT at maturity T is given by

LT =

{

(Pt∗ −Dt∗) e
rf(T−t∗) when default occurs at time t∗ > 0,

PT when no default occurs.
(10)

The equity holder stake ET at maturity T is given through the formula in Equation (8).

2.3 Market Constraints and Regulatory Requirements

In the following, we formally introduce our assumptions about the market and the regulatory

environment. The contracts offered have consequences for the insurer’s asset allocation. Atop

the risk-neutral valuation used for pricing purposes, we consider return and utility measures

used by the equity holders and policyholders to assess the contract.

Pricing in a Competitive Market

Under the assumption of an arbitrage-free capital market, we evaluate the equity holder and

policyholder claims under the Q-measure using the concept of risk-neutral valuation. Under

Q, the evolution of the insurer’s asset portfolio At, t = 1, . . . , T is given by (compare with

Equation (3)):

At = (At−1 + Πt−1) ·
[

γt e
rf + (1 − γt) e

rf−σ2
B/2+σB(WQ

t −WQ
t−1)

]

. (11)

Here, WQ
t is a Q-Brownian motion. Under the risk-neutral measure, the values of the poli-

cyholder and equity holder stakes at time t = 0 are given by EQ
0 [LT ] = EQ[e−rfT · LT ] and

EQ
0 [ET ] = EQ[e−rfT · ET ], respectively, where E[·] denotes the expected value and LT and ET

are defined through Equations (7) and (8) (in model A) and (10) and (8) (in model B).

The competitive market assumption implies risk-adequate or fair pricing. That is, at the

beginning of the contract and for the policyholder, the present value of the payoff equals the

present value of the premium payments. For the equity holder, risk-adequate returns on the

capital are generated and, thus, an appropriate return is ensured. Hence, the net present value

of the equity holder and policyholder payoff must equal zero, i.e., we have the equity holder

condition

EQ
0 [ET ] − E0 = 0, (12)

and the policyholder condition

EQ
0 [LT ] −

T−1
∑

t=0

(

e−rft · Πt

)

= 0. (13)

Both conditions are equivalent because no arbitrage possibilities are assumed. In the case of a

4We do not consider that a guarantee fund will step in and ensure the interest g, see, e.g., Rymaszewski et al.
(2012); Schmeiser and Wagner (2013).
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single upfront premium (model A), Equation (13) reduces to EQ
0 [LT ] − Π0 = 0 (cf. Schmeiser

and Wagner, 2015).

Solvency Requirement

Solvency regulation in Europe requires insurers to maintain a certain safety level. This level is

often expressed as an upper bound on the ruin probability.

Model (A). Because payouts are not made before the end of the contract at time T ,

we consider default risk only at the contract’s maturity (see Schmeiser and Wagner, 2015).

Following the definition of shortfall in Section 2.2, we evaluate the risk on ruin under the real-

world measure P and introduce the solvency rule in T , requiring that the default probability

RT is bounded from above by

RT = Pr(AT < PT ) ≤ ǫT , (14)

with 0 ≤ ǫT ≤ 1. In the following, we assume that the safety level is met exactly by the

insurance companies, i.e., the condition expressed in Equation (14) becomes

Pr(AT < PT ) = ǫT . (15)

Typically, the regulator defines the upper bound ǫ1 on the yearly ruin probability, 0 ≤ ǫ1 ≤ 1.

Then, the probability of surviving T periods is (1 − ǫ)T . Hence, given ǫ1, we calculate the

corresponding ruin probability for a T -year period ǫT as follows

ǫT = 1 − (1 − ǫ1)
T . (16)

Model (B). Using an implementation that is closer to regulatory practice we consider that

ruin can occur at any period t∗, t∗ = 1, . . . , T (cf. Section 2.2) and thus solvency is monitored

on a yearly basis. The corresponding solvency requirement can be expressed through requiring

Rt = Pr(At < Pt) ≤ ǫ1, ∀t = 1, . . . , T, (17)

where ǫ1 is the prescribed maximum one-year default probability introduced above. As in

model (A), we suppose that insurance companies will fulfill this requirement exactly, i.e., we

use the following conditions

Pr(At < Pt) = ǫ1, ∀t = 1, . . . , T. (18)

2.4 Return and Utility Measurement

We separately introduce the perspectives of the policyholders and equity holders on the contract

assessment. For the policyholders, we consider their effective rate of return on investment and

utility; for the equity holders, we introduce a return-on-equity measure. The values obtained

from these measures allow us to discuss the optimal parameterization of the contract (e.g., with

respect to the guarantee rate g and the participation rate α).

Return on Premiums (RoP ). In a first step, we assume that the policyholders analyze

the contract in light of the effective return they earn on their premiums invested in the product.

In fact, to compare the insurance product with other investment opportunities, policyholders

8
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are interested in knowing to what the internal rate of return the final payoff corresponds. We

call return on premiums (RoP ) this measure that builds on the expected value of their payoff

(EP[LT ]) under the real-world measure P. Thus, RoP is defined as a solution of the equation

EP (LT ) =
T−1
∑

t=0

Πt (1 + RoP )T−t . (19)

Utility Function and Certainty Equivalent (CE). Furthermore, following Schmeiser

and Wagner (2015), we also let policyholders assess the contract through their individual pref-

erences and the corresponding expected utility or certainty equivalent. We assume that the

policyholder endowed with a level of wealth w has a power (isoelastic) utility function given by

U(w) =
w1−ρ

1 − ρ
, (20)

where ρ > 0, ρ 6= 1, is the Arrow-Pratt coefficient of relative risk aversion. Higher values of ρ

correspond to higher levels of risk aversion. The contract assessment is based on the expected

utility of the final policyholder payoff LT . Thus, we calculate the certainty equivalent CE from

U(CE) = EP[U(LT )]. (21)

Return on Equity (RoE). Finally, we assume equity holders to consider the yearly

return on their investment when making decisions. We introduce the expected return on equity

denoted by RoE and defined as follows:

RoE =

(

EP[ET ]

E0

)1/T

− 1 =

(

EP[AT − LT ]

E0

)1/T

− 1. (22)

2.5 Summary of the Model Framework

In Figure 2, we summarize the model framework and present the outline for our analyses. From

the parameters introduced, we focus on two contract parameters, the guaranteed interest rate g

and the surplus participation rate α, and two environmental variables, the imposed solvency

restriction on the annual ruin probability ǫ1 and the market risk-free return rate rf . Given a

reference parameterization, we derive the (unique) position that the insurance company will

take in terms of equity capital E∗
0 and asset allocation γ∗t . The insurer’s capital endowment

and investment strategy will lead to a payoff distribution for the policyholder and the equity

holder. The results are assessed using the return and expected utility concepts of RoP and

CE and RoE, respectively. In our sensitivity analyses, we vary the values of the contract

parameters and the environment variables to study the effects on the insurer’s position and the

consequences for the policyholder’s and equity holder’s valuation.

3 Model Parameterization and Implementation

In this section, we define the model parameters and the setup used as reference situation.

First, we define the contract parameters, followed by the market with investment opportunities

and solvency requirements. Table 1 summarizes the parameter settings, and Table 2 gives

an overview of the further variables used. Detailed implementation notes are available in the

Appendix.
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Framework

• competitive market assumption

• solvency restriction (ruin prob. < ǫ1)

Available investments

• risk-free with return rate rf
• risky asset caracterized by (µB, σB)

Contract parameters

• policyholder premiums Πt

• duration T

• guaranteed interest rate g

• surplus participation rate α

Contract parameters (g, α)

Environment variables ǫ1 and rf

Insurer position

Equity capital E∗
0

Asset allocation γ∗t

Policyholder assessment

Return on Premiums RoP
Expected utility and CE

Equity holder valuation

Return on Equity RoE

Figure 2: Overview of model framework assumptions and outline of analyses.

Contract parameters. Following Schmeiser and Wagner (2015), in model (A), the pol-

icyholder pays a single upfront unit premium Π0 = 1 currency unit (C.U.) at the contract

inception (all other Πt, t = 1, . . . , T − 1 are equal to zero). In model (B), periodic premi-

ums Πt = 1 C.U. are paid at times t = 0, . . . , T − 1, i.e., at the beginning of each year. In

both models, we consider a contract with a duration of T = 10 years. Using discounting by the

risk-free interest rate rf = 1.5% (see below), the stream of payments in model (B) has a present

value (at contract inception t = 0) of 9.36 C.U.

As laid out in the Introduction, the maximum value of the annual interest rate guarantee

is generally bounded from above by the regulators. For our reference setting, we consider that

the insurance contract offered bears a value of g = 1% (between the maximum in force in

Germany of 1.25 percent and in Switzerland of 0.75 percent). Furthermore, often a minimum

participation rate for the policyholder is requested. We set the offered rate α = 90% (in line

with the minimum applied for certain type of contracts in Germany and in Switzerland). While

these are the values set for the contract in the reference case, the values will be adapted in the

course of our sensitivity analyses. For the policyholder risk aversion, we retain a single value

ρ = 5 for our reference case. This value is in line with the values used by other authors (cf.

Schmeiser and Wagner, 2015; Braun et al., 2015; Schmeiser and Wagner, 2016).

Market and regulatory conditions. For the value of the risk-free interest rate, we

consider the current market remuneration for very safe government bonds. Because the regulator

considers the return of 10-year government bonds as a basis for calculating the upper bound for

the interest rate guarantees, we take about the 2015-value of the 10-year rolling average of Swiss

Government Bond yields and set rf = 1.5% (see also Figure 1). For the risky investment, we

consider a portfolio composed to equal parts of the Swiss Market Index (SMI Index), the Euro

Stoxx 50 Index (SX5E Index) and the S&P 500 Index (SPX Index). We derive their annualized

risk and return figures from a 20-year history of monthly data (January 1996 to December 2015).

Given the historical returns, we calculate the central moments of the yearly return distribution

10
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by taking the correlation structure (annualized variance-covariance matrix) among the three

indexes into account. From the above, we derive the drift and volatility parameters for the

geometric Brownian motion process in our model and set (µB, σB) = (6.1%, 15.6%). Finally, we

consider the solvency regulation in place in Switzerland (SST) and in the E.U. (Solvency II). As

a surrogate to their full framework, we retain that the aim is to limit the frequency of defaults

to a 1-in-200-year event. That is, we consider the yearly ruin probability and set its upper

bound to ǫ1 = 0.5%. While this value applies directly under model (B), the ruin probability

level allowed at maturity in model (A) will be equal to ǫT = 1− (1− ǫ1)
T (cf. Equation 16). In

the case of a T = 10-year contract, we have ǫT = 4.89%.5

Parameter Variable Value

Policyholder premiums and risk aversion
Model (A), single upfront Πt 1.0 · 1t=0 (C.U.)
Model (B), periodic Πt 1.0 (C.U.)
Arrow-Pratt coefficient of relative risk aversion ρ 5

Contract
Duration T 10 (years)
Guaranteed interest rate g 1%
Annual surplus participation rate α 90%

Capital market conditions
Risk-free rate of return rf 1.5%
Drift of the geometric Brownian motion process µB 6.1%
Volatility of the geometric Brownian motion process σB 15.6%

Solvency regulation
One-year ruin probability (upper bound) ǫ1 0.5%

Table 1: Parameterization of the reference case.
Notes: The time index t in Πt runs from 0 to T −1, 1t=0 denotes the indicator function with value equal

to 1 if t = 0 and 0 when t 6= 0, C.U. stands for currency unit.

Parameter Variable

Equity capital at contract inception E0

Asset allocation (share invested risk-free) at times t = 0, 1, . . . , T − 1 γ, γt
Value of the insurer’s assets at times t = 0, 1, . . . , T At

Value of the policyholder account at times t = 0, 1, . . . , T Pt

Insurer’s portfolio investment return at times t = 1, . . . , T Rt

Cost of the insurer’s insolvency at times t∗ = 1, . . . , T Dt∗

Policyholder payoff at maturity T LT

Equity holder stake at time T ET

Policyholder return on premium RoP
Policyholder individual utility at maturity T U(LT )
Policyholder certainty equivalent from E[U(LT )] CE
Equity holder return on equity RoE

Table 2: Summary of the variables used in the model.

5With this consideration, we importantly differentiate our reference setting from Schmeiser and Wagner (2015),
where a ruin probability of 0.5% is considered for the 10-year contract case.
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4 Results and Analyses

4.1 Case of Model (A)

Illustration of the reference situation. To illustrate the starting point for our analysis,

we calculate the insurer’s position in the parameterization of the reference case. We consider the

market assumptions, an exact fulfillment of the solvency restriction and the insurance contract

parameters as defined in Table 1. We find a single solution (E∗
0 , γ

∗), i.e., the insurer’s equity

capital and asset allocation, making the contract fair for both stakeholders (zero net present

value, NPV = 0, cf. Equations 12 and 13) and meeting the solvency requirement (Equation 15,

RT = ǫT ). We illustrate the solution in Figure 3, where we plot both conditions and their

intersection point as the solution for the insurer’s position (compare with Schmeiser and Wagner,

2015, Figure 2). We find E∗
0 = 0.014 and γ∗ = 0.943. The position (E∗

0 , γ
∗) is completely set by

the two conditions. In fact, on one hand, investing a higher amount of capital E∗
0 or more safely

(higher value for γ∗) would make the contract unfair for equity holders. On the other hand,

lower equity E∗
0 or a more risky investment (lower γ∗) would make the safety level unacceptable.
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Figure 3: Illustration of the net present value NPV and solvency constraints Rt = ǫ = 0.5%
defining the unique position of insurer equity capital E∗

0 and asset allocation γ∗ in model (A)
under the reference case parameterization (see Table 1).

Below, we build on the reference case and analyze the sensitivity of the insurer’s position

and the impact on the policyholder assessment and equity holder valuation.

Impact of changes in the risk-free interest rate. As a first example (cf. Schmeiser

and Wagner, 2015), we illustrate the impact of a decreasing risk-free interest rate rf on the

asset allocation and equity capital position, with all other parameters remaining unchanged.

To some extent, this analysis reconsiders the evolution from the last years observed in the

capital markets with an important decrease in the government bond yields (see Figure 1). We

illustrate the insurer’s position in terms of the equity capital and asset allocation in Figure 4(a)

for values of the risk-free interest rate, which vary from 2.0% to 1.0%. When the risk-free

interest decreases, a larger share of the assets is invested in the risk-free asset and the capital

12
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invested by the equity holders decreases. In fact, the insurance positioning changes to comply

with the solvency requirement (set ruin probability) and the fairness condition (zero net present

value). The change in the insurer’s position has a direct impact on the expected policyholder

and equity holder returns. In fact, see Figure 4(b): within the scenario of a decreasing risk-

free interest rate, the return on premium RoP decreases down to the guaranteed interest rate

g. The effective return of the contract is quickly limited to g, and the participation option

in the insurer’s profits becomes worthless, with rf → log(1 + g).6 Under this scenario, the

return on equity RoE changes little as long as rf is away from g. When rf approaches g, we

have seen (Figure 4a) that E∗
0 goes to zero. The RoE towards the singular point (E∗

0 = 0,

no financing of the industry) tends to infinity. In Table 3, we report the numerical values

reported in Figure 4. Along with the insurer’s position and the policyholder and equity holder

returns, we add information on the expected policyholder payoff E(LT ), the standard deviation

σ(LT ) of the payoff and the corresponding certainty equivalent CE. We observe that with

decreasing values of rf , the mean payoff decreases, as does the RoP (see above). At the same

time, as a consequence of the less risky asset allocation, the standard deviation decreases. The

policyholders’ CE also decreases: the decreasing payoff values dominate the lower values of the

volatility.
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Figure 4: Model (A) – Variation of the risk-free interest rate. Illustration of the asset allocation
and equity capital insurer positions (E∗

0 , γ
∗) and the resulting returns on premium and equity

combinations (RoE,RoP ) under variation of the risk-free interest rate rf between 2.0% and 1.0%
(steps of 0.1%). All other parameter values are taken from the reference case (see Table 1).
Numerical values are reported in Table 3.

Impact of changes in the guaranteed interest rate. The guaranteed interest rate

g must comply with the product regulations. Often, a maximum value is set, but insurance

companies are free to offer lower rates. In contrast to the analysis above, we now keep the

risk-free interest rate rf fixed, and we vary the value of the guaranteed interest rate g. In our

model, setup g is bound from above by erf − 1: that is, for higher values of g, no fair solution is

possible. We study the result of decreasing this guaranteed interest g on both equity holder and

policyholder stakes. Our results are illustrated in Figure 5, and numerical values are reported

6Given that we used continuous compounding for rf and discrete compounding for g (see Equations 3 and 5),
rf = 1.0% does not correspond to the limit point for g = 1.0%. In fact, rf could decrease to log(1+ g) ≈ 0.995%.
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Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

2.0 1.0 90 0.5 0.023 0.902 1.260 0.056 2.34 1.254 0.0424 6.27
1.9 1.0 90 0.5 0.021 0.910 1.245 0.051 2.21 1.240 0.0388 6.27
1.8 1.0 90 0.5 0.019 0.918 1.230 0.046 2.09 1.226 0.0353 6.27
1.7 1.0 90 0.5 0.017 0.926 1.215 0.040 1.97 1.212 0.0319 6.28
1.6 1.0 90 0.5 0.016 0.934 1.200 0.035 1.84 1.197 0.0286 6.28
1.5 1.0 90 0.5 0.014 0.943 1.185 0.030 1.71 1.183 0.0253 6.30
1.4 1.0 90 0.5 0.012 0.951 1.170 0.025 1.58 1.168 0.0220 6.35
1.3 1.0 90 0.5 0.010 0.960 1.154 0.020 1.45 1.154 0.0187 6.40
1.2 1.0 90 0.5 0.008 0.969 1.139 0.015 1.31 1.139 0.0153 6.49
1.1 1.0 90 0.5 0.006 0.979 1.123 0.009 1.17 1.123 0.0116 6.74
1.0 1.0 90 0.5 0.003 0.993 1.106 0.002 1.02 1.106 0.0055 7.65

Table 3: Model (A) – Variation of the risk-free interest rate. Results from the sensitivity
analysis, see the caption of Figure 4. (The reference case value of rf = 1.5% is highlighted in
bold face.)

in Table 4. For lower g, the insurance liabilities decrease and assets can be invested more

riskily, allowing for lower values of the asset allocation ratio γ∗ (Figure 5a). At the same time,

more equity capital E∗
0 to comply with solvency regulation is required; this equity capital gives

good returns (increasing RoE, see Figure 5b). Additionally, policyholders participate in higher

returns (from the more risky asset investments), leading to a higher return on their contributed

premiums RoP . For values of g close to rf, we observe effects that can be compared to the

impact when rf tends to g (see the discussion above and Figure 4). In Table 4, we find that the

policyholder utility (or certainty equivalent CE) increases for lower values of g (in our ceteris

paribus analysis).7

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

1.5 1.5 90 0.5 0.004 0.989 1.164 0.003 1.53 1.164 0.0091 7.34
1.5 1.0 90 0.5 0.014 0.943 1.185 0.030 1.71 1.183 0.0253 6.30
1.5 0.5 90 0.5 0.018 0.910 1.201 0.050 1.85 1.196 0.0334 6.27
1.5 0.0 90 0.5 0.022 0.881 1.216 0.069 1.97 1.206 0.0402 6.37
1.5 −0.5 90 0.5 0.025 0.853 1.230 0.087 2.09 1.215 0.0462 6.51
1.5 −1.0 90 0.5 0.027 0.827 1.244 0.105 2.20 1.222 0.0519 6.65
1.5 −1.5 90 0.5 0.030 0.801 1.257 0.122 2.31 1.229 0.0574 6.81

Table 4: Model (A) – Variation of the interest rate guarantee. Results from the sensitivity
analysis, see the caption of Figure 5. (The reference case value of g = 1.0% is highlighted in
bold face.)

7In their paper, Braun et al. (2015) analyze in detail the level of guaranteed interest rate to choose to optimize
the policyholders’ utility while keeping the insurance product more valuable than a simple direct investment. The
comparison of the utility from insurance contracts and from other investment forms has also been the focus of
Schmeiser and Wagner (2015) and Schmeiser and Wagner (2016). In this latter study, transaction costs are also
taken into account.
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Figure 5: Model (A) – Variation of the interest rate guarantee. Illustration of the asset allocation
and equity capital insurer positions (E∗

0 , γ
∗) and the resulting returns on premium and equity

combinations (RoE,RoP ) under variation of the guaranteed interest rate g between 1.5% and
−1.5% (steps of 0.5%). All other parameter values are taken from the reference case (see
Table 1). Numerical values are reported in Table 4.

Impact of changes in the surplus participation rate. In our model, the policyholder

surplus participation α is a parameter fixed in advance by the insurer (following minimum

participation rules set by the regulator). Increasing the value of α changes the insurer’s position

by increasing the value of the asset allocation ratio γ∗ and decreasing the equity capital. The

results of the analyses are illustrated in Figure 5(a). The consequences of a higher value of

α are very similar to the results obtained when the risk-free rate rf decreases towards the

guaranteed interest rate (compare with Figure 4a). Thus, given the changes in the insurer’s

asset allocation and equity capital, the RoP and RoE are modified (see Figure 5b). Despite

increasing levels of participation, the resulting return on premiums decreases for policyholders.

The equity holders’ return decreases even more significantly. This result is particularly relevant

for discussion on the adequate level of policyholder participation. Higher levels of participation

diminish the attractiveness of the insurer’s position and ultimately tend to make policyholders

worse off than better off. This can also be observed as the policyholders’ certainty equivalent

CE slightly decreases with increasing participation (see Table 5).

Impact of changes in the ruin probability. Finally, we also perform a sensitivity analysis

on the ruin probability objective. A decrease of the ruin probability ǫT increases the solvency

of the company. Not surprisingly, higher solvency levels come along with insurer positions at

higher levels of equity capital E∗
0 . The required asset allocation tends to be less risky, but the

required change is less important (see Figure 7a). We also note that the equity holder’s RoE

decreases a lot (more capital for similar asset allocation and returns), while the policyholder’s

RoP decreases relatively little (see Figure 7b). Again, we also report the values in Table 6.

Here, we observe a slight decrease in policyholder utility (slight decrease in the CE).

Impact of combined changes in the guaranteed interest and surplus participation

rates. From the previous sensitivity analyses, we observe two effects that would probably not

have been the outcome of a “naive” contract assessment and that seem counter-intuitive at
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Figure 6: Model (A) – Variation of the policyholder participation rate. Illustration of the asset
allocation and equity capital insurer positions (E∗

0 , γ
∗) and the resulting returns on premium

and equity combinations (RoE,RoP ) under variation of the policyholder participation rate α
between 80% and 98% (steps of 2.0%) and 99%. All other parameter values are taken from the
reference case (see Table 1).
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Figure 7: Model (A) – Variation of the safety level. Illustration of the asset allocation and equity
capital insurer positions (E∗

0 , γ
∗) and the resulting returns on premium and equity combinations

(RoE,RoP ) under variation of the ruin probability ǫ between 1.00% and 0.05%. All other
parameter values are taken from the reference case (see Table 1). Numerical values are reported
in Table 6.

first sight. On one hand, the policyholder’s RoP and CE increase with a ceteris paribus lower

guaranteed interest rate or a lower surplus participation. On the other hand, these scenarios

also increase the equity holder’s RoE. We further underline this observation in the following.

In Figure 8(a)–(d), we illustrate the impact of contract changes in the guaranteed interest

rate g and policyholder participation α on the equity capital E∗
0 , on the asset allocation γ∗,

on the return on equity RoE and on the return on premium RoP . Lowering the guaranteed

interest rate g and the policyholder surplus participation α impacts the capital amount to be

invested E∗
0 and the allocation strategy γ∗ (see Figures 8a and b). Requiring a higher amount
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Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

1.5 1.0 80 0.5 0.026 0.914 1.190 0.038 1.76 1.187 0.0515 7.05
1.5 1.0 82 0.5 0.023 0.920 1.189 0.036 1.75 1.186 0.0458 6.93
1.5 1.0 84 0.5 0.021 0.926 1.188 0.035 1.74 1.186 0.0403 6.81
1.5 1.0 86 0.5 0.018 0.931 1.187 0.033 1.73 1.185 0.0350 6.67
1.5 1.0 88 0.5 0.016 0.937 1.186 0.032 1.72 1.184 0.0300 6.51
1.5 1.0 90 0.5 0.014 0.943 1.185 0.030 1.71 1.183 0.0253 6.30
1.5 1.0 92 0.5 0.011 0.948 1.183 0.028 1.70 1.182 0.0207 6.06
1.5 1.0 94 0.5 0.009 0.954 1.182 0.026 1.69 1.181 0.0161 5.77
1.5 1.0 96 0.5 0.007 0.960 1.180 0.023 1.67 1.179 0.0116 5.34
1.5 1.0 98 0.5 0.004 0.968 1.178 0.020 1.65 1.177 0.0069 4.66
1.5 1.0 99 0.5 0.003 0.973 1.176 0.017 1.63 1.175 0.0043 4.03

Table 5: Model (A) – Variation of the policyholder participation rate. Results from the sensi-
tivity analysis, see the caption of Figure 6. (The reference case value of α = 90% is highlighted
in bold face.)

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

1.5 1.0 90 1.00 0.010 0.940 1.187 0.032 1.73 1.185 0.0206 7.35
1.5 1.0 90 0.50 0.014 0.943 1.185 0.030 1.71 1.183 0.0253 6.30
1.5 1.0 90 0.20 0.019 0.944 1.183 0.029 1.70 1.182 0.0316 5.37
1.5 1.0 90 0.10 0.022 0.945 1.183 0.029 1.69 1.181 0.0362 4.88
1.5 1.0 90 0.05 0.026 0.945 1.183 0.028 1.69 1.181 0.0409 4.49

Table 6: Model (A) – Variation of the safety level. Results from the sensitivity analysis, see the
caption of Figure 7. (The reference case value of ǫ = 0.5% is highlighted in bold face.)

of equity makes the asset allocation chosen by the insurer more risky. At the same time, the

expected RoE increases (see Figure 8c). The increase of the RoE stems mainly from the change

in the policyholder’s participation. Still, a decrease in the guaranteed interest rate g and in the

participation rate α is observed to be beneficial for the overall policyholder return RoP (see

Figure 8d).

The underlying rationale for our results essentially stems from the lower promises made to

the policyholder (guarantee and participation rates), allowing for a riskier asset allocation while

simultaneously increasing the required capital (which is also better rewarded). As we have seen

from the analyses above, these rewarding situations in terms of expected values typically bring

higher uncertainty on the final payoff. This can be observed in the values for σ(LT ) reported in

Tables 4 and 3. However, the expected utility expressed through the certainty equivalent CE

can still increase (cf. our results reported using the risk aversion of ρ = 5).

4.2 Case of Model (B)

Illustration of the evolution of the asset allocation. In model (B), while the level

of equity capital E0 will be fixed at contract inception for the whole duration (as seen in

model A), the asset allocation is adapted by the insurer at the beginning of each period under

consideration of the available assets. Available assets at time t include the value at that time

17



C. Mirza and J. Wagner – Participating Life Insurance: Which Contracts Are Win-Win?

Policyholder participation  α

G
u
ar

an
te

ed
 i
n
te

re
st

 r
at

e 
 g

0.048 0.037 0.027 0.018 0.009

0.043 0.033 0.025 0.016 0.008

0.037 0.029 0.022 0.014 0.007

0.031 0.024 0.018 0.012 0.006

0.023 0.018 0.014 0.009 0.004

82% 86% 90% 94% 98%

−
1
.0

%
−

0
.5

%
0
%

0
.5

%
1
.0

%

(a) Equity capital E∗
0

Policyholder participation  α

G
u
ar

an
te

ed
 i
n
te

re
st

 r
at

e 
 g

77.5 80.1 82.7 85.3 88.6

80.8 83.0 85.3 87.6 90.5

84.2 86.1 88.0 90.0 92.5

87.8 89.4 91.0 92.6 94.6

92.0 93.1 94.3 95.4 96.8

82% 86% 90% 94% 98%

−
1
.0

%
−

0
.5

%
0
%

0
.5

%
1
.0

%

(b) Asset Allocation γ∗ (in %)

Policyholder participation α

G
u
ar

an
te

ed
 i
n
te

re
st

 r
at

e 
 g

7.44 7.10 6.65 5.99 4.75

7.27 6.94 6.51 5.85 4.61

7.13 6.80 6.37 5.75 4.51

7.01 6.68 6.27 5.68 4.49

6.93 6.67 6.31 5.76 4.66

82% 86% 90% 94% 98%

−
1
.0

%
−

0
.5

%
0
%

0
.5

%
1
.0

%

(c) Return on equity RoE (in %)

Policyholder participation  α

G
u
ar

an
te

ed
 i
n
te

re
st

 r
at

e 
 g

2.30 2.26 2.20 2.14 2.03

2.18 2.14 2.09 2.03 1.94

2.05 2.01 1.97 1.92 1.85

1.90 1.88 1.85 1.81 1.75

1.75 1.73 1.71 1.69 1.65

82% 86% 90% 94% 98%

−
1
.0

%
−

0
.5

%
0
%

0
.5

%
1
.0

%

(d) Return on premium RoP (in %)

Figure 8: Model A. Impact of contract changes in the guaranteed interest rate g and policyholder
participation α on the equity capital E∗

0 , on the asset allocation γ∗, on the return on equity
RoE and on the return on premium RoP .

of the equity capital and premium income. Using the parameterization of the reference case

reported in Table 1, we find that the insurer will position at E∗
0 = 0.053. The yearly mean values

of γ̂t are reported in Table 7 and illustrated in Figure 9. We note that the asset allocation is

more risky at the beginning of the contract (γ̂0 = 0.822) than towards the end of the contract

(γ̂T−1 = γ̂9 = 0.955). This dynamic stems from the fact that, at contract inception, a relatively

high amount of equity capital E∗
0 compared to the contract premiums is available. In fact, in

both models (A) and (B), we consider that equity holders invest a single upfront amount E∗
0 for

the whole contract duration T . In model (B), considering the first year’s premium amount, the

initial equity capital E0 is too large in comparison. This allows the insurer to invest more riskily

under the solvency requirements (see Figure 9). We will see that this opportunity implies better

expected returns on assets, i.e., higher expected returns on premiums and on equity (Figure 10).

The (non-weighted) average value over the whole duration yields γ̄ = 1
T

∑T−1
t=0 γ̂t = 0.932.

The values of E∗
0 and γ̄ can also be compared to the values obtained in model (A). Because

the present value of premium payments is higher in model (B), 9.36 C.U. in model (B) against

1 C.U. in model (A), we expect a higher value of E∗
0 : see Section 3. Under the reference

case parameterization, we have found E∗
0 = 0.014 in model (A). The value of E∗

0 = 0.053
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Figure 9: Illustration of the yearly (average) asset allocation γ̂t under the model (B) reference
case parameterization (see Table 1).

t 0 1 2 3 4 5 6 7 8 9 Mean

γ̂t 0.822 0.905 0.931 0.943 0.949 0.952 0.954 0.955 0.955 0.955 0.932

Table 7: Values of the yearly (average) asset allocation γ̂t under the model (B) reference case
parameterization (see Table 1).

is approximately four times higher, essentially due to the higher contract value in terms of

premiums. The asset allocation for the whole duration in model (A) has yielded γ∗ = 0.943.

This is relatively close to the average value γ̄ = 0.932 found in model (B).

Sensitivity analyses. In the following, we present sensitivity analyses for parameter

ranges similar to the ones used in Section 4.1. We present our results in the graphs in Fig-

ure 10. Numerical values are reported in the Tables 10 to 13 in the Appendix. In the graphs

in Figure 10, the asset allocation and equity capital insurer positions (E∗
0 , γ̄) and the resulting

returns on premium and equity combinations (RoE,RoP ) are illustrated. Figures 10(a) and

(b) present the results for variations of the risk-free interest rate rf . The graphs (c) and (d)

report the results for different values of the guaranteed interest rate g. The sensitivity analysis

on the policyholder participation rate α is presented in graphs (e) and (f), while the results for

different values of the ruin probability ǫ are given in graphs (g) and (h).

We now compare the results from the sensitivity analyses reported in Figure 10 with the

results obtained in the framework of model (A), i.e., Figures 4 to 7 of Section 4.1. While the

numerical results are different (in terms of absolute numbers), the overall shape and behavior of

the insurer position and the resulting returns remains very similar. In the case where the risk-

free interest rf diminishes, we observe in both models decreasing equity capital positions and a

more conservative asset allocation that leads to lower policyholder returns. When decreasing the

guaranteed interest g, we see the opposite trends with increasing equity, riskier asset allocation

and higher returns on premiums. Additionally, in both models, an increase in the policyholder
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Figure 10: Sensitivity analyses in Model (B). Illustration of the positions (E∗
0 , γ̄

∗) and the
returns combinations (RoE,RoP ) under variation of the risk-free interest rf , the guaranteed
interest g, the policyholder participation α and the ruin probability ǫ. Parameter values are
taken from the reference case (see Table 1).
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participation rate α has similar effects on the insurer position than the decreasing risk-free rate

scenario. In terms of returns, mainly the return on equity is decreasing. As observed before, a

lower required ruin probability ǫ impacts the amount of capital needed and decreases the equity

holder’s return. In model (B), the return on premiums is also affected (more negatively than in

model A).

5 Conclusion

We use a contingent claims model framework to assess the equity holder’s and policyholder’s

stakes in life and pension insurance products. We assume contracts with interest rate guarantees

and profit participation that are regulated by solvency requirements. We build our analysis on

earlier studies, particularly the most recent work by Schmeiser and Wagner (2015). Given the

difficult capital market environment and the solvency requirements, offering guarantees that are

rewarding for equity holders and policyholders has become a challenge. We aim at determining

the key parameter values that optimize the value proposition of such contracts.

Our study is based on a reference setup on which we apply parameter sensitivity analyses.

For given contract parameters (duration, interest rate guarantee and surplus participation rate)

under prevailing market conditions (risk-free rate of return, risky investment) and solvency

regulation (maximum ruin probability) we numerically derive the capital needed and the asset

allocation. Our main findings on the contract parameters are as follows:

• Decreasing the interest rate guarantee allows for a higher investment share in the risky

asset while requiring higher equity capital; thereby policyholder and equity holder returns

increase.

• Decreasing the participation rate has a similar impact on the investment and the capital;

thereby essentially equity holder returns increase along with a lower increase of policy-

holder returns.

With regard to the market and regulatory conditions we find that a lower required ruin proba-

bility implies more equity capital and lower return on equity. A decreasing risk-free interest rate

implies a higher share of riskless investments, lower equity capital and diminishing policyholder

returns.

In summary, we find that contracts with lower guarantees and lower participation rates can

still imply higher customer returns. The rationale behind this finding is that the assets linked

to such contracts can be invested more riskily because solvency constraints for given capital

are alleviated. The policyholder’s assets are still protected against downsides by the minimum

return guarantee. Furthermore, the return on equity for the investors increases, while higher

capital amounts can be attracted and are needed.

In the first model considered (cf. also Schmeiser and Wagner, 2015), solvency is controlled for

at maturity and a single premium is paid upfront. While this hypothesis can be justified as long

as payouts only occur at maturity, the practice of solvency regulation requires yearly assessments

that may imply adaptations in the asset allocation. Thus, our second model considers yearly

solvency testing and allows for periodic premium payments. Putting side-by-side the models for

one-year and at-maturity solvency requirements, as well as single and periodic premiums, we

find that the conceptual results remain similar, i.e., the previously found win-win situations for

both policyholders and equity holders still exist. However, the numerical values at which these

situations occur may be significantly different. Therefore, we conclude that, despite necessary
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model assumptions and simplifications, modeling that is “close enough” to real life is essential,

particularly when the market landscape is highly competitive.
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Appendix

Model implementation

Implementation notes for the model (A). Because no closed-form solutions are avail-

able for the policyholder payoff LT (Equation 7) and the equity holder stake ET (Equation 8), we

use the Monte Carlo simulation technique. In both models (A) and (B), we generate N = 100 000

different realizations over the period of T years. The iterative calculations at times t of At and

Pt are straightforward. The main challenge is the calculation of the required equity capital E∗
0

and the asset allocation γ∗. For deriving both quantities, we make use of the competitive market

constraint (Equation 13) and the solvency requirement (Equation 15). The implementation of

the algorithm follows the following steps:

1. Generate N × T independent identically distributed (iid) random variables (rv) from a

standard normal distribution W i
t ∼ N(0, 1), where i = 1, 2, . . . , N , and t = 1, 2, . . . , T .

2. For an initial asset allocation γ ∈ (0, 1), calculate Ai,P
t (γ) and P i,P

t (γ) (cf. Equations 3

and 5, respectively) and Ai,Q
t (γ) and P i,Q

t (γ) at each time t and for each scenario i under

the P- and Q-measures, respectively.8

3. Define the capital needed Ei
0(γ) such that Ai,P

T (γ)−P i,P
T (γ) = 0 in each scenario i. Order

the obtained Ei
0(γ) such that, Ei:N

0 (γ) ≥ E
(i+1):N
0 (γ) for any i ∈ {1, 2, · · · , N}. Given the

upper bound for the probability of ruin ǫT define the function E0(γ) such that E0(γ) =

E
⌈ǫT ·N⌉:N
0 (γ).

4. Using E0(γ) for the initial equity capital in Ai,Q
t (γ), introduce the Monte Carlo approxi-

mation of the policyholder contract’s net present value under the Q-measure

N̂PV (γ) =
1

N

N
∑

i=1

[

P i,Q
T (γ) − max

(

P i,Q
T (γ) −Ai,Q

T (γ), 0
)]

· e−rf·T − P0.

5. Numerically find γ∗ ∈ (0, 1) as the solution of N̂PV (γ∗) = 0 and set E∗
0 = E0(γ

∗) using

the above. The optimal insurer position is given by the pair (E∗
0 , γ

∗).

Implementation notes for the model (B). In the numerical implementation, we will

make use of the solvency requirement (18) and competitive market-pricing constraint (12).

• First, we derive a formula to calculate the asset allocation γt from (18), where γt at time

t is a function of the assets At−1, the policyholder account Pt−1 and the premium Πt−1

from the previous period (t− 1), as well as the given contract parameters (g and ǫ1) and

the given available investments (parameters rf, µB , and σB).

8For the evaluation under the Q-measure, µB is replaced by rf in Equation (4), defining RQ
t .
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Consider the event At = {At − Pt < 0}:

At ⇐⇒
{

(At−1 + Πt−1) ·
(

1 + RP
t

)

− (Pt−1 + Πt−1) ·
(

1 + max
(

g, αRP
t

))

< 0
}

⇐⇒
{

θt−1 ·
(

1 + RP
t

)

−
(

1 + max
(

g, αRP
t

))

< 0
}

, with θt−1 =
At−1 + Πt−1

Pt−1 + Πt−1
> 19

⇐⇒

{

{

θt−1 ·
(

1 + RP
t

)

−
(

1 + αRP
t

)

< 0
}

if g < αRP
t

{

θt−1 ·
(

1 + RP
t

)

− (1 + g) < 0
}

otherwise

⇐⇒







{

RP
t < 1−θt−1

θt−1−α

}

if g/α < RP
t

{

RP
t < 1+g

θt−1
− 1

}

otherwise

Thus, from Equation (18),

Pr (At) = ǫt

⇐⇒ Pr

(

RP
t <

1 − θt−1

θt−1 − α

∣

∣

∣

∣

RP
t >

g

α

)

· Pr
(

RP
t >

g

α

)

+ Pr

(

RP
t <

1 + g

θt−1
− 1

∣

∣

∣

∣

RP
t <

g

α

)

· Pr
(

RP
t <

g

α

)

= ǫt

⇐⇒ Pr

(

g

α
< RP

t <
1 − θt−1

θt−1 − α

)

+ Pr

[

RP
t <

(

1 + g

θt−1
− 1

)

; RP
t <

g

α

]

= ǫt

⇐⇒







Pr
(

g
α < RP

t < 1−θt−1

θt−1−α

)

+ Pr
(

RP
t < g

α

)

= ǫt if θt−1 < θ∗ 10

Pr
(

RP
t < 1+g

θt−1
− 1

)

= ǫt otherwise11

⇐⇒







Pr
(

RP
t < 1−θt−1

θt−1−α

)

= ǫt if θt−1 < θ∗

Pr
(

RP
t < 1+g

θt−1
− 1

)

= ǫt otherwise

⇐⇒















Pr

[

W P
t −W P

t−1 <
1
σB

ln

( 1−α
θt−1−α

−γterf

(1−γt)e
µB−σ2

B
/2

)]

= ǫt if θt−1 < θ∗

Pr

[

W P
t −W P

t−1 ≤
1
σB

ln

( 1+g
θt−1

−γterf

(1−γt)e
µB−σ2

B
/2

)]

= ǫt otherwise

⇐⇒















1
σB

ln

( 1−α
θt−1−α

−γterf

(1−γt)e
µB−σ2

B
/2

)

= Φ−1 (ǫt) if θt−1 < θ∗

1
σB

ln

( 1+g
θt−1

−γterf

(1−γt)e
µB−σ2

B
/2

)

= Φ−1 (ǫt) otherwise

with Φ the cumulative normal distribution function. Hence, the asset allocation γt at

9The inequality holds because the policy is solvent at time t−1, i.e., At−1 > Pt−1, and the premium Πt−1 > 0.
10In fact for g

α
< 1+g

θt−1

− 1 we have Pr
[

RP
t <

(

1+g
θt−1

− 1
)

; RP
t < g

α

]

= Pr
(

RP
t < g

α

)

and we rewrite g/α <
1+g
θt−1

− 1 ⇐⇒ θt−1 < 1+g
1+g/α

= θ∗ where we need (1 + g/α) > 0. In our application with α close to 100% and g

close to zero this condition is fulfilled.
11In the case where g

α
> 1+g

θt−1

− 1 we have Pr
(

g
α
< RP

t <
1−θt−1

θt−1−α

)

= 0 and Pr
[

RP
t <

(

1+g
θt−1

− 1
)

;RP
t < g

α

]

=

Pr
(

RP
t < 1+g

θt−1

− 1
)

.
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time t is given by:

Pr (At) = ǫt ⇐⇒ γt =



























eµB−σ2
B/2+σBΦ−1(ǫt)− 1−α

θt−1−α

e
µB−σ2

B
/2+σBΦ−1(ǫt)−erf

if θt−1 < θ∗,

eµB−σ2
B/2+σBΦ−1(ǫt)− 1+g

θt−1

e
µB−σ2

B
/2+σBΦ−1(ǫt)−erf

otherwise.

• Following the implementation of model (A), define the yearly asset allocations γit in each

scenario i (see above). Under these allocations, consider the Monte Carlo estimate of the

equity holder’s net present value

N̂PV (E0) =
1

N

N
∑

i=1

max
[

AiQ
T (E0) − P iQ

T (E0) , 0
]

e−rf·T − E0,

where we use E0 = E0({γ
i
t}). The numerical solution of the optimal equity capital E∗

0 > 0

from (12) comes from N̂PV (E∗
0) = 0. For calculating E∗

0 define a recursive formula E
(j)
0

of the expected equity capital at maturity T discounted at t = 0,

E
(j+1)
0 =

1

N

N
∑

i=1

max
[

AiQ
T

(

E
(j)
0

)

− P iQ
T

(

E
(j)
0

)

, 0
]

e−rf·T .

For any initial E
(0)
0 ∈ R there exists a k such that, E

(k)
0 = E

(k+1)
0 = E∗

0 .

In the presentation of our results, we will make use of the following notations. We introduce

the yearly average of asset allocation γ̂t,

γ̂t =
1

N

N
∑

i=1

γt,i, (23)

and the asset allocation average of the portfolio during the whole duration of the contract,

γ̄ =
1

T

T
∑

t=1

γ̂t. (24)
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Further results for model (A)

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

1.5 1.5 90 0.5 0.003 0.969 1.171 0.006 1.59 1.171 0.0114 15.59

1.5 1.0 90 0.5 0.007 0.872 1.217 0.036 1.99 1.215 0.0258 13.18

1.5 0.5 90 0.5 0.010 0.803 1.253 0.058 2.28 1.246 0.0343 13.14

1.5 0.0 90 0.5 0.012 0.741 1.286 0.080 2.55 1.274 0.0418 13.35

1.5 −0.5 90 0.5 0.014 0.682 1.318 0.101 2.80 1.299 0.0490 13.62

1.5 −1.0 90 0.5 0.015 0.627 1.349 0.123 3.04 1.322 0.0560 13.93

1.5 −1.5 90 0.5 0.017 0.573 1.380 0.144 3.27 1.344 0.0629 14.25

Table 8: Model (A) – Variation of the interest rate guarantee with volatility σB/2. Compare
with Table 4.

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ∗ E(LT ) σ(LT ) RoP (%) CE E(ET ) RoE (%)

1.5 1.0 80 0.5 0.014 0.792 1.240 0.050 2.18 1.235 0.0592 15.37
1.5 1.0 82 0.5 0.013 0.809 1.235 0.047 2.14 1.231 0.0513 15.05
1.5 1.0 84 0.5 0.011 0.826 1.231 0.044 2.10 1.227 0.0441 14.67
1.5 1.0 86 0.5 0.010 0.842 1.226 0.041 2.06 1.223 0.0375 14.24
1.5 1.0 88 0.5 0.009 0.857 1.222 0.038 2.02 1.219 0.0315 13.75
1.5 1.0 90 0.5 0.007 0.872 1.217 0.036 1.99 1.215 0.0258 13.18
1.5 1.0 92 0.5 0.006 0.887 1.213 0.033 1.95 1.210 0.0206 12.49
1.5 1.0 94 0.5 0.005 0.901 1.208 0.029 1.91 1.206 0.0156 11.64
1.5 1.0 96 0.5 0.004 0.917 1.202 0.026 1.86 1.201 0.0109 10.49
1.5 1.0 98 0.5 0.003 0.934 1.195 0.021 1.80 1.194 0.0062 8.61
1.5 1.0 99 0.5 0.002 0.945 1.191 0.018 1.76 1.190 0.0037 7.06

Table 9: Model (A) – Variation of the policyholder participation rate with volatility σB/2. Com-
pare with Table 5.
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Detailed results for model (B)

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ̂∗ E (LT ) σ RoP (%) CE E (ET ) RoE (%)

2.0 1.0 90 0.5 0.089 0.885 11.592 1.261 2.668 11.531 0.180 7.32

1.9 1.0 90 0.5 0.082 0.894 11.515 1.253 2.548 11.455 0.166 7.36

1.8 1.0 90 0.5 0.074 0.903 11.438 1.245 2.428 11.379 0.152 7.41

1.7 1.0 90 0.5 0.067 0.913 11.361 1.238 2.306 11.302 0.138 7.47

1.6 1.0 90 0.5 0.060 0.922 11.284 1.232 2.188 11.225 0.124 7.55

1.5 1.0 90 0.5 0.053 0.932 11.206 1.226 2.063 11.148 0.111 7.67

1.4 1.0 90 0.5 0.045 0.942 11.127 1.221 1.936 11.070 0.096 7.82

1.3 1.0 90 0.5 0.038 0.952 11.049 1.216 1.808 10.991 0.082 8.08

1.2 1.0 90 0.5 0.030 0.963 10.969 1.212 1.677 10.911 0.067 8.50

Table 10: Results from the sensitivity analysis in model (B) under variation of the risk-free
interest rate, see Figure 10(a,b).

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ̂∗ E (LT ) σ RoP (%) CE E (ET ) RoE (%)

1.5 1.2 90 0.5 0.041 0.949 11.172 1.227 2.009 11.114 0.091 8.15
1.5 1.0 90 0.5 0.053 0.932 11.206 1.226 2.063 11.148 0.111 7.67
1.5 0.5 90 0.5 0.074 0.897 11.280 1.228 2.183 11.221 0.148 7.25
1.5 0.0 90 0.5 0.090 0.866 11.348 1.236 2.285 11.287 0.179 7.15
1.5 −0.5 90 0.5 0.103 0.839 11.413 1.250 2.389 11.350 0.206 7.16
1.5 −1.0 90 0.5 0.116 0.812 11.476 1.269 2.488 11.410 0.232 7.21
1.5 −1.5 90 0.5 0.127 0.787 11.538 1.293 2.585 11.468 0.257 7.28

Table 11: Results from the sensitivity analysis in model (B) under variation of the interest rate
guarantee, see Figure 10(c,d).

Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ̂∗ E (LT ) σ RoP (%) CE E (ET ) RoE (%)

1.5 1.0 84 0.5 0.071 0.912 11.219 1.231 2.084 11.160 0.166 8.91
1.5 1.0 86 0.5 0.065 0.919 11.215 1.229 2.078 11.156 0.147 8.53
1.5 1.0 88 0.5 0.059 0.925 11.211 1.227 2.071 11.152 0.129 8.12
1.5 1.0 90 0.5 0.053 0.932 11.206 1.226 2.063 11.148 0.111 7.67
1.5 1.0 92 0.5 0.046 0.939 11.200 1.224 2.054 11.142 0.092 7.16
1.5 1.0 94 0.5 0.039 0.946 11.194 1.223 2.044 11.136 0.074 6.59
1.5 1.0 96 0.5 0.031 0.954 11.186 1.223 2.031 11.128 0.055 5.89
1.5 1.0 98 0.5 0.021 0.964 11.175 1.222 2.013 11.117 0.034 4.93

Table 12: Results from the sensitivity analysis in model (B) under variation of the policyholder
participation rate, see Figure 10(e,f).
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Parameters (in %) Insurer Policyholder Equity holder

rf g α ǫ E∗
0 γ̂∗ E (LT ) σ RoP (%) CE E (ET ) RoE (%)

1.5 1.0 90 1.00 0.044 0.934 11.431 1.688 2.417 11.320 0.098 8.32
1.5 1.0 90 0.50 0.053 0.932 11.206 1.226 2.063 11.148 0.111 7.67
1.5 1.0 90 0.20 0.063 0.930 11.069 0.798 1.841 11.044 0.124 7.02
1.5 1.0 90 0.10 0.069 0.930 11.020 0.563 1.760 11.007 0.132 6.65
1.5 1.0 90 0.05 0.075 0.929 10.998 0.419 1.724 10.991 0.140 6.35
1.5 1.0 90 0.02 0.083 0.928 10.985 0.300 1.704 10.982 0.148 6.03
1.5 1.0 90 0.01 0.088 0.928 10.981 0.243 1.696 10.978 0.154 5.83

Table 13: Results from the sensitivity analysis in model (B) under variation of the safety level,
see Figure 10(g,h).
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