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Abstract

We consider the problem of choosing a set of locations of a public good on the real

line R when agents have single-peaked preferences over points. We ordinally extend

preferences over compact subsets of R, and extend the results of Ching and Thomson

(1996), Vohra (1999), and Klaus (2001) to choice correspondences. We show that

efficiency and replacement-dominance characterize the class of target point functions

(Corollary 2) while efficiency and population-monotonicity characterize the class of

target set correspondences (Theorem 1).
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1 Introduction

We study the social choice problem where a non-empty and compact set (of points) is chosen

on the real line R. We consider this (chosen) set to represent a public good such that each

point in the set represents an option for the public good together with its location (e.g.,

a parking spot together with its location, see Appendix A). We assume that agents have

single-peaked preferences over points, that is, an agent’s welfare is strictly increasing up to

a certain point, his “peak”, and is strictly decreasing beyond this point. Given a non-empty

and compact set (of points) that represents the public good’s options and their locations, an

agent -although in good knowledge of all options and their respective locations- is unable to

compute his chance of obtaining the public good at a particular location, e.g., in the case of

parking spaces along a street, an agent knows that he will (eventually) find a parking spot

somewhere along the street but he does not know where this will be: we consider situations

where decisions are made under ignorance (Peterson, 2009, p. 40). We assume that agents,

when comparing sets, focus on their best (most favorite) point(s) and their worst (least

favorite) point(s) in each set (see Appendix A). Finally, we assume that the set has adequate

capacity to accommodate all agents, that is, all agents have access to the public good but

possibly at different locations. Another example for the type of social choice problems we are

interested in would be a social planner who needs to draft an “if-needed” list of candidate

locations to build a public facility, e.g., a hospital. She does so in an effort to narrow down

future construction scenarios while at the same time respecting preferences. Then, if at some

future time the need to build a hospital materializes, each location in this list is examined

and one of them is chosen.

More specifically, we look into the situation where the social planner wishes to make a

choice by providing the public good in a way that is (Pareto) efficient and that satisfies some

notion of solidarity between agents towards changes in circumstances. Solidarity requires

that all agents not responsible for the change should be affected in the same direction. The

changes in circumstances we study in this paper are changes in some agent’s preferences

and changes in the population. Replacement-dominance, introduced in the context of quasi-

linear binary public decision (Moulin, 1987), applies to a model with a fixed population of

agents and requires that if the preferences of an agent change, then the other agents, whose

preferences remained unchanged, should all be made at least as well off as they were initially,

or they should all be made at most as well off. Population-monotonicity, introduced in the

context of bargaining (Thomson, 1983a,b), applies to a model with a variable population of
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agents and requires that if additional agents join a population, then the agents who were

initially present should all be made at least as well off as they were initially, or they should

all be made at most as well off.

Many social choice problems can be phrased as problems of providing a public good by

choosing a location on or an interval of the real line R, or more generally, a tree network,1

when agents have single-peaked preferences. In these types of problems, it is very natural

for changes in preferences (e.g., through the influence of public media or social networks) or

changes in the population (e.g., through a change in the birth or migration rate) to arise.

Hence, the properties of replacement-dominance and population-monotonicity have been

studied, together or individually, in a variety of contexts. For the special case where the tree

network is a closed interval, the problem coincides with the problem of providing a public

good by choosing its level when agents have single-peaked preferences (Moulin, 1980). Apart

from the provision of public parking or the provision of a hospital by choosing an “if-needed”

list of locations, further examples of providing a public good in one or more locations include

the provision of (one or more) schools, parks, or libraries on a tree network that represents

an infrastructure. We give a detailed survey of the literature on solidarity properties for

public good allocation under single-peaked preferences in Section 4.

On the domain of single-peaked preferences, we show that the class of choice correspon-

dences satisfying efficiency and population-monotonicity is the class of “target set corre-

spondences” (Theorem 1). Each target set correspondence is determined by a “target set”

[a, b]: if this set is efficient, it is chosen; if it is not efficient, then its largest efficient subset

is chosen, if such a subset exists; otherwise, the closest efficient point to the target set is

chosen. We also show that efficiency and replacement-dominance characterize the sub-class

of “target point functions,” i.e., a = b (Corollary 2). Hence, we obtain corresponding results

with the literature (Ching and Thomson, 1996; Thomson, 1993; Vohra, 1999). Our results

parallel the case where the public good is provided via a lottery over locations on an inter-

val, and probabilistic target choice functions are characterized on the basis of efficiency and

population-monotonicity (Ehlers and Klaus, 2001).

The paper proceeds as follows. Section 2 explains the model and introduces choice

correspondences and their properties. Section 3 contains the definition of target set corre-

spondences and presents our characterization results. We conclude with a literature review

and a discussion of model assumptions (Section 4).

1A tree network is a connected graph that contains no cycles.
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2 The model

Denote the set of natural numbers by N. There is a set of “potential” agents, indexed by

P ⊆ N, where P contains at least 3 agents. We denote the class of non-empty and finite

subsets of P by P . A set of agents N ∈ P is called a population.

Each i ∈ P is equipped with preferences Ri, defined on the real line R, that are complete,

transitive, and reflexive. As usual, x Ri y is interpreted as “x is at least as desirable as y”,

xPi y as “x is preferred to y”, and x Ii y as “x is indifferent to y”. Moreover, for preferences

Ri there exists a number p(Ri) ∈ R, called the peak (level) of i, with the following property:

for each pair x, y ∈ R such that either y < x ≤ p(Ri), or y > x ≥ p(Ri), we have x Pi y. We

call such preferences single-peaked and denote the domain of single-peaked preferences by R.

For each N ∈ P , we denote the set of (preference) profiles R = (Ri)i∈N where for each

i ∈ N , Ri ∈ R, by RN . For each pair N,M ∈ P , with N ⊆ M , we denote the restriction

(Ri)i∈N ∈ RN of R ∈ RM to N by RN . Given R ∈ RN , for each pair i, j ∈ N we also use

the notation R−i instead of RN\{i} and R−i,j instead of RN\{i,j}.

Given N ∈ P and R ∈ RN , we denote the (set of) peaks in R as p(R) = {p(Ri)}i∈N .
Let the smallest peak in R be

¯
p(R) ≡ min {p(Ri)}i∈N and the largest peak in R be p̄(R) ≡

max {p(Ri)}i∈N . Let the convex hull of the peaks in R be Conv(R) ≡ [
¯
p(R), p̄(R)].

Denote the class of non-empty and compact subsets of R by C.2 For each X ∈ C,
the minimum (point) is denoted by

¯
X and the maximum (point) by X̄. For X ∈ C and

Ri ∈ R, let the set of most preferred point(s) or best point(s) of i in X be bX(Ri) ≡ {x ∈
X : for each y ∈ X, x Ri y}. Similarly, let the set of least preferred point(s) or worst

point(s) of i in X be wX(Ri) ≡ {x ∈ X : for each y ∈ X, y Ri x}. By single-peakedness,

bX(Ri) ⊆ {
¯
X, p(Ri), X̄}. By single-peakedness, wX(Ri) ⊆ {

¯
X, X̄} and if wX(Ri) = {

¯
X, X̄}

(only if p(Ri) ∈ (
¯
X, X̄)), then

¯
X ̸= X̄ and

¯
XIiX̄. With some abuse of notation, we treat sets

bX(Ri) and wX(Ri) as if they are points and for each x ∈ X, we write bX(Ri)Ri xRiwX(Ri).

We will consider choice correspondences that assign outcomes in C under complete un-

certainty (or ignorance) with the interpretation that any agent “knows the set of possible

outcomes . . ., but has no information about the probabilities of those outcomes or about their

likelihood ranking” (Bossert et al., 2000, p. 295).3 We assume that agents when evaluating

2As discussed in Section 4.2.2, the requirement for sets in C to be compact is without loss of generality.
3For a survey of criteria and methods for ranking subsets of a set of outcomes under complete uncertainty

we refer to Barberà et al. (2004, Section 3).
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outcomes focus exclusively on the best and worst points of the outcomes. Various preference

extensions with different degrees of optimism or pessimism do so (see Appendix A for a more

detailed discussion) but all have in common that given X, Y ∈ C, an agent prefers X to Y

if he prefers his best point(s) in X to his best point(s) in Y and his worst point(s) in X to

his worst point(s) in Y . To strike a balance between the opposite assumptions of optimistic

versus pessimistic preference extensions, we use the following best-worst extension of prefer-

ences over sets (we use the same symbols to denote preferences over points and preferences

over sets).

Best-worst extension of preferences to sets. For each i ∈ P with Ri ∈ R and each pair

X, Y ∈ C, we have

X Ri Y if and only if bX(Ri)Ri bY (Ri) and wX(Ri)Ri wY (Ri)

and

X Pi Y if and only if X Ri Y and [bX(Ri) Pi bY (Ri) or wX(Ri) Pi wY (Ri)].

This extension of preferences is transitive; however, it is not complete (there exist sets

X, Y ∈ C such that neither X Ri Y nor Y Ri X).

In Appendix A we give a normative foundation of our preference extension based on

Bossert et al. (2000, Theorem 1) and illustrate it with an example of public parking allocation.

Furthermore, we discuss various optimistic and pessimistic preference extensions and why

results would differ if focusing on them.

We use the standard notion of Pareto optimality/efficiency as our efficiency notion.

Efficient sets. Let N ∈ P and R ∈ RN . Set X ∈ C is (Pareto) efficient if and only if there

is no set Y ∈ C such that for each i ∈ N , Y Ri X, and for at least one j ∈ N , Y Pj X. We

denote the class containing all efficient sets for R ∈ RN by E(R).

The next characterization of efficient sets coincides with the well-known characterization

of (Pareto) efficient points for choice functions.

Proposition 1. For each N ∈ P and each R ∈ RN , a set X ∈ C is efficient if and only if

the following two conditions hold.

(i) X is a subset of the convex hull of the agents’ peaks, i.e.,

X ⊆ Conv(R).
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(ii) All of the agents’ peaks that lie in the convex hull of X are included in X, i.e.,

Conv (X) ∩ p(R) ⊆ X.

Rp(R1) p(R2) p(R3)

(a)

Rp(R1) p(R2) p(R3)

(b)

Rp(R1) p(R2) p(R3)

(c)

Rp(R1) p(R2) p(R3)

(d)

Figure 1: Proposition 1. Let N = {1, 2, 3} with R ∈ RN and p(R) = {p(R1), p(R2), p(R3)}. Sets

under consideration are shown in bold. The set in (a) satisfies neither condition (i) nor (ii). The

set in (b) satisfies condition (i) but not (ii). The set in (c) satisfies condition (ii) but not (i). The

set in (d) satisfies both conditions (i) and (ii), hence it is efficient.

Corollary 1. Let N ∈ P and R ∈ RN .

(a) For each convex set X = Conv(X) ∈ C, X ∈ E(R) if and only if X ⊆ Conv(R).

(b) For each M ⊆ N such that Conv(RM) = Conv(R), if X ∈ E(R), then X ∈ E(RM).

(c) If X ∈ E(R), then for each i ∈ N , X Ii Conv(X). Moreover, if Y ∈ C is such that for

each i ∈ N , Y Ii X, then Conv(X) = Conv(Y ).

Since by Corollary 1(c) agents are indifferent between any efficient set and its convex

hull, we represent any efficient set by its convex hull.

A choice correspondence F assigns to each N ∈ P and each R ∈ RN a set F (R) ∈ C,
i.e., F :

⋃
N∈P RN → C. We denote the family of choice correspondences F by F . If a choice

correspondence assigns to each N ∈ P and each R ∈ RN a set consisting of a single point,

it is essentially a choice function.

We will also consider fixed population choice correspondences FN : RN → C (N ∈ P).

For N ∈ P , we denote the family of choice correspondences FN by FN . Two basic properties

of choice correspondences follow.

Efficiency. F ∈ FN (N ∈ P) is efficient if for each R ∈ RN , F (R) ∈ E(R).
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Extreme-peaks-onliness. F ∈ FN (N ∈ P) satisfies extreme-peaks-onliness if the chosen

set only depends on the smallest and the largest peaks of the profile, i.e., for each R, R̄ ∈ RN

such that Conv(R) = Conv(R̄), F (R) = F (R̄).

We consider two solidarity properties of choice correspondences. The first solidarity

property expresses the solidarity among agents against changes in preferences (Moulin, 1987):

if the preferences of an agent change, then the other agents, whose preferences remained

unchanged, should all be made at least as well off as they were initially, or they should all

be made at most as well off.

Replacement-dominance. F ∈ FN (N ∈ P) is replacement-dominant if for each j ∈ N

and each R, R̄ ∈ RN such that R−j = R̄−j, the following holds:

for each i ∈ N \ {j}, F (R)Ri F (R̄) or for each i ∈ N \ {j}, F (R̄)Ri F (R).

For a population of one or two agents, replacement-dominance imposes no restriction

on a choice correspondence. Given a population of at least three agents, efficiency and

replacement-dominance have the following implications.

Proposition 2. Let F ∈ FN (N ∈ P, |N | ≥ 3) satisfy efficiency and replacement-

dominance. Then,

(a) for each j ∈ N , each R, R̄ ∈ RN such that [R−j = R̄−j and Conv(R̄) ⊆ Conv(R)], and

each i ∈ N \ {j}, F (R̄)Ri F (R). In particular, if Conv(R̄) = Conv(R), then F (R̄) = F (R);

(b) F satisfies extreme-peaks-onliness.

Proposition 3. Let F ∈ FN (N ∈ P, |N | ≥ 3) satisfy efficiency and replacement-

dominance. Then, F is choice function.

The second solidarity property we consider expresses the solidarity among agents against

changes in the population (Thomson, 1983a,b): if additional agents join a population, then

the agents who were initially present should all be made at least as well off as they were

initially, or they should all be made at most as well off.

Population-monotonicity. F ∈ F is population-monotonic if for each pair N,M ∈ P such

that N ⊆ M and each R ∈ RM the following holds:

for each i ∈ N, F (RN)Ri F (R) or for each i ∈ N, F (R)Ri F (RN).
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A choice correspondence satisfies peak-monotonicity (Ching, 1994) if whenever an agent’s

preferences change such that his peak moves to the left (right), the chosen set moves (weakly)

to the left (right).

Peak-monotonicity. F ∈ FN (N ∈ P) satisfies peak-monotonicity if for each j ∈ N and

each R, R̄ ∈ RN such that R−j = R̄−j,

if p(Rj) ≤ p(R̄j), then
¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄).

A choice correspondence satisfies uncompromisingness (Border and Jordan, 1983) if when-

ever an agent’s preferences change such that his peaks, before and after this change, both lie

on the same side of the minimum (maximum) point chosen, then the minimum (maximum)

point chosen does not change.

Uncompromisingness. F ∈ FN (N ∈ P) satisfies uncompromisingness if for each j ∈ N

and each R, R̄ ∈ RN such that R−j = R̄−j,

(i) if [p(Rj) <
¯
F (R) and p(R̄j) ≤

¯
F (R)] or [p(Rj) >

¯
F (R) and p(R̄j) ≥

¯
F (R)], then

¯
F (R) =

¯
F (R̄) and

(ii) if [p(Rj) > F̄ (R) and p(R̄j) ≥ F̄ (R)] or [p(Rj) < F̄ (R) and p(R̄j) ≤ F̄ (R)], then

F̄ (R) = F̄ (R̄).

Given a choice correspondence satisfying efficiency and population-monotonicity, we have

the following implications.

Proposition 4. Let F ∈ F satisfy efficiency and population-monotonicity.

(a) For each pair N,M ∈ P such that N ⊆ M , each R ∈ RM , and each i ∈ N , F (RN) Ri

F (R). In particular, if Conv(RN) = Conv(R), then F (RN) = F (R).

Let N ∈ P, |N | ≥ 3, and F ∈ FN . Then,

(b) for each j ∈ N , each R, R̄ ∈ RN such that [R−j = R̄−j and Conv(R̄) ⊆ Conv(R)], and

each i ∈ N \ {j}, F (R̄)Ri F (R). In particular, if Conv(R̄) = Conv(R), then F (R̄) = F (R);

(c) F satisfies extreme-peaks-onliness;

(d) F satisfies peak-monotonicity;

(e) F satisfies uncompromisingness.
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3 Characterizing target set correspondences

Any target set correspondence is determined by its non-empty, closed, and convex target

set: if the target set is efficient, it is chosen. If the target set is not efficient, the (unique)

maximal efficient subset of the target set is chosen, if one exists; otherwise, the (unique)

closest efficient point to the target set is chosen.

Target set correspondence F a,b ∈ FN . Let [a, b] ⊆ R∪{−∞,∞}, N ∈ P , and R ∈ RN .

Then,

F a,b(R) =


{
¯
p(R)} if b <

¯
p(R)

{p̄(R)} if a > p̄(R)

[a, b] ∩ Conv(R) otherwise.

Rp(R1) p(R2) p(R3)

(a)

a b

Rp(R1) p(R2) p(R3)

(b)

a b

Rp(R1) p(R2) p(R3)

(c)

a b

Figure 2: Target set correspondence. Let N = {1, 2, 3}, R ∈ RN , and F a,b ∈ FN . The chosen sets

in each case are shown in bold. The target set in (a) is efficient and is chosen, (b) is not efficient

but the maximal efficient subset exists and it is chosen, and (c) is not efficient and no maximal

efficient subset exists; hence the closest efficient point is chosen.

Target point function fa ∈ FN . Let a ∈ R ∪ {−∞,∞}, N ∈ P , and R ∈ RN . Then,

fa(R) = F a,a(R).

Our first characterization result is a corollary from Proposition 3 and Thomson’s (1993)

characterization result for choice functions.4

4In Klaus and Protopapas (2017) we provide a self-contained proof of Corollary 2 as well as a characterization

of target set correspondences by efficiency and a weaker replacement-dominance property called one-sided

replacement-dominance.
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Corollary 2. A choice correspondence F ∈ FN (N ∈ P, |N | ≥ 3) satisfies efficiency and

replacement-dominance if and only if it is a target point function.

Our second characterization result states that efficiency and population-monotonicity

characterize target set correspondences.

Theorem 1. A choice correspondence F ∈ F satisfies efficiency and population-

monotonicity if and only if it is a target set correspondence with the same target set for

all populations.

The properties in our two characterizations are independent. A constant choice corre-

spondence that always chooses a fixed set satisfies replacement-dominance and population-

monotonicity but violates efficiency. A choice correspondence that always chooses the peak

of the agent with the lowest index satisfies efficiency, but it violates replacement-dominance

and population-monotonicity.

Remark 1. Our characterizations in Corollary 2 and Theorem 1 confirm an observed pattern

concerning solidarity in public goods models: replacement-dominance is at least as strong

as population-monotonicity. Here and, for example, in Miyagawa (2001), Ehlers (2002,

2003), Ehlers and Klaus (2001), and Gordon (2007a,b), the set of choice functions satisfying

efficiency and replacement-dominance is a subset of the set of choice functions satisfying

efficiency and population-monotonicity.

4 Conclusion

We considered a problem of choosing a set of locations of a public good on the real line R
when agents have single-peaked preferences over points and evaluate outcome sets under the

assumption of complete uncertainty with a best-worst preference extension. We show that

efficiency and replacement-dominance characterize the class of target point functions while

efficiency and population-monotonicity characterize the larger class of target set correspon-

dences. These characterizations resemble previous results in various public goods settings,

which we survey in the next subsection.

In the subsection following the literature review, we check the robustness of our results

with respect to various model assumptions we made. Our assumption on the preference

extension used is separately discussed in Appendix A.
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4.1 Literature review: solidarity for public goods models

For choice functions that assign a public good on an interval, or on a tree network, the

solidarity properties replacement-dominance and population-monotonicity have been con-

sidered. Specifically, for the location problem on an interval (on a tree network), it was

shown that efficiency and population-monotonicity characterize the class of “target point

functions” on the domain of single-peaked preferences (Ching and Thomson, 1996; Thom-

son, 1993)5 and for constant sets of agents efficiency and replacement-dominance characterize

the class of “target point functions” on the domains of single-peaked preferences and sym-

metric single-peaked preferences (Vohra, 1999). Moreover, it turns out that efficiency and

population-monotonicity imply replacement-dominance and that the former characteriza-

tion also holds on the domain of symmetric single-peaked preferences and on tree networks

(Klaus, 2001). In addition, both aforementioned characterizations hold under much looser

assumptions on the set of locations (alternatives) and the domain of preferences (Gordon,

2007a).6 Finally, if the set of admissible preferences is constrained on attribute-based prefer-

ence domains,7 efficiency and either one of the two solidarity properties are only compatible

on discrete trees, where equivalent characterizations are obtained (Gordon, 2015).

For the location problem on an interval, if the property of replacement-dominance is

weakened to ϵ-replacement-dominance8 the characterization of target point functions still

holds for the domain of single-peaked preferences (Harless, 2015b). However, for the location

problem on a circle when a constant set of agents exists, no choice function satisfies efficiency

and either replacement-dominance or population-monotonicity on the domain of symmetric

single-peaked preferences (Gordon, 2007b).

Regarding choice correspondences, the case of providing a public good at exactly two

locations, when one or both of the aforementioned solidarity properties are being consid-

ered, has been studied under different settings. On the domain of single-peaked preferences

and if the agents compare pairs of locations using the max-extension,9 the following holds.

5Such functions are sometimes called status quo rules or status quo solutions.
6The critical assumptions are: (i) the set of alternatives is fixed, (ii) the preferences are defined over all

alternatives, and (iii) the domain of preferences is common to all agents.
7Given a finite set of alternatives A, the non-empty and finite family of subsets H ⊆ 2A is an attribute space

if [for each attribute H ∈ H, H ̸= ∅ and the complement HC ∈ H] and [for each pair x, y ∈ A with x ̸= y,

there exists H ∈ H such that x ∈ H and y ̸∈ H].
8Agents’ solidarity is only required if the change in an agent’s preferences are below a certain threshold.
9Under the max-extension, an agent prefers set X to set Y if and only if he prefers his best point(s) in set

X to his best point(s) in set Y .

11



For an interval in R and a constant set of agents, the class of choice functions satisfying

efficiency and replacement-dominance are the “left-peaks choice function” and the “right-

peaks choice function”10 (Miyagawa, 2001). However, if this model is extended to trees,

then no choice function satisfies efficiency and replacement-dominance on the symmetric

single-peaked domain (Umezawa, 2012).

For the problem of providing a public good at exactly two locations on an interval, on

the domain of single-peaked preferences and if agents compare pairs of locations using the

leximin-extension,11 the following two results have been obtained that consider population-

monotonicity or replacement-dominance. First, the class of choice functions satisfying ef-

ficiency, anonymity, and population-monotonicity is the class of “single-plateaued prefer-

ence choice functions”12 (Ehlers, 2003); and second, the class of choice functions satisfying

efficiency and replacement-dominance is the class of “single-peaked preference choice func-

tions”13 (Ehlers, 2002). Note that the model of choosing two locations is rather different

from our model of choosing a set of outcomes under complete uncertainty or ignorance (fo-

cusing on the best and the worst location in the outcome set does not reduce our model to

that of choosing two locations).

In the setting of preference aggregation problems, where agents strictly rank a finite set

of alternatives and a (not necessarily strict) social ranking over the alternatives must be

chosen, the aforementioned solidarity properties have also been studied. It is shown that

on the domain of strict rankings, efficiency and population-monotonicity characterize the

class of “strict status-quo functions”14 (Bossert and Sprumont, 2014). Moreover, in this

result, population-monotonicity can be substituted with adjacent replacement-dominance.15

10The left (right) peaks choice function chooses the two unique left-most (right-most) peaks.
11Under the leximin-extension, in the case of sets containing exactly two points, an agent prefers set X to

set Y if and only if he either [prefers his best point(s) in set X to his best point(s) in set Y ] or [he is

indifferent between his best point in set X and his best point in set Y and prefers his second best point in

set X to his second best point in set Y ].
12Each single-plateaued preference choice function is determined by fixed single-plateaued preferences R

and plateau [
¯
r, r̄]: if all the agents’ peaks lie outside of [

¯
r, r̄], then the best of the agents’ peaks and its

indifferent point are chosen (according to R); otherwise, the two locations in the convex hull of the agents’

peaks lying closest to
¯
r and r̄ respectively are chosen.

13Each single-peaked preference choice function is essentially a single-plateaued preference choice function

determined by a fixed single-plateaued preference relation R with the plateau being a point, i.e.,
¯
r = r̄.

14Each strict status-quo function is determined by a strict ranking R over the alternatives and reaches a

unique efficient strict ranking as follows: beginning from R it reverses the order of an adjacently ranked

pair of alternatives if all agents prefer the reverse to the initial ranking of the pair.
15Adjacent replacement-dominance is weaker than replacement-dominance: solidarity is only required when
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Furthermore, if the domain is enlarged to also include weak rankings, efficiency and ei-

ther population-monotonicity or adjacent replacement-dominance characterize the class of

“status-quo functions”16 (Harless, 2016). Finally, in the binary social choice model (i.e.,

when there are exactly two alternatives to choose from) and if agents can be indifferent be-

tween the two alternatives, a choice function satisfies replacement-dominance or population-

monotonicity if and only if it is a “generalized mixed-consensus rule”17 (Harless, 2015a).

4.2 Model variations

4.2.1 Symmetric preferences

Preferences Ri ∈ R are symmetric if for each pair x, y ∈ R, |x− p(Ri)| = |y− p(Ri)| implies

x Ii y. Throughout this paper we assume that preferences are single-peaked. In Klaus

and Protopapas (2017) we also show that all our results hold on the domain of symmetric

single-peaked preferences.

4.2.2 Chosen sets are not necessarily compact

Although we only study compact subsets of R, the compactness requirement is without loss

of generality for the following reasons. First, the agents’ peaks being real numbers and

Proposition 1(i) imply that unbounded sets are not efficient. Second, concerning not closed

(and bounded) sets, after assuming that each agent is indifferent between a set and its closure,

all our results hold and the target sets of target set correspondences need not be closed. In

this case, the second requirement for the efficiency of a set, that is, Proposition 1(ii), would

have to be changed to Conv(closure(X)) ∩ p(R) ⊆ closure(X); moreover, to accommodate

the possibility of sets that are not closed, throughout the text and for each set X, Conv(X)

would have to be changed to Conv(closure(X)).

an agent reverses a single pair of adjacently ordered alternatives.
16Each status-quo function is determined by a ranking R̄ over the alternatives and reaches a unique efficient

ranking as follows: beginning from R̄ it reverses the order of an adjacently ranked pair of single alternatives

if all agents prefer the reverse to the initial ranking of the pair. Moreover, it “creates” order in an

indifference class (of alternatives) if all agents prefer the alternative moved up in the order to the one (or

more) alternatives moved down. Reversals in the order between a single alternative and an indifference

class or between two indifference classes occur in a similar way.
17Each generalized mixed-consensus rule chooses for each profile either alternative a or alternative b. The

only further requirement concerns cases where at least one agent prefers a over b and at least one agent

prefers b over a; specifically, either a is selected in all such cases or b is selected in all such cases.
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4.2.3 Monotonic preferences

Allowing for agents to have monotonic preferences would correspond to allowing agents’ peaks

to be drawn from the extended real line R∪{−∞,+∞} and allowing choice correspondences

to assign subsets of the extended real like (strictly decreasing preferences correspond to an

agents’s peak being −∞ and strictly increasing preferences correspond to an agents’s peak

being +∞). However, if all agents have −∞ or all agents have +∞ as their peak, then by

Proposition 1, no efficient set exists in C. Moreover, if unbounded subsets of R∪{−∞,+∞}
are considered, then in this case the only efficient sets would be {−∞} (when all agents

have −∞ as their peak) or {+∞} (when all agents have +∞ as their peak). However, a

policy interpretation for these two sets, as well as other unbounded sets, is not clear and we

therefore did not add monotonic preferences to our model.

4.2.4 Closed interval alternative set

All our results hold if preferences are defined on a closed interval [x, y] ⊆ R. By Propo-

sition 1(i), the class of sets considered equals the class of non-empty subsets of [x, y] and

closedness is not required (see Subsection 4.2.2). Agents could now have monotonic pref-

erences, i.e., have x or y as peaks, since the policy interpretation of “locating the public

good at x (or y)” is straightforward, in contrast to our original model (see Subsection 4.2.3).

This restriction on the set of alternatives would facilitate our main characterization proof

(Theorem 1) since a profile with x as the minimum peak and y as the maximum peak could

be chosen to calibrate the target set (in contrast to our original model, where a profile with

−∞ as the minimum peak and +∞ as the maximum peak is not available).

Appendix

A Best-Worst Preferences

We start with a normative justification to focus on best and worst points in our preference

extension and introduce the properties of simple monotonicity and independence that char-

acterize a small class of preference extensions over sets, albeit for a slightly different model

than ours (Bossert et al., 2000, Theorem 1). First, we illustrate via two examples why these

properties are reasonable to assume in our model. Then, we present the characterization

result and discuss its consequences for our model.
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We denote preferences defined over C by RC
i (if x Pi y, then {x} P C

i {y}).

Simple monotonicity. Let x, y ∈ R. If x Pi y, then

{x} P C
i {x, y} P C

i {y}.

Independence. Let X, Y ∈ C and z ∈ R such that z ̸∈ X ∪ Y . If X P C
i Y , then

[X ∪ {z}]RC
i [Y ∪ {z}].

Our example pertains to a linear city whose residents own one car each and have single-

peaked preferences over where to park.

Example 1. Simple monotonicity: All public parking is located in two (parking) garages

at x, y ∈ R, with x ̸= y, that we refer to as zone x and y. Neither garage’s capacity can

accommodate all residents but the joint capacity is sufficient. Initially, a one-zone scheme is

in place and all residents are assigned to either zone x or zone y: residents assigned to zone

x (zone y) are only allowed to park at garage x (y), which has the capacity to accommodate

them. Later, a two-zone scheme is adopted: each resident can use either one of the two

garages. Consider a resident i of zone x who prefers x to y. Under the one-zone scheme he

always parks at x, while under the two-zone scheme he sometimes parks at y (whenever x is

full). We expect resident i to be worse off under the two-zone scheme, that is, if xPi y, then

{x} P C
i {x, y} P C

i {y} and simple monotonicity holds.

Independence: Two single-zone street parking schemes, X, Y ∈ C, are being considered

for adoption. Before a final decision is made, and following a small development project

on some previously unused land, an extra single parking garage z ∈ R becomes available.

Now assume that instead of schemes X and Y , two new schemes are being considered for

adoption, X ∪ {z} and Y ∪ {z}. Suppose resident i initially prefers X to Y . Since space z

was unavailable under X and Y and is now available under both X ∪ {z} and Y ∪ {z}, we
expect i to find X ∪{z} at least as desirable as Y ∪{z}. That is, if z ̸∈ X ∪Y , and X P C

i Y ,

then [X ∪ {z}]RC
i [Y ∪ {z}] and independence holds.

By the next result, if the two aforementioned properties are required, then an agent with

linear preferences over outcomes18 only cares about his best and worst points in each finite

set.19

18A linear preference RL is a complete, transitive, reflexive, and antisymmetric (i.e., for each x, y ∈ R, x IL y

implies x = y) binary relation. Single-peaked preferences are not antisymmetric.
19A similar result using a stronger version of independence is shown in Barberà et al. (1984).
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Bossert et al. (2000, Theorem 1). If simple monotonicity and independence are satisfied,

then for agent i with linear preferencesRL
i , and each finite setX ∈ C,XICi {bX(RL

i ), wX(R
L
i )}.

In light of this result, two “standard” extensions that could be considered for our model

are the max-min20 and the min-max 21 preference extensions, both of which fit our parking

example since they are “consistent with the notion of limited rationality which is familiar in

the theories of organization and bounded rationality (e.g., March, 1988; March and Simon,

1958), and which suggests that, given a complex decision problem, the agent often seeks to

simplify the problem by focusing on only a few salient features of the complex situation”

(Bossert et al., 2000, pp. 300-301). However, given the problem at hand, we prefer to “not

choose sides” by adopting either the “optimistic” max-min extension or the “pessimistic”

min-max extension (some agents might be optimists and some pessimists). Instead, we opt

for the best-worst extension of preferences that declares a preference for a set X over a set

Y if and only if this preference coincides with the preference of both the min-max extension

and the max-min extension. It is straightforward to show that the best-worst extension

satisfies simple monotonicity and independence, not only when based on linear preferences

over outcomes but also in our setting of single-peaked preferences over outcomes and sets of

alternatives that are not always finite.

Finally, we would like to point out why our results would significantly change when

focusing either on optimistic agents or on pessimistic agents.

First, consider very optimistic agents who only focus on the best point in the outcome

set (max extension, see footnote 9). Then, efficiency would require to always assign a set

containing all peaks, which for some policy application would not be feasible. Even when

considering the less optimistic max-min extension (see footnote 20 for its definition), for some

preference profiles, e.g., when agents’ peaks are located at exactly two points, efficiency could

imply the assignment of a set containing all peaks. Therefore, under the optimistic max and

max-min preference extensions, target-set correspondences would not be efficient.

Second, consider very pessimistic agents who only focus on the worst point in the outcome

set (min extension). Then, efficiency would require to always assign a singleton set: e.g.,

20Max-min extension: An agent prefers set X to set Y if and only if either [he prefers his best point(s) in

set X to his best point(s) in set Y ] or [he is indifferent between his best point(s) in both sets and prefers

his worst point(s) in set X to his worst point(s) in set Y ].
21Min-max extension: An agent prefers set X to set Y if and only if either [he prefers his worst point(s) in

set X to his worst point(s) in set Y ] or [he is indifferent between his worst point(s) in both sets and prefers

his best point(s) in set X to his best point(s) in set Y ].
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if an interval [a, b] in conv(R) is chosen, then choosing the singleton set {a+b
2
} constitutes

a Pareto improvement. Hence, one would only need to study choice functions. Even when

considering the less pessimistic min-max extension (see footnote 21 for its definition), for

some preference profiles, e.g., when agents’ peaks are located at exactly two points, efficiency

could imply the assignment of a singleton set. Therefore, under the pessimistic min and

min-max preference extensions, the target-set correspondences with target sets [a, b], a < b,

would not be efficient. If agents only focus on the worst point in the outcome set (cautious

extension), then efficiency would require that no non-singleton set can be chosen (if an

interval [a, b] with a < b is chosen, then the set {c} such that a < c < b would be a Pareto

improvement).

B Proofs of Section 2

Throughout this appendix, for N ∈ P and R ∈ RN , we assume, without loss of generality,

that N = {1, 2, . . . , n} and
¯
p(R) = p(R1) ≤ p(R2) ≤ . . . ≤ p(Rn) = p̄(R). Furthermore,

whenever for X ∈ C and i ∈ N , |bX(Ri)| = 1 or |wX(Ri)| = 1, we denote the singleton set as

unique (best or worst) point.

Lemma 1. Let i ∈ P with Ri ∈ R and X ∈ C.

(a) Let
¯
X < p(Ri),

¯
x ∈ R such that

¯
X <

¯
x ≤ p(Ri), and Y = [X ∩ (

¯
x,∞)] ∪ {

¯
x}. Then,

Y Ri X. Moreover, if wX(Ri) =
¯
X, then Y Pi X.

(b) Let X̄ > p(Ri), x̄ ∈ R such that X̄ > x̄ ≥ p(Ri), and Y = [X ∩ (−∞, x̄)] ∪ {x̄}. Then,

Y Ri X. Moreover, if wX(Ri) = X̄, then Y Pi X.

(c) Let
¯
X < p(Ri), X̄ > p(Ri),

¯
x, x̄ ∈ R such that

¯
X <

¯
x ≤ p(Ri) ≤ x̄ < X̄, Y =

[X ∩ (
¯
x,∞)] ∪ {

¯
x}, and Z = [Y ∩ (−∞, x̄)] ∪ {x̄}. Then, Z Pi X.

Proof. (a) By single-peakedness, for each z ∈ X \Y ,
¯
xPi z. Hence, Y RiX. If additionally

wX(Ri) =
¯
X ̸∈ Y , then X̄ Pi wX(Ri) and

¯
xPi wX(Ri). Since by single-peakedness wY (Ri) ⊆

{
¯
x, X̄}, it follows that Y Pi X.

(b) Symmetric proof to (i).

(c) By (i), Y RiX. By (ii), ZRiY . Hence, ZRiX. By single-peakedness, wX(Ri) ⊆ {
¯
X, X̄}

and wZ(Ri) ⊆ {
¯
x, x̄}. By single-peakedness,

¯
xPiwX(Ri) and x̄PiwX(Ri). Hence, ZPiX.

Proof of Proposition 1. Let N ∈ P , R ∈ RN , and X ∈ C.
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Step 1. Assume by contradiction that X ∈ E(R) and X ̸⊆ Conv(R). Then,
¯
X < p(R1) or

X̄ > p(Rn). By symmetry of arguments, assume that
¯
X < p(R1).

Case 1 (X̄ > p(Rn)). Then, for each i ∈ N ,
¯
X < p(R1) ≤ p(Ri) ≤ p(Rn) < X̄. Consider

Y = [X ∩ (p(R1),∞)] ∪ {p(R1)} and Z = [Y ∩ (−∞, p(Rn))] ∪ {p(Rn)} . By Lemma 1(c),

for each i ∈ N , Z Pi X. Hence, X ̸∈ E(R); a contradiction.

Case 2 (X̄ ≤ p(Rn)). Then, for each i ∈ N ,
¯
X < p(R1) ≤ p(Ri). Consider

Y = [X ∩ (p(R1),∞)] ∪ {p(R1)}. By Lemma 1(a), for each i ∈ N , Y Ri X. Furthermore,

wX(Rn) =
¯
X. Then, by Lemma 1(a), Y Pn X. Hence, X ̸∈ E(R); a contradiction.

Step 2. Assume by contradiction that X ∈ E(R) and (Conv(X) ∩ p(R)) ̸⊆ X. By Step 1,

X ⊆ Conv(R). Thus, there exists j ∈ N such that p(Rj) ∈ Conv(X) and p(Rj) ̸∈ X.

Let Y = X∪{p(Rj)}. By single-peakedness, for each i ∈ N , wX(Ri) = wY (Ri) ⊆ {
¯
X, X̄}

and bX(Ri)RibY (Ri). Hence, for each i ∈ N , Y RiX. Furthermore, bY (Rj) = p(Rj)PjbX(Rj).

Therefore, Y Pj X. Hence, X ̸∈ E(R); a contradiction.

Step 3. Let X ∈ C such that (i) X ⊆ Conv(R) and (ii) (Conv(X) ∩ p(R)) ⊆ X. Assume

by contradiction that X ̸∈ E(R). Hence, there exists a set Y ⊆ R such that for each i ∈ N ,

Y Ri X, and for at least one j ∈ N , Y Pj X.

Case 1 (p(Rj) ∈ Conv(X)). By condition (ii), p(Rj) ∈ X and agent j’s best point bX(Rj) =

p(Rj) ∈ X cannot be improved. By single-peakedness, wX(Rj) ⊆ {
¯
X, X̄}; if wY (Rj) Pj

wX(Rj), by single-peakedness,
¯
X <

¯
Y or X̄ > Ȳ . By symmetry of arguments, assume

¯
X <

¯
Y . ConsideringR1, by condition (i), p(R1) ≤

¯
X <

¯
Y . By single-peakedness, bX(R1)P1bY (R1)

and for agent 1, set Y is not at least as desirable as set X; a contradiction.

Case 2 (p(Rj) /∈ Conv(X)). Then, either p(Rj) <
¯
X or p(Rj) > X̄. By symmetry of

arguments, assume that p(Rj) > X̄. By single-peakedness, bX(Rj) = X̄ and wX(Rj) =
¯
X.

If bY (Rj)PjbX(Rj), by single-peakedness, X̄ < Ȳ . If wY (Rj)PjwX(Rj), by single-peakedness,

¯
X <

¯
Y . Considering R1, by condition (i), p(R1) ≤

¯
X ≤ X̄. By single-peakedness, bX(R1) =

¯
X and wX(R1) = X̄. If

¯
X <

¯
Y , by single-peakedness, bX(R1) P1 bY (R1). If X̄ < Ȳ , by

single-peakedness, wX(R1) P1 wY (R1). It follows that for agent 1, set Y is not at least as

desirable as set X; a contradiction.

Proof of Corollary 1. Let N ∈ P and R ∈ RN .

(a) Follows immediately from Proposition 1.

(b) If X ∈ E(R), then by Proposition 1(i), X ⊆ Conv(R). Let M ⊆ N such that Conv(R) =

Conv(RM). Hence, X ⊆ Conv(RM). By Proposition 1(ii), Conv(X) ∩ p(R) ⊆ X. Since,

p(RM) ⊆ p(R), Conv(X) ∩ p(RM) ⊆ X. By Proposition 1, X ∈ E(RM).
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(c) If X ∈ E(R), then by single-peakedness, for each i ∈ N such that p(Ri) ∈ Conv(X),

bConv(X)(Ri) = p(Ri) and by Proposition 1(ii), Conv(X) ∩ p(R) ⊆ X. Hence, bConv(X)(Ri) =

bX(Ri). By single-peakedness, for each i ∈ N such that p(Ri) ̸∈ Conv(X), bConv(X)(Ri) ∈
{
¯
X, X̄}. Since {

¯
X, X̄} ⊆ X, bConv(X)(Ri) = bX(Ri). Moreover, since Conv(X) is a closed

interval and (trivially) Conv(X) = X ∪ Conv(X), for each i ∈ N , Conv(X) Ii X.

Next, let Y ∈ C such that for each i ∈ N , Y Ii X. By Proposition 1(i), X, Y ⊆ Conv(R),

hence, p(R1) ≤
¯
X ≤ X̄ and p(R1) ≤

¯
Y ≤ Ȳ . By single-peakedness of R1, [bX(R1) =

¯
X

and bY (R1) =
¯
Y ] and [wX(R1) = X̄ and wY (R1) = Ȳ ]. Since X I1 Y , bX(R1) = bY (R1) and

wX(R1) = wY (R1). Therefore, Conv(X) = Conv(Y ).

Proof of Proposition 2. Let F ∈ FN (N ∈ P , |N | ≥ 3) satisfy efficiency and

replacement-dominance.

(a) Let j ∈ N and R, R̄ ∈ RN such that R−j = R̄−j and Conv(R̄) ⊆ Conv(R).

Case 1 (Conv(R̄) = Conv(R)).

Case 1.1 (j ∈ N \ {1, n}). By efficiency, F (R̄) ∈ E(R̄) and F (R) ∈ E(R). Note that

Conv(R̄) = Conv(R) = Conv(R−j), and by Corollary 1(b), F (R̄), F (R) ∈ E(R−j). By

replacement-dominance, for each i ∈ N \ {j}, F (R̄) Ri F (R) or for each i ∈ N \ {j},
F (R)Ri F (R̄).

If for some k ∈ N \ {j} F (R̄) Pk F (R), then for each i ∈ N \ {j}, F (R̄) Ri F (R),

contradicting F (R) ∈ E(R−j). If for some k ∈ N \ {j} F (R) Pk F (R̄), then for each

i ∈ N \ {1}, F (R) Ri F (R̄), contradicting F (R̄) ∈ E(R−j). Hence, for each i ∈ N \ {j},
F (R) Ii F (R̄). By Corollary 1(c), Conv(F (R̄)) = Conv(F (R)) and since we represent any

efficient set by its convex hull, F (R̄) = F (R).

Case 1.2 (j ∈ {1, n}). By symmetry of arguments, assume that j = 1. Starting from R,

change agent 2’s preferences to R1 and define R1 := (R−2, R1) with Conv(R1) = Conv(R).

By Case 1.1, F (R1) = F (R). Next, change agent 1’s preferences to R̄1 and define R2 :=

(R1
−1, R̄1) with Conv(R2) = Conv(R1). By Case 1.1 (with agent 2 in the role of agent 1),

F (R2) = F (R1). Finally, change agent 2’s preferences back to R2 and obtain R̄ = (R2
−2, R2)

with Conv(R̄) = Conv(R2). By Case 1.1, F (R̄) = F (R2). Therefore, F (R̄) = F (R).

Case 2 (Conv(R̄) ⊊ Conv(R)). Either (i) j = 1 and p(R1) < p(R2) or (ii) j = n and

p(Rn−1) < p(Rn). By symmetry of arguments, we consider Case (i).

Case 2.1 (Conv(R̄) = Conv(R−1)). By efficiency, F (R̄) ∈ E(R̄) and F (R) ∈ E(R). By

Corollary 1(b), F (R̄) ∈ E(R−1).
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Assume that F (R) ⊆ Conv(R−1). Since F (R) ∈ E(R), by Proposition 1(ii),

Conv(F (R)) ∩ p(R) ⊆ F (R). Hence, Conv(F (R)) ∩ p(R−1) ⊆ F (R) and by Proposition 1,

F (R) ∈ E(R−1). By replacement-dominance, for each i ∈ N \ {1}, F (R̄)Ri F (R) or for each

i ∈ N \{1}, F (R)Ri F (R̄). If for some j ∈ N \{1} F (R̄)Pj F (R), then for each i ∈ N \{1},
F (R̄)RiF (R), contradicting F (R) ∈ E(R−1). If for some j ∈ N \{1} F (R)Pj F (R̄), then for

each i ∈ N \ {1}, F (R)Ri F (R̄), contradicting F (R̄) ∈ E(R−1). Hence, for each i ∈ N \ {1},
F (R) Ii F (R̄). By Corollary 1(c), Conv(F (R̄)) = Conv(F (R)) and since we always represent

any efficient set by its convex hull, F (R̄) = F (R).

Assume that F (R) ̸⊆ Conv(R−1). Then,
¯
F (R) <

¯
p(R−1) ≤

¯
F (R̄) ≤ p(Rn). Hence,

wF (R)(Rn) = {
¯
F (R)} and wF (R̄)(Rn) = {

¯
F (R̄)}. By single-peakedness, wF (R̄)(Rn) Pn

wF (R)(Rn). By replacement-dominance, for each i ∈ N \ {1}, F (R̄) Ri F (R) or for each

i ∈ N \ {1}, F (R)Ri F (R̄). Hence, F (R̄) Pn F (R) and for each i ∈ N \ {1}, F (R̄)Ri F (R).

Case 2.2 (Conv(R−1) ⊊ Conv(R̄) ⊊ Conv(R)). Hence, p(R1) < p(R̄1) < p(R2). Starting

from R, change agent 2’s preferences to R̄1 and define R1 := (R−2, R̄1) with Conv(R1) =

Conv(R). By Case 1, F (R1) = F (R). Next, change agent 1’s preferences to R̄1 and define

R2 := (R1
−1, R̄1) with Conv(R2) = Conv(R1

−1). By Case 2.1, for each i ∈ N \ {1, 2},
F (R2)Ri F (R1). Finally, change agent 2’s preferences back to R2 and obtain R̄ = (R2

−2, R2)

with Conv(R̄) = Conv(R2). By Case 1, F (R̄) = F (R2). Therefore, for each i ∈ N \ {1, 2},
F (R̄) Ri F (R). In particular, F (R̄) Rn F (R). Since agent n has the largest peak, efficiency

and single-peakedness imply
¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄). Hence, either F (R̄) = F (R)

or F (R̄)Pn F (R). Then, by replacement-dominance, for each i ∈ N \ {1} (including agent 2

now), F (R̄)Ri F (R).

(b) Let R, R̄ ∈ RN such that Conv(R) = Conv(R̄).

Case 1 (one agent’s preferences changed). Then, F (R) = F (R̄) follows from Proposi-

tion 2(a).

Case 2 (two agents’ preferences swapped). Since |N | ≥ 3, any preference swap between two

agents can be constructed sequentially (in at most four steps) via unilateral changes that do

not change the convex hull of peaks. Hence, by Case 1 (applied sequentially), F (R) = F (R̄).

Case 3 (all remaining cases). Let π : N → N be a permutation of the agents such that

¯
p(R̄) = p(R̄π(1)) ≤ . . . ≤ p(R̄π(n)) = p̄(R̄).

Starting from R, construct R1 by sequentially replacing preferences such that for each

i ∈ N , R1
i = R̄π(i). Since these stepwise changes of the preferences never change the convex

hull of peaks, we have Conv(R1) = Conv(R), and by Case 1 (applied sequentially), F (R1) =

F (R). Finally, permute preferences such that each agent π(i) obtains the preferences of
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agent i, i.e., the new profile R2 is such that for each i ∈ N , R2
π(i) = R1

i . Hence, for each

i ∈ N , R2
π(i) = R̄π(i) and R2 = R̄. Since all permutations can be obtained via sequential

pairwise swaps, by Case 2, F (R̄) = F (R).

Proof of Proposition 3. Let F ∈ FN (N ∈ P , |N | ≥ 3) satisfy efficiency and

replacement-dominance and assume, by contradiction, that F is not a choice function. Hence,

there exists R ∈ RN such that F (R) = [x, y] with x < y. By Proposition 2(b), F satis-

fies extreme-peaks-onliness. Assume that N = {1, 2, 3} and p(R1) ≤ p(R2) ≤ p(R3) (by

extreme-peaks-onliness this is without loss of generality: for larger populations N ′ ⊋ N , the

proof only changes in that agents in N ′ \ N take the same role as agent 2). By efficiency,

p(R1) ≤ x < y ≤ p(R3).

We divide the interval [x, y] into four equal parts and label the three new points z1 =(
x+ 1

4
(y − x)

)
, z2 =

(
x+ 1

2
(y − x)

)
, and z3 =

(
x+ 3

4
(y − x)

)
. By extreme-peaks-onliness,

it is without loss of generality to assume that p(R2) = z2.

Starting from R, change agent 3’s preferences to R1
3 such that p(R1

3) = z3, and define

R1 := (R−3, R
1
3) with Conv(R1) ⊊ Conv(R). Denote F (R1) = [x̃, ỹ]. By Proposition 2(a), for

i = 1, 2, F (R1)RiF (R). Then, bF (R)(R1) = {x}, wF (R)(R1) = {y}, and bF (R)(R2) = {p(R2)},
together with efficiency and single-peakedness, imply that

p(R1) ≤ x̃ ≤ x < z1 < p(R2) = z2 ≤ ỹ ≤ z3 < y ≤ p(R3).

Starting from R, change agent 1’s preferences to R2
1 such that p(R2

1) = z1, and define

R2 := (R−1, R
2
1) with Conv(R2) ⊊ Conv(R). Denote F (R2) = [x̂, ŷ]. By Proposition 2(a), for

i = 2, 3, F (R2)RiF (R). Then, bF (R)(R3) = {y}, wF (R)(R3) = {x}, and bF (R)(R2) = {p(R2)},
together with efficiency and single-peakedness, imply that

p(R3) ≥ ŷ ≥ y > z3 > p(R2) = z2 ≥ x̂ ≥ z1 > x ≥ p(R1).

Hence,

x̃ ≤ x < z1 ≤ x̂ ≤ z2 ≤ ỹ ≤ z3 < y ≤ ŷ. (1)

Let R̃1 be such that R̃1
1 = R1

1, [p(R̃1
2) = z1 and x̃ P̃ 1

2 ỹ], [p(R̃1
3) = z3 and ŷ P̃ 1

3 x̂],

and Conv(R̃1) = Conv(R1). By extreme-peaks-onliness, F (R̃1) = F (R1) = [x̃, ỹ]. By

Inequality (1),

bF (R̃1)(R̃
1
2) = p(R̃1

2) = {z1}, wF (R̃1)(R̃
1
2) = {ỹ},

bF (R̃1)(R̃
1
3) = {ỹ}, wF (R̃1)(R̃

1
3) = {x̃}.

21



Let R̂2 be such that R̂2
1 = R3, R̂

2
2 = R̃1

2, R̂
2
3 = R̃1

3, and Conv(R̂2) = Conv(R2). By

extreme-peaks-onliness, F (R̂2) = F (R2) = [x̂, ŷ]. By Inequality (1),

bF (R̂2)(R̃
1
2) = {x̂}, wF (R̂2)(R̃

1
2) = {ŷ},

bF (R̂2)(R̃
1
3) = p(R̃1

3) = {z3}, wF (R̂2)(R̃
1
3) = {x̂}.

Note that R̃1
−1 = R̂2

−1 and by replacement-dominance either for each i = 2, 3, F (R̃1) R̃1
i

F (R̂2) or for each i = 2, 3, F (R̂2) R̃1
i F (R̃1). However, on the one hand side,

bF (R̃1)(R̃
1
2) = z1 R̃

1
2 x̂ = bF (R̂2)(R̃

1
2) and wF (R̃1)(R̃

1
2) = ỹ = P̃ 1

2 ŷ = wF (R̂2)(R̃
1
2),

and on the other hand side,

bF (R̂2)(R̃
1
3) = z3 R̃

1
3 ỹ = bF (R̃1)(R̃

1
3) and wF (R̂2)(R̃

1
3) = x̂ P̃ 1

3 x̃ = wF (R̃1)(R̃
1
3).

Thus, F (R̃1) P̃ 1
2 F (R̂2) and F (R̂2) P̃ 1

3 F (R̃1); a contradiction.

Proof of Proposition 4. Let F ∈ F satisfy efficiency and population-monotonicity.

(a) Let N,M ∈ P , N ⊆ M , and R ∈ RM . By efficiency, F (R) ∈ E(R) and F (RN) ∈
E(RN). By population-monotonicity, for each i ∈ N , F (R) Ri F (RN) or for each i ∈ N ,

F (RN) Ri F (R). If for each i ∈ N , F (R) Ri F (RN), then (since F (RN) ∈ E(RN)) for

each i ∈ N , F (RN) Ii F (R). Therefore, for each i ∈ N , F (RN) Ri F (R). In particular, if

Conv(RN) = Conv(R), then by F (R) ∈ E(R) and Corollary 1(b), F (R) ∈ E(RN). Since for

each i ∈ N , F (RN) Ri F (R), and [F (R) ∈ E(RN) and F (RN) ∈ E(RN)], for each i ∈ N ,

F (RN) Ii F (R). By Corollary 1(c), Conv(F (RN)) = Conv(F (R)), and since we always

represent any efficient set by its convex hull, F (RN) = F (R).

For the remainder of the proof let N ∈ P , |N | ≥ 3, and F ∈ FN .

(b) Let R, R̄ ∈ RN such that Conv(R̄) ⊆ Conv(R)).

Case 1 (Conv(R̄) = Conv(R)).

Case 1.1 (j ∈ N \ {1, n}). Since Conv(R̄) = Conv(R) = Conv(R−j), (a), F (R−j) = F (R)

and F (R−j) = F (R̄). Therefore, F (R̄) = F (R).

Case 1.2 (j ∈ {1, n}). By symmetry of arguments, assume that j = 1. Starting from R,

change agent 2’s preferences to R1 and define R1 := (R−2, R1) with Conv(R1) = Conv(R).

By Case 1.1, F (R1) = F (R). Next, change agent 1’s preferences to R̄1 and define R2 :=

(R1
−1, R̄1) with Conv(R2) = Conv(R1). By Case 1.1 (with agent 2 in the role of agent 1),

F (R2) = F (R1). Finally, change agent 2’s preferences back to R2 and obtain R̄ = (R2
−2, R2)

with Conv(R̄) = Conv(R2). By Case 1.1, F (R̄) = F (R2). Therefore, F (R̄) = F (R).
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Case 2 (Conv(R̄) ⊊ Conv(R)). Either (i) j = 1 and p(R1) < p(R2) or (ii) j = n and

p(Rn−1) < p(Rn). By symmetry of arguments, we consider Case (i).

Case 2.1 (Conv(R̄) = Conv(R−1)). Starting from R, remove agent 1 from profile R to obtain

profile R−1. By (a), for each i ∈ N \{1}, F (R−1)RiF (R). Next, add agent 1 with preferences

R̄1 to obtain profile R̄. Since Conv(R̄) = Conv(R−1), by (a), F (R̄) = F (R−1). Therefore,

for each i ∈ N \ {1}, F (R̄)Ri F (R).

Case 2.2 (Conv(R−1) ⊊ Conv(R̄) ⊊ Conv(R)). Hence, p(R1) < p(R̄1) < p(R2). Starting

from R̄, change agent 2’s preferences to R̄1 and define R̄1 := (R̄−2, R̄1) with Conv(R̄1) =

Conv(R̄). By Case 1, F (R̄1) = F (R̄). Furthermore, since Conv(R̄1) = Conv(R̄1
−1), by (a),

F (R̄1) = F (R̄1
−1).

Starting from R, change agent 2’s preferences to R̄1 and define R2 := (R−2, R̄1) with

Conv(R2) = Conv(R). By Case 1, F (R2) = F (R). Furthermore, by (a), for each i ∈ N \{1},
F (R2

−1) R
2
i F (R2). Since R̄1

−1 = R2
−1, for each i ∈ N \ {1}, F (R̄) = F (R̄1) = F (R̄1

−1) =

F (R2
−1)R

2
i F (R2) = F (R). Since for all i ∈ N \ {1, 2}, R2

i = Ri, we have F (R̄)Ri F (R) and

now only need to show that F (R̄)R2 F (R) (or that F (R̄) = F (R)).

We also know that F (R̄)R2
2 F (R) and F (R̄)R2

n F (R). Since agent n has the largest peak

at R and R̄, efficiency and single-peakedness imply
¯
F (R) ≤

¯
F (R̄) ≤ p(R2

n) and F̄ (R) ≤
F̄ (R̄) ≤ p(R2

n). By efficiency, p(R2
2) ≤ ¯

F (R̄).

Case 2.2.1 (
¯
F (R) < p(R2

2) < F̄ (R̄)). Assume that R2
2 was chosen such that wF (R)(R

2
2) =

{
¯
F (R)} P 2

2 {F̄ (R̄)} = wF (R̄)(R
2
2) instead of R2

2 = R̄1. Then, we would have gotten the same

results, in particular F (R̄)R2
2 F (R); a contradiction.

Case 2.2.2 (
¯
F (R) < p(R2

2) = F̄ (R̄)). Then,
¯
F (R) ≤ F̄ (R) ≤ p(R2

2) = ¯
F (R̄) = F̄ (R̄). Since,

p(R2) > p(R2
2), by efficiency and single-peakedness, F (R̄)R2 F (R).

Case 2.2.3 (p(R2
2) ≤

¯
F (R)). Then, F (R̄) R2

2 F (R) implies p(R2
2) ≤

¯
F (R̄) ≤

¯
F (R) and

p(R2
2) ≤ F̄ (R̄) ≤ F̄ (R). Since

¯
F (R) ≤

¯
F (R̄) ≤ p(R2

n) and F̄ (R) ≤ F̄ (R̄) ≤ p(R2
n), we then

have F (R) = F (R̄).

(c) The proof proceeds exactly as the proof of Proposition 2(b), the only difference being

that in Case 1, (b) is used instead of Proposition 2(a).

(d) Let j ∈ N , and R, R̄ ∈ RN such that R−j = R̄−j and p(Rj) ≤ p(R̄j).

Case 1 (Conv(R̄) ⊆ Conv(R)). Hence,
¯
p(R) ≤

¯
p(R̄) ≤ p̄(R) = p̄(R̄) and, without loss of

generality, j ∈ N \ {n}. By (b), for each i ∈ N \ {j}, F (R̄)Ri F (R). Since p(Rn) = p̄(R) =

p̄(R̄), by F (R) Rn F (R̄), efficiency, and single-peakedness, we have
¯
F (R) ≤

¯
F (R̄) ≤ p(Rn)

and F̄ (R) ≤ F̄ (R̄) ≤ p(Rn).
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Case 2 (Conv(R) ⊆ Conv(R̄)). Hence,
¯
p(R) =

¯
p(R̄) ≤ p̄(R) ≤ p̄(R̄) and, without loss of

generality, j ∈ N \ {1}. By a symmetric argument to Case 1 (with agent 1 in the role of

agent n),
¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄).

Case 3 (
¯
p(R) <

¯
p(R̄) ≤ p̄(R) < p̄(R̄)). Starting from R, change agent j’s preferences to

R1
j such that p(R1

j ) =
¯
p(R̄), and define R1 := (R−j, R

1
j ). By Case 1,

¯
F (R) ≤

¯
F (R1) and

F̄ (R) ≤ F̄ (R1). Next, change agent j’s preferences to R̄j and obtain R̄ = (R1
−j, R̄j). By

Case 2,
¯
F (R1) ≤

¯
F (R̄) and F̄ (R1) ≤ F̄ (R̄). Hence,

¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄).

(e) Let j ∈ N , and R, R̄ ∈ RN such that R−j = R̄−j. By (c) and (d), F ∈ FN satisfies

extreme-peaks-onliness and peak-monotonicity. By symmetry of arguments, we prove (i).

Let [p(Rj) <
¯
F (R) and p(R̄j) ≤

¯
F (R)] or [p(Rj) >

¯
F (R) and p(R̄j) ≥

¯
F (R)]. Then,

Conv(R̄) ⊆ Conv(R) or Conv(R̄) ⊇ Conv(R).

Case 1 (p(Rj) <
¯
F (R) and p(R̄j) ≤

¯
F (R)). Hence, p(Rj) ̸= p̄(R).

Case 1.1 (Conv(R̄) = Conv(R)). By extreme-peaks-onliness, F (R) = F (R̄).

Case 1.2 (Conv(R̄) ⊊ Conv(R)). Hence, j = 1 and
¯
p(R) = p(R1) <

¯
p(R̄) ≤ p(R̄1) ≤

¯
F (R). By peak-monotonicity,

¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄). Starting from R̄, change

agent 2’s preferences to R̄1
2 such that p(R̄1

2) =
¯
p(R̄), and define R̄1 := (R̄−2, R̄

1
2) with

Conv(R̄1) = Conv(R̄). By extreme-peaks-onliness, F (R̄1) = F (R̄). Furthermore, since

Conv(R̄1) = Conv(R̄1
−1), by (a), F (R̄1) = F (R̄1

−1).

Starting from R, change agent 2’s preferences to R2
2 = R̄1

2 and define R2 := (R−2, R
2
2)

with Conv(R2) = Conv(R). By extreme-peaks-onliness, F (R2) = F (R). Furthermore, by

(a), for each i ∈ N \ {1}, F (R2
−1) R

2
i F (R2). Since R̄1

−1 = R2
−1, for each i ∈ N \ {1},

F (R̄) = F (R̄1) = F (R̄1
−1) = F (R2

−1)R
2
i F (R2) = F (R). In particular, F (R̄)R2

2 F (R). Since,

p(R2
2) ≤ ¯

F (R), by efficiency and single-peakedness
¯
F (R̄) ≤

¯
F (R) and F̄ (R̄) ≤ F̄ (R). Hence,

F (R) = F (R̄).

Case 1.3 (Conv(R̄) ⊋ Conv(R)). Hence, j = 1 and
¯
p(R̄) = p(R̄1) <

¯
p(R) = p(R1) ≤

¯
F (R).

By peak-monotonicity,
¯
F (R̄) ≤

¯
F (R) and F̄ (R̄) ≤ F̄ (R).

If p(R1) ≤
¯
F (R̄), then the proof proceeds as in Case 1.2 with the roles of R and R̄

switched. Assume that
¯
F (R̄) < p(R1). Then, starting from R̄, change agent 2’s preferences to

R̄1
2 such that p(R̄1

2) = p(R1) and
¯
F (R̄)P̄ 1

2 ¯
F (R), and define R̄1 := (R̄−2, R̄

1
2) with Conv(R̄1) =

Conv(R̄). By extreme-peaks-onliness, F (R̄1) = F (R̄).

Starting from R, change agent 2’s preferences to R2
2 = R̄1

2 and define R2 := (R−2, R
2
2) with

Conv(R2) = Conv(R). By extreme-peaks-onliness, F (R2) = F (R). Since R̄1
−1 = R2

−1 and

Conv(R2) ⊊ Conv(R̄1), by (b), for each i ∈ N \{1}, F (R2) R̄1
i F (R̄1). In particular, F (R) R̄1

2
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F (R̄), which implies bF (R)(R̄
1
2) R̄

1
2 bF (R̄)(R̄

1
2). However,

¯
F (R̄) P̄ 1

2 ¯
F (R) implies bF (R̄)(R̄

1
2) P̄

1
2

bF (R)(R̄
1
2) = ¯

F (R); a contradiction.

Case 2 (p(Rj) >
¯
F (R) and p(R̄j) ≥

¯
F (R)). Hence, p(Rj) ̸=

¯
p(R).

Case 2.1 (Conv(R̄) = Conv(R)). By extreme-peaks-onliness, F (R) = F (R̄).

Case 2.2 (Conv(R̄) ⊊ Conv(R)). Hence, j = n and
¯
F (R) ≤ p(R̄n) ≤ p̄(R̄) < p(Rn) =

p̄(R). By peak-monotonicity,
¯
F (R̄) ≤

¯
F (R) and F̄ (R̄) ≤ F̄ (R). Starting from R̄, change

agent 2’s preferences to R̄1
2 such that p(R̄1

2) = p̄(R̄), and define R̄1 := (R̄−2, R̄
1
2) with

Conv(R̄1) = Conv(R̄). By extreme-peaks-onliness, F (R̄1) = F (R̄). Furthermore, since

Conv(R̄1) = Conv(R̄1
−n), by (a), F (R̄1) = F (R̄1

−n).

Starting from R, change agent 2’s preferences to R2
2 = R̄1

2 and define R2 := (R−2, R
2
2)

with Conv(R2) = Conv(R). By extreme-peaks-onliness, F (R2) = F (R). Furthermore, by

(a), for each i ∈ N \ {1}, F (R2
−n) R

2
i F (R2). Since R̄1

−n = R2
−n, for each i ∈ N \ {n},

F (R̄) = F (R̄1) = F (R̄1
−n) = F (R2

−n)R
2
i F (R2) = F (R). In particular, F (R̄)R2

2 F (R). Since,

p(R2
2) ≥ ¯

F (R), by efficiency and single-peakedness
¯
F (R̄) ≥

¯
F (R). Hence,

¯
F (R) =

¯
F (R̄).

Case 2.3 (Conv(R̄) ⊋ Conv(R)). Hence, j = n and
¯
F (R) ≤ p(Rn) = p̄(R) < p(R̄n) = p̄(R̄).

By peak-monotonicity,
¯
F (R) ≤

¯
F (R̄) and F̄ (R) ≤ F̄ (R̄).

If p(Rn) ≥
¯
F (R̄), then the proof proceeds as in Case 2.2 with the roles of R and R̄

switched. Assume that
¯
F (R̄) > p(Rn). Then, starting from R̄, change agent 2’s prefer-

ences to R̄1
2 such that p(R̄1

2) = p(Rn) and
¯
F (R̄) P̄ 1

2 ¯
F (R), and define R̄1 := (R̄−2, R̄

1
2) with

Conv(R̄1) = Conv(R̄). By extreme-peaks-onliness, F (R̄1) = F (R̄).

Starting from R, change agent 2’s preferences to R2
2 = R̄1

2 and define R2 := (R−2, R
2
2)

with Conv(R2) = Conv(R). By extreme-peaks-onliness, F (R2) = F (R). Since R̄1
−n = R2

−n

and Conv(R2) ⊊ Conv(R̄1), by (b), for each i ∈ N \ {1}, F (R2) R̄1
i F (R̄1). In particular,

F (R) R̄1
2F (R̄), which implies bF (R)(R̄

1
2) R̄

1
2 bF (R̄)(R̄

1
2). However, ¯

F (R̄) P̄ 1
2 ¯
F (R), which implies

bF (R̄)(R̄
1
2) P̄

1
2 bF (R)(R̄

1
2) = ¯

F (R); a contradiction.

C Proof of Theorem 1

Throughout this appendix, for N ∈ P and R ∈ RN , we assume, without loss of generality,

that N = {1, 2, . . . , n} and
¯
p(R) = p(R1) ≤ p(R2) ≤ . . . ≤ p(Rn) = p̄(R).

The following lemma is crucial in the proof of Theorem 1.
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Lemma 2. Let F ∈ F satisfy efficiency and population-monotonicity. Let N ∈ P, |N | ≥ 3,

and F ∈ FN . Then, for each R, R̄ ∈ RN such that Conv(R̄) ⊆ Conv(R), if F (R) = F a,b(R),

then F (R̄) = F a,b(R̄).

Proof. Let F ∈ F satisfy efficiency and population-monotonicity. Let N ∈ P and |N | ≥ 3.

Then, by Proposition 4(c,e), F ∈ FN satisfies extreme-peaks-onliness and uncompromising-

ness. It is easy to see that target set correspondence F a,b ∈ FN satisfies efficiency, extreme-

peaks-onliness and uncompromisingness as well.22 Let R, R̄ ∈ RN such that F (R) = F a,b(R)

and Conv(R̄) ⊆ Conv(R).

Case 1 (Conv(R̄) = Conv(R)). By extreme-peaks-onliness and the definition of F a,b, F (R̄) =

F (R) = F a,b(R) = F a,b(R̄).

Case 2 (Conv(R̄) ⊊ Conv(R) such that
¯
p(R̄) >

¯
p(R) and p̄(R̄) = p̄(R)). By extreme-peaks-

onliness, it is without loss of generality to assume that
¯
p(R) = p(R1),

¯
p(R̄) = p(R̄1), and

for all i ∈ N \ {1}, p(Ri) = p̄(R) and p(R̄i) = p̄(R̄). Hence, R−1 = R̄−1 and p(R1) <

p(R̄1) ≤ p̄(R̄) = p̄(R). By efficiency and Proposition 1(i), p(R1) ≤
¯
F (R) ≤ F̄ (R) ≤ p̄(R)

and p(R̄1) ≤
¯
F (R̄) ≤ F̄ (R̄) ≤ p̄(R̄).

Case 2.1 (p(R̄1) ≤
¯
F (R)). Then, p(R1) < p(R̄1) <

¯
F (R) =

¯
F a,b(R) = a. By uncompromis-

ingness, F (R̄) = F (R) = F a,b(R). If a ≤ p̄(R) = p̄(R̄), then F a,b(R) = [a, b] ∩ Conv(R) =

[a, b] ∩ Conv(R̄) = F a,b(R̄). If a > p̄(R) = p̄(R̄), then, F a,b(R) = {p̄(R)} = F a,b(R̄).

Therefore, F (R̄) = F a,b(R̄).

Case 2.2 (
¯
F (R) < p(R̄1) ≤ F̄ (R)). Then, p(R1) ≤

¯
F (R) < F̄ (R). By uncompromisingness,

F̄ (R̄) = F̄ (R). By efficiency and Proposition 1(i), p(R̄1) ≤
¯
F (R̄). Next, assuming that

¯
F (R) < p(R̄1) <

¯
F (R̄) results in a contradiction as follows: since p(R̄1) <

¯
F (R̄) and

p(R1) <
¯
F (R̄), by uncompromisingness,

¯
F (R) =

¯
F (R̄) ̸=

¯
F (R), a contradiction. Hence,

¯
F (R̄) = p(R̄1) and thus, F (R̄) = [p(R̄1), F̄ (R)]. Since Conv(R̄) ⊊ Conv(R) and F (R) =

[a, b] ∩ Conv(R), F (R̄) = F (R) ∩ Conv(R̄) = [a, b] ∩ Conv(R̄). Therefore, by the definition

of F a,b, F (R̄) = [a, b] ∩ Conv(R̄) = F a,b(R̄).

Case 2.3 (
¯
F (R) ≤ F̄ (R) < p(R̄1)). By the definition of F a,b, a ≤ b < p(R̄1). Next, assuming

that F̄ (R) < p(R̄1) < F̄ (R̄) results in a contradiction as follows: since p(R̄1) < F̄ (R̄) and

p(R1) < F̄ (R̄), by uncompromisingness, F̄ (R) = F̄ (R̄) ̸= F̄ (R), a contradiction. Hence,

F̄ (R̄) = p(R̄1) and since p(R̄1) ≤
¯
F (R̄) ≤ F̄ (R̄), F (R̄) = {p(R̄1)}. Since a ≤ b < p(R̄1), by

the definition of F a,b, F (R̄) = {p(R̄1)} = F a,b(R̄).

22Alternatively, we show in the first part of the proof of Theorem 1 that F a,b ∈ FN satisfies population-

monotonicity. Then, by Proposition 4(c,e), F a,b satisfies extreme-peaks-onliness and uncompromisingness.
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Case 3 (Conv(R̄) ⊊ Conv(R) such that
¯
p(R̄) =

¯
p(R) and p̄(R̄) < p̄(R)). By a symmetric

proof to Case 2, F (R̄) = F a,b(R̄).

Case 4 (Conv(R̄) ⊊ Conv(R) such that
¯
p(R̄) >

¯
p(R) and p̄(R̄) < p̄(R)). Let profile R1 ∈ RN

such that
¯
p(R1) =

¯
p(R̄) >

¯
p(R) and p̄(R1) = p̄(R). By Case 2, F (R1) = F a,b(R1). Next,

since
¯
p(R̄) =

¯
p(R1) and p̄(R̄) < p̄(R1), by Case 3, F (R̄) = F a,b(R̄).

Proof of Theorem 1. If part. By Proposition 1, all target set correspondences satisfy

efficiency ; we next show that they also satisfy population-monotonicity. Let F a,b ∈ F be a

target set correspondence with the same target set [a, b] for all populations. Let N ∈ P such

that |N | ≥ 2 and R ∈ RN . We prove population-monotonicity of F a,b by showing that if

j ∈ N leaves, then for each i ∈ N \ {j}, F a,b(R−j)Ri F
a,b(R).

Case 1 (Conv(R−j) = Conv(R)). Then, F a,b(R−j) = F a,b(R).

Case 2 (Conv(R−j) ⊊ Conv(R)). Then, either (i) j = 1 and
¯
p(R) = p(R1) < p(R2) =

¯
p(R−1)

or (ii) j = n and p̄(R−1) = p(Rn−1) < p(Rn) = p̄(R). By symmetry of arguments, we consider

Case (i).

Case 2.1 (a ≤ b < p(R2)). Then, F a,b(R−1) = {p(R2)}. Furthermore, if b ≤ p(R1), then

F a,b(R) = {p(R1)}; if a ≤ p(R1) < b, then F a,b(R) = [p(R1), b]; and if p(R1) < a ≤
b, then F a,b(R) = [a, b]. Hence, for each i ∈ N \ {1}, bFa,b(R−1)(Ri) = wFa,b(R−1)(Ri) =

{p(R2)}, bFa,b(R)(Ri) ∈ {p(R1), b}, and wFa,b(R)(Ri) ∈ {p(R1), a}. Thus, for each i ∈ N \{1},
bFa,b(R)(Ri) < bFa,b(R−1)(Ri) ≤ p(Ri) and wFa,b(R)(Ri) < wFa,b(R−1)(Ri) ≤ p(Ri). By single-

peakedness, for each i ∈ N \ {1}, F a,b(R−1) Pi F
a,b(R).

Case 2.2 (a < p(R2) ≤ b). Then,
¯
F a,b(R) <

¯
F a,b(R−1) = p(R2) and F̄ a,b(R) = F̄ a,b(R−1).

Thus, for each i ∈ N \ {1},
¯
F a,b(R) <

¯
F a,b(R−1) ≤ p(Ri). If F̄ a,b(R−1) < p(Ri), then

b = bFa,b(R)(Ri) = bFa,b(R−1)(Ri) < p(Ri) and wFa,b(R)(Ri) < wFa,b(R−1)(Ri) < p(Ri).

If F̄ a,b(R−1) ≥ p(Ri), then bFa,b(R)(Ri) = bFa,b(R−1)(Ri) = {p(Ri)} and wFa,b(R−1)(Ri) ∈
F a,b(R−1) ⊆ F a,b(R). In both cases, by single-peakedness, bFa,b(R−1)(Ri) Ri bFa,b(R)(Ri) and

wFa,b(R−1)(Ri)Ri wFa,b(R)(Ri). Hence, for each i ∈ N \ {1}, F a,b(R−1)Ri F
a,b(R).

Case 2.3 (p(R2) ≤ a ≤ b). Then, F a,b(R−1) = F a,b(R).

Only if part. Let choice correspondence F ∈ F satisfy efficiency and population-

monotonicity.

Step 1. Let N ∈ P and |N | ≥ 3. Then, by Lemmas 4(c,d), F ∈ FN satisfies extreme-

peaks-onliness and uncompromisingness. For each pair of points α, β ∈ R such that α ≤ β,

define Rα,β ∈ RN such that α =
¯
p(Rα,β) = p(Rα,β

1 ) ≤ . . . ≤ p(Rα,β
n ) = p̄(Rα,β) = β. By

efficiency and Proposition 1(i), α ≤
¯
F (Rα,β) ≤ F̄ (Rα,β) ≤ β.
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We prove that there exists a target set correspondence F a,b ∈ FN such that for each

profile R ∈ RN , F (R) = F a,b(R).

Case 1 (there exist α, β ∈ R such that for Rα,β ∈ RN , α <
¯
F (Rα,β) ≤ F̄ (Rα,β) < β).

Define a :=
¯
F (Rα,β) and b := F̄ (Rα,β). Since F (Rα,β) = [a, b] = [a, b] ∩ Conv(Rα,β), by the

definition of F a,b, F (Rα,β) = F a,b(Rα,β). Let R ∈ RN . Starting from Rα,β, change agent 1’s

preferences to R1
1 such that

p(R1
1) =

α if α ≤
¯
p(R)

¯
p(R) if α >

¯
p(R),

and define R1 := (Rα,β
−1 , R

1
1). Since α = p(Rα,β

1 ) <
¯
F (Rα,β) and p(R1

1) <
¯
F (Rα,β), by

uncompromisingness, F (R1) = F (Rα,β) = [a, b].

Next, change agent n’s preferences to R2
n such that

p(R2
n) =

β if β ≥ p̄(R)

p̄(R) if β < p̄(R),

and define R2 := (R1
−n, R

2
n). Since β = p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by uncom-

promisingness, F (R2) = F (R1) = [a, b]. Since F (R2) = [a, b] = [a, b] ∩ Conv(R2), by the

definition of F a,b, F (R2) = F a,b(R2). Since, F (R2) = F a,b(R2) and Conv(R) ⊆ Conv(R2),

by Lemma 2, F (R) = F a,b(R).

Case 2 (there exist α, β ∈ R such that for Rα,β ∈ RN , α =
¯
F (Rα,β) ≤ F̄ (Rα,β) < β, and for

each ᾱ ≤ α and its associated Rᾱ,β ∈ RN , ᾱ =
¯
F (Rᾱ,β) ≤ F̄ (Rᾱ,β) < β).

Case 2.1 (α =
¯
F (Rα,β) < F̄ (Rα,β) < β). Define a := −∞ and b := F̄ (Rα,β). Since

F (Rα,β) = [
¯
p(Rα,β), b] = [a, b] ∩Conv(Rα,β), by the definition of F a,b, F (Rα,β) = F a,b(Rα,β).

Let R ∈ RN . Starting from Rα,β, change agent 1’s preferences to R1
1 such that

p(R1
1) =

α if α ≤
¯
p(R)

¯
p(R) if α >

¯
p(R),

and define R1 := (Rα,β
−1 , R

1
1). Since

¯
p(R1) ≤ α and p̄(R1) = β, as specified in Case 2, and by

extreme-peaks-onliness,
¯
p(R1) =

¯
F (R1). Since α = p(Rα,β

1 ) < F̄ (Rα,β) and p(R1
1) < F̄ (Rα,β),

by uncompromisingness, F̄ (R1) = F̄ (Rα,β) = b. Hence, F (R1) = [
¯
p(R1), b].

Next, change agent n’s preferences to R2
n such that

p(R2
n) =

β if β ≥ p̄(R)

p̄(R) if β < p̄(R),
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and define R2 := (R1
−n, R

2
n). Since β = p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by uncompro-

misingness, F (R2) = F (R1) = [
¯
p(R2), b]. Since F (R2) = [

¯
p(R2), b] = [a, b] ∩ Conv(R2), by

the definition of F a,b, F (R2) = F a,b(R2). Since F (R2) = F a,b(R2) and Conv(R) ⊆ Conv(R2),

by Lemma 2, F (R) = F a,b(R).

Case 2.2 (α =
¯
F (Rα,β) = F̄ (Rα,β) < β). Define a := −∞ and b := −∞. Since b <

¯
p(Rα,β) =

α and F (Rα,β) = {α}, by the definition of F a,b, F (Rα,β) = F a,b(Rα,β). Let R ∈ RN . Starting

from Rα,β, change agent 1’s preferences to R1
1 such that

p(R1
1) =

α if α ≤
¯
p(R)

¯
p(R) if α >

¯
p(R),

and define R1 := (Rα,β
−1 , R

1
1). Since

¯
p(R1) ≤ α and p̄(R1) = β, as specified in Case 2, and by

extreme-peaks-onliness, F (R1) = {
¯
p(R1)}.

Next, change agent n’s preferences to R2
n such that

p(R2
n) =

β if β ≥ p̄(R)

p̄(R) if β < p̄(R),

and define R2 := (R1
−n, R

2
n). Since β > p(R1

n) > F̄ (R1) and p(R2
n) > F̄ (R1), by uncom-

promisingness, F (R2) = F (R1) = {
¯
p(R2)}. Since b <

¯
p(R2), by the definition of F a,b,

F (R2) = F a,b(R2). Since F (R2) = F a,b(R2) and Conv(R) ⊆ Conv(R2), by Lemma 2,

F (R) = F a,b(R).

Case 3 (there exist α, β ∈ R such that for Rα,β ∈ RN , α <
¯
F (Rα,β) ≤ F̄ (Rα,β) = β, and for

each β̄ ≥ β and its associated Rα,β̄ ∈ RN , α <
¯
F (Rα,β̄) ≤ F̄ (Rα,β̄) = β̄). The proof of this

case is symmetric to Case 2.

Case 4 (for each α, β ∈ R such that α ≤ β and its associated Rα,β ∈ RN , α =
¯
F (Rα,β) ≤

F̄ (Rα,β) = β). Define a := −∞ and b := ∞. Since for each α, β ∈ R and its associated

Rα,β ∈ RN , α =
¯
F (Rα,β) ≤ F̄ (Rα,β) = β, by extreme-peaks-onliness, for each R ∈ RN ,

F (R) = Conv(R). Therefore, since a <
¯
p(R) ≤ p̄(R) < b, by the definition of F a,b, F (R) =

F a,b(R).

Step 2. Let M ∈ P such that |M | ≥ 3. By Step 1, for each R ∈ RM , F = F aM ,bM ∈ FM .

Define points a := aM and b := bM .

We show that for each N ∈ P and each R̄ ∈ RN , F (R̄) = F a,b(R̄). We do so by showing

that for each N ∈ P , each R̄ ∈ RN , and each R ∈ RM , if Conv(R̄) = Conv(R), then

F (R̄) = F a,b(R) = F a,b(R̄) (the latter equality follows by the definition of F a,b).
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Let R ∈ RM and R̄ ∈ RN . Recall that F (R) = F a,b(R). Starting from R ∈ RM , add

the population N \M with profile R̄N\M such that R1 ∈ RM∪N and R1 = (R, R̄N\M). Since

Conv(R1) = Conv(R), by population-monotonicity and Proposition 4(a), F (R1) = F (R).

Next, change the preferences of each agent i ∈ N to R̄i and define R2 := (R1
M\N , R̄) ∈ RM∪N .

Since Conv(R2) = Conv(R1), by population-monotonicity and Proposition 4(a), F (R2) =

F (R1). Finally, remove the population M \ N from R2 such that R2
N = R̄ ∈ RN . Since

Conv(R̄) = Conv(R2), by population-monotonicity and Proposition 4(a), F (R̄) = F (R2).

Hence, F (R̄) = F a,b(R) = F a,b(R̄).
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