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Integral Cohomology of 2-Local Hopf Spaces with
at Most Two Non-Trivial Finite Homotopy Groups

Alain Clément

Abstract. In this paper we prove that a non-contractible simply-connected

2-local H-space X with at most two non-trivial finite homotopy groups has no

homology exponent, i.e. no exponent e > 1 such that e · eH∗(X; Z) = 0.

1. Introduction

Let X be a connected topological space having the homotopy type of a
CW-complex. One can both consider its graded homotopy group π∗(X) and its
graded reduced integral cohomology group H̃∗(X; Z). If an integer h > 1 such that
h · π∗(X) = 0 exists, then we say that X has a homotopy exponent. Analogously,
if an integer e > 1 such that e · H̃∗(X; Z) = 0 exists, then we say that X admits a
homology exponent.

A general question asked by D. Arlettaz suggests to explore the relationships
between homotopy exponents and homology exponents. For instance, is it true
that a space with a homotopy exponent has a homology exponent, too? In this
case, how are these two exponents related? Or conversely, is it possible for a space
without a homotopy exponent to admit a homology exponent?

In this paper, we focus on simply-connected 2-local H-spaces with one or two
non-trivial finite homotopy groups. Such a space obviously admits a homotopy
exponent. Our main result is the following:

Main Theorem. Let X be a non-contractible simply-connected 2-local H-space
with at most two non-trivial finite homotopy groups. Then X has no homology
exponent.

The result when X is an Eilenberg-Mac Lane space is a well-known consequence
of the calculations of H. Cartan [2], see Corollary 2.5. More elaborated techniques
are required to prove the result when X has two non-trivial homotopy groups.
Section 2 establishes some preparations and investigates the situation of Eilenberg-
Mac Lane spaces in detail. Some interesting examples are completely carried out in
Section 3 and a proof of the main theorem is given in Section 4. We conclude the
paper with some questions and comments in Section 5.
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2 ALAIN CLÉMENT

Unless otherwise specified, a space will mean a pointed, connected and simple
topological space with the homotopy type of a CW-complex of finite type. We
will denote by K(G, n) the Eilenberg-Mac Lane space with a single non-trivial
homotopy group isomorphic to G in dimension n (G abelian if n > 2).

Since we will only consider simple spaces X, we will only deal with abelian
fundamental groups and it will always be possible to consider the Postnikov
tower built up from the Postnikov sections of X which will be denoted by
αn : X −→ X[n] and the k-invariants kn+1(X) ∈ Hn+1(X[n − 1];πnX) ∼=
[X[n− 1],K(πnX, n + 1)].

Acknowledgements. I would like to thank my thesis advisor D. Arlettaz for
the help that he provided to me all along my studies and for the suggestions that
he brought to this paper. I am also indebted to J. Scherer and C. Casacuberta for
their support during my thesis work. I am very grateful to K. Hess-Belwald for her
support and finally I would like to thank the referee who read this paper.

2. Transverse implications

In this introductory section we collect some well-known results that we need
later in the paper, in particular results regarding the cohomology of 2-local Eilenberg-
Mac Lane spaces.

A non-empty finite sequence of positive integers I = (a0, . . . , ak), where k is
varying, is admissible if ai > 2ai+1 for all 0 6 i 6 k − 1. Let S be the set of all
such admissible sequences. The stable degree is a map degst : S → N defined
by degst(I) =

∑k
i=0 ai for all I = (a0, . . . , ak) ∈ S. The stable degree induces a

grading on the set S of all admissible sequences. The excess is a map e : S → N
defined by e(I) = 2a0 − degst(I) = a0 −

∑k
i=1 ai for all I = (a0, . . . , ak) ∈ S.

Let n > 1 and s > 1. Let δs the connecting homomorphism in the long exact
sequence of coefficients in cohomology associated to the short exact sequence

0 // Z/2 // Z/2s+1 // Z/2s // 0 .

Consider the fundamental class ιn ∈ Hn(K(Z/2s, n); Z/2s) and its mod-2 reduction
un ∈ Hn(K(Z/2s, n); F2).

Convention. Let I = (a0, . . . , ak) be an admissible sequence. We will write
SqI

sun instead of Sqa0 . . . Sqak−1δsιn (usually denoted by Sqa0,...,ak−1δsιn) if ak = 1
and instead of Sqa0 . . . Sqakun (also denoted by Sqa0,...,akun or SqIun) if ak 6= 1.
In particular, since δ1 = Sq1 and the reduction is the identity when s = 1, we have
SqI

1un = SqIun.

J.-P. Serre [11] computed the mod-2 cohomology of Eilenberg-Mac Lane spaces
and stated the following result:

Theorem 2.1. Let n > 1 and s > 1. The graded F2-algebra H∗(K(Z/2s, n); F2)
is isomorphic to the graded polynomial F2-algebra on generators SqI

sun, where I
covers all the admissible sequences of excess e(I) < n and un is the reduction of the
fundamental class (see the above convention). The degree of a generator SqI

sun is
deg(SqI

sun) = degst(I) + n.

This result also reveals the A2-algebra structure of H∗(K(Z/2s, n); F2), where
A2 denotes the mod-2 Steenrod algebra.
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It is well known that an Eilenberg-Mac Lane space associated with an abelian
group has a unique H-space structure up to homotopy (which can be seen as in-
herited from the loop space structure or from the addition law of the associated
abelian group). Therefore, the differential graded A2-algebra H∗(K(Z/2s, n); F2)
is also a differential graded Hopf algebra. If H is a graded Hopf algebra over the
field F2, with multiplication µ : H ⊗ H → H, comultiplication ∆ : H → H ⊗ H,
augmentation ε : H → F2 and unit η : F2 → H (F2 is concentrated in degree zero,
see [9] for the definitions), the augmentation ideal of H will be denoted by

H̄ = ker ε : H → F2,

the graded module of indecomposable elements of H by

QH = H̄/µ(H̄ ⊗ H̄)

= coker µ : H̄ → H̄ ⊗ H̄

and the graded module of primitive elements of H by

PH = {x ∈ H̄ | ∆(x) = x⊗ 1 + 1⊗ x}
= ker∆ : H̄ → H̄ ⊗ H̄.

The Milnor-Moore theorem states that there is an exact sequence of graded
modules 0 // P (ξH) // PH // QH, where ξH is the image of the Frobe-
nius map ξ : x 7→ x2. The Hopf algebra H is said to be primitively generated
if PH → QH in the above exact sequence is an epimorphism.

J.-P. Serre also proved the following key result in [11]:

Theorem 2.2. The differential graded A2-algebra H∗(K(Z/2s, n); F2) is a con-
nected, associative, commutative and primitively generated differential graded Hopf
algebra for any integer n > 1 and any integer s > 1.

It is now easy to determine the modules of primitives and indecomposables of
H∗ = H∗(K(Z/2s, n); F2). The module of indecomposable elements is clearly given
by

QH∗ ∼= F2{SqI
sun | I admissible and e(I) < n}.

Since H∗ is primitively generated, the Milnor-Moore theorem gives the following
short exact sequence of graded F2-vector spaces:

0 // P (ξH∗) // PH∗ // QH∗ // 0.

Therefore, every indecomposable element is primitive and every primitive element
which is decomposable is a square of a primitive element. Thus we have

PH∗ ∼= F2{(SqI
sun)2

i

| I admissible, e(I) < n and i > 0}.

Now let us present some concepts and results on the high torsion in the integral
cohomology of Eilenberg-Mac Lane spaces associated with 2-torsion groups of finite
type. The material exposed here can be found with all the details in my thesis work
[3]. It is mainly inspired by the work of H. Cartan in [2].

Let us start with the following key definition:
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Definition 2.3. Let X be a space and {B∗
r , dr} be its mod-2 cohomology

Bockstein spectral sequence B∗
1
∼= H∗(X; F2) =⇒ (H∗(X; Z)/torsion) ⊗ F2. Let

n and r be two positive integers. An element x ∈ Bn
r is said to be `-transverse

if dr+lx
2l 6= 0 ∈ B2ln

r+l for all 0 6 l 6 `. An element x ∈ Bn
r is said to be

∞-transverse, or simply transverse, if it is `-transverse for all ` > 0. We will
also speak of transverse implications of an element x ∈ Bn

r .

For instance, suppose that x ∈ B2
1 is ∞-transverse and let us picture how the

transverse implications of x look like within the Bockstein spectral sequence:

B∗
3 x4

d3

��
• . . .

B∗
2 x2

d2

��
• . . .

B∗
1 x

d1

��
• . . .

∗ 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Every transverse element gives rise to 2-torsion of arbitrarily high order in the
integral cohomology of X. Actually, our strategy for disproving the existence of a
homology exponent for a space will consist in exhibiting a transverse element in its
mod-2 cohomology Bockstein spectral sequence.

In the special case of Eilenberg-Mac Lane spaces, we have the following result:

Proposition 2.4. Let G be a non-trivial 2-local abelian group of finite type
isomorphic to Z×s

(2) ⊕ Z/2s1 ⊕ · · · ⊕ Z/2sl and let n > 2. Consider the Eilenberg-
MacLane space K(G, n) and its mod-2 cohomology Bockstein spectral sequence
{B∗

r , dr}. Suppose that one of the following assumptions holds:

• n is even and x ∈ Bn
sj

is 0-transverse for any 1 6 j 6 l,
• x ∈ P even B∗

1 is 0-transverse (Sq1x 6= 0).

Then x is ∞-transverse.

A proof is given in [3, Theorem 1.3.2].
An algorithm explicitly computing the integral cohomology groups of such

K(G, n) spaces is implemented within a C++ program in [4]: the Eilenberg-MacLane
machine. For instance, the machine produces a table for K(Z/2, 2) whose part in
low degrees is:
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n Hn(K(Z/2, 2); Z) Hn(K(Z/2, 2); F2)
0 Z F2

1 (0) (0)
2 (0) F2{u2}
3 Z/2 F2{Sq1u2}
4 (0) F2{u2

2}
5 Z/22 F2{Sq2,1u2, u2Sq1u2}
6 Z/2 F2{u3

2, (Sq1u2)2}
7 Z/2 F2{u2Sq2,1u2, u

2
2Sq1u2}

8 Z/2 F2{u4
2, u2(Sq1u2)2, Sq1u2Sq2,1u2}

9 Z/2⊕ Z/23 F2{Sq4,2,1u2, u
2
2Sq2,1u2, u

3
2Sq1u2, (Sq1u2)3}

The elements of order 2, 4 and 8 in degrees 3, 5 and 9 respectively are given by
an ∞-transverse element: the characteristic class u2 ∈ H2(K(Z/2, 2); F2) – which
is of even degree and 0-transverse – and its iterated squares u2

2 and u4
2.

Let us remark that a 0-transverse implication does not imply ∞-transverse
implications in general. More precisely, the fact that x ∈ P even H∗(X; F2) is such
that Sq1x 6= 0 does not always force x to be ∞-transverse. A counter-example is
given by X = BSO and x = w2, the second Stiefel-Withney class in H2(BSO; F2).

As a corollary of Proposition 2.4, it is then possible to give a proof of our main
result for Eilenberg-Mac Lane spaces:

Corollary 2.5. Let G be a non-trivial finite 2-torsion abelian group and let
n > 2. The Eilenberg-MacLane space K(G, n) has no homology exponent.

Proof. Accordingly to the Künneth formula, it is sufficient to establish the
result when G = Z/2s for some s > 1. If n is even, consider the reduction of
the fundamental class un ∈ Hn(K(Z/2s, n); F2). This class survives to Bn

s and is
0-transverse. Then un ∈ Bn

s is∞-transverse. If n is odd, consider the admissible se-
quence (2, 1). Its excess is exactly 1 and therefore Sq2,1

s un ∈ P even H∗(K(Z/2, n); F2)
when n > 3. Moreover we have Sq1Sq2,1

s un = Sq3,1
s un by Adem relations, which

means that Sq2,1
s un is 0-transverse. Hence Sq2,1

s un ∈ Bn+3
1 is ∞-transverse. �

Let us conclude this section by proving the following crucial observation which
states that the ∞-transverse implications of an element in the cohomology of the
total space of a fibration can be read in the cohomology of the fibre.

Lemma 2.6. Let j : F → X be a continuous map. If x ∈ H∗(X; F2) is such
that j∗(x) 6= 0 ∈ H∗(F ; F2) is ∞-transverse, then x itself is ∞-transverse.

Proof. Suppose that x is not ∞-transverse. Then there exists r > 0 such that
dr+1x

2r

= 0. Therefore we have dr+1j
∗(x)2

r

= dr+1j
∗(x2r

) = j∗dr+1x
2r

= 0, since
dr+1x

2r

= 0, which contradicts ∞-transversity of j∗(x). �

3. Examples

Let us consider now 2-local spaces with two non-trivial finite homotopy groups.
Recall that we want to prove that they do not have a homology exponent. This
section will be devoted to two interesting examples.
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Example 3.1. If such a space X retracts onto an Eilenberg-Mac Lane space,
then it is a easy to deduce that X has no homology exponent. This is for instance
the case for the space X given by the fibration

X
i // K(Z/2, 2)×K(Z/2, 2) k // K(Z/2, 4),

where its single non-trivial k-invariant

k ∈[K(Z/2, 2)×K(Z/2, 2),K(Z/2, 4)]
∼=H4(K(Z/2, 2)×K(Z/2, 2); F2)
∼=H4(K(Z/2, 2); F2)⊗ F2

⊕H2(K(Z/2, 2); F2)⊗H2(K(Z/2, 2); F2)

⊕ F2 ⊗H4(K(Z/2, 2); F2)
∼=F2{u2

2 ⊗ 1, u2 ⊗ v2, 1⊗ v2
2}

is given by k = u2 ⊗ v2 where u2 and v2 are the fundamental classes of both copies
of K(Z/2, 2). The space X has only two non-trivial homotopy groups π2(X) ∼=
Z/2⊕ Z/2 and π3(X) ∼= Z/2.

Proposition 3.2. The space X of Example 3.1 has the following properties:

1. X is not a GEM (i.e. a weak product of Eilenberg-MacLane spaces),
2. X is not a H-space,
3. X retracts (weakly) onto the Eilenberg-MacLane space K(Z/2, 2), i.e.

there exist maps f : X → K(Z/2, 2) and g : K(Z/2, 2) → X such that
fg ' idK(Z/2,2),

4. f∗ : H∗(K(Z/2, 2); F2) → H∗(X; F2) is a monomorphism,
5. X has no homology exponent.

Proof. The space X is clearly not a GEM nor a H-space.
Consider the following homotopy commutative diagram based on the fibration

for which X is the fibre:

X

i

��

f

&&
K(Z/2, 2)

i1 //

g
22

∗ ++

K(Z/2, 2)×K(Z/2, 2)
p1 //

k

��

K(Z/2, 2)

K(Z/2, 4),

where i1 denotes the inclusion into the first factor, p1 denotes the projection
onto the first factor and f = p1i. The existence of a (generally not unique)
map g is a consequence of the fact that ki1 ' ∗. To see that ki1 ' ∗, recall
first that the isomorphism [K(Z/2, 2),K(Z/2, 4)] ∼= H4(K(Z/2, 2); F2) maps ki1
to (ki1)∗(u4), where (ki1)∗ = (i1)∗k∗ : H4(K(Z/2, 4); F2) → H4(K(Z/2, 2); F2)
and u4 ∈ H4(K(Z/2, 4); F2) is the fundamental class. Now we have (i1)∗k∗(u4) =
(i1)∗(u2 ⊗ v2) = (i1)∗(u2 ⊗ 1 · 1 ⊗ v2) = (i1)∗(u2 ⊗ 1) · (i1)∗(1 ⊗ v2) = 0, since
(i1)∗(1⊗ v2) = 0. Therefore fg ' id and the result follows. �
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One can relate this space with other examples pointed out by F. R. Cohen
and F. P. Peterson in [5]. They constructed loop maps Ωg : ΩY → K(Z/2, n),
n > 2, with the property that (Ωg)∗ : H∗(K(Z/2, n); F2) → H∗(ΩY ; F2) is a
monomorphism and such that Ωg does not admit a section.

Their examples are mainly provided by ΩΣ(RP∞)n → K(Z/2, n), the canon-
ical multiplicative extension of Serre’s map e : (RP∞)n → K(Z/2, n), and by
ΩΣBSO(3) → K(Z/2, 2), the canonical multiplicative extension of the second
Stiefel-Whitney class in the mod-2 cohomology of BSO(3) in the case n = 2.

The spaces Σ(RP∞)n and ΣBSO(3) have infinitely many non-trivial homotopy
groups. Our space X has only two. However, the loop maps Ωg : ΩY → K(Z/2, n)
of F. R. Cohen and F. P. Peterson and our map f : X → K(Z/2, 2) all induce
monomorphisms.

Example 3.3. Let us now consider a more interesting example of 2-local space
with two non-trivial homotopy groups which does not admit a retract onto an
Eilenberg-Mac Lane space. Therefore we will not be able to use the topological
argument of the proof of Proposition 3.2 in order to prove the non-existence of a
homology exponent. The main idea here is to detect ∞-transverse implications.

Let X be the space given by the fibration

X
i // K(Z/2, 2) k // K(Z/2, 4),

where its single non-trivial k-invariant

k ∈[K(Z/2, 2),K(Z/2, 4)]
∼=H4(K(Z/2, 2); F2)
∼=F2{u2

2}

is given by k = u2
2 where u2 is the fundamental class of K(Z/2, 2). The space X

has only two non-trivial homotopy groups π2(X) ∼= Z/2 ∼= π3(X).

Proposition 3.4. The space X of Example 3.3 has the following properties:

1. X is not a GEM,
2. X is an infinite loop space,
3. X retracts neither onto the Eilenberg-MacLane space K(Z/2, 2), nor onto

K(Z/2, 3),
4. However, X has no homology exponent.

Proof. The space X is clearly not a GEM. It is an infinite loop space since
its k-invariant u2

2 is in the image of the n-fold cohomology suspension for all n.
In order to show that X does retract neither onto K(Z/2, 2), nor onto K(Z/2, 3),

let us consider the mod-2 cohomology Serre spectral sequence of the fibration
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K(Z/2, 3)
j // X

i // K(Z/2, 2) . The E2-term looks like:

Sq1u3 0 ∗ ∗ ∗ ∗ ∗
u3 0 u2u3 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 u2 Sq1u2 u2
2 Sq2,1u2 u3

2

u2Sq1u2 (Sq1u2)2

We have H2(X; F2) ∼= F2{v} with u2 7→ v via the composition

i∗ : H2(K(Z/2, 2); F2) ∼= E2,0
2

// // E2,0
3

∼= E2,0
∞

∼= H2(X; F2) .

The Serre’s transgression theorem (see for instance [8, Theorem 6.8, p. 189])
implies that d4 coincides with the transgression which is given by the k-invariant.
In other words we have d4u3 = k∗(u4) = u2

2. Therefore
⊕

s Es,3−s
∞

∼= E3,0
∞ and

H3(X; F2) ∼= F2{w} with Sq1u2 7→ w via the composition

i∗ : H∗(K(Z/2, 2); F2) ∼= E3,0
2

// // E3,0
3

// // E3,0
4

∼= E3,0
∞

∼= H3(X; F2) .

We clearly have Sq1v = w.
Suppose that there are maps f : X → K(Z/2, 2) and g : K(Z/2, 2) → X with

fg ' idK(Z/2,2). The only non-trivial map f : X → K(Z/2, 2) is given by the
single non-trivial element v ∈ H2(X; F2). This forces f ' i. Therefore we have
kig ' k idK(Z/2,2) ' k which contradicts the fact that ki ' ∗.

Suppose now that there are maps f : X → K(Z/2, 3) and g : K(Z/2, 3) → X
with fg ' idK(Z/2,3). The only non-trivial map f : X → K(Z/2, 3) is given by the
single non-trivial element w ∈ H3(X; F2). Therefore we have g∗f∗(u3) = g∗(w) =
g∗(Sq1v) = Sq1g∗(v) = 0, since g∗(v) ∈ H2(K(Z/2, 3); F2) = 0. In other words, we
always have fg ' ∗ and X cannot retract onto K(Z/2, 3).

Since u3 transgresses to u2
2, Sq1u3 transgresses to Sq1u2

2 which vanishes by
Cartan’s formula. Therefore Sq1u3 6= 0 ∈ E0,4

∞ and there exists x′ ∈ H4(X; F2)
such that x′ 7→ Sq1u3 via the composition

j∗ : H4(X; F2) // // E0,4
∞

∼= E0,4
6 ⊂ · · · ⊂ E0,4

2
∼= H4(K(Z/2, 3); F2) .

Set x = Sq2x′. We have j∗(x) = j∗(Sq2x′) = Sq2j∗(x′) = Sq2,1u3 which is ∞-
transverse. Thus x is also ∞-transverse and X cannot admit a homology exponent.

�

4. Proof of the main result

This section is devoted to the proof of our main result. We begin to sketch a
strategy allowing us to reach our aim.
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Strategy. In Example 3.3, we found an element x in the mod-2 cohomology of
X such that its image in the cohomology of the fibre j∗(x) = Sq2,1u3 is non-trivial
and has ∞-transverse implications; this imply for x itself to have ∞-transverse im-
plications and prevents the existence of a homology exponent. Let us consider each
of these stages in the general setting of a space X with two non-trivial homotopy
groups:

(A) Every non-trivial element in E0,∗
2 which survives to E0,∗

∞ gives rise to an
element x ∈ H∗(X; F2) with a non-trivial image j∗(x) in the cohomology
of the fibre. This leads us to find an element in E0,∗

2 which transgresses to
zero. The fact that transgressions in the spectral sequence commute with
the Steenrod squares is very valuable for our purpose (J.-P. Serre remarked
that the transgressions also commute with the connecting homomorphism
δs introduced in Section 2, see [11, p. 206] and [10, p. 457]). For
instance, the reduction of the characteristic class un ∈ E0,n

2 transgresses
to a primitive element w determined by the k-invariant. Therefore, the
first step will be done if we can find an admissible sequence I such that
SqI

sun 6= 0 transgresses to SqI
sw = 0.

(B) Among all the admissible sequences I = (a0, . . . ) of excess e(I) < n
such that SqI

sun 6= 0 transgresses to zero, some of them are interesting
because they insure on one hand that the element SqI

sun has a 0-transverse
implication in the cohomology of the fibre and on the other hand that
SqI

sun lies in even degree. We have seen in Proposition 2.4 that these two
conditions force SqI

sun to have ∞-implications. It is immediate to see
that such an admissible sequence “begins” with an even a0 and has stable
degree degst(I) ≡ n (mod 2).

Let us look at the A2-action on the primitive elements of the cohomology of the
base space. Following (A), our aim here is to find a suitable admissible sequence.
Consider the following definition:

Definition 4.1. For all l > 1 define the admissible sequence

ξ(l) = (2l + 2l−1 − 1, . . . , 5, 2)

of stable degree degst(ξ(l)) = 2l+1 + 2l − l − 3 and excess e(ξ(l)) = l + 1.

Proposition 4.2. Let m > 2 and let G be a 2-torsion finite abelian group and
consider the A2-module of primitives P ∗H∗(K(G, m); F2). Let n > m + 1. Then
we have 

Sq2P 5H∗(K(G, 2); F2) = 0.

Sq3P 6H∗(K(G, 3); F2) = 0.

Sq3Pn+1H∗(K(G, m); F2) = 0 if n = m + 1 > 4.
Sqξ(n−3)Pn+1(K(G, m); F2) = 0 if n > m + 2.

Proof. Since G is a 2-torsion finite abelian group, we can write G ∼= ⊕aZ/2sa .
Suppose that n = m+1 = 3. Let i2 ∈ H2(K(G, 2);G) be the characteristic class

and consider the elements ι2,a ∈ H2(K(G, 2); Z/2sa) induced by the projections of
G on each of the factors Z/2sa . Let x ∈ P 5H∗(K(G, 2); F2). There exists an
element y ∈ H3(K(G, 2); F2) of the form y =

∑
δsι2,s and such that x = Sq2y. We

have Sq2x = Sq2Sq2y = Sq3,1y =
∑

Sq3,1δsι2,s = 0 since Sq1δs = 0 for all s.
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Suppose that n = m + 1 = 4 and let x ∈ P 6H∗(K(G, 3); F2). There exists
y ∈ H3(K(G, 3); F2) such that x = y2. We then have Sq3x = Sq3y2 = 0 by
Cartan’s formula.

Suppose that n = m + 1 > 4 and let x ∈ Pm+2H∗(K(G, m); F2). There exists
y ∈ Hm(K(G, m); F2) such that x = Sq2y. We then have Sq3x = Sq3Sq2y = 0 by
Adem relations.

Finally suppose that n > m + 2. For all m > 2 define the following subsets of
the integers:

Mm = {2i + 2i−1 | for all i > m} and

Nm = {1 + 2h1 + · · ·+ 2hm−1 | h1 > . . . > hm−1 > 0}.

It is a very simple arithmetic game to see that Mm ∩Nm = ∅. Careful calculations
show that for all admissible sequence I, we have e(I) < m if and only if degst(I) +
m ∈ Nm. Thus there is no admissible sequence I of excess e(I) < m such that
degst(I) + m = 2>m + 2>m−1. Therefore

Q2>m+2>m−1
H∗(K(G, m); F2) = 0.

Let x ∈ Pn+1H∗(K(G, m); F2). We have

deg(Sq2n−3+2n−4−2Sqξ(n−4)x) = deg(x) + degst(ξ(n− 4)) + (2n−3 + 2n−4 − 2)

= 2n−2 + 2n−3.

Since Q2n−2+2n−3
H∗(K(G, m); F2) = 0 when n > m + 2, the primitive element

Sq2n−3+2n−4−2Sqξ(n−4)x is then decomposable. Thus it is a square (maybe trivial)
by Milnor-Moore. Therefore

Sqξ(n−3)x = Sq2n−3+2n−4−1Sqξ(n−4)x

= Sq1Sq2n−3+2n−4−2Sqξ(n−4)x

= Sq1(square) = 0.

�

We are now able to prove the main theorem.

Theorem 4.3. Let X be a non-contractible simply-connected 2-local H-space
with at most two non-trivial finite homotopy groups. Then X has no homology
exponent.

Proof. Since the case of an Eilenberg-Mac Lane space is clear, let us assume
that X is a non-contractible simply-connected 2-local H-space with exactly two
non-trivial homotopy groups πm(X) ∼= G and πn(X) ∼= H, where n > m > 2 and
G ∼= ⊕aZ/2sa , H ∼= ⊕bZ/2tb are finite groups.

The space X fits into the fibrations

K(H,n)
j // X

i // K(G, m) k // K(H,n + 1),

where k is its single k-invariant. Since X is a H-space, k is a H-map.
Let im ∈ H2(K(G, m);G) be the characteristic class and consider the elements

ιm,a ∈ Hm(K(G, m); Z/2sa) induced by the projections of G on each factor Z/2sa .
Consider also all the um,a ∈ Hm(K(G, m); F2) given by the reduction mod 2 of the
ιm,a’s.
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Analogously, let jn ∈ Hn(K(H,n);H) be the characteristic class and consider
the elements n,b ∈ Hn(K(H,n); Z/2tb) induced by the projections of H on each
factor Z/2tb . Consider also all the vn,b ∈ Hn(K(H,n); F2) given by the reduction
mod 2 of the n,b’s. Moreover, pick (t, vn, n) among {(tb, vn,b, n,b) | for all b}.

The E2-term of the Serre spectral sequence of the fibration

K(H,n) // X // K(G, m)

looks like:

δtn, ∗ 0 . . . 0 ∗ ∗ ∗
vn, ∗ 0 . . . 0 ∗ ∗ ∗

0 0 . . . 0 0 0 0

...
...

...
...

...
...

0 0 . . . 0 0 0 0

1 0 . . . 0 ∗ ∗ ∗
The element vn transgresses to dn+1vn in Pn+1H∗(K(G, m); F2) which is de-

termined by the k-invariant. Set

ξ =



(2, 1) if m = 2 and n = 3,
(6, 3, 1) if m = 3 and n = 4,
(6, 3) if n = m + 1 > 5 and n is odd,
(14, 7, 3) if n = m + 1 > 6 and n is even,
(2n−2 + 2n−3 − 2, ξ(n− 3)) if n > m + 2 > 4.

In all cases e(ξ) < n, deg(Sqξ
t vn) is even and Sqξ

t vn transgresses to Sqξ
t dn+1vn

which is trivial by Proposition 4.2. Let x ∈ H∗(X; F2) such that j∗(x) = Sqξ
t vn.

The element Sqξ
t vn is ∞-transverse and so is x. �

5. Generalizations

We conclude this paper with some possible generalizations of our main result.
The first generalization in which we are interested concerns the nature of the

two non-trivial homotopy groups of X. We supposed them to be finite. Let us now
suppose that the homotopy groups of X are of finite type. Copies of Z(2), which
have no torsion, may appear in this extended context.

The cohomology of Eilenberg-Mac Lane spaces associated to such groups was
also computed by H. Cartan and J.-P. Serre:

H∗(K(Z(2), n); F2) ∼= F2[SqIun | I = (a0, ..., ak) with ak 6= 1 and e(I) < n].

We say that a space X admits a torsion homology exponent if there exists an
exponent for the torsion subgroup of H∗(X; Z). With this definition, we have the
following result on Eilenberg-Mac Lane spaces:

Proposition 5.1. Let G be a non-trivial 2-torsion abelian group of finite type
and n > 4. The Eilenberg-MacLane space K(G, n) has no torsion homology expo-
nent.
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Proof. By Künneth formula and Corollary 2.5, it is sufficient to suppose G =
Z(2). Consider the reduction of the fundamental class un ∈ Hn(K(Z(2), n); F2). If n

is even, then Sq2un is ∞-transverse. If n is odd, then Sq6,3un is ∞-transverse. �

It is not very difficult using results of H. Cartan in [2] to verify that K(Z(2), 2)
and K(Z(2), 3) admit torsion homology exponents. So the result is the best possible
in terms of connexity. The following result is an extension to spaces with at most
two non-trivial homotopy groups of finite type:

Theorem 5.2. Let X be a non-contractible 3-connected 2-local H-space of finite
type with at most two non-trivial homotopy groups. Then X has no torsion homol-
ogy exponent.

The strategy and the admissible sequences ξ listed in the proof of Theorem 4.3
are also suitable to prove Theorem 5.2.

W. Browder proved in [1, Theorem 6.11, p. 46] that every H-space of finite
type which has the homotopy type of a finite CW-complex and which is simply-
connected is actually 2-connected. Then, one may ask the following question.

Question 5.3. Let X be a simply-connected 2-local H-space of finite type
with a homology exponent. Is X always 2-connected? If it is not the case for all
such H-spaces, is it true for infinite loop spaces?

In [7] R. Levi studied the homotopy type of p-completed classifying spaces of the
form BG∧

p for G a finite p-perfect group, p a prime. He constructed an algebraic
analogue of Quillen’s “plus” construction for differential graded coalgebras. He
then proved that the loop spaces ΩBG∧

p admit integral homology exponents. More
precisely, he proved that if G is a finite p-perfect group of order pr ·m, m prime to
p, then

pr · H̃∗(ΩBG∧
p ; Z(p)) = 0.

Moreover, he proved that BG∧
p admits in general infinitely many non-trivial k-

invariants, and thus in particular π∗BG∧
p is non-trivial in arbitrarily high dimen-

sions. His method for proving this last result is based on a version of H. Miller’s
theorem improved by J. Lannes and L. Schwartz [6]. This result and the results of
the paper lead to the following conjecture:

Conjecture 5.4. Let X be a connected space. If X has a homology exponent,
then either X ' K(π1(X), 1), or X has infinitely many non-trivial k-invariants and,
in particular, infinitely many non-trivial homotopy groups.

One can attack this conjecture by first looking at the following problem at the
prime 2:

Question 5.5. Let X be a 2-local space (of finite type) and G a finite 2-torsion
abelian group. If X has a homology exponent, is the space map∗(K(G, 2), X)
weakly contractible?

To see that an affirmative answer to this question implies Conjecture 5.4 at
the prime 2, suppose that X is a 2-local space with a homology exponent and with
finitely many non-trivial k-invariants. Then X ' X[m]×GEM for some integer m.
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Since X admits a homology exponent it is a Postnikov piece. Consider then the
Postnikov tower of the space X ' X[m]:

K(πmX, m)
j // X[m]

��
X[m− 1]

��

km+1
// K(πmX, m + 1)

...

��
K(π1X, 1).

The map j : K(πmX, m) → X[m] induces an isomorphism on the m-th homo-
topy groups. Therefore Ωm−2j : K(πmX, 2) → Ωm−2X[m] and its adjoint map
Σm−2K(πmX, 2) → X[m], which belongs to πm−2 map∗(K(πmX, 2), X[m]), are not
nullhomotopic. This contradicts the fact that map∗(K(πmX, 2), X[m]) is weakly
contractible.
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