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Chapter 1

Corporate Bond Price Reversals

1.1 Introduction

Sophisticated investors used to own a substantial fraction of U.S. corporate bonds around

the global financial crisis of 2008–2009. Figure 1.1 shows that hedge funds’ corporate bond

holdings stood at around 40% of the combined holdings of insurance companies, pension

funds, mutual funds, and ETFs around the time of the crisis. Ten years later, this ratio is

four times lower. Citi, one of the biggest corporate bond dealers, states that ‘market diversity

has fallen significantly, the buyer base has become more homogeneous’ (Citi 2018). As ‘smart

money’ was leaving the market, both industry participants and academics expressed concerns

that the price discovery mechanism in corporate bonds might be impaired. The market has

been serving primarily large institutions trading for liquidity reasons; information-driven

trading has become scarce.1

In this chapter, I demonstrate that, despite these concerns, there is strong empirical ev-

idence that investors still trade corporate bonds not only for liquidity reasons but also on

1Business cycle, tighter regulation of dealer banks, and the emergence of alternative credit trading venues all
contributed to the flight of ‘smart money’ away from corporate bonds. As BlackRock writes, ‘some investors
have migrated risk exposure from the cash bond market to standardized derivatives to the extent they have
the flexibility to do so from a legal, regulatory, operational, and investment policy perspective’ (BlackRock
2018). Simultaneously, some scholars argue that even bond short-sellers are not trading corporate bonds
on information (see, for instance, Asquith, Au, Covert, and Pathak 2013a). Berndt and Zhu (2018) provide
a model that links higher dealer inventory costs with lower market efficiency post-crisis.
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Figure 1.1. Hedge funds’ corporate bond holdings, in % of the combined holdings
of insurance companies, pension funds, mutual funds, and ETFs. I use U.S. Flow of Funds
(FF) data to calculate the ratio. The FF data do not separate hedge funds, but the industry
tradition is to interpret households’ corporate bond holdings as the ones dominated by hedge
funds.

information. Information-driven trading is more likely in bonds with fewer mutual fund own-

ers, fewer dealers, no actively traded CDS contracts, lower outstanding amounts, and when

bond issuers are smaller firms with more volatile stocks. I call such bonds high-information-

asymmetry bonds. The chapter claims that bond dealers are aware of information-based

trading and manage to avoid informed flows. When approached by a client who wants to

trade, dealers choose whether to provide liquidity themselves or to find another investor who

wants to trade in the opposite direction and let him or her provide liquidity.2 I demonstrate

that the latter rather than the former happens for high-information-asymmetry bonds.

I obtain these results by contrasting corporate bond price reversals (measured as the first

autocorrelation of returns) following days with different trading volumes and dealers’ capital

commitment. What is the link between price reversals and trading motives? Liquidity

trading (non-informational trading) generates reversals, which represent remuneration for

liquidity providers. Reversals tend to be less pronounced following high-trading-volume

days. On such days, price changes are more persistent because trading is partly driven

2The dealer nevertheless executes both trades, but such pre-arranged transactions close fast, and bonds do
not stay on dealer’s books for longer than several minutes.
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Figure 1.2. Stylized price reversal paths for a high-information-asymmetry bond.
On day 1, the trading volume is either low or high. The solid line shows a reversal path
on a high-volume day when dealers’ end-of-day inventory (in this particular bond) does not
change, and dealers buy from some investors as much as they sell to other investors. The
dashed line refers to when trading volume on day 1 is high, and dealers trade a lot from
their inventory. The ‘Low volume’ dotted line represents the average reversal path. For
comparison purposes, I assume that the price change on day 1 is the same in all three cases.

by private information.3 Price changes are the most persistent following high-volume days

when dealers buy from some investors as much as they sell to other investors (and dealers’

end-of-day inventory does not change). Figure 1.2 shows the stylized reversal paths I obtain

for a typical high-information-asymmetry bond. Reversals are, on average, strong, but price

changes become more persistent as trading volume increases, especially if dealers only match

buyers and sellers and do not accept overnight inventory risk. The more persistent price

changes are, the more likely it is that trading is information-motivated.

Formally, my empirical analysis proceeds in two steps. In the first step, I use TRACE data

from years 2010–2017 aggregated to the daily frequency to estimate the following volume-

3I assume that new public information affects prices without inducing abnormally high trading volumes.
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return relationship for individual corporate bonds:4

Rt+1 = β0 + (β1 + β2 · Inventory-neutral volumet + β3 · |∆Inventory|t)︸ ︷︷ ︸
Return autocorrelation

Rt + εt+1, (1.1)

Above, Rt+1 stands for total corporate bond return on day t+1. Inventory-neutral volume is

the volume of investors’ purchases from dealers matched by investors’ sales to dealers within

business day t; it does not add to dealers’ aggregate end-of-day inventory in this bond. The

difference between investors’ purchases and sales is the change in dealers’ inventory on day

t: it stays on dealers’ books until day t + 1. High trading volume on day t can be due to

high inventory-neutral volume, or a big change in dealers’ inventory, or both.5 In (1.1), β1

measures the reversal on a low-volume day, while β2 and β3 capture how the reversal changes

following high-volume days with different dealers’ capital commitment. The volume-return

relationship (1.1) stems from a theoretical model where risk-averse investors trade corporate

bonds with each other for either liquidity or informational reasons, and inventory fluctuates

independently of news arrival.

In the second step, I run a cross-sectional regression of estimated volume-return coef-

ficients β̂1, β̂2, and β̂3 on information asymmetry proxies controlling for bond illiquidity,

riskiness, and volume persistence. My information asymmetry proxies are the number of

mutual funds that hold the bond, the number of dealers who intermediate trades in the

bond, the size of the issue and the issuer, the availability of an actively traded CDS contract

on the bond issuer, and issuer’s stock return volatility. Larger values for all proxies except

for stock volatility are associated with lower information asymmetry.

I find that β̂1 is negative. Bond prices tend to revert following low-volume days. For a

typical high-asymmetry bond, β̂1 stands at around -0.4; if the price increases by 100 b.p.

on a low-volume day, it falls by 40 b.p. the next day. For the same high-asymmetry bond,

4I require the bonds to be traded frequently enough to be included in the sample.
5In this chapter, I do not take into account inter-dealer trading volumes. If there are only inter-dealer trades
on day t, both trading volume measures in equation (1.1) are zero.
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β̂2 is positive. For every additional standard deviation of inventory-neutral trading volume,

return autocorrelation increases (reversal reduces) by 0.1. β̂3 is about two times smaller

than β̂2 for the high-asymmetry bond. The results suggest that bond price changes are

the most persistent when trading volumes are high, but dealers are reluctant to trade from

their inventory capacity. Furthermore, I find that β̂1 decreases, β̂2 increases, and β̂3 does

not change as information asymmetry grows in the cross-section of bonds.6 These findings

suggest that information-motivated trading in corporate bonds does exist, and it most likely

occurs on high-volume days when dealers are only matching buyers and sellers and do not

accept additional inventory risk.

This chapter further argues that the long part of the bond reversal investment strategy,

constructed on higher-asymmetry bonds, delivers higher risk-adjusted returns after trading

cost adjustment. Between October 2005 and June 2017, the long-only monthly re-balanced

reversal portfolio on high-information-asymmetry bonds earned 2.8% annualized return after

trading cost adjustment, which is 1.5 p.p. above the corporate bond market and the long-

reversal return on low-asymmetry bonds. These results suggest that, even when illiquidity

is taken into account, reversal returns are high. An investor implementing a bond reversal

strategy in practice may further refine it using information asymmetry proxies to obtain

even better performance.

My work contributes to several streams of corporate bond literature. The chapter dis-

cusses the impact of private information on corporate bond price reversals and, with this re-

gard, extends a traditional explanation of reversals based on illiquidity stemming from OTC

market frictions. Duffie, Gârleanu, and Pedersen (2005) present a theoretical framework

where OTC market frictions drive illiquidity; Friewald and Nagler (2019) provide supporting

empirical evidence from the corporate bond market. I demonstrate that in the cross-section

of bonds with similar illiquidity, the reversals further depend on information asymmetry. In

related work, Bao, Pan, and Wang (2011) study the cross-sectional determinants of negative

6These results hold for both investment-grade and high-yield bonds, and within bonds of the same issuer
(for the issuers with many bonds outstanding).
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bond return covariance in pre-crisis years. They find that return covariance is above and

beyond the levels that can be explained by bid-ask spreads but do not link the unexplained

part directly to information asymmetry.7

Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017), Bali, Subrahmanyam, and

Wen (2018), and Bai, Bali, and Wen (2019) also discuss an empirical link between corporate

bond price reversals and illiquidity in the context of pricing the cross-section of corporate

bonds. The papers find that one-month lagged return is the strong return predictor in the

cross-section of corporate bonds. Chordia et al. (2017) show, however, that reversal portfolios

have zero or negative Sharpe ratios after trading cost adjustment. I obtain the same result

for reversal portfolios constructed on low-information-asymmetry bonds. However, I show

that reversal portfolios on high-asymmetry bonds survive trading cost adjustment.

My work also contributes to the debate on information-driven trading in the corporate

bond market. Asquith et al. (2013a) analyze the relationship between bond short interest

and returns and find no evidence of information-based trading either in investment-grade or

in high-yield bonds. Hendershott, Kozhan, and Raman (2019) use similar data on loaned

bonds and conclude that information-driven trading is present in high-yield bonds but not

in the investment-grade universe. In my analysis, high-information-asymmetry bonds are

not necessarily high-yield ones. My sample consists mostly of investment-grade bonds, and

yet information asymmetry proxies vary a lot in the sample. Therefore, I find evidence of

information-based trading in investment-grade bonds. Han and Zhou (2014) also argue that

information motives are present in the pricing of bonds of various credit quality by pointing

to the positive relationship between microstructure-based information asymmetry measures

and bond yield spreads. My work further emphasizes the circumstances in which information

likely stands behind changes in prices of high-asymmetry bonds: when trading volumes are

abnormally high, and non-dealer institutions provide liquidity to informed investors.

7Feldhütter and Poulsen (2018) also demonstrate that information asymmetry explains only a small percent-
age of cross-sectional variation in corporate bond bid-ask spreads.
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The latter finding links this chapter to the literature on post-crisis liquidity provision in

the corporate bond market. The literature has recently documented that liquidity provision

has been shifting from dealer banks, which are subject to stricter regulatory requirements, to

less constrained bond investors (see, for instance, Adrian, Boyarchenko, and Shachar 2017,

Bessembinder, Jacobsen, Maxwell, and Venkataraman 2018, Choi and Huh 2018, and Dick-

Nielsen and Rossi 2018). Dealers still intermediate trading in the latter case but act as pure

brokers and do not hold bonds on their books for more than a couple of minutes, avoiding the

risk of holding inventory overnight. Despite the emergence of non-dealer liquidity provision,

the number of trading days with high customer trade imbalance (substantial changes in

dealers’ inventory) still exceeds the number of days with sizeable inventory-neutral trading

volume in my sample.8 Dealers decide on a case-by-case basis whether to let other investors

provide liquidity or to accept the inventory risk and provide liquidity themselves. My work

demonstrates that this choice depends on the underlying information asymmetry in the bond,

which has not been previously documented in the literature.9 I show that dealers tend to

pass informed flows to less-informed bond investors and are unlikely to be adversely selected.

The design of my empirical tests follows from a theoretical model of corporate bond

trading. In the model, I assume that dealers are never adversely selected. An econometrician

observing the data generated by the model economy recovers a volume-return relationship

(1.1) and the dependence between volume-return coefficients and information asymmetry

that match the ones I find empirically. The methodology of my analysis builds upon Llorente,

Michaely, Saar, and Wang (2002). The model I construct extends Llorente et al. (2002) in

two dimensions. First, it adapts the asset return dynamics to a defaultable bond rather than

a dividend-paying stock. Second, it introduces a noisy market supply representing dealers’

8I consider aggregate dealers’ corporate bond inventory in this chapter and do not investigate end-of-day
inventory changes of individual dealers.

9Goldstein and Hotchkiss (2019) show that dealers are more reluctant to accept overnight inventory risk
in bonds with higher search and inventory costs. Their proxies for the costs associated with OTC market
frictions are different from my information asymmetry proxies.
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inventory.10 The model falls in a broader class of economies discussed in Wang (1994). The

analysis of volume-return relationship also follows the tradition of Campbell, Grossman, and

Wang (1993).

Finally, my results contribute to a recent policy debate (see FINRA 2019 proposal). Since

late 2004, all corporate bond trades must be reported with a delay of at most 15 minutes.

Once reported, trade records become immediately available to all market participants. Some

active bond traders have been arguing that there is ‘too much’ post-trade price transparency

in corporate bonds.11 To better study the impact of transparency on liquidity, FINRA

proposed a pilot program according to which some bonds become subject to delayed block

trade reporting. If the pilot goes through, dealers will be allowed to report big trades in

such bonds up to 48 hours later. My results suggest that this policy change will increase

information asymmetry between investors in bonds included in the pilot. Higher asymmetry

is associated with stronger price reversals on days when trading is liquidity-driven. In other

words, lower transparency may lead to higher non-fundamental price volatility, which is

widely regarded as a negative market feature.

The chapter is organized as follows. Section 1.2 talks about the bond sample and the steps

I take to estimate a volume-return relationship for individual bonds. Section 1.3 presents

estimated volume-return coefficients, and Section 1.4 investigates its determinants, in par-

ticular, information asymmetry proxies, in a cross-section of bonds. Section 1.5 discusses

the implications of my results for reversal investment strategies. Section 1.6 solves a styl-

ized theoretical model of competitive corporate bond trading and discusses a volume-return

relationship an econometrician observing such an economy recovers. Section 1.7 concludes.

10Llorente et al. (2002) also regress estimated volume-return coefficients on information asymmetry proxies in
the cross-section of stocks to find evidence of information-based trading. They do not distinguish between
days with and without changes in aggregate dealers’ inventory.

11For liquidity providers, it has become too costly to trade away from large temporary positions every market
participant knows about.
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1.2 Data and measurements

1.2.1 Data sources

I construct the dataset of corporate bond prices and volumes from Enhanced TRACE

tick-by-tick data. The sample is restricted to USD-denominated, fixed-coupon, not asset-

backed, non-convertible corporate bonds. I apply the filters of Dick-Nielsen (2014) to clean

the TRACE data. I calculate daily corporate bond prices as volume-weighted transaction

prices within a given day. Bond characteristics come from Mergent FISD database. I derive

the number of mutual funds that own the bond from scraping and processing SEC N-Q

forms available through the SEC EDGAR reporting system. The status of the CDS contract

on the bond issuer comes from quarterly DTCC Single Name CDS Market Activity reports

publicly available at the DTCC website. These reports were machine-read and mentioned

entities were matched to the issuers from Mergent FISD dataset. Quarterly DTCC reports

are available from Mar 2010, which is the primary reason I start my dataset then; it goes

up to Jun 2017. I compute issuer-level characteristics (market capitalization, stock return

volatility) using CRSP data. The number of broker-dealers intermediating trades in different

bonds is calculated using the academic version of the TRACE dataset. I talk in more details

about the sample in Appendix A.2.

1.2.2 Sample filtering and ‘active periods’

I estimate the dynamic volume-return relationship for each bond separately, which re-

quires long enough time-series of returns and volumes for every bond. In a baseline specifica-

tion of the volume-return relationship (1.1), I estimate four coefficients in an OLS regression.

To avoid over-fitting, I require at least 60 daily observations per bond. However, corporate

bonds experience waves of trading activity, as documented in Ivashchenko and Neklyudov

(2018). The intervals between trading days with non-zero trading volume might be quite

long. Asking for at least 60 consecutive business days is too restrictive, there are very few
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bonds that satisfy this criterion. Instead, I ask for 60 daily observations where every two

successive observations are at most three business days apart.12

For some bonds, there is more than one sequence of 60 daily observations where every

two consecutive ones are at most three business days apart. I call every such sequence an

‘active period’ and retain all active periods in the sample. I remove all days in between the

active periods from the sample. Estimation of the volume-return relationship is carried out

per bond per active period.

Also, I remove from the sample all active periods when a bond was either upgraded from

high-yield (HY) to investment-grade (IG) territory or downgraded in the opposite direction.

Bao, O’Hara, and Zhou (2018) analyze the corporate bond market liquidity around down-

grades and find abnormal price and volume patterns associated with insurance companies

selling bonds due to regulatory constraints. To ensure that downgrade anomalies do not

drive my results, I remove all such periods from my sample. I also remove bonds with less

than one year to maturity from the sample. Such bonds are excluded from major bond

market indices, which also drives substantial institutional rebalancing and creates abnormal

price patterns that are not the primary focus of this study.

Table 1.1 presents summary statistics of the bond-day panel where only active periods are

retained in the sample. My filtered sample includes around 2.7 million bond-day observations

that cover approximately 10 thousand distinct active periods between 2010 and 2017 and 5

thousand different bonds issued by 1 thousand unique firms. An average bond in the sample

is an investment-grade bond issued about four years ago with approximately eight years left

to maturity. Its outstanding notional amount is around 1 billion USD. The average daily

total return of an average bond in the sample is 2 b.p.; the credit spread is approximately

2.3%. The average realized bid-ask spread is about 1%.13

12Here I follow the methodology of Bao et al. (2011) who study the illiquidity of corporate bonds on the
daily data and allow consecutive observations to be at most seven days apart.

13I present the same summary statistics for the full, unfiltered bond-day panel in Table A.1 in Appendix A.3.
Compared to an average bond in the unfiltered sample, the average bond in my sample has a higher
outstanding amount, higher credit rating, lower credit spread and bid-ask spread, and lower return.
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Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.
Issue size, mln USD 1011.28 750.00 820.94 9.07 166.07 500.00 1250.00 2500.00 15000.00 2720325
Rating 7.73 7.00 3.29 1.00 3.00 6.00 9.00 14.00 21.00 2720325
Age, years 4.15 3.08 3.96 0.00 0.25 1.42 5.75 12.17 31.50 2720325
Maturity, years 8.20 5.58 7.62 1.00 1.42 3.17 9.08 27.33 29.92 2720325
Duration 6.07 4.86 4.24 0.86 1.40 2.94 7.62 15.57 21.57 2720325
Total return, % 0.02 0.02 0.81 -8.19 -1.15 -0.24 0.29 1.18 8.49 2720325
Credit spread, % 2.33 1.70 2.68 0.00 0.59 1.13 2.70 6.01 88.70 2720325
Average bid-ask, % 0.98 0.63 1.02 0.00 0.08 0.29 1.33 3.02 19.99 1550785
No. trades per day 9.06 6.00 12.77 1.00 1.00 3.00 11.00 28.00 2540.00 2720325
No. days since last trade 1.10 1.00 0.35 1.00 1.00 1.00 1.00 2.00 3.00 2718673
C-to-C volume, % of size 0.53 0.02 1.89 0.00 0.00 0.00 0.16 2.83 15.99 2720325
C-to-D volume, % of size 0.01 0.00 3.11 -19.67 -4.00 -0.20 0.32 3.91 17.91 2720325
|C-to-D volume|, % of size 1.35 0.26 2.81 0.00 0.00 0.06 1.17 6.80 19.67 2720325

Table 1.1. Summary statistics of the filtered bond-day panel. The sample period is
from Mar 31, 2010, to Jun 30, 2017. For every bond, I retain only long sequences of daily
observations close to each other in the sample. Here, I keep sequences longer than 60 days,
where every two daily observations are at most three business days apart. Besides, I exclude
from the sample active periods that contain a crossing of the investment-grade/high-yield
rating threshold. I keep only bonds with more than one year to maturity in the sample. Size
is the amount outstanding. Rating is on a conventional numerical scale from 1 (AAA) to
21 (C). The credit spread is the difference between the observed yield to maturity and yield
to maturity of the bond with the same coupons discounted using the Treasury curve as in
Gilchrist and Zakraǰsek (2012). Average bid-ask spread (realized) is the difference between
average client buy and sell prices, expressed as a percentage of the daily average price. It
is computed only for the days with at least three trades. C-to-C (client-to-client) trading
volume (also, ‘inventory-neutral’ volume) is a minimum between total client purchases and
total client sales per bond per day; it is always positive. C-to-D (client-to-dealer) trading
volume is the difference between client purchases and client sales; it can be positive (dealers’
inventory decreases) or negative (dealers’ inventory increases) depending on which of the
two is greater. The absolute value of the C-to-D trading volume is also the absolute value of
the change in aggregate broker-dealer inventory in a given bond. For further details about
the sample, see Appendix A.2. The same summary statistics for a full, unfiltered bond-day
panel is in Table A.1 in Appendix A.3.

1.2.3 Volume measures

To construct a proxy for the inventory-neutral trading volume of equation (1.1), I first

compute total daily client purchases from dealers and client sales to dealers; call it V buy
it and

V sell
it respectively for bond i on day t.14 The minimum of the two is a proxy for inventory-

neutral trading volume which I also call ‘C-to-C volume’:

Inventory-neutral volumeit = C-to-C volumeit = V
(c)
it = min

{
V buy
it , V sell

it

}
.

14I do not take into account inter-dealer trades when I construct volume proxies.
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It represents trading volume that has no impact on aggregate dealers’ inventory in bond i at

the end of the trading day t as compared to day t−1; it is non-negative by construction. The

difference between client purchases and client sales is a negative change in dealers’ inventory

(‘C-to-D volume’):

−Change in inventoryit = C-to-D volumeit = V
(s)
it = V buy

it − V sell
it .

The C-to-D volume can be either positive or negative. Positive values represent net purchases

by clients from dealers and correspond to a decrease in total broker-dealers’ inventory in bond

i on day t. Conversely, negative values of V (s) are increases in dealers’ inventory. When I

estimate equation (1.1), I consider the absolute value of the C-to-D trading volume, |V (s)
it |.

Table 1.1 shows that the absolute value of the C-to-D volume is on average several times

higher than the C-to-C volume.

Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs.

Corr(V
(c)
t , |V (s)

t |) 0.142 0.130 8356 1466 5052 89 9822

Corr(V
(c)
t , V

(s)
t ) -0.052 -0.044 3233 6589 665 2624 9822

Corr(V
(c)
t , V

(c)
t−1) 0.063 0.028 5758 4064 2920 11 9822

Corr(|V (s)
t |, |V

(s)
t−1|) 0.091 0.085 7612 2210 3876 28 9822

Table 1.2. Correlation coefficients between different measures of the trading
volume. V (c) is the C-to-C trading volume, V (s) is a signed C-to-D trading volume, and |V (s)|
is its absolute value. Each correlation coefficient is estimated per bond per active period.
‘Mean’ and ‘Med.’ are sample average and median values. ‘No. > (<) 0’ is the number
of positive (negative) correlation coefficients. ‘No. > (<) 0*’ is the number of positive
(negative) coefficients significant at 10% confidence level. The number of observations is the
number of bond-active periods.

Table 1.2 demonstrates that there is a positive statistical relationship between the ab-

solute value of changes in inventory and the C-to-C trading volume, but the corresponding

correlation coefficient is relatively small. For about two-thirds of bond-active periods, we

can not reject the hypothesis that Corr
(
V

(c)
t , V

(s)
t

)
= 0, i.e., bond inventory is equally likely

to fall or to increase on high C-to-C volume days. The persistence of both the C-to-C and
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the absolute value of the C-to-D trading volume is rather small, as suggested by correlation

coefficients in the last two lines of Table 1.2.

1.2.4 Proxies for information asymmetry

In empirical tests, I am using several variables to proxy for the extent of information

asymmetry between bond investors. Some variables are bond-level proxies:

- the number of mutual funds that hold the bond;

- the number of dealers that intermediate trades in the bond;

- bond outstanding notional amount.

Other variables are issuer-level information asymmetry proxies:

- availability of an active CDS contract on the bond issuer (dummy variable);

- issuer market capitalization;

- realized stock return volatility in an active period when the bond trades actively.

The last two proxies are calculated only for traded companies. Here I assume that informed

trading is less likely in bonds that are held by many mutual funds, intermediated by many

dealers, have higher outstanding amounts and an actively traded CDS contract on the bond

issuer which is a large firm with lower stock return volatility. Below I justify in more details

the use of these variables as the proxies for information asymmetry.

The number of mutual funds that own the bond is related to the number of buy-

side analysts scrutinizing bond valuations and the credit quality of the issuer. As in equity

literature, I assume that analyst coverage is negatively related to information asymmetry

between investors. Similarly, the number of brokers intermediating trades in the bond is

positively related to sell-side analyst coverage and, hence, negatively related to information

asymmetry. The number of active brokers also measures competition among brokers in a

given bond. The lack of competition likely affects an average-volume day reversal, β1 in

equation (1.1), similarly to high information asymmetry: prices of bonds traded in a less
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competitive market should revert more on average. However, there is no straightforward ex-

planation for why prices for low-competition bonds should revert less following high-volume

days (the positive relationship between β2 in equation (1.1) and information asymmetry)

unless low competition among dealers is due to high information asymmetry in the first

place.

Issuer and issue sizes are typical proxies for trade informativeness in the literature.

Both are related to broader investor base and, again, more in-depth analyst coverage, which

supposedly leads to a higher number of investors who are ready to arbitrage out bond

misvaluations. As Table 1.3 shows, issue and issuer sizes are indeed positively correlated

with the numbers of intermediating dealers and mutual funds that own the bond.

No. funds Active CDS Issue size No. dealers Issuer size Stock vol
Active CDS 0.09***
Issue size 0.59*** 0.02
No. dealers 0.42*** -0.01 0.61***
Issuer size 0.04*** -0.08*** 0.40*** 0.30***
Stock vol 0.04*** -0.10*** -0.13*** 0.14*** -0.27***
Bid-ask -0.24*** -0.13*** -0.40*** -0.05*** -0.15*** 0.41***

Table 1.3. Correlation coefficients between information asymmetry proxies esti-
mated in the cross-section of bonds. If there is more than one active period per bond, the
average value across active periods is taken. The total number of bonds (observations) in
the sample is 5028. *, **, and *** stand for 10%, 5%, and 1% significance respectively.

The existence of an actively traded CDS contract on the bond issuer is a reasonable

proxy for trade informativeness because it is cheaper on average to trade CDS contracts than

cash bonds, as Zawadowski and Oehmke (2016) show. Some investors who possess private

credit information will rather trade a single-name CDS contract than a bond if the former

is available and liquid. Also, the existence of an active CDS contract on the issuer might

attract some CDS-bond basis arbitrageurs who trade in the CDS market and the bond market

simultaneously. This type of arbitrage does not require any private information about the

credit quality of the bond issuer. Hence, an active ‘basis trading’ in some bond implies that

only a smaller portion of trading volume in this bond (as compared to an identical bond

without an actively traded CDS contract) might be due to private information.
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Finally, stock return volatility computed for bond issuers over time intervals that

constitute the active periods measures uncertainty of bond issuers equity valuations. It is

natural to assume that the periods of high uncertainty in equity valuations are also the

periods of high asymmetry of information about debt values. Hence, informed trading in

equities and bonds might coincide.

I do not use the realized bid-ask spread as an information asymmetry proxy in this

chapter. It is true that the bid-ask spread might itself be positively related to the extent of

informed trading, as in Glosten and Milgrom (1985). However, the mere existence of bid-ask

spreads, information or non-information driven, implies price reversals as in Roll (1984),

i.e., the ‘bid-ask bounce’ effect. It implies stronger reversals for bonds with wider spreads.

Hence, the impact of the bid-ask bounce on the average-day return autocorrelation, β1 in

equation (1.1), is similar to the expected effect of information asymmetry. The impact of

the bid-ask bounce on β2 and β3 in equation (1.1) is unclear because it depends on whether

the effect becomes stronger or weaker with higher trading volumes. To avoid these concerns,

I use realized bid-ask spreads only as a control variable in my cross-sectional regressions of

estimated volume-return coefficients and not as a proxy of informed trading.

1.3 Volume-return relationship

I estimate equation (1.1) separately for every bond and every active period rescaling

trading volumes such that β1 measures the first return autocorrelation on average-volume

trading days:

Rt+1 = β0 + β1Rt + β2RtṼ
(c)
t + β3RtṼ

(s)
t + εt+1. (1.2)

Above, Rt+1 is the total bond return between t and t+ 1, Ṽ
(c)
t is the C-to-C trading volume

on day t, standardized15 for every active period separately, and Ṽ
(s)
t is the absolute value of

15De-meaned and divided by the sample standard deviation.
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the C-to-D trading volume (the absolute value of inventory change) on day t, also demeaned

and standardized.

On the days when both the C-to-C and the C-to-D trading volumes are at the average

level for a given bond in a considered active period, the first return autocorrelation is β1. On

the days when the C-to-C volume is 1 standard deviation above the mean and the change in

inventory is at the average level, the first return autocorrelation is β1 +β2. Conversely, when

only the C-to-D volume is 1 standard deviation above the average, return autocorrelation

equals to β1 + β3. Negative values of β1 would mean that prices revert following average-

volume days. Positive values of β2 and β3 would mean that prices tend to revert less following

high-volume days. In this short section, I present and discuss the estimated volume-return

coefficients β̂1, β̂2, and β̂3, and in the next section, I investigate in details the relationship

between the coefficients and information asymmetry proxies, which is the main focus of this

study.

Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs.

β̂1 -0.3285 -0.3425 108 9714 0 8761 9822

β̂2 0.0716 0.0622 7130 2692 1697 188 9822

β̂3 0.0585 0.0568 6928 2894 2054 349 9822

β̂2 − β̂3 0.0131 0.0044 5046 4776 3819 3498 9822

Table 1.4. Summary statistics of the estimated volume-return coefficients of
equation (1.2). Each estimated coefficient is per bond per active period. There are at most
nine active periods per bond. Returns are total returns between t and t+1. Trading volumes
are demeaned and standardized per bond per active period. Mean and Med. are respectively
sample average and sample median. ‘No. > (<) 0’ is the number of positive (negative)
coefficients. ‘No. > (<) 0*’ is the number of positive (negative) coefficients significant at
10% confidence level. The number of observations is the number of bond-active periods.

Table 1.4 gives a snapshot of β̂1, β̂2, β̂3 estimated for each bond in every active period.

The average bond-active period has the first return autocorrelation of approximately -0.33.

If the price drops today by 100 b.p. and both trading volumes are at the average level,

the price will tend to increase by 33 b.p. tomorrow. One-third of the initial price decrease

reverts the next day. The average β̂2 of 0.07 suggests that following high C-to-C volume days,

prices tend to revert less. In a previous example, if the initial 100 b.p. price decrease was
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accompanied by 1 standard deviation above-average C-to-C trading volume, then the next

day reversal would be close to one-forth rather than one-third. The average β̂3 of around

0.06 suggests that prices revert comparably less following high C-to-D volume days either.

Both β̂2 and β̂3 are predominantly positive, and the difference between the two is equally

likely to be positive or negative.

At this stage, we can not infer much from estimated volume-return coefficients. The

signs and the magnitudes of the coefficients certainly look reasonable. Strongly negative β̂1

is a reflection of high illiquidity of the corporate bond market. The values of β̂2 and β̂3

are close; hence, both types of trading volume interact statistically similarly with reversals.

Positive β̂2 and β̂3 can be consistent with the presence of informed trading, but can also

reflect correlated trading volumes, or the interaction of the bid-ask bounce or bond riskiness

with the trading volume. In the next section, I investigate explanatory factors of the cross-

sections of volume-return coefficients with a particular focus on the impact of information

asymmetry.

1.4 Determinants of volume-return coefficients

1.4.1 Empirical design

In the introduction, I put forward an intuition on how volume-return coefficients β1, β2,

and β3 in equation (1.2) should vary with information asymmetry. In particular, I suggest

that more information asymmetry implies lower β1 (stronger reversals on average), higher

β2 (weaker reversals following high-volume days when dealers’ inventory does not change

much), and no particular effect on β3 (no difference in reversals between high- and low-

information-asymmetry bonds following days when dealers’ inventory changes a lot). One

gets the same relationship between volume-return coefficients in a theoretical model a-là

Llorente et al. (2002) extended with noisy changes in market supply (dealers’ inventory)

that are independent from the arrival of private news. I present such a model formally in
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Section 1.6. In this section, I am testing the predictions of the model empirically in the

cross-section of bonds.

The estimates β̂1, β̂2, and β̂3 obtained in the previous section are per bond and per active

period. There is more than one active period for about every fifth bond in the sample, but

there are at most nine active periods per bond. I take bond averages to obtain the cross-

section of coefficients, and in the rest of this section, I fit explanatory linear models to this

cross-section.16 Call β̂n,i a column-vector of estimates (n = 1, 2, or 3 and i ∈ {1, . . . , N}

where N is the total number of bonds). I fit the following model for each n (i.e., each

volume-return coefficient) separately:

β̂n,i = cn,1 (No. funds, CDS, Issue/issuer size, No. dealers, –Equity volatility)i︸ ︷︷ ︸
Info asymmetry proxies

+

+ cn,2 (Bid-ask, C-to-C/D volume correlation, Bond volatility, Credit spread)i︸ ︷︷ ︸
Controls

+

+ cn,0 + εn,i, (1.3)

where cn,1 ∈ R6, cn,2 ∈ R5, and εn,i for every n is an i.i.d. zero-mean Normal. If my intuition

about the dependence of volume-return coefficients on information asymmetry proxies is

correct, I should find c1,1 > 0, c2,1 < 0, and c3,1 = 0.

I include five controls in the baseline specification (1.3): realized bid-ask spread, the

first autocorrelations of Ṽ
(c)
t and Ṽ

(S)
t , realized bond return volatility, and the credit spread.

Volume autocorrelations and return volatility are estimated per bond per active period, and

then bond averages are computed if there is more than one active period per bond.

16active periods are asynchronous across bonds. Hence, one needs to make additional assumptions to inves-
tigate the co-movement of volume-return coefficients. I attributed the estimated coefficients to quarters
in the proportion of the active period time in a given quarter and extracted time fixed effects from the
bond-quarter panel to find that there is virtually no common time variation in the coefficients (unreported).
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The realized bid-ask spread controls for bond illiquidity.17 Wider spreads are associated

with more illiquid bonds that tend to have stronger price reversals even if the information is

symmetric, buy and sell orders arrive randomly, and the fundamental value of the security

never changes (the ‘bid-ask bounce’ effect of Roll 1984). In principle, bid-ask spreads also

widen with the asymmetry of information, as in Glosten and Milgrom (1985), and that is

why the literature often uses bid-ask spreads as a measure of information asymmetry. I do

not do so because multiple non-informational reasons might explain different bid-ask spreads

in the cross-section of bonds, for instance, competition between dealers, different inventory

holding costs, or counterparty search costs. The bid-ask spread as the illiquidity control is

the most relevant for the regressions of β̂1.

Volume correlations control for the persistence of trade flow and price impact. Recall

from Table 1.4 that returns tend to continue following high C-to-C and C-to-D volume days

(positive β̂2 and β̂3). I want to link it with the presence of informed trading, but one would

find the same signs of volume-return coefficients if trade flows were persistent. Imagine that

some investor executes a big buy trade over two business days.18 On each day, her trades

have a price impact, and returns tend to continue (or revert less). So, correlated volumes

would generate the relationship between volumes and future returns similar to one of the

asymmetric information and returns. I control for this alternative explanation by including

the first autocorrelations of Ṽ
(c)
t and Ṽ

(s)
t in the group of control variables. These controls

are the most relevant for the regressions of β̂2 and β̂3.

The next control is the average realized bond return volatility. Riskier bonds tend to

experience larger price swings, even if underlying risks are not directly related to informa-

tion asymmetry. In the cross-section, some bonds are riskier than the other, and it might

17Schestag, Schuster, and Uhrig-Homburg (2016) provide a detailed comparison of different bond illiquidity
measures. In light of their results on different measures one can compute using tick-by-tick TRACE data,
the realized bid-ask spread looks like a reasonable choice for this work. I obtained similar results with
alternative bond illiquidity measures as well (Amihud, Roll, price inter-quartile range).

18This hypothesis may not be very realistic since on the corporate bond market one may get better execution
prices trading higher volumes as shown in Edwards, Harris, and Piwowar (2007a). This may also explain

why the average autocorrelation of Ṽ
(c)
t is relatively low in the data (see Table 1.2).
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explain some differences between estimated volume-return coefficients. Same happens in the

theoretical model of Section 1.6. The desired dependence of volume-return coefficients on

information asymmetry is obtained when holding unconditional bond return variance fixed.

To mimic this condition in the empirical analysis, I include realized bond return volatility as

a control variable in every regression. It is relevant for the regressions of all three volume-

return coefficients. I further include average credit spread as a control variable to make

sure that I compare bonds with the same riskiness. One can easily find a high-yield and an

investment-grade bond with comparable levels of return volatility in some periods, but their

credit spreads must be different.

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.

β̂1 -0.31 -0.33 0.12 -0.62 -0.48 -0.40 -0.24 -0.09 0.05 5028

β̂2 0.07 0.06 0.12 -0.48 -0.10 0.01 0.12 0.25 0.79 5028

β̂3 0.06 0.06 0.10 -0.33 -0.10 -0.00 0.11 0.21 0.49 5028
No. mutual fund owners 35.47 28.41 31.31 0.00 0.00 12.91 49.55 97.29 230.46 5028
Active CDS (dummy) 0.44 0.00 0.50 0.00 0.00 0.00 1.00 1.00 1.00 5028
Issue size, bln USD 0.82 0.60 0.70 0.01 0.07 0.40 1.00 2.25 9.39 5028
No. dealers 33.98 29.50 15.13 7.96 17.65 23.96 39.89 65.46 168.72 5026
Issuer size, bln USD 76.09 40.92 92.71 0.02 2.58 13.44 115.85 236.12 761.79 4693
Stock return volatility, % 1.77 1.57 0.84 0.65 0.93 1.23 2.06 3.25 10.52 4683
Average bid-ask, % 1.05 0.77 0.83 0.07 0.22 0.46 1.38 2.82 8.66 5028
C-to-C volume correlation 0.08 0.06 0.11 -0.18 -0.05 -0.00 0.14 0.29 0.66 5028
C-to-D volume correlation 0.10 0.10 0.09 -0.24 -0.05 0.04 0.15 0.25 0.79 5028
Bond return volatility, % 0.72 0.59 0.51 0.05 0.17 0.36 0.94 1.68 4.96 5028
Credit spread, % 2.42 1.74 2.85 0.14 0.58 1.11 2.78 6.39 68.96 5028

Table 1.5. Summary statistics of the cross-section of volume-return coefficients
and their predictors. The sample contains bond averages computed across all active
periods in case there is more than one for a given bond. The number of fund owners on a
given trading date represents the number of mutual funds that claim to own a bond as of the
latest available SEC N-Q form filing. ‘Active CDS’ is a dummy variable that equals 1 for all
bonds of the issuer on all days in a given quarter if the CDS on this issuer is in a list of top
thousand actively traded single-name CDS contracts in that quarter according to DTCC.
‘Issue size’ is an outstanding notional amount of a bond issue, ‘issuer size’ is the market
capitalization of an issuer (if a traded company). The number of dealers is the number of
broker-dealers that intermediate trades in a bond on each trading day. Stock return volatility
is the realized volatility in a given active period for a given issuer. For further details, see
Appendix A.2.

Table 1.5 presents summary statistics of the cross-section of estimated volume-return

coefficients to be explained, information asymmetry proxies, and control variables. The

average bond in the cross-section is owned by 35 mutual funds and about the same number
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of dealers intermediate trades in this bond. The bond is issued by a large company (76

bln USD market cap) and has an outstanding notional amount of around 800 mln USD.

The average realized bid-ask spread of the bond is 105 b.p., and its credit spread is 242

b.p. 44% of bonds in the sample have an actively traded CDS on the bond issuer. There is

substantial variation in both the left-hand side and right-hand side variables of regressions

(1.3) as Table 1.5 shows.

1.4.2 Main results

Tables 1.6–1.8 present estimated regressions (1.3) of volume-return coefficients on infor-

mation asymmetry proxies and controls. Table 1.6 contains the results for β̂1. Observe that

the number of fund owners, the CDS dummy, issue and issuer size, and the number of inter-

mediating dealers, all have a significantly positive impact on β̂1 if included in the regression

separately. In joint models 7 (all bonds) and 8 (bonds issued by traded firms only), the

loading on the CDS dummy becomes insignificant but on the negative stock return volatil-

ity – significantly positive. These results suggest that average-day price reversals become

more pronounced (β̂1 becomes more negative) for higher information asymmetry bonds: the

bonds with fewer fund owners and intermediating dealers, no actively traded CDS contract

on the issuer, lower issue and issuer size, and high stock return volatility. Observe also in

Table 1.6 that the coefficient on the average bid-ask spread is significant with a reasonable

sign. Higher bid-asks are associated with stronger reversals.

Interestingly, in Table 1.6, C-to-C and C-to-D volume persistence both enter the models

for β̂1 significantly but with different signs. Following an average-volume day, higher C-to-

C volume persistence implies less strong reversals, while higher C-to-D volume persistence

implies stronger reversals holding other bond characteristics equal. One can interpret this

finding as follows: if an investor has to trade persistently high volumes over several consecu-

tive days with a dealer hence asking the dealer for immediacy, trading costs in such trading

arrangement will be higher than when another bond investor supplies liquidity.
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The link between high information asymmetry and strong price reversals following average-

volume days relates to a recent policy debate on delayed corporate bond trade dissemination.

Now, dealers must report corporate bond trades to TRACE at most 15 minutes after trade

execution. A pilot program, currently under discussion, proposes a 48 hours delay between

trade execution and reporting for some bonds (see FINRA 2019). From the perspective of

the results presented in Table 1.6, such policy change might lead to stronger price reversals

in bonds selected for the pilot because the policy increases information asymmetry between

investors. Since we talk about average-volume days here, trading on such days is primarily

liquidity-driven and stronger reversals can be interpreted as higher non-fundamental price

volatility (bond valuations do not change when prices do not reveal any fundamental infor-

mation). Higher volatility unrelated to fundamentals is a likely (and negative) consequence

of the delayed trade dissemination pilot if it goes through.

Table 1.7 presents the results for β̂2. Recall that higher β2 means less strong reversals

following days when investors trade a lot essentially with each other and dealers do not

hold any additional inventory by the end of the trading day. I expect β̂2 to be increasing

in information asymmetry: reversals must be less strong for high asymmetry bonds when

informed trading is most likely, i.e., after high C-to-C volume days. Observe first in Table 1.7

that all information asymmetry proxies enter the models for β̂2 significantly when included

separately (models 1 to 6) except for stock return volatility. The signs of all asymmetry

proxies are as expected: higher information asymmetry implies higher β̂2. In a joint model

7 (bonds issued by public and private firms) the CDS dummy turns insignificant while in a

joint model 8 (bonds issued by public firms only) the issuer size becomes insignificant and

flips a sign. Otherwise, a joint model 8 says that bonds with fewer mutual fund owners and

intermediating dealers, lower outstanding amounts, no actively traded CDS contract, and

higher stock return volatility exhibit less strong price reversals following high C-to-C volume

days.
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Dependent variable: β̂1

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept −0.331∗∗∗ −0.301∗∗∗ −0.416∗∗∗ −0.399∗∗∗ −0.349∗∗∗ −0.301∗∗∗ −0.429∗∗∗ −0.450∗∗∗

(0.005) (0.005) (0.006) (0.007) (0.006) (0.006) (0.007) (0.008)
Average bid-ask −0.055∗∗∗ −0.062∗∗∗ −0.054∗∗∗ −0.098∗∗∗ −0.070∗∗∗ −0.067∗∗∗ −0.064∗∗∗ −0.073∗∗∗

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.005) (0.005)
No. funds 0.033∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(0.002) (0.002) (0.002)
CDS dummy 0.003∗ 0.002 0.001

(0.001) (0.001) (0.001)
Issue size 0.059∗∗∗ 0.046∗∗∗ 0.040∗∗∗

(0.003) (0.004) (0.004)
No. dealers 0.044∗∗∗ 0.013∗∗∗ 0.017∗∗∗

(0.002) (0.003) (0.003)
Issuer size 0.024∗∗∗ 0.011∗∗∗

(0.002) (0.002)
–Equity volatility 0.0001 0.005∗∗

(0.002) (0.002)

Risk controls YES YES YES YES YES YES YES YES
Vlm controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R2 0.310 0.247 0.391 0.331 0.284 0.255 0.398 0.417

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.6. Cross-sectional regressions of β̂1. Each model is an OLS regression with
heteroscedasticity-consistent standard errors. β̂1 is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

Also, observe in Table 1.7 that the loading on the C-to-C volume persistence is positive

and significant. It means that if high C-to-C volumes are positively correlated over time,

reversals will be less strong due to a repetitive price impact. The bid-ask spread enters joint

models of Table 1.7 with significantly positive coefficients: the bonds with higher bid-ask

spreads tend to revert less following high C-to-C volume days. If I treated the bid-ask spread

as a proxy for information asymmetry, this sign on the bid-ask would have been in line with

the signs on other information asymmetry proxies.

Table 1.8 presents the regressions for β̂3. The interpretation of β3 is analogous to β2, but

now we are talking about the reversals following days when dealers’ inventory changes a lot.

Higher β3 means that prices tend to revert less following high C-to-D volume days. Unlike
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Dependent variable: β̂2

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.090∗∗∗ 0.082∗∗∗ 0.113∗∗∗ 0.117∗∗∗ 0.088∗∗∗ 0.076∗∗∗ 0.125∗∗∗ 0.126∗∗∗

(0.005) (0.005) (0.007) (0.007) (0.007) (0.006) (0.008) (0.009)
Average bid-ask 0.001 0.003 0.001 0.017∗∗∗ 0.006 0.005 0.008∗ 0.010∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)
No. funds −0.012∗∗∗ −0.004∗∗ −0.003∗

(0.002) (0.002) (0.002)
CDS dummy −0.004∗∗ −0.003∗ −0.003∗

(0.002) (0.002) (0.002)
Issue size −0.017∗∗∗ −0.009∗∗∗ −0.010∗∗∗

(0.002) (0.003) (0.003)
No. dealers −0.017∗∗∗ −0.009∗∗∗ −0.010∗∗∗

(0.002) (0.003) (0.003)
Issuer size −0.005∗∗∗ −0.0002

(0.002) (0.002)
–Equity volatility −0.003 −0.005∗∗

(0.002) (0.002)

Risk controls YES YES YES YES YES YES YES YES
Vlm controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R2 0.021 0.013 0.026 0.025 0.015 0.014 0.030 0.036

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.7. Cross-sectional regressions of β̂2. Each model is an OLS regression with
heteroscedasticity-consistent standard errors. β̂2 is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

for β2, I do not expect to find any particular dependence of β3 on information asymmetry

because dealers would rather pass high-asymmetry bonds to other investors and would not

hold excess inventory in bonds with less transparent valuations.

Table 1.8 shows that there is indeed no clear-cut dependence of β̂3 on information asym-

metry. For instance, the number of mutual fund bond owners and the CDS dummy have

significantly positive loadings in models 1 and 2 (opposite to what information asymmetry

explanation predicts), while issuer and issue size and the number of dealers have significantly

positive loadings in models 3–5 (in line with information asymmetry explanation). In joint

models 7 and 8 as well, there are both positive and negative loadings on the variables of
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Dependent variable: β̂3

(1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.041∗∗∗ 0.041∗∗∗ 0.046∗∗∗ 0.051∗∗∗ 0.048∗∗∗ 0.042∗∗∗ 0.050∗∗∗ 0.054∗∗∗

(0.004) (0.004) (0.006) (0.006) (0.006) (0.005) (0.006) (0.007)
Average bid-ask −0.046∗∗∗ −0.046∗∗∗ −0.047∗∗∗ −0.044∗∗∗ −0.043∗∗∗ −0.042∗∗∗ −0.041∗∗∗ −0.038∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004)
No. funds 0.003∗∗ 0.005∗∗∗ 0.003

(0.001) (0.002) (0.002)
CDS dummy 0.002∗ 0.002∗ 0.001

(0.001) (0.001) (0.001)
Issue size −0.001 −0.001 0.0001

(0.002) (0.002) (0.002)
No. dealers −0.003∗ −0.005∗∗ −0.003

(0.002) (0.002) (0.002)
Issuer size −0.005∗∗∗ −0.005∗∗∗

(0.002) (0.002)
–Equity volatility 0.003 0.003

(0.002) (0.002)

Risk controls YES YES YES YES YES YES YES YES
Vlm controls YES YES YES YES YES YES YES YES
Observations 5,028 5,028 5,028 5,026 4,693 4,683 5,026 4,681
R2 0.106 0.106 0.106 0.106 0.105 0.103 0.108 0.106

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.8. Cross-sectional regressions of β̂3. Each model is an OLS regression with
heteroscedasticity-consistent standard errors. β̂3 is averaged for every bond across all active
periods, so are the predictors. Average bid-ask is the percentage difference between the
daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

interest. In particular, in model 8, only the number of mutual fund bond owners and issuer

size have significant loadings, but they are of opposite signs.

Tables 1.6–1.8 show that high-information-asymmetry bonds experience on average stronger

price reversals than low asymmetry bonds. However, following high C-to-C trading volume

days, this ‘gap’ in reversals closes; such thing does not happen following days with high C-to-

D trading volume. How large is this difference in reversals between high and low asymmetry

bonds? To answer this question, I take the last models from Tables 1.6–1.8 (models number

8) and compute average values of volume-return coefficients predicted by fitted models for

different deciles of information asymmetry proxies.19 The bonds with the most information

19The results look almost identical when I use models number 7 for public and non-public firms with all
proxies included (unreported).
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asymmetry are in the first decile for every proxy except for stock return volatility (here, the

most asymmetry is in the tenth decile). Conversely, the bonds with the least information

asymmetry are in top deciles (bottom decile of stock return volatility). I keep control vari-

ables fixed at the median level to ensure that predicted values of volume-return coefficients

vary only due to changing information asymmetry.
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Figure 1.3. Point estimates and confidence intervals for the expected values of
volume-return coefficients. The calculations are based on models (8) from Tables 1.6-
1.8. On the x-axes from left to right are the deciles of information asymmetry proxies. For
instance, ‘Low asymmetry’ bond is the one that has the number of fund owners, active CDS
dummy, issue size, number of dealers, and issuer size all in the 90th percentile and stock
volatility in the 10th percentile. ‘High asymmetry’ bond has the number of fund owners,
active CDS dummy, issue size, number of dealers, and issuer size all in the 10th percentile
and stock volatility in the 90th percentile. All other covariates from the regression models
(average bid-ask spread, volume correlations, return volatility, and credit spread) are fixed
at the median level. Solid lines are points estimates and shaded areas around them are 95%
confidence bands.

Figure 1.3 presents the results. The left panel shows the average values of β̂1. They

are decreasing monotonically from -0.2 for the bonds with little or none information asym-

metry to almost -0.4 for the bonds with the highest asymmetry. The predicted reversal

for high-asymmetry bonds is almost twice stronger than for low-asymmetry bonds following

average-volume days. The middle panel in Figure 1.3 shows an additional impact of high

C-to-C volumes on next-day reversals. The average values of β̂2 are monotonically increasing

from 0.02 for low-asymmetry to 0.10 for high-asymmetry bonds. It means that every addi-
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tional standard deviation of the C-to-C volume reduces the difference in next-day reversals

between high- and low-asymmetry bonds by almost 0.08. Figure A.1 in Appendix A.3 shows

that following a day with the C-to-C trading volume 2 standard deviations above the aver-

age, there is practically no difference in reversals between high- and low-asymmetry bonds.

Finally, the right panel in Figure 1.3 demonstrates that predicted β̂3 is relatively insensitive

to the degree of information asymmetry; the average β̂3 stays close to 0.06 as information

asymmetry varies. This result implies that the average difference in reversals between high-

and low-asymmetry bonds stays the same following days when dealers’ inventory changes a

lot. The evidence presented in Figure 1.3 suggests that information-driven trading in cor-

porate bonds exists, and it is much more likely when investors essentially trade with each

other within one trading day rather than when they trade with dealers.
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Figure 1.4. Cumulative returns around days with large bond inventory changes.
The ‘event’ that happens on day 0: broker-dealers bond inventory increases or decreases by
more than 2 standard deviations (computed per bond per active period) and it is the only
type of trading that occurs on day 0 (inventory stays on the books till day 1). Daily log
price returns are cumulated from day -5. Returns are computed using clean prices and do
not contain accrued interest.
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To provide additional evidence that dealers are very unlikely to be adversely selected

(to trade with a privately informed investor) in the corporate bond market, I plot typical

cumulative return paths around days when dealers’ inventory changes a lot only in one

particular direction. In terms of two types of volume introduced in Section 1.2, such days

correspond to high C-to-D volume and zero C-to-C volume. Figure 1.4 plots the results of

such ‘event study’. On the left panel, a more interesting one, dealers’ inventory increase

by at least 2 standard deviations (per bond per active period) on day 0. In other words,

on day 0, investors sell a lot of bonds to dealers hence asking for immediacy. There is a

well-pronounced drop in cumulative returns on day 0 regardless of whether prices were going

up or down before the event. Cumulative returns rebound to their pre-event paths on day 1.

It means that additional inventory that dealers acquired on day 0 is sold (at least partially)

on day 1 at higher prices. Even for the worst-performing bonds, dealers could sell at higher

prices 2-3 days after the initial increase in inventory. The right panel of Figure 1.4 presents

similar cumulative return patterns for the days when dealers’ inventory reduces by more than

2 standard deviations (some investors are willing to buy a lot of bonds and do not want to

wait for a selling investor to come to the market). There is a pronounces spike in cumulative

returns on day 0. On day 1, prices are lower than on day 0 except for the cases when bonds

have been performing well pre-event. Such a situation (dealers sell short-term ‘winners’)

is the only case in Figure 1.4 when prices do not move in dealers favor post-event. In all

other cases, dealers benefit from price movements on and right after the event day, which is

consistent with a finding that dealers are unlikely to trade with an informed counterparty.

1.4.3 Further evidence

There are firms that have many bonds outstanding. These bonds may differ in coupon

rates, maturity, embedded options, and other characteristics. I investigate how volume-

return coefficients differ across bonds of the same issuer. In Table 1.9, I present the estimates

of model (1.3) only for firms with more than fifteen bonds outstanding. I include issuer fixed
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effects in the regression models; such fixed effects represent the average values of volume-

return coefficients for different issuers. Thus, Table 1.9 shows within-firm dependence of

volume-return coefficients on information asymmetry. I find that the impact of information

asymmetry on β̂1 and β̂2 (and the lack of impact on β̂3) holds for the bonds of the same issuer.

It suggests that private information some investors might possess is not only issuer-level

(which is most likely private news about the credit quality of the issuer) but also bond-level.

The bond-level information can be, for instance, private knowledge about liquidity trades

of other investors, which yields a better estimate of price pressures and subsequent price

reversals.20 It can also be private knowledge about the exercise probability of embedded

options. Most bonds in my sample are callable; issuers have a right to redeem them at pre-

specified dates before maturity. An early call changes the duration of a bond and, therefore,

its risk profile. Superior knowledge about the likelihood of an early call gives advantage in

predicting bond returns prior to call announcements.

In Appendix A.3, I present further empirical results. Table A.2 estimates equation (1.3)

for investment-grade (IG) and high-yield (HY) subsamples separately. The markets for

IG and HY bonds have different institutional clientele because of regulatory restrictions,

but information asymmetry proxies I use should work within each subsample. Table A.2

confirms that it is indeed the case for β̂1 and β̂2. β̂1 tends to decrease and β̂2 to increase

with information asymmetry both for IG and HY bonds. In the regressions for β̂3, there

are fewer significant coefficients compared to the regressions of β̂1 and β̂2, and the signs of

the coefficients are inconclusive about the impact of information asymmetry on reversals

following high C-to-D volume days. Hence, Table A.2 confirms the results that have been

established in the pooled sample.

I also consider alternative specifications of equation (1.2) to address the omitted vari-

able problem that may render the estimates of volume-return coefficients biased. In Ap-

20I remain agnostic about a mechanism through which some investors may learn valuable information about
price pressures. Barbon, Di Maggio, Franzoni, and Landier (2018) suggest that there is information leakage
from brokers to clients in the equity market.
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pendix A.3, I present key results for volume-return coefficients estimated controlling for

either market returns or trading volumes (included as linear terms in addition to the inter-

actions with returns) in equation (1.2). Tables A.3 and A.5 present summary statistics of

volume-return coefficients for these two cases, while Tables A.4 and A.6 show the dependence

on information asymmetry proxies. Figures A.2 and A.3, the counterparts of Figure 1.3,

demonstrate how predicted volume-return coefficients vary with information asymmetry.

Clearly, the main result of the empirical analysis remains intact. β̂1 decreases as information

asymmetry grows while β̂2 increases; the impact of asymmetry on β̂3 is neutral.

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3

Average bid-ask −0.066∗∗∗ −0.075∗∗∗ 0.005 0.007 −0.006 −0.004
(0.010) (0.010) (0.011) (0.010) (0.008) (0.008)

No. funds 0.009∗∗∗ 0.010∗∗∗ −0.008∗∗ −0.008∗∗ 0.002 0.002
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

CDS dummy 0.012 −0.004 0.001 −0.003 0.001 −0.005
(0.010) (0.009) (0.010) (0.010) (0.008) (0.008)

Issue size 0.029∗∗∗ 0.023∗∗∗ −0.00003 −0.001 −0.002 −0.002
(0.005) (0.005) (0.004) (0.004) (0.003) (0.003)

No. dealers 0.016∗∗∗ 0.026∗∗∗ −0.011∗∗∗ −0.013∗∗∗ −0.011∗∗∗ −0.009∗∗

(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)
Issuer size 0.044∗∗∗ 0.008 −0.009

(0.008) (0.010) (0.009)
–Equity volatility 0.026∗∗∗ −0.013∗ 0.023∗∗∗

(0.006) (0.007) (0.006)

Issuer FE YES YES YES YES YES YES
Risk controls YES YES YES YES YES YES
Vlm correlations YES YES YES YES YES YES
Observations 1,927 1,837 1,927 1,837 1,927 1,837
R2 0.553 0.568 0.115 0.131 0.217 0.204

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.9. Cross-sectional regressions of β̂1, β̂2, and β̂3 for large issuers only.
Each model is an OLS regression with heteroscedasticity-consistent standard errors. Volume-
return coefficients are averaged for every bond across all active periods, so are the predictors.
Average bid-ask is the percentage difference between the daily buy and sell prices, excluding
inter-dealer trades. Volume correlations are the first autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No.

funds’ is the number of mutual funds that own the bond. CDS dummy equals 1 if the average
Active CDS dummy for the bond across its active periods is above 0.5 and 0 otherwise. The
issue size is the outstanding notional amount in bln USD. The issuer size is market cap in
bln USD. ‘No. dealers’ is the average number of unique dealers that intermediate trades in
each bond. Equity volatility is the average realized volatility of daily stock returns across all
active periods for each bond. Risk controls include credit spread and realized bond return
volatility.
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1.5 Implications for investment strategies

Corporate bond price reversals depend on the extent of information asymmetry in a given

bond, as my empirical analysis shows. What does it imply for the design of the short-term

corporate bond reversal strategy? In this section, I show that the reversal strategy earns

more if information asymmetry is taken into account in portfolio formation.

I start by constructing reversal portfolios as in Bai et al. (2019). At every rebalancing

date (which is monthly) bonds are double sorted on previous month’s credit rating and

return. In Bai et al. (2019) each sorting is into quintiles but since my sample is smaller I

sort into rating terciles and return quintiles, a total of 15 bins. I only consider the long part

of the reversal portfolio: this is a simple average of size-weighted returns in the top reversal

quintile (lowest past returns) across three rating terciles.21 The rebalancing is at the end of

each month. I consider an unfiltered bond-month sample, i.e., I do not restrict the sample to

active periods and do not remove the crossing of IG/HY threshold (I would introduce a look-

ahead bias if I did so). I do require the bonds to have, as of the sorting date, an outstanding

amount of at least 200 mln USD and a 12-month average of the realized bid-ask spread of

at most 100 b.p. The latter helps to bring down the transaction cost of the reversal strategy

which is usually very high due to high portfolio turnover. I use the 12-month average of the

realized bid-ask spread to account for transaction costs. I also extend the sample back to

2005 to compare the performance of the reversal strategy pre- and post-2008 crisis.

In addition to a long-reversal portfolio, I consider its two sub-portfolios separately. The

first sub-portfolio contains the bonds with a below-median number of mutual fund bond-

holders as of the sorting date.22 This sub-portfolio contains bonds with supposedly more

information asymmetry. The second sub-portfolio contains the bonds with an above-median

number of mutual fund bondholders (less information asymmetry). The results of the pre-

21I do not consider a short leg here for two reasons. First, in the sample I work with shorting top-performing
corporate bonds was not profitable. Second, I do not have reliable estimates for the cost of shorting.

22For sorting, I take the variable ‘number of mutual fund owners’ as before but with a lag of 6 months. Since
N-Q forms are reported semiannually, it ensures that I am not sorting on the information not yet available
at the sorting date.
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vious section suggest that in-sample and following average-volume periods the reversals are

stronger for bonds with more information asymmetry. So, one might expect the reversal

portfolio with more information asymmetry to outperform the reversal portfolio with less

information asymmetry out-of-sample .

Cum trading costs Net trading costs
Mean S.D. SR IR Mean S.D. SR IR

Long reversal (LR) 8.40 6.44 1.12 1.83 1.96 6.34 0.13 0.18
LR: many funds 8.02 7.09 0.97 1.40 1.39 6.99 0.04 0.01
LR: few funds 9.01 6.11 1.28 2.06 2.81 6.01 0.28 0.44
Market 2.16 3.66 0.28 1.36 3.66 0.07

Table 1.10. Performance statistics of the long leg of the reversal strategy for
corporate bonds with monthly rebalancing. Mean is a sample average of monthly returns,
in % per annum. S.D. is the standard deviation of monthly returns, in % per annum. SR is
the Sharpe ratio relative to the 3 month Treasury Bill. IR is the information ratio relative
to the market. The sample is Oct 2005 to Jun 2017. For portfolio construction, I apply
the following filters to the sample: a) previous month outstanding amount is greater than
200 mln USD, b) previous month 12-month moving average of the realized bid-ask spread
is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds on the
previous month credit rating (three terciles) and total return (five quintiles). For each of
the 15 bins, the average bond return weighted by the previous month outstanding amount is
computed. Long-reversal (LR) return is a simple average return across three rating terciles
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with
an above-median number of fund owners. Market return is the value-weighted return of the
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the
realized bid-ask spread (average bid-ask spread in Table 1.1).

Table 1.10 presents performance measures of three reversal portfolios in comparison to

the market portfolio. Between Oct 2005 and Jun 2017 average long-reversal portfolio returns

unadjusted for trading costs were around 8.4% per year. The sub-portfolio with many fund

owners earned around 8% while the portfolio with few fund owners earned around 9%,

which is 4.5 times more than the market portfolio. The volatility of the sub-portfolio with

few fund owners was also lower which translates into a superior risk-adjusted performance

of the reversal strategy for bonds with more information asymmetry. Once I account for

trading costs, the performance of reversal portfolios becomes considerably lower because of

high portfolio turnover. However, the sub-portfolio with few fund owners still earns almost

37



3% per year after trading cost adjustment, which is twice more than the corporate bond

market. The information ratio of the reversal portfolio with few fund owners amounts to

approximately 0.5 (annualized) relative to the corporate bond market. The return on the

reversal portfolio with many fund owners is considerably lower and is close the bond market

after trading cost adjustment.
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(b) Adjusted for trading costs

Figure 1.5. The value of long-reversal corporate bond portfolios with monthly re-
balancing. I normalize the value of all portfolios in Sep 2005 to 1. For portfolio construction,
I apply the following filters to the sample: a) previous month outstanding amount is greater
than 200 mln USD, b) previous month 12-month moving average of the realized bid-ask
spread is below 100 b.p. Reversal portfolios are obtained from the double-sorting of bonds
on the previous month credit rating (three terciles) and total return (five quintiles). For each
of the 15 bins, the average bond return weighted by the previous month outstanding amount
is computed. Long-reversal (LR) return is a simple average return across three rating terciles
for the top reversal (lowest past returns) quintile. ‘LR: few funds’ is the reversal portfolio
with a below-median number of fund owners. ‘LR: many funds’ is the reversal portfolio with
an above-median number of fund owners. Market return is the value-weighted return of the
bonds in the sample. Trading costs are assumed to be half of the 12-month average of the
realized bid-ask spread (average bid-ask spread in Table 1.1).

Figure 1.5 shows how reversal returns accumulate over time. Observe in Figure 1.5a that

two-thirds of the total reversal portfolio value gains (unadjusted for trading costs) come from

years 2009–2011. The difference between the value of sub-portfolios with few and many fund
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owners starts to accumulate since mid-2009 and is growing slowly but steadily ever since.

Figure 1.5b plots portfolio values net of trading costs and tells a similar story except the

reversal strategies here are performing worse than the market since approximately 2013. The

long-reversal portfolio with few fund owners is still worth considerably more than the market

portfolio by the end of the sample period.

The evidence presented in this section demonstrates that conditioning on information

asymmetry considerably affects the performance of reversal strategies in practice. Reversals

tend to be stronger for bonds with more information asymmetry and long-reversal portfolios

with less mutual fund ownership, for instance, can outperform the corporate bond market

after adjustment for trading costs. Given these findings, one can further investigate differ-

ent information asymmetry signals and potentially improve the performance of the reversal

strategy on corporate bonds.

1.6 The model

In this section, I present a model of competitive bond trading volume that builds on the

same premises as my empirical analysis above: investors trading bonds with each other are

occasionally adversely selected while dealers avoid information-driven trade flow. The model

justifies equation (1.2), which I estimate in the empirical part of the chapter, and yields

predictions about the dependence of volume-return coefficients on information asymmetry

that closely match empirical results I have discussed above. One can view the model of

this section as the formal presentation of the intuition behind volume-return relationships I

analyze in the empirical part of the chapter.

The model is a modification of Llorente et al. (2002) which is a simplified version of Wang

(1994) in its turn. In these models, two types of investors, informed and uninformed ones, are

trading with each other for liquidity reasons and on private information. My model differs
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from Llorente et al. (2002) in two ways: I tailor the arithmetic of returns to defaultable

bonds rather than to stocks as in the original model and I introduce noisy bond supply.

Changing a dividend-paying stock for a perpetual coupon-paying defaultable bond within

the model requires approximations to keep the analysis tractable. In Llorente et al. (2002),

private information is the information about dividends, which is an additive component

of dollar returns. In my model, private information relates to default risk, which is not an

additive term in returns calculation. To make returns linear in a default loss and simplify the

learning problem for uninformed traders, I consider a log-linear approximation of defaultable

bond returns as in Hanson, Greenwood, and Liao (2018). Given that daily bond returns in

my sample are small numbers (see Table 1.1) with 5th and 95th percentiles close to 1% in the

absolute value, the log-linear approximation of returns should not undermine the relevance

of theoretical results for my empirical analysis.23

I introduce noisy bond supply to the model to generate the additional trading volume

that is not due to liquidity or informational signals the agents receive. In the model, I assume

that supply changes that proxy for changes in dealers’ bond inventory are independent of the

arrival of private news. Table 1.2 suggests that such an assumption is not at odds with the

data; the correlation between client-to-client and client-to-dealer daily volume measures in

my sample is low. In the model, supply changes are publicly observed, unlike private liquidity

signals. Under these assumptions, I can derive the dynamic volume-return relationship

similar to (1.2) and provide additional implications for my empirical analysis compared to

the baseline model of Llorente et al. (2002).

1.6.1 The economy

The discrete-time economy has two traded securities: a riskless bond in unlimited supply

at a constant interest rate that is set to 0 for simplicity and a risky perpetual bond that

pays a coupon C every period. Hanson et al. (2018) demonstrate that Campbell and Shiller

23To preserve the linearity of demand with respect to state variables when working with percentage rather
than dollar returns, I also have to log-linearize the wealth dynamics of the agents.
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(1988) decomposition applied to such a bond yields the log return rt of the following form:

rt+1 ≈ κ+ c(1− θ) + θpt+1 − pt − dt+1, (1.4)

where pt ≡ logPt is the log ex-coupon price of the bond, θ and κ are deterministic functions

of the log-coupon c ≡ logC, and dt+1 is the log default loss at time t+ 1.24

I assume that the log default loss consists of two additive components:

dt+1 = ft + gt.

ft is publicly known at time t while gt is a private time t information of a subset of investors.

At time t+ 1, the value of dt+1 becomes publicly observed.

The risky bond is traded in a competitive bond market with noisy supply st, which is

a public knowledge. The market is populated with two classes of investors, i = 1, 2, with

relative population weights ω and 1 − ω. The investors are identical within each class, and

each investor’s initial endowment of the risky bond is set to 0 for simplicity. Type 1 investors

are informed; they observe gt. Type 2 investors do not observe gt but learn it from the bond

price using the Bayes rule. In addition, Type 1 investors have a random exposure zt to

some non-traded asset that generates a log return of nt+1 in the subsequent period.25 Type

2 investors do not know the exposure of type 1 investors to the non-traded risk. Overall,

the information set of the informed investors at time t is {d, p, n, f, s, g, z}0,...,t while the

information set of the uninformed investors is {d, p, n, f, s}0,...,t.

I assume that nt, gt, and zt are time-independent zero-mean normally distributed ran-

dom variables with variances σ2
n, σ2

g , σ
2
z respectively. I further assume that ft is also time-

independent and normally distributed with the mean mf = κ + c(1 − θ) and the variance

24For the derivation see Appendix A.1.1.
25Here I follow Llorente et al. (2002) assuming for simplicity that only one type of investors has income from

a non-traded asset. It is enough to generate price reversals due to liquidity trading.
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σ2
f .

26 All of nt, gt, zt, and ft are contemporaneously uncorrelated except for nt and ft that

have a time-invariant negative covariance, which means that default losses are low when

non-traded asset returns are high. This implies a constant positive covariance between rt

and nt that equals σrn. Finally, the supply of the risky bond follows an AR(1) process

st+1 = δst + εt+1, (1.5)

where |δ| < 1 and εt is normally distributed with zero mean and variance σ2
s ; it is independent

over time and is independent from nt, gt, zt, and ft.

The investors of both types i = 1, 2 maximize the next period conditional expected utility

Et
[
−e−W

(i)
t+1

]
derived from the next period wealth W

(i)
t+1 by choosing the demand X

(i)
t for

the risky bond.27 To keep the model tractable I need to take the log-linear approximation

of the wealth dynamics, which under the assumptions of the model is

W
(1)
t+1 ≈ W

(1)
t +X

(1)
t rt+1 + zt(1 + nt+1),

W
(2)
t+1 ≈ W

(2)
t +X

(2)
t rt+1.

The model setup is different from Llorente et al. (2002) in two ways. First, I work with

log returns approximated in (1.4) around p̄ ≡ 0 and linearized wealth dynamics instead

of dollar returns and non-linearized wealth dynamics. Second, more importantly, I assume

noisy supply (1.5) instead of a constant zero supply. Noisy supply allows me to decompose

the trading volume in the model into two components: the first one is related to trading

between informed and uninformed investors and exogenous changes in asset supply drive the

second one. Empirical counterparts of these two components are respectively the volume

26The mean of ft is chosen such that the long-term mean of the log bond price is 0 and the contributions of
coupons and public news about future defaults to returns cancel one another on average.

27As in Llorente et al. (2002), the risk aversion is set to 1 since it only enters the expressions for investors‘
demands as the multiple of the variances of all exogenous shocks. Hence, one can implement higher or
lower risk aversion in the model by proportionally scaling variances of all shocks up or down.
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of corporate bonds purchased by clients matched by client sales in a given period and net

changes in broker-dealer inventory.

1.6.2 Model equilibrium

I solve for the rational expectations equilibrium of the model assuming a linear pricing

function for the log bond price. Define the log price adjusted for the publicly known credit

loss component as p̃t ≡ pt + (ft −mf ) and assume it is linear with respect to gt, zt, and st:

p̃t = −a(gt + bzt + est). (1.6)

Observe that the steady-state level of log bond price is 0 as in the linear approximation of

log return (1.4).

Given the pricing function (1.6), the equation for returns (1.4) re-writes as:28

rt+1 = −θ (ft+1 −mf ) + θp̃t+1 − p̃t − gt. (1.7)

The expression for conditional expected returns follows from (1.7):

E(i)
t [rt+1] = −p̃t − E(i)

t [gt]− aeθδst.

The informed investors know gt, hence E(1)
t [gt] = gt. The uninformed investors observe p̃t

and st and estimate E(2)
t [gt|p̃t, st]. I show in Appendix A.1.2 that

E(2)
t [gt|p̃t, st] = γ(gt + bzt), (1.8)

where γ =
σ2
g

σ2
g+b2σ2

z
> 0. One can further show that conditional return variances for two types

of investors are constant over time.

28In what follows, I replace an approximate equality in (1.4) with the exact one.
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With conditional expected return linear in gt, zt, and st and conditional return variance

constant for both types of investors, the demand for risky bonds, X
(1)
t and X

(2)
t , is also linear

in gt, zt, and st
29. The market for risky bonds clears:

ωX
(1)
t (gt, zt, st) + (1− ω)X

(2)
t (gt, zt, st) = st,

which must hold for any values of gt, zt, and st, implying a system of three non-linear equa-

tions for yet undetermined coefficients a, b, and e. One can show that if the parameters

of the model are such that the system has real-valued solutions then it must be that a, b,

and e are all positive, moreover, ω + γ − ωγ < a < 1 and b = σrn. I demonstrate in Ap-

pendix A.1.4 that under mild restrictions on the parameters (that boil down to σ2
s being not

‘too big’) the model always has real-valued solutions, of which a unique triple of {a∗, b∗, e∗}

has economically reasonable values.

1.6.3 Trading volume in the model

Consider the aggregate difference in risky bond holdings in the economy at time t

ω∆X
(1)
t + (1− ω)∆X

(2)
t = ∆st.

Using the equilibrium conditions one can decompose it as

ω∆X
(1)
t + (1− ω)∆X

(2)
t = V

(1)
c,t (∆gt,∆zt) + V

(2)
c,t (∆gt,∆zt)︸ ︷︷ ︸

=0

+V
(1)
s,t (∆st) + V

(2)
s,t (∆st)︸ ︷︷ ︸

=∆st

,

where ∣∣∣V (1)
c,t (∆gt,∆zt)

∣∣∣ =
∣∣∣V (2)
c,t (∆gt,∆zt)

∣∣∣ = |α (∆gt + σrn∆zt)| , (1.9)

29See Appendix A.1.3.
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and α = ω(a− 1)/σ2
r. Here, V

(1)
c and V

(2)
c represent the volume of trading between informed and

uninformed investors. This trading volume is due to changes in a private signal about credit

loss ∆g (information-driven trading) and the position in a non-traded asset ∆z (liquidity-

driven trading). V
(1)
c and V

(2)
c always have opposite signs but are equal in the absolute value.

For the convenience of notation, I will denote this trading volume vc,t = |α (∆gt + σrn∆zt)| >

0. An econometrician observing bond trading records in the TRACE database can compute

what the client buy volume matched by the client sell volume was at time t.30 It is an

empirical proxy for vc,t.

Two other components, V
(1)
s and V

(2)
s , represent trading due to changing bond supply.

One can show that in equilibrium these two components are always of the same sign and

they represent the proportion in which two types of agents absorb additional bond supply

∆s. By construction, a change in bond supply is the buy volume that was not matched by

the sell volume of the opposite sign. Its absolute value is equal to the absolute value of a

change in aggregate dealers’ inventory. The latter is an empirical counterpart of vs,t ≡ |∆st|.

What the model assumes is that vc,t and ∆st are independent since the latter is uncorrelated

with ∆g and ∆z that drive the former. Table 1.3 has demonstrated that this assumption

largely holds in the data. The key takeaway of this paragraph is that I assume that an

econometrician knows vc,t and vs,t, and these two quantities are defined within the model as

stated above.

1.6.4 Volume-return relationship and information asymmetry

Assume an econometrician observes the time-series of bond returns rt and two types of

volume, vc,t and vs,t, as discussed above. Then the conditional expectation of future returns

given current returns and volume can be approximated as

Et [rt+1|rt, vc,t, vs,t] ≈
(
β1 + β2v

2
c,t + β3v

2
s,t

)
rt, (1.10)

30All records in TRACE represent trading between a broker-dealer and a client and can be of two types only:
a purchase by a client from a dealer or a sale to a dealer.
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the derivation is presented in Appendix A.1.5. This volume-return relationship is a theo-

retical counterpart of equation (1.2) estimated in the empirical part of the chapter. Unlike

equation (1.2), equation (1.10) contains squared volumes. In the data, squared volumes

are extremely right-skewed, hence from an econometric standpoint, it is reasonable to esti-

mate the volume-return relationship as in (1.2) with volume entering the equation without

a square (Llorente et al. 2002 follow the same approach). It does not change an economic

interpretation of volume-return coefficients.31

Now, I would like to discuss how coefficients β1, β2, and β3 change in the model as

the extent of informed trading changes. In the benchmark model Llorente et al. (2002),

both β1 and β2 are negative, but β1 is decreasing and β2 is increasing with the extent of

information asymmetry proxied by σ2
g . β1 measures the first return autocorrelation, and

negative β1 decreasing with σ2
g means that for two equally risky bonds returns will revert

more for the one with more information asymmetry. β2 measures the impact of volume on

the first autocorrelation, and negative β2 increasing with σ2
g means that for two equally risky

bonds returns will revert less following high-volume days for the one with more information

asymmetry. These theoretical results find empirical support in the U.S. stock market, as

Llorente et al. (2002) shows.

Unlike in the benchmark model, I can not make a general statement about the signs of

volume-return coefficients and their dependence on σ2
g ; I need to solve the model numerically

first. In Figure 1.6, I present the relationships between information asymmetry σ2
g and β

coefficients for the model calibrated to an average bond in TRACE. The bond has a coupon

rate of 5%, high persistence of a supply shock δ = 0.95, and a daily standard deviation

31Since an econometrician knows the sign of inventory changes, she could write an analog of equation (1.10)
conditioning additionally on this piece of knowledge. It would change the form of the equation slightly,
and the loadings on two types of volume would become incomparable. An important part of my empirical
analysis consists of a direct comparison of coefficients β2 and β3, and for that, I need to condition in (1.10)
on the absolute value of inventory changes.
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of returns of 1%.32 The latter stays fixed in all numerical solutions; this is an additional

constraint I impose on the solutions of the model.33 Figure 1.6 represents the cross-section

of bonds with the same unconditional risk but different contributions of public, private, and

liquidity shocks to return variance.
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Figure 1.6. Dependence of β1, β2, and β3 on information asymmetry σ2
g holding

total return variance fixed. Each point on the curves is a numerical solution of the model. I
obtain the relationships between σ2

g and β coefficients by varying σg from 0 to 1% holding
an unconditional standard deviation of returns at 1%, which is a daily standard deviation
of bond returns in the TRACE data. I choose the following parameters of the model to
match a median bond in sample: coupon rate C = 5%, the persistence of a supply shock
δ = 0.95. The fraction of informed investors is ω = 0.05, the correlation between traded and
non-traded asset returns is σrn = 0.3, the variance of the supply shock is σ2

s = 0.1. I first
solve the model for a very small value of σg, 5 b.p. here. Then, I hold the equilibrium value of
a fixed in all subsequent solutions for σg > 5 b.p; I allow e to change. Thus, the comparative
statics plotted here is a collection of solutions of the system of equations of three variables
(σ2

z , σ
2
f , and e): two model equilibrium equations plus an additional restriction on the total

return variance.

The left and central panels in Figure 1.6 deliver the same message as the benchmark

model. With more informed trading, returns tend to revert more, but less so following days

when investors trade a lot with each other. On the left panel, which presents reversals

32In Figure 1.6, I set δ = 0.95 which roughly corresponds to Corr(∆st,∆st−1) = −0.03 because in the model
Corr(∆st,∆st−1) = − 1

2 (1 − δ). In the model, δ measures the persistence of supply, which is roughly the
persistence of inventory. δ = 0.95 implies the half-life of broker-dealer inventory of about 13 days. Further
(unreported) estimations show, in line with the results of Dick-Nielsen and Rossi (2018), that dealers revert
deviations from their target inventory faster post-crisis.

33Llorente et al. (2002) impose the same restriction on the total unconditional variance of returns.
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following no-volume days, there is no reversal when σg is zero, and returns are due to

public news that is fully priced within the same period. As σg increases, no-volume reversals

intensify due to a greater impact of uninformed investors’ errors in estimating gt on returns.34

On the central panel, the reversal following high-volume days is the strongest when σg is zero

because the entire trading volume between informed and uninformed investors represents,

in this case, liquidity trading. Liquidity trading has price impact but does not reveal any

new information about the asset payoff; hence, the price reverts the next period. As σg

increases, it’s more and more likely that some part of the between-investors trading volume

comes from ∆g and conveys the information about future returns; hence the reversal tends

to decrease (β2 tends to increase). The right panel in Figure 1.6 shows that β3 that measures

an additional component of reversals following days when inventory changes a lot is relatively

insensitive to σg. It does not look surprising given that ∆s in the model is uncorrelated with

other motives for trading. One would expect β3 to be flat with respect to σg in such case;

a slightly upward sloping line on the right panel of Figure 1.6 is due to equilibrium e (price

impact of inventory-changing trades) changing with σg.

The shape of the lines in Figure 1.6 matches closely the shape of their empirical coun-

terparts presented in Figure 1.3. In the model, as it is in the data, β1 decreases, and β2

increases with information asymmetry, while β3 is insensitive to information asymmetry. It

gives additional support for the premises of the model: client-to-client trading volume may

be due to private information, but client-to-dealer trading volume is likely driven by liquidity

needs only.

As in Llorente et al. (2002), the limitation of my extended model is that β2 stays negative

for all reasonable model calibrations and does not turn positive (same applies to β3 which

34Here is the intuition for this result. With no volume, time t returns are not driven by liquidity shocks
since ∆zt and ∆gt must be zero. Assume zt−1 > 0 and informed investors are net sellers of bonds. From

(1.7) and (1.8) one finds that rt is negative when a
γE

(2)
t−1[gt−1] < gt−1 other things being equal, i.e., when

actual losses in default are higher than previously expected by uninformed investors. But that means that
in t − 1 informed investors’ demand for bonds was lower than required by their hedging needs; so it is
in t since the volume is zero. Hence, time t price is low and time t + 1 expected return is high. Higher
information asymmetry amplifies this effect.
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is not the part of the benchmark model). In reality, as Section 1.3 has shown, β2 is positive

for most corporate bonds. It does not undermine the main idea suggested by the model

and tested in the empirical part of the chapter. As the extent of informed trading increases,

returns following high-volume days are less likely to revert, especially when dealers are not

trading from their inventory capacity.

1.7 Conclusion

In this chapter, I estimate a dynamic volume-return relationship for individual bonds

and explore the determinants of estimated volume-return coefficients in a cross-section of

bonds. A particular focus of my analysis is on the impact of information asymmetry on

volume-return coefficients.

The hypotheses that I test arise from a stylized theoretical model of competitive bond

trading with asymmetric information and non-traded risks. In the model, trading between

investors is due to liquidity needs (hedging of the non-traded risk) or private information.

Also, investors in the model absorb random bond supply shocks; their empirical counter-

part is the change in aggregate bond inventory. The model suggests that bonds with high

information asymmetry have stronger price reversals than bonds with low information asym-

metry, but less so following high-volume days when dealers’ inventory does not change, and

investors are essentially trading with each other. Conversely, following days with substantial

changes in dealers’ inventory, the difference in reversals between high- low-asymmetry bonds

remains. In the model, this result emerges because changes in inventory (supply shocks) are

assumed independent from the arrival of private news.

I find strong empirical support for model predictions in the data. Bonds with high

information asymmetry exhibit stronger price reversals than low-asymmetry bonds, but less

so following days when trading volumes are high, but dealers’ inventory does not change

at the end of the day (clients purchases equal client sales). High-asymmetry bonds in my
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analysis are the bonds that are owned by few mutual funds and intermediated by few dealers,

have smaller outstanding amounts and issued by smaller firms with no actively traded CDS

contract on the issuer and high stock return volatility.

In particular, I find that a typical bond with high information asymmetry has the first

autocorrelation of returns close to -0.4 following average-volume trading days. Following two

standard deviations above-average volume day when dealers’ inventory does not change, the

first autocorrelation reduces to -0.18. A similar bond with the same average realized bid-

ask spread, return volatility, credit spread, and volume autocorrelation, but low information

asymmetry has the first return autocorrelation of -0.2, which increases only by 0.05 to -0.15

following high-volume inventory-neutral days.

If one considers, instead, the reversals following days when trading volume is high, but it

is due to substantial changes in dealers’ inventory, then the difference in reversals between

bonds with high and low information asymmetry remains at the average-volume day level.

These results are consistent with the assumption that trading volume in high-asymmetry

bonds is more likely to come from investors who possess private information. Since dealers

typically know their clients well and might be able to detect informed investors, they let other

investors provide liquidity for such trades. Overall, my results suggest that there might be

informed trading in corporate bonds, but when it happens, dealers are not providing liquidity

and are not adversely selected.

My findings have implications for the design of investment strategies exploiting corporate

bond reversals. In particular, I show that long-reversal portfolios of high-asymmetry bonds

outperform long-reversal portfolios of low-asymmetry bonds both before and after adjust-

ment for trading costs. Hence, illiquidity does not fully explain reversal returns. Moreover,

reversal portfolios of high-asymmetry bonds outperform the corporate bond market after

trading cost adjustment. An investor considering an implementation of a bond reversal

strategy might profit from additionally sorting bonds on information asymmetry proxies.
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My results also relate to a recent policy debate about corporate bond market trans-

parency. I find that bonds with less transparent valuations tend to have stronger price re-

versals when trading is purely liquidity-driven, and fundamental values of the bonds likely re-

main unchanged. Stronger liquidity-driven reversal is just another name for non-fundamental

price volatility that is often regarded as an undesirable feature of a well-functioning financial

market. From this standpoint, a proposed reduction in corporate bond market transparency

(TRACE delayed trade dissemination pilot project) might not be optimal.
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Chapter 2

Credit Spreads, Daily Business Cycle,

and Corporate Bond Returns

Predictability

2.1 Introduction

Credit spreads forecast economic activity. Gilchrist and Zakraǰsek (2012) elaborated on

this statement; there is a particular portion of credit spreads that is of most importance for

activity forecasts. It is a part of the spread that is not explained by corporate credit risk,

called the credit risk premium or the excess bond premium (EBP). The first part of this

chapter shows what stands behind the forecasting power of the EBP.

I argue that the forecasting power of the EBP hinges on the information about aggregate

business risk and bond liquidity risk contained in credit spreads and show how to extract this

information using daily frequency. I construct a large bond-day panel of credit spreads from

transactions recorded in TRACE and measure corporate credit risk, bond-specific liquidity

risk, and aggregate business risk at the daily frequency. When I project spreads on corporate

credit risk only (as in Gilchrist and Zakraǰsek, 2012), I confirm that the residual forecasts
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future economic activity. However, when I further project spreads on aggregate business

risk as measured by the Aruoba-Diebold-Scotti daily business conditions index (ADS index)

and bond liquidity risk, as measured by the Amihud measure, the forecasting power of the

residual portion of spreads for macroeconomic variables largely goes away.1

Following finance literature, I interpret the residual portion of credit spread unexplained

by corporate credit risk, bond liquidity risk, and aggregate business risk as the credit risk

premium. The second part of this chapter demonstrates that my measure of the credit risk

premium is a forecast of corporate bond market returns. The forecasting power is absent

when one considers instead the residuals from the projection of spreads on corporate credit

risk only. This result is robust to different estimation windows and different bond market

portfolios. Moreover, the risk premium forecasts returns even when it is estimated in real

time with the information available only on the estimation date.

I remain agnostic about what this return-forecasting component of credit spreads is. Yet,

I demonstrate what it is surely not. My work shows that neither bond pricing factors of

Bai et al. (2019), including contemporaneous bond market returns per se, nor stock market

factors can explain the time series variation of my credit risk premium measure. The models

with my credit risk premium on the right-hand side, in addition to other bond pricing factors,

however, forecast returns on diverse size, maturity, and industry corporate bond portfolios

better than the models without it. This result is robust to exclusion of the subprime crisis

episode from the sample.

I exploit the forecasting power of the risk premium to construct a corporate bond market-

timing strategy that delivers risk-return characteristics superior to the buy-and-hold market

strategy. My strategy assumes weekly portfolio rebalancing and uses only one risky in-

strument, an investable aggregate corporate bond market index, which is bought and sold

depending on predicted corporate bond market excess returns. On a testing sample, my pre-

1The ADS index does not contain any bond or stock market indicators as inputs.
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dictive model successfully forecasts market returns out-of-sample, and the strategy delivers

total return and a Sharpe ratio 1.5 times higher than the corporate bond market index.

The first part of this chapter on macro forecasting properties of the EBP feeds into several

discussions in the literature. From the perspective of EBP estimation and predictive power,

this work is related to the work by Gilchrist and Zakraǰsek (2012), De Santis (2017), and

Nozawa (2017). In particular, De Santis (2017) constructed a monthly credit risk premium

free from aggregate business risk on European multi-country data but reached a different

conclusion regarding its forecasting properties. From the perspective of empirical credit

spread modeling, this chapter contributes to the ‘credit spread puzzle’ literature stemming

from Collin-Dufresne, Goldstein, and Martin (2001). I demonstrate that aggregate business

risk, as measured by the daily business cycle index, is able to explain a significant portion

of common variation in credit spreads at the daily frequency. In this respect, this chapter is

related to the results by d’Avernas (2017), who estimates a joint structural model of credit

spreads and equity volatility to argue that firms’ time-varying aggregate asset volatility helps

to explain both the dynamics of credit spreads and their forecasting power for economic

activity. There are no direct references for the second part of this chapter that investigates

asset pricing properties of the EBP. To the best of my knowledge, this is the first study to

establish the forecasting power of EBP for corporate bond market returns.

The chapter is organized as follows. Section 2.2 discusses the data sample. Section 2.3

estimates the credit risk premium by fitting alternative models to the bond-day panel of

credit spreads. Forecasting power of the risk premium for macroeconomic activity is discussed

in Section 2.4. Section 2.5 shows that the EBP forecasts excess bond market returns, does

multiple robustness tests, and presents an investment strategy to benefit from the forecasting

power of the risk premium. Section 2.6 concludes the work.
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2.2 Sample Characteristics

I merge daily bond trades from TRACE with bond characteristics from Mergent Fixed

Income Securities Database (FISD) and issuing firm characteristics from Compustat and

CRSP for senior unsecured corporate bonds with fixed coupon schedules. My data con-

struction approach is presented in detail in Appendix B.1. The constructed sample is an

unbalanced bond-day panel with around 2 million bond-day observations that span a period

from Oct 2004 to Dec 2014. The number of bonds sampled per day is, on average, 823 with

a standard deviation of 111. Summary statistics for the panel are presented in Table 2.1.

An average bond in the sample has been issued approximately six years ago and has

about nine years to maturity. It has an outstanding amount of about 600 million USD and

pays a coupon of 6%. It is an investment-grade security rated between BBB+ and BBB and

is traded six times per day. Its yield to maturity is about 5%, approximately 2.4% above its

risk-free counterpart. The latter number is the credit spread measure constructed following

Gilchrist and Zakraǰsek (2012). I call it either the GZ spread or simply the spread.

To control for illiquidity, I use a daily Amihud measure AMHt computed for each bond

for each day t when the bond was traded:

AMHt =
1

Nt

Nt∑
j=1

|rt,j|
Qt,j

,

where rt,j is the price return of trade j of this bond on day t, Qt,j is the volume of a

corresponding transaction, and Nt is a total number of trades of this bond per day.2 This

definition of the Amihud measure follows the approach of Dick-Nielsen, Feldhütter, and

Lando (2012) with one modification. Their approach requires at least two trades per day to

compute the Amihud measure; I compute it even for days with a single trade. In this case,

2To see how the Amihud measure behaves on daily frequency on TRACE data relative to other illiquidity
measures see Schestag et al. (2016).
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Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Size, mln USD 639.35 588.17 1 300 500 750 15,000
Time to maturity, years 8.84 7.89 1.00 3.26 5.88 10.12 30.43
Age, years 5.83 5.18 0.00 2.08 4.25 7.83 49.66
Duration, years 6.29 4.26 0.94 3.02 5.06 8.09 19.64
Coupon rate, pct. 5.77 1.87 0.45 4.80 5.95 7.00 15.00
Credit rating 8.36 3.17 1 6 8 10 22
Trades per bond per day 7.14 14.06 1 2 3 8 2,813
Yield to maturity, pct. 4.53 2.80 0.18 2.49 4.48 5.84 39.35
Spread, pct. 2.13 2.35 0.05 0.83 1.45 2.59 35.00
Return, pct. per day 0.02 1.27 −10.42 −0.36 0.03 0.43 9.72
Distance-to-default (DD) 0.66 0.32 0.01 0.41 0.63 0.87 8.49
Amihud measure 0.51 0.87 0.00 0.03 0.18 0.58 7.16

(a) Full-sample descriptive statistics. The age variable represents time elapsed from issuance.
Duration is the Macaulay duration. Ratings are in conventional numerical score; ‘AAA’ cor-
responds to 1, ‘D’ corresponds to 22. For spread 5 b.p. and 35% are truncation points. The

Amihud price impact measure is computed as 1
Nt

∑Nt

j=1
|rt,j |
Qt,j

, where rt,j is the price return of

trade j of this bond on day t, Qt,j is the volume of a corresponding transaction, and Nt is a total
number of trades of this bond per day. The computation of the distance-to-default variable is
detailed in Appendix B.1.2.

AAA AA A BBB BB B CCC CC C D
Size, mln USD 550.00 800.00 500.00 499.43 400.00 400.00 350.00 275.00 175.00 360.62
Time to maturity, years 5.91 4.95 5.82 6.00 6.07 5.76 5.47 5.07 5.95 17.39
Age, years 4.35 3.33 4.04 4.18 4.93 4.95 5.51 10.82 13.36 10.96
Duration, years 5.15 4.54 5.08 5.17 5.12 4.81 4.58 4.33 4.96 10.78
Coupon rate, pct. 5.15 4.75 5.50 6.00 7.00 7.50 7.75 7.70 8.50 7.45
Trades per bond per day 4.00 5.00 3.00 3.00 4.00 4.00 5.00 6.00 4.00 5.00
Yield to maturity, pct. 3.19 3.51 3.78 4.42 6.21 7.62 9.75 13.42 13.62 14.84
Spread, pct. 0.46 0.62 0.95 1.65 3.47 4.68 6.76 10.64 11.30 10.81
Return, pct. per annum 4.46 3.62 5.02 6.89 9.41 10.87 11.56 21.66 20.26 57.14
Distance-to-default (DD) 1.14 0.94 0.77 0.58 0.43 0.37 0.25 0.18 0.21 0.09
Amihud measure 0.20 0.15 0.15 0.19 0.23 0.26 0.41 0.69 0.63 0.92
% of total 0.63 6.12 35.67 39.85 10.58 4.94 1.86 0.19 0.13 0.02
% callable 47.42 69.94 85.63 88.64 84.01 80.95 69.49 41.92 42.85 39.82

(b) Median values by credit rating except for ‘% of total’ and ‘% callable’. Here, numerical
ratings of Table 2.1a are aggregated to 10 letter-coded bins. Median returns here are total
returns expressed in % per annum.

Table 2.1. Summary statistics. The full sample is 2,032,455 bond-day observations that
span a period from Oct 4, 2004 to Dec 23, 2014. The sample includes only senior unsecured
non-convertible fixed coupon corporate bond issues with less than 30 years to maturity. The
number of unique bonds/firms in sample is 4640/775. Appendix B.1.1 details the steps of
data construction. The spread in both tables is the GZ spread from Gilchrist and Zakraǰsek
(2012): a difference in yields to maturity between a risky bond and an imaginary risk-free
bond with the exact same cash flows.

the price return is relative to a previous trade whenever it occurred.3 Table 2.1b presents

3I experimented with these two definitions and found that for bond-days with at least two trades per day
two definitions give very close numerical measures.
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median values of the Amihud measure in the sample by credit rating. Bonds of lower credit

quality tend to be less liquid in the sample.

As Table 2.1b shows, A- and BBB-rated callable bonds are predominant in the sample.

The spread measure is not option-adjusted by construction; as in Gilchrist and Zakraǰsek

(2012), I will control for that in the EBP calculations. The median GZ spread and distance-

to-default are aligned with credit ratings in an intuitive way. The higher the rating, the

‘farther’ the default is and the lower the spread. Ratings are also aligned (except AAA-rated

and almost defaulted bonds) with median coupons, durations, and total daily returns.
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Figure 2.1. Daily and monthly measures of the aggregate GZ spread (simple
cross-sectional average of the GZ spread across all bonds for each time observation). The
left chart shows daily GZ spread obtained on the daily TRACE-based sample. The right
chart compares it with the original monthly GZ spread from Gilchrist and Zakraǰsek (2012).

My aggregate spread measure constructed on the daily data is in line with the monthly

measure of Gilchrist and Zakraǰsek (2012), as Figure 2.1 demonstrates. The left panel is

my daily time series. For each day, the aggregate spread is a simple cross-sectional average

of GZ spreads across all bonds of all firms sampled on that day. The aggregate spread is
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non-stationary in levels. The right panel of Figure 2.1 compares the monthly mean and last

values of my daily measure with the original monthly spread from Gilchrist and Zakraǰsek

(2012). The three series differ a bit only during the 2008-2009 crisis; otherwise, the fit is tight.

Thus, at this stage, I have obtained a larger sample with the daily data and constructed the

daily GZ-spread measure, which is very close to the monthly one presented in the literature.

2.3 Measuring Excess Bond Premium

Excess bond premium (EBP) is the portion of credit spread not explained by credit risk

factors. Given a panel of bonds k issued by firms i and observed at times t, and given their

GZ spreads SGZi,t [k], bond-level EBPi,t[k] is computed as follows:

log
(
SGZi,t [k]

)
= Factors of credit spreads + εi,t[k],

ŜGZi,t [k] = exp

(
Part due to estimated factors +

σ̂2
εi,t[k]

2

)
,

EBPi,t[k] = SGZi,t [k]− ŜGZi,t [k],

where σ̂2
εi,t[k] is the variance of residuals of the log-spread-fitting regression above. In this

work, I am interested in the properties of the aggregate excess bond premium EBPt defined

for each day t as a simple cross-sectional average of EBPi,t[k] across all bonds of all firms.

I estimate the EBP on the daily data, unlike Gilchrist and Zakraǰsek (2012) and De Santis

(2017), who worked with bond–month panels. My major motivation is pronounced business

cycle forecasting properties of monthly EBP established in the literature. Is it possible to

extract the information about the future state of the economy beyond what we know from

daily real activity measurements from credit spreads on a daily basis? Does this approach

bring new information that is valuable for forecasting not only macroeconomic activity but

also bond returns?
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To answer these questions, I want to capture the portion of bond spreads beyond firm-

specific credit risk, bond-specific liquidity risk, and economy-wide business risk. I directly

control for bond-specific illiquidity with the daily Amihud measure and for aggregate business

risk with a high-frequency real activity proxy. This is the daily ADS index computed and

published in real time by the Philadelphia Fed.4 The ADS index based on Aruoba, Diebold,

and Scotti (2009) is a smoothed business cycle state derived from a mixed-frequency state-

space linear model for six real-valued variables: initial jobless claims, payroll employment,

industrial production, personal income less transfer payments, manufacturing and trade

sales, and gross domestic product. The ADS index contains neither bond nor stock market

data as inputs.

I benchmark my EBP measure on Gilchrist and Zakraǰsek (2012). Their EBP is correlated

with economy-wide business risk, and bond-specific illiquidity is controlled only with monthly

bond characteristics. De Santis (2017) controlled for aggregate business risk when measuring

EBP, but he estimated it on monthly European multi-country data. This summarizes the

differences in my preferred spread-fitting model relative to the Gilchrist and Zakraǰsek (2012)

model:

Original GZ models:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ (Industry and rating FE) + εit[k].

My preferred models:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ γ · ADSt + η · AMHit[k]︸ ︷︷ ︸
Daily business cycle and liquidity

+ (Industry and rating FE) + εit[k],

4For details on the ADS index see Appendix B.2 and https://goo.gl/mZJ5Sj. Many alternative daily
aggregate business risk proxies exist, for instance, the Economic Policy Uncertainty index of Baker, Bloom,
and Davis (2016). I opted for the ADS mainly because of a long history of ADS vintages readily available
at the Philadelphia Fed web page. These historical vintages allow me to perform out-of-sample analysis in
Sections 2.5.2 and 2.5.4.
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where DDit is the distance-to-default of firm i at time t (proxy for idiosyncratic credit risk),

ADSt is the aggregate business activity index at day t, and AMHit[k] is the Amihud measure.

In the following sections, I apply both approaches on the bond-day panel and investigate the

differences in the resulting EBPs.

Table 2.2 presents the estimated models over the entire sample. Model 1 is the basic model

with corporate credit risk factors on the right-hand side. In Models 2 and 3, I consecutively

add aggregate business activity and liquidity factors. Models 1 to 3 have the simplest possible

call option adjustment: a constant that is identical for all bonds at all times. Models 4 to

6 introduce interactions of call dummy with yield curve factors and bond characteristics

to possibly better capture the time variation in the issuer’s desire to call an issue before

maturity. Model 4 is the benchmark Gilchrist and Zakraǰsek (2012) model. I see Model 6,

which extends Model 4 with daily aggregate business activity and liquidity factors, as the

alternative model.

All models in Table 2.2 have high explanatory power for log spreads. Even the simplest

model, Model 1, explains around 72% of the log spreads variation in the data. More elaborate

call option adjustment (Model 4) increases this share by 2.5 percentage points. Aggregate

business activity and liquidity factors (Model 6) add another 4.5 percentage points to the

share of explained log spreads variation, which reaches 79%.

As Table 2.2 shows, aggregate business risk and bond illiquidity are significant predictors

of credit spreads. Coefficients on the ADS business cycle index and the Amihud measure are

statistically significant across all specifications. They do not vary much from one model to

another and have reasonable signs. Business cycle upturns are associated with lower credit

spreads, and more illiquid bonds have higher spreads.

Most interaction variables of the call dummy with yield curve factors and bond charac-

teristics introduced in Models 4–6 for the purpose of call option adjustment are statistically

significant, as Table 2.2 shows. Observe for Models 5 and 6 that when the yield curve moves

up and becomes steeper, the spreads tend to become lower. This finding can be explained as
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Dependent variable: log(Spreadit[k])

(1) (2) (3) (4) (5) (6)

−DDit 0.846∗∗∗ 0.631∗∗∗ 0.625∗∗∗ 0.680∗∗∗ 0.487∗∗∗ 0.478∗∗∗

(0.037) (0.036) (0.035) (0.061) (0.059) (0.058)
log(DURit[k]) 0.311∗∗∗ 0.322∗∗∗ 0.311∗∗∗ 0.304∗∗∗ 0.313∗∗∗ 0.297∗∗∗

(0.011) (0.011) (0.011) (0.022) (0.021) (0.020)
log(PARit[k]) −0.078∗∗∗ −0.076∗∗∗ −0.070∗∗∗ −0.050∗∗∗ −0.053∗∗∗ −0.046∗∗∗

(0.012) (0.011) (0.011) (0.016) (0.017) (0.017)
log(CPNi[k]) 0.515∗∗∗ 0.451∗∗∗ 0.449∗∗∗ 0.620∗∗∗ 0.550∗∗∗ 0.544∗∗∗

(0.020) (0.019) (0.019) (0.063) (0.061) (0.060)
log(AGEit[k]) −0.004 0.013∗∗ 0.008 0.004 0.031 0.029

(0.006) (0.006) (0.006) (0.028) (0.027) (0.027)
CALLi[k] 0.036 0.046∗∗ 0.051∗∗ 0.611∗∗∗ 0.765∗∗∗ 0.784∗∗∗

(0.023) (0.022) (0.021) (0.233) (0.244) (0.240)
ADSt −0.266∗∗∗ −0.261∗∗∗ −0.255∗∗∗ −0.251∗∗∗

(0.007) (0.007) (0.007) (0.007)
AMHit[k] 0.051∗∗∗ 0.053∗∗∗

(0.002) (0.002)
−DDit · CALLi[k] 0.106∗ 0.113∗ 0.116∗

(0.064) (0.061) (0.060)
log(DURit[k]) · CALLi[k] 0.015 0.009 0.014

(0.019) (0.018) (0.018)
log(PARit[k]) · CALLi[k] −0.032∗ −0.032∗ −0.033∗

(0.017) (0.019) (0.018)
log(CPNi[k]) · CALLi[k] −0.144∗∗ −0.087 −0.081

(0.065) (0.063) (0.062)
log(AGEit[k]) · CALLi[k] −0.001 −0.025 −0.028

(0.027) (0.026) (0.026)
LEVt · CALLi[k] −0.012 −0.034∗∗∗ −0.037∗∗∗

(0.009) (0.008) (0.008)
SLPt · CALLi[k] −0.00003 −0.025∗∗ −0.026∗∗

(0.012) (0.010) (0.010)
CRVt · CALLi[k] 0.030∗∗ −0.035∗∗∗ −0.035∗∗∗

(0.014) (0.012) (0.012)
V OLt · CALLi[k] 2.052∗∗∗ 0.720∗∗∗ 0.703∗∗∗

(0.094) (0.055) (0.054)

Industry FE YES YES YES YES YES YES
Credit rating FE YES YES YES YES YES YES
Observations 2,756,326 2,756,326 2,756,326 2,756,326 2,756,326 2,756,326
Adjusted R2 0.751 0.797 0.800 0.767 0.801 0.804

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.2. Candidate explanatory models for the bond k of firm i – day t panel of
credit spreads for the entire sample (Oct 4, 2004 – Dec 23, 2014). The dependent variable
is the log of GZ spread. DD is the distance-to-default, DUR is duration, PAR is amount
outstanding, CPN is the coupon rate, AGE is time elapsed from issuance, and CALL is
a callable bond dummy. ADS is the Aruoba-Diebold and Scotti aggregate activity index,
AMH is the Amihud liquidity measure. LEV , SLP , and CRV are correspondingly level,
slope, and curvature yield curve factors, and V OL is the realized volatility of the 10-year
rate (30-day moving average). See Appendix B.2 for the details on explanatory variables.
All models include industry (the first two digits of the NAICS code) and credit rating (22-
grade numeric scale) fixed effects. Standard errors are clustered in both firm i and time t
dimensions. Model (4) is a benchmark model (Gilchrist and Zakraǰsek, 2012), Model (6) is
used as an alternative model throughout the rest of the chapter.

follows: the probability of an early call decreases when rates become higher (fewer incentives

for an issuer to refinance at higher rates); hence, an early call premium drops and callable
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bonds tend to become more expensive. The importance and significance of call option ad-

justment make Gilchrist and Zakraǰsek (2012) argue that Model 4 is superior to Model 1 on

their data, I get the same result on my data. My primary interest, however, is in comparison

of Models 4 and 6, which I turn to now.

Figure 2.2a compares the goodness of fit of Models 4 (benchmark Gilchrist and Zakraǰsek,

2012) and 6 (my preferred model) to actual aggregate spreads. Model 6 captures time series

variation in daily spreads much better than Model 4, especially in years 2008 and 2009, and

this is due to only two additional factors: the state of the business cycle and bond liquidity.

The left panel of Figure 2.2b presents the same result in terms of the EBP. An unexplained

increase in credit spread during the subprime crisis is significantly smaller and shorter in

time according to my preferred model; hence, the state of the business cycle is a factor of

aggregate credit spread even on a daily frequency. The right panel of Figure 2.2b compares

monthly EBP values of my preferred daily EBP (Model 6) with the original monthly EBP

series from Gilchrist and Zakraǰsek (2012) and confirms this finding.

The significance of business cycle and liquidity as factors of credit spreads survives the

truncation of the data sample. Table 2.3 compares performance of Models 4 and 6 in sub-

samples of either investment-grade or high-yield bonds. The models explain spreads of

investment-grade bonds much better than high-yield ones. Spreads of the riskiest bonds are

probably non-linear in the distance-to-default: coefficients on the DD variable in columns

3 and 4 (high-yield bonds) of Table 2.3 are roughly twice the corresponding coefficients in

columns 1 and 2 (investment-grade bonds). Yet, business cycle and liquidity factors are still

significant for both types of bonds, and coefficients on these variables are not much different

from the full-sample specifications. More importantly, business cycle and liquidity factors

survive complete deletion of observations between Jan 2008 and Dec 2008 (inclusive) from

the sample. Columns 5 and 6 of Table 2.3 present these estimations. Both coefficients do

not change much relative to full-sample specifications and improve the explanatory power of

Model 6 as measured by the R2 compared to Model 4.
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(a) Daily time series of true and fitted GZ spread from by Model 4 on the left (Gilchrist and Zakraǰsek,
2012) and Model 6 on the right (my preferred model).
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Figure 2.2. Fitted spread and EBP (the residual portion of spread) that are computed
with different models of Table 2.2 in comparison with the original Gilchrist and Zakraǰsek
(2012) EBP measure.
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Dependent variable: log
(
SGZ
it [k]

)
M4 M6 M4 M6 M4 M6
IG bonds: all years HY bonds: all years All bonds, ex. year 2008

−DDit 0.682∗∗∗ 0.464∗∗∗ 1.127∗∗∗ 0.968∗∗∗ 0.594∗∗∗ 0.459∗∗∗

(0.060) (0.054) (0.176) (0.164) (0.063) (0.060)
log(DURit[k]) 0.325∗∗∗ 0.323∗∗∗ 0.208∗∗∗ 0.196∗∗∗ 0.332∗∗∗ 0.322∗∗∗

(0.022) (0.020) (0.030) (0.030) (0.024) (0.023)
log(PARit[k]) −0.076∗∗∗ −0.071∗∗∗ 0.012 0.014 −0.053∗∗∗ −0.048∗∗∗

(0.018) (0.019) (0.022) (0.022) (0.017) (0.017)
log(CPNi[k]) 0.636∗∗∗ 0.554∗∗∗ 0.402∗∗ 0.334∗∗ 0.547∗∗∗ 0.509∗∗∗

(0.057) (0.055) (0.158) (0.153) (0.063) (0.061)
log(AGEit[k]) −0.004 0.023 −0.034 −0.007 0.033 0.043

(0.029) (0.028) (0.045) (0.039) (0.029) (0.029)
CALLi[k] 0.302 0.518∗ 0.363 0.510 0.759∗∗∗ 0.856∗∗∗

(0.255) (0.270) (0.445) (0.432) (0.242) (0.244)
ADSt −0.255∗∗∗ −0.210∗∗∗ −0.217∗∗∗

(0.007) (0.012) (0.007)
AMHit[k] 0.048∗∗∗ 0.053∗∗∗ 0.055∗∗∗

(0.002) (0.005) (0.002)
−DDit · CALLi[k] 0.097 0.113∗ −0.198 −0.158 0.126∗ 0.125∗∗

(0.066) (0.060) (0.161) (0.153) (0.065) (0.062)
log(DURit[k]) · CALLi[k] 0.019 0.013 −0.015 −0.007 0.003 0.005

(0.020) (0.018) (0.029) (0.029) (0.021) (0.019)
log(PARit[k]) · CALLi[k] −0.008 −0.012 −0.041 −0.043 −0.033∗ −0.034∗

(0.019) (0.021) (0.027) (0.027) (0.018) (0.019)
log(CPNi[k]) · CALLi[k] −0.192∗∗∗ −0.122∗∗ 0.027 0.098 −0.084 −0.052

(0.060) (0.059) (0.162) (0.156) (0.065) (0.064)
log(AGEit[k]) · CALLi[k] 0.011 −0.017 0.033 −0.004 −0.030 −0.044

(0.029) (0.027) (0.045) (0.039) (0.028) (0.028)
LEVt · CALLi[k] 0.011 −0.017∗∗ −0.071∗∗∗ −0.085∗∗∗ −0.046∗∗∗ −0.052∗∗∗

(0.009) (0.008) (0.015) (0.015) (0.008) (0.008)
SLPt · CALLi[k] −0.015 −0.041∗∗∗ 0.034∗∗ 0.014 −0.019 −0.026∗∗

(0.013) (0.011) (0.015) (0.014) (0.012) (0.011)
CRVt · CALLi[k] 0.034∗∗ −0.039∗∗∗ 0.001 −0.032 0.014 −0.026∗∗

(0.015) (0.012) (0.024) (0.021) (0.014) (0.013)
V OLt · CALLi[k] 2.094∗∗∗ 0.715∗∗∗ 1.878∗∗∗ 0.808∗∗∗ 1.899∗∗∗ 0.763∗∗∗

(0.097) (0.054) (0.119) (0.099) (0.092) (0.052)

Industry FE YES YES YES YES YES YES
Credit rating FE YES YES YES YES YES YES
Observations 2,267,713 2,267,713 488,613 488,613 2,600,016 2,600,016
Adjusted R2 0.699 0.751 0.543 0.592 0.784 0.806

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.3. Model 4 (M4 columns) and Model 6 (M6 columns) from Table 2.2 recom-
puted over different sub-samples of the entire sample. The first two columns are only
investment-grade bonds over the entire sample, the second two columns are high-yield bonds
over the entire sample, and the last two columns are all bonds but excluding all days in year
2008. Dependent variable is the log of GZ spread. Explanatory variables are as in Table 2.2.
Standard errors are clustered in both firm i and time t dimensions.

An alternative way to establish the link between aggregate business risk and the portion

of spreads beyond corporate bond credit risk is presented in Appendix B.3. There I first

introduce, following d’Avernas (2017), time fixed effect in log spread fitting models (and

remove the ADS). Then I project this estimated time fixed effect on the ADS in a univariate
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time-series regression to demonstrate that the latter explains significantly around 63% of the

variation of the former on the daily frequency.

In this section, I have demonstrated that aggregate business risk and bond liquidity risk

are significant factors of credit spreads in addition to corporate credit risk. Does the residual

spread that is free from all these sources of risk (EBP of Model 6) still forecast macro as the

benchmark EBP measure (Model 4)? Section 2.4 answers this question.

2.4 Forecasting the Business Cycle

I explore the forecasting properties of the EBP with respect to business activity by

running predictive models for monthly industrial production, payroll employment, and the

unemployment rate similar to the ones in Gilchrist and Zakraǰsek (2012). Here, I use month-

end values of my daily EBP measures obtained in Section 2.3. The regressions are:

∇hYt+h = α +

p∑
i=1

βi∇Yt−i + γ1RFFt + γ2TSt︸ ︷︷ ︸
Real Fed funds rate and term spread

+ γ3S
GZ
t︸ ︷︷ ︸

True GZ spread

+ εt+h,

∇hYt+h = α +

p∑
i=1

βi∇Yt−i + γ1RFFt + γ2TSt + γ3Ŝ
GZ
t + γ4EBPt︸ ︷︷ ︸

Fitted GZ spread and EBP

+ εt+h,

where ∇hYt+h is either log Yt+h − log Yt−1 the growth rate of industrial production/payroll

employment or Yt+h− Yt−1 the change in unemployment rate. The right-hand side variables

(apart from a constant and the dependent variable lags) capture different components of

the real cost of borrowing through the corporate bond market for an average U.S. bond-

issuing firm.5 The literature has established long ago that, in such models, credit spreads are

significant predictors for different left-hand side indicators and forecasting horizons. Gilchrist

and Zakraǰsek (2012) demonstrated that the predictive power of spreads is rather due to the

residual spread than the fitted spread component. I revisit this result with my preferred

measure of the EBP.

5For details on the right-hand side variables see Appendix B.2.
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Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 0.32 0.28 0.27 0.06 0.06 0.05 0.01 0.01 0.004
(0.28) (0.23) (0.30) (0.05) (0.05) (0.03) (0.06) (0.06) (0.05)

Term spread −0.53 −0.42 −0.40 0.03 0.04 0.03 −0.07 −0.07 −0.06
(0.38) (0.34) (0.35) (0.05) (0.05) (0.03) (0.07) (0.07) (0.05)

GZ spread −1.62∗∗∗ 0.52∗∗∗ −0.41∗∗∗

(0.48) (0.08) (0.15)
Fitted GZ −0.82∗ −2.07∗∗∗ 0.55∗∗∗ 0.60∗∗∗ −0.41∗∗∗ −0.58∗∗∗

(0.43) (0.46) (0.08) (0.04) (0.13) (0.08)
EBP −2.27∗∗∗ −0.97∗∗ 0.51∗∗∗ 0.26∗∗ −0.41∗∗∗ −0.19

(0.64) (0.45) (0.11) (0.10) (0.16) (0.13)

Adjusted R2 0.60 0.63 0.63 0.71 0.70 0.77 0.84 0.84 0.89

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(a) 3 months ahead

Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 0.62 0.53 0.95 0.04 −0.02 0.03 0.07 0.08 0.06
(0.52) (0.40) (0.60) (0.10) (0.12) (0.09) (0.15) (0.15) (0.12)

Term spread −0.90 −0.68 −1.36∗∗ 0.14 0.19∗ 0.14∗ −0.20 −0.20 −0.19
(0.56) (0.44) (0.59) (0.09) (0.10) (0.08) (0.17) (0.16) (0.14)

GZ spread −2.44∗∗∗ 0.80∗∗∗ −0.68∗∗∗

(0.76) (0.14) (0.24)
Fitted GZ −0.84 −2.63∗∗ 0.45∗ 0.89∗∗∗ −0.49 −0.87∗∗∗

(0.73) (1.23) (0.24) (0.14) (0.32) (0.16)
EBP −3.72∗∗∗ −1.38∗ 0.76∗∗∗ 0.51∗∗∗ −0.73∗∗ −0.39

(1.13) (0.80) (0.18) (0.16) (0.30) (0.25)

Adjusted R2 0.47 0.51 0.46 0.70 0.72 0.73 0.79 0.79 0.81

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) 6 months ahead

Industrial production Unemployment rate Payroll employment

– M4 M6 – M4 M6 – M4 M6

Real Fed funds rate 0.57 0.38 0.55 0.03 0.04 0.03 0.14 0.15 0.08
(0.58) (0.43) (0.54) (0.17) (0.15) (0.15) (0.26) (0.23) (0.21)

Term spread −1.51 −1.06 −1.49∗ 0.40∗∗ 0.37∗∗∗ 0.40∗∗ −0.55∗ −0.53∗ −0.43∗

(0.93) (0.66) (0.87) (0.18) (0.14) (0.16) (0.28) (0.27) (0.26)
GZ spread −3.89 1.18∗∗∗ −1.15∗∗

(2.72) (0.31) (0.49)
Fitted GZ −0.67 −3.71 0.88∗∗∗ 1.26∗∗∗ −0.68 −1.44∗∗∗

(1.75) (2.61) (0.16) (0.36) (0.59) (0.42)
EBP −6.46∗ −4.27 1.32∗∗∗ 0.91∗∗ −1.27∗∗ −0.92

(3.55) (2.84) (0.51) (0.37) (0.58) (0.57)

Adjusted R2 0.26 0.33 0.26 0.54 0.54 0.54 0.62 0.62 0.62

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(c) 12 months ahead

Table 2.4. Forecasting regressions for the log growth rate of industrial production,
change in the unemployment rate, and the log growth rate of payroll employment on
different horizons (not annualized) with either true spread or fitted spread and the EBP
(excess bond premium) as explanatory variables. The EBP is from two alternative models of
Table 2.2: Models 4 and 6 (columns ‘M4’ and ‘M6’ correspondingly). Real Federal funds rate
is the difference between nominal rate and realized 12-month inflation (one month prior to a
rate observation), Term spread is the difference between 3-month and 10-year Treasury zero
coupon rates. See Appendix B.2 for the details on explanatory variables. Each regression
also has a constant and an automatically selected number of lags (based on the AIC) of the
dependent variable (also not reported). Sample period is monthly from Oct 2004 to Dec
2014. Standard errors are Newey and West (1987) HAC estimates.
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Table 2.4 demonstrates that high spreads today are indeed associated with lower future

industrial production and higher future unemployment in my sample.6 The columns titled

‘–’ estimate models with GZ spread as an explanatory variable without splitting it into

explained and unexplained parts. For the industrial production, the unemployment rate and

the payroll employment on all horizons (except for one-year ahead industrial production),

the spread is indeed a strong predictor of future macroeconomic activity with reasonable

signs.7

As ‘M4’ columns of Table 2.4 show, the EBP computed as in Gilchrist and Zakraǰsek

(2012) is indeed a stronger predictor of future macro activity than the explained portion of

spread (‘fitted spread’). For the industrial production, the EBP of Model 4 is a significant

predictor, and the fitted spread is not. Speaking about economic significance, the absolute

value of the coefficients on EBP is 4-7 times higher depending on the forecasting horizon.

For the employment-related variables, both the EBP and the fitted spread are statistically

significant predictors, but the economic significance of changes in EBP for future employment

trends is, again, substantially higher than of changes in fitted spreads, especially on longer

horizons.

The predictive power of the EBP becomes considerably lower once I switch to residual

spreads free from corporate default risk, aggregate business risk, and bond liquidity risk.

This result is the most pronounced for the industrial production. Observe in the column

titled ‘M6’ of Table 2.4a that for three-month ahead growth of the industrial production, the

fitted spread is now a significant predictor, and the EBP is not. Compared to ‘M4’ column,

not only the significance but also the magnitude of coefficients on the fitted spread and the

EBP has changed considerably. The same result applies to the 6-month ahead industrial

production, Table 2.4b shows. At the 12-month horizon, Table 2.4c, neither of the two

6This table echoes Table 6 of Gilchrist and Zakraǰsek (2012).
7I use Newey and West (1987) heteroskedasticity and autocorrelation consistent standard errors in forecasting
regressions with overlapping observations in Sections 2.4 and 2.5 of the chapter. I also ran all the estimations
with Hodrick (1992) standard errors instead and found that in my sample Newey-West standard errors are
bigger than Hodrick’s ones in vast majority of cases. Hence I reject the ‘no predictability’ null less frequently
using the Newey-West errors.
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components of the spread is a significant predictor of industrial production. Table 2.4 also

presents similar results for the unemployment rate and the payroll employment. Here, in

‘M6’ columns, both components of the spread are still statistically significant predictors of

employment trends, but the economic significance of the fitted spread is now much higher

than of the EBP (especially on the 3-month horizon, where coefficients on the fitted spread

are roughly twice higher in absolute value than the coefficients on the EBP). Hence, switching

from Model 4 to Model 6 increases both statistical and economic significance of the fitted

spread and shrinks the significance of the EBP in forecasting economic activity.8

The results discussed in this section so far go through if one compares instead predictive

models with the fitted spread and the EBP of Models 1 and 3 of Table 2.2 (not reported).

This case refers to the EBP estimations when call option adjustment is just the loading on

the call dummy, same for all callable bond at all times. Hence, the reduction in predictive

power of the EBP for future macroeconomic activity is not due to the chosen method of

embedded call option adjustment.

I interpret the findings of this section as follows: the daily EBP measure contains infor-

mation that is relevant for predicting the future state of the economy, but this information

can be also derived from a readily available daily business activity measure, such as the ADS

index. The forecasting power of the residual spread that is free from the corporate default

risk only (EBP of Model 4 or Model 1) is mostly due to the persistence of the business cycle

itself.9 Once one further projects spreads on the aggregate activity and illiquidity measures,

the forecasting power of the residual component (EBP of Model 6 or Model 3) goes away

completely for some macro indicators and falls considerably for the others.10

8This result is reinforced by the lower variability of the EBP estimated by Model 6 compared to Model 4:
large deviations of the EBP of Model 6 from its mean are less probable per se.

9For estimations of the U.S. business cycle persistence see Mariano and Murasawa (2003).
10Gilchrist and Zakraǰsek (2012) also considered structural shocks to their EBP measure in a quarterly eight-

variable macro SVAR model and interpreted the shocks as ‘EBP shocks orthogonal to the business cycle’.
However, this interpretation hinges on the identification of the SVAR model by exclusion restrictions.
Their identification yields significant effects of ‘EBP shocks orthogonal to the business cycle’ on activity.
I believe that it is better to directly control for the state of the business cycle at the stage of the EBP
estimation. This approach leads to a different conclusion regarding the forecasting power of the EBP
relative to the fitted spread.
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(a) Here EBP is computed with Model 1 of Table 2.2.
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(b) Here EBP is computed with Model 3 of Table 2.2.
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(c) Here EBP is computed with Model 4 of Table 2.2.
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(d) Here EBP is computed with Model 6 of Table 2.2.

Figure 2.3. Orthogonalized impulse-response functions (IRFs) to one standard deviation
shocks from bi-variate monthly VAR models of business activity (the ADS index)
and the EBP. Monthly ADS and EBP are the latest daily observations per month. The
models include a number of lags selected by AIC (required to be less or equal to 12) and a
constant. The EBP is based on Models 1, 3, 4, and 6 of Table 2.2. Shaded areas are 95%
bootstrapped confidence bands (10’000 runs). Sample period is from Oct 2004 to Dec 2014.
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Bi-variate monthly vector autoregression (VAR) models on the EBP and the ADS activity

index provide supporting evidence for such an interpretation.11 I estimate these VARs to

capture possible time series interdependence of activity and the EBP. Figure 2.3 presents

orthogonalized impulse response functions from the estimated models, with the EBPs of

Models 1, 3, 4, and 6 on Figures 2.3a, 2.3b, 2.3c, and 2.3d correspondingly. The response

of activity on the EBP shock on the left panel of Figure 2.3a (the EBP of Model 1) shows

that unexpected jumps in the EBP today imply significantly lower business activity up to

nine months ahead, and vice versa. The EBP-to-activity pass-through remains the same

when I consider the EBP from Model 4 instead, Figure 2.3c shows, hence this finding is not

due to the chosen method of call option adjustment. However, once I consider the EBP free

from liquidity risk and aggregate business risk (Models 3 and 6), the link between the EBP

and activity breaks up. Figures 2.3b and 2.3d show that now shocks to the EBP do not

affect activity significantly over horizons longer than several months (and over these shorter

horizons the effect has a counter-intuitive sign). There is no significant effect in the opposite

direction either. These results corroborate the findings of this chapter: the portion of credit

spreads explained by firm-specific credit risk, economy-wide business risk and bond-specific

liquidity risk does a good job in forecasting the future macroeconomic state, and the residual

portion of spreads is less important for macro forecasting.

2.5 Forecasting Corporate Bond Returns

In this section, I investigate two questions: whether the EBP contains any information

relevant for forecasting bond returns or not, and how the EBP relates to other known bond

pricing factors. The motivation for this part comes from the decomposition of credit spreads

by Nozawa (2017). This paper shows that the Campbell-Shiller decomposition applied to

11On monthly frequency, both the ADS and the EBP are stationary time series over the years 2004–2014.
I obtain monthly values of these series by taking the latest daily observation per month. Taking monthly
means instead doesn’t change the results.
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corporate bond spreads (under mild assumptions about losses in default) yields:

St = Et

[
∞∑
i=1

ρi−1ret+i

]
︸ ︷︷ ︸

Risk premium

+Et

[
∞∑
i=1

ρi−1lt+i

]
︸ ︷︷ ︸
Expected credit loss

+ Const,

where ρ is the steady-state price-coupon ratio, re is excess bond return and l is credit

loss. I want to think of the empirical decomposition of GZ spreads into an explained part

and the EBP as one particular model-based method to reinterpret the Campbell-Shiller

decomposition above. The EBP is interpreted in this case as the credit risk premium (i.e.,

conditional expectation of future excess corporate bond returns). Then, it is natural to ask

whether the EBP forecasts actual future returns.

2.5.1 EBP and Excess Corporate Bond Market Returns

Building on regression models of Section 2.4, I estimate the following forecasting models

on the daily data:

Rt:t+h = α + βRt−h:t + γ1LV Lt + γ2SLPt + γ3CRVt︸ ︷︷ ︸
level, slope and curvature factors

+ γ4S
GZ
t︸ ︷︷ ︸

true GZ spread

+ εt+h,

Rt:t+h = α + βRt−h:t + γ1LV Lt + γ2SLPt + γ3CRVt + γ4Ŝ
GZ
t + γ5EBPt︸ ︷︷ ︸

Fitted GZ and EBP

+ εt+h,

where Rt:t+h =
∑h

i=1Rt+i are cumulative excess log returns on a diversified bond portfolio h

days ahead.12 I consider the range of horizons from 1 day to 90 days to ensure the stationarity

of the returns series on the left-hand side.13 The left-hand side returns are for one of the

two alternative bond market portfolios: the value-weighted portfolio of in-sample TRACE

12Returns are total returns here, they account for both price changes and accrued interest.
13Cumulative returns are non-stationary on horizons beyond roughly 90 days. Hence one needs to test for

cointegration between returns and potential predictors on these longer horizons instead. I did that, and
the tests didn’t reject the null (no cointegration, i.e. no predictability for returns coming from the fitted
spread, the EBP, or the yield curve factors).
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bonds and the portfolio of investment-grade bonds in the Barclays Aggregate U.S. corporate

bond index.14

My findings are as follows: the actual GZ spread is not a significant predictor of bond

market returns. Figure 2.4a presents the estimates of the various parameters in the model

with actual GZ spread on the right and their significance over different horizons. None of

the factors significantly predicts cumulative returns in such a model on horizons up to 90

days.

The residual spread free from corporate default risk only (EBP of Model 4) is not a

predictor of bond market returns either. Figure 2.4b presents these estimations, and here,

again, none of the factors is significant at horizons below 70 business days. For 70–90 days

ahead the fitted spread is a significant in-sample predictor of cumulative returns, but, as I

show later, this result is not robust to alternative specifications of market returns and the

EBP. The bottom line of the estimations presented in Figure 2.4 is as follows: if there is any

information in aggregate spreads relevant for forecasting future excess bond market returns

at all, it can hardly be extracted using the EBP correlated with the state of the business

cycle.

In contrast, once one switches to the residual spread free from aggregate business risk and

bond liquidity risk (EBP of Model 6), such bond premiums, unlike the EBP of Gilchrist and

Zakraǰsek (2012), turn out to be a significant predictor of bond market returns. Figure 2.5a

presents the results of such forecasting models. For all horizons between 40 and 60 days

ahead, the EBP and only the EBP is a significant predictor of excess bond market returns.

Economic significance of the EBP for future returns is high as well. A 10 basis points (b.p.)

rise in the EBP today implies almost 40 b.p. of excess bond market return over the next

two-three month. To give a sense of scale, the average absolute daily change in the EBP in

my sample is 4 b.p. with a standard deviation of 5 b.p. The adjusted R2 of return forecasting

regression at the 50-day horizon is 0.52.

14All subsequent results were also obtained fot the equally-weighted portfolio of TRACE bonds (not presented
here).
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; actual GZ spread as
one of explanatory variables.
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(b) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 4 as explanatory variables.

Figure 2.4. Estimated forecasting regressions for cumulative bond market excess
returns. Forecasting horizons are on horizontal axes. Market returns are log returns (not
annualized) on the value-weighted portfolio of TRACE bonds. Explanatory variables are on
vertical axes. See Appendix B.2 for the details on explanatory variables. Each point on a
solid line on each chart is the OLS-estimate from a corresponding regression. Shaded areas
around are two standard errors of the estimates. The standard errors are heteroskedasticity
and autocorrelation consistent estimates of Newey and West (1987). Each model also includes
a constant (not reported). The sample is daily from Oct 4, 2004 to Dec 23, 2014.
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 6 as explanatory variables.
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(b) Dependent variable: returns on Barclays Aggregate U.S. corporate bond
index; fitted GZ spread and EBP of Model 6 as explanatory variables.

Figure 2.5. Estimated forecasting regressions for cumulative bond market excess
returns. Forecasting horizons are on horizontal axes. Market returns are log returns (not
annualized) on the value-weighted portfolio of TRACE bonds (upper panel) or the Barclays
Aggregate corporate bond market index (lower panel). Explanatory variables are on vertical
axes. See Appendix B.2 for the details on explanatory variables. Each point on a solid line on
each chart is the OLS-estimate from a corresponding regression. Shaded areas around are two
standard errors of estimates. The standard errors are heteroskedasticity and autocorrelation
consistent estimates of Newey and West (1987). Each model also includes a constant (not
reported). The sample is daily from Oct 4, 2004 to Dec 23, 2014.
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My preferred measure of the EBP remains a significant predictor of bond market returns

when the market is the Barclays Aggregate U.S. corporate bond index.15 On Figure 2.5b,

I present these estimated forecasting regressions. Both statistical and economic significance

of the EBP still holds, moreover, here the EBP is a significant predictor on all horizons from

several weeks to several months ahead. In contrast, the fitted spread is nowhere significant.

The adjusted R2 of return-forecasting regression at the 20-day horizon is 0.33. Appendix B.4

demonstrates that the predictive power of the EBP for market returns remains if I control

for the VIX levels in returns-forecasting regressions. To sum up, out of all considered factors

the EBP free from aggregate business risk and bond liquidity risk is the only significant

in-sample predictor of cumulative corporate bond market returns 1–3 months ahead.

2.5.2 ‘Real-time’ EBP as a Predictor of Market Returns

The EBP constructed and discussed in Sections 2.3 and 2.4 is the in-sample measure

based on the entire dataset as of the end of 2016. A ‘real-time’ EBP might, in principle, be

different from my full-sample measure because the whole historical path of the ADS index is

re-estimated as new macroeconomic data become available (see Appendix B.2 for details).

In this section, I estimate a ‘real-time’ EBP, show that it is not much different from the

full-sample measure, and demonstrate that the two have similar predictive power for bond

market returns.

Computation of a ‘real-time’ EBP is possible for all dates starting from the end of 2008;

this is when the historical vintages of the ADS become available.16 For every single day t in

the sample, I cut my bond-day data at day t, take the ADS vintage as of t, and re-run Model

15The correlation of excess returns on Barclays index with excess returns on our TRACE portfolio is 0.79.
16See the Philadelphia Fed web-page: https://goo.gl/mZJ5Sj.
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6 of Table 2.2 on this dataset to obtain the real-time measure of EBP denoted EBPRT (t).17

I will denote observations in this time series EBPRT
τ (t), where τ ≤ t.
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Figure 2.6. Real-time daily EBP measures computed with only aggregate activity data
available on each estimation day, in comparison with full-sample EBP estimates (same as
‘Model 6’ on the bottom-left panel of Figure 2.2); time-series on the left and scatter plot on
the right. Each daily observation of the real-time EBP is computed by re-estimating Model
6 of Table 2.2 for log spreads with a historical ADS vintage available on that particular day,
and taking the latest EBP observation. Re-estimations are performed on expanding samples;
each spans a period from Oct 4, 2004 to the estimation day.

Real-time EBPs turn out to be not much different from the full-sample EBP starting

from the year 2010, as charts on Figure 2.6 demonstrate. These charts present a collection

of the last points of real-time EBPs:
{
EBPRT

τ=t(t)
}

. Here, I estimate EBPRT (t) with samples

always starting on Oct 4, 2004, and ending on the estimation day t. There are periods of

time in 2009 when real-time EBPs differ considerably from the full-sample EBPt estimate;

otherwise, the real-time and the full-sample measures are close. Hence, we may expect that

17There is still one piece of information I use that could have not been available at day t, namely, accounting
books used to compute the distance-to-default. I do not expect, however, real-time accounting books to
diminish the explanatory power of the ADS index for credit spreads. Late dissemination of information
about idiosyncratic credit risk would probably increase the loading on timely systematic business risk
measure in explanatory regressions for credit spreads.
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whatever valuable information EBPt contains, we can extract it in real time, unless we are

in some very volatile period as 2009 was.
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Figure 2.7. Coefficients on real-time EBP in cumulative excess corporate bond
market return forecasting regressions. The dependent variable is the cumulative 50-
day ahead log return on the value-weighted portfolio of TRACE bonds, not annualized. The
left chart presents the estimates from the model with real-time EBP as the only predictor.
The right chart presents the estimates from the model that also includes yield curve factors
(level, slope, and curvature) and one lagged cumulative bond market return as predictors.
The underlying samples expand from Oct 4, 2004 to estimation dates, which are on the
horizontal axes of the charts. Lines are OLS-estimates of the coefficients on EBP from
corresponding regressions. Shaded areas are two standard errors of estimates. The standard
errors are heteroskedasticity and autocorrelation consistent estimates of Newey and West
(1987).

It’s important to check, however, whether the predictive power of the EBP for corporate

bond market returns holds when the full-sample estimate is replaced in forecasting regressions

with real-time estimates. I demonstrate in Figure 2.7 that, ever since 2010, real-time EBP

has mostly been a significant predictor for excess bond market returns. Here, I re-estimate

for each day t two forecasting models for 50-days ahead excess cumulative bond market
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returns with the real-time EBP on the right:

Rτ :τ+50 = α + γEBPRT
τ (t) + ετ+50,

Rτ :τ+50 = α + βRτ−50:τ + γ1LV Lτ + γ2SLPτ + γ3CRVτ + γ4EBP
RT
τ (t) + ετ+50.

Figure 2.7 depicts estimated coefficients γ̂ and γ̂4 and their confidence bounds for each

estimation day t (on the horizontal axis). The left chart demonstrates that real-time EBP

has significantly predicted excess bond market returns in-sample since 2010 in the univariate

regression model. The right chart of Figure 2.7 indicates that this predictive power is not

affected by the inclusion of additional yield curve factors in the model. Here, for almost all

estimation days in 2010–2014, EBP is still a significant predictor of excess corporate bond

returns 50 days ahead. A 10 b.p. rise in EBPRT
τ=t(t) implies 25 to 40 b.p. extra excess

cumulative bond market returns over t : t+ 50 when t is in 2010–2014.

The analysis so far focused on in-sample predictability. Now I use the two models of this

paragraph to investigate out-of-sample predictability of corporate bond market returns with

the real-time EBP estimates. Figure 2.8 presents out-of-sample predictive accuracy tests of

Diebold and Mariano (1995) in which my models are tested against the no-predictability

benchmark (zero expected excess corporate bond market returns) on forecasting horizons

from 1 to 90 days ahead. The forecasts are constructed for all trading days in 2010–2014.

The null states that candidate models are as accurate as zero excess return forecasts in

this period. As Figure 2.8 shows, the null is rejected in favour of out-of-sample return

predictability on horizons shorter than 10 days and longer than 45 days ahead when the

EBP is the only predictor in the model.

These real-time estimations confirm that the EBP contains useful information for fore-

casting excess corporate bond market returns. The cheaper corporate bonds are relative to

risk-free counterparts today (controlling for firm-specific credit risk, bond-specific liquidity
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Figure 2.8. Diebold-Mariano (DM) out-of-sample predictive accuracy test of
return-forecasting models relative to no-predictability (zero expected excess return)
benchmark on different forecasting horizons. Candidate predictive models for cumulative
corporate bond market all have the real-time EBP as the only predictor. The forecasting
horizon is on the horizontal axis. The null is equal predictive accuracy with zero excess-
return benchmark. The alternative hypothesis is greater out-of-sample predictive accuracy
of a considered return forecasting model. P -values of the DM test are on the vertical axis.
Values below 0.1 indicate rejection of the null at the 90% confidence level. The bond market
is the Barclays IG portfolio of bonds. DM test statistics are computed using forecast errors
for all trading days between Jan 4, 2010 and Dec 23, 2014.

risk, and aggregate business risk), the more they deliver on average over the next several

months.

2.5.3 EBP and Other Corporate Bond Risk Factors

In this section, I demonstrate that the EBP is not explained by other corporate bond

pricing factors, yet it improves their forecasting power with respect to diverse test portfolio

returns. In particular, I compare the EBP to bond pricing factors derived by Bai et al.

(2019) (referred to as ‘BBW factors’ herein). These factors are the ‘market’ factor, default

risk factor (DRF), credit risk factor (CRF), and liquidity risk factor (LRF). These empirical
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factors are returns on factor-mimicking portfolios (see Appendix B.2 for details about the

construction of the factors). Bai et al. (2019) demonstrated that their four factors explain

the major portion of variation of bond returns for size and maturity decile portfolios.

I do not have access to the original time series of the BBW factors, so I re-estimate them

on my sample using the methodology by Bai et al. (2019). They compute the factors on the

sample of TRACE bonds over a comparable time frame (Jul 2002 – Dec 2014) at a monthly

frequency with monthly portfolio rebalancing. I compute the BBW factors either as in the

original work with monthly portfolio rebalancing (‘monthly factors’) or, as a robustness

check, with daily rebalancing (‘daily factors’).

As Table 2.5 shows, the EBP is not strongly correlated with the bond risk factors, neither

at the monthly nor the daily frequency. Likewise, the EBP is not linearly related to any

stock market factor. The factors that are mildly correlated with the EBP on the monthly

frequency are limited to bond credit risk and stock momentum factors. In the regression

of daily EBP on BBW factors and a constant (not reported), none of the regressors has a

significant coefficient, and the overall explanatory power of such a regression is low (adjusted

R2 is below 0.1). From this, I conclude that major empirical bond and stock pricing factors

do not explain the time series variation of the EBP.

As Table 2.6 shows, the EBP does not add much to the BBW factors in explaining returns

on Bai et al. (2019) test bond portfolios. Here, I consider monthly returns of size and maturity

decile portfolios which I try to explain using candidate risk factors.18 I also add industry

portfolios to the analysis.19 The ‘Explanatory model’ parts of Table 2.6 present R2 from

regressions of test portfolio returns on candidate risk factors. The columns titled BM and

4F refer to regressions with only the market factor and all the BBW factors correspondingly.

The columns titled BM+ and 4F+ add the EBP as an explanatory variable to these baseline

models. The market factor alone explains, on average, about 60-65% of variation of test

18As in Section 6 of the work by Bai et al. (2019) I also tested 25 maturity-size quintile portfolios, but all
the subsequent results are qualitatively similar for them, so they are not reported. For the same reason I
am not reporting results obtained on the daily frequency.

19Eleven industry portfolios based on two-digit NAICS codes of the issuing firms.
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EBP BM DRF CRF LRF SM SMB HML
EBP
BM 0.03
DRF -0.02 0.32***
CRF -0.09*** -0.30*** -0.03
LRF 0.09*** 0.24*** 0.53*** -0.08***
SM -0.01 -0.28*** -0.01 0.37*** -0.02
SMB -0.01 -0.09*** -0.03 0.14*** -0.03 0.31***
HML 0.00 -0.16*** -0.04* 0.14*** -0.05** 0.40*** 0.09***
UMD -0.01 0.10*** -0.02 -0.15*** -0.01 -0.36*** -0.08*** -0.56***

(a) Correlation matrix of risk factors on the daily frequency. Underlying port-
folio rebalancing in construction of the corporate bond risk factors is also daily. The
sample starts on Mar 10, 2005, because first 100 days are needed to compute the first
observation of the DRF factor.

EBP BM DRF CRF LRF SM SMB HML
EBP
BM 0.15
DRF -0.06 0.50***
CRF -0.30*** -0.11 -0.28**
LRF -0.04 0.22** 0.59*** -0.18*
SM 0.02 -0.10 -0.04 -0.12 0.06
SMB 0.15 0.01 -0.11 -0.03 0.16 0.10
HML 0.10 -0.21* -0.20* -0.16 -0.02 0.44*** -0.06
UMD -0.24** -0.05 -0.03 0.10 0.00 -0.29*** 0.08 -0.46***

(b) Correlation matrix of risk factors on the monthly frequency. Port-
folio rebalancing frequency in construction of risk factors is monthly. EBP is
monthly means of the daily series. The sample starts on Oct 2007, because
first three years are needed to compute the first observation of the DRF factor.

Table 2.5. Correlations of the EBP with corporate bond risk factors from Bai
et al. (2019), and stock market risk factors. The EBP is a full sample estimate from Model
6 of Table 2.2. The upper panel uses daily time series of the EBP; lower panel uses monthly
averages of the EBP. BM stands for excess returns on the aggregate bond market index
(Barclays IG), DRF for the default risk factor, CRF for the credit risk factor, and LRF for
the liquidity risk factor. Construction methodology for the risk factors is similar to Bai et al.
(2019), the details are provided in Appendix B.2. The difference between the upper and the
lower panels is a frequency of portfolio rebalancing for the construction of bond risk factors.
The last four rows of correlation matrices refer to the Fama-French stock market risk factors:
SM is excess market return, SMB is the small-minus-big factor, HML is the high-minus-low
factor, and UMD is the momentum factor. Significance code: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

portfolio returns. Three additional risk factors, DRF, CRF, and LRF, add 12–15% to the

R2 of explanatory models on average. The EBP adds to that average virtually nothing.

Based on these findings, I conclude that the EBP does not explain residual bond returns

that are not explained by the BBW factors.
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Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

D1 0.31 0.61 0.34 0.62 0.34 0.33 0.36 0.33
D2 0.52 0.81 0.52 0.82 0.24 0.26 0.34 0.36
D3 0.54 0.75 0.54 0.75 0.22 0.21 0.30 0.27
D4 0.67 0.83 0.67 0.83 0.15 0.17 0.26 0.25
D5 0.68 0.84 0.68 0.84 0.14 0.14 0.24 0.24
D6 0.73 0.85 0.73 0.85 0.11 0.12 0.23 0.23
D7 0.76 0.87 0.75 0.87 0.07 0.08 0.19 0.18
D8 0.81 0.90 0.81 0.90 0.05 0.09 0.20 0.20
D9 0.81 0.90 0.81 0.90 0.03 0.07 0.17 0.17
D10 0.73 0.86 0.74 0.86 0.01 0.02 0.12 0.11
Average 0.66 0.82 0.66 0.82 0.14 0.15 0.24 0.23

(a) Maturity decile portfolios (D1 – shortest, D10 – longest).

Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

D1 0.41 0.79 0.42 0.79 0.22 0.17 0.24 0.18
D2 0.53 0.85 0.53 0.85 0.21 0.21 0.26 0.23
D3 0.66 0.85 0.66 0.85 0.15 0.17 0.24 0.23
D4 0.68 0.86 0.68 0.86 0.11 0.10 0.19 0.17
D5 0.69 0.83 0.68 0.83 0.10 0.09 0.18 0.15
D6 0.77 0.85 0.77 0.85 0.08 0.09 0.20 0.19
D7 0.80 0.90 0.80 0.90 0.06 0.06 0.19 0.18
D8 0.79 0.87 0.79 0.87 0.05 0.04 0.15 0.13
D9 0.86 0.91 0.86 0.91 0.03 0.07 0.19 0.20
D10 0.86 0.89 0.86 0.89 0.01 0.08 0.16 0.19
Average 0.71 0.86 0.71 0.86 0.10 0.11 0.20 0.19

(b) Size decile portfolios (D1 – smallest, D10 – largest).

Explanatory model Forecasting model
BM 4F BM+ 4F+ BM 4F BM+ 4F+

Mining, Quarrying, and Oil and Gas Extraction 0.64 0.73 0.64 0.73 0.11 0.04 0.17 0.10
Utilities 0.69 0.84 0.68 0.84 0.15 0.16 0.24 0.23
Construction 0.31 0.42 0.31 0.42 0.05 0.15 0.12 0.17
Manufacturing 0.76 0.91 0.76 0.91 0.07 0.09 0.20 0.18
Wholesale Trade 0.77 0.85 0.77 0.86 0.09 0.10 0.19 0.16
Retail Trade 0.75 0.84 0.75 0.84 0.05 0.07 0.16 0.16
Transportation and Warehousing 0.65 0.82 0.65 0.82 0.12 0.08 0.20 0.17
Information 0.78 0.88 0.78 0.88 0.07 0.06 0.16 0.14
Professional, Scientific, and Technical Services 0.23 0.39 0.23 0.40 0.03 0.09 0.02 0.08
Administrative and Support etc. Services 0.42 0.54 0.42 0.54 0.05 0.07 0.12 0.10
Health Care and Social Assistance 0.33 0.59 0.33 0.59 0.06 0.08 0.17 0.19
Accommodation and Food Services 0.66 0.76 0.66 0.76 0.08 0.08 0.18 0.17
Average 0.58 0.72 0.58 0.72 0.08 0.09 0.16 0.15

(c) Industry portfolios (2-digit NAICS codes).

Table 2.6. Adjusted R2 of explanatory and forecasting regressions for monthly
returns on size decile, maturity decile, and industry portfolios. In explanatory models returns
and risk factors are contemporaneous, in forecasting models returns are one month ahead.
The sample is monthly from Oct 2007 to Dec 2014. Four alternative models are considered:
BM has the bond market risk factor as the only explanatory variable, 4F has DRF, CRF,
and LRF factors in addition, BM+ has the market factor and the EBP, and 4F+ has four
aformentioned factors and the EBP.
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However, when I run forecasting regressions for one-month ahead test portfolio returns,

the EBP does much better than the BBW factors. Note first in the ‘Forecasting model’

parts of Table 2.6 that the market factor alone forecasts returns almost as good as the full

Bai et al. (2019) four-factor model. This result holds for all industry portfolios and most

size and maturity portfolios. That is why I use the ‘BM’ columns as benchmarks for return-

forecasting regressions with the EBP added. The EBP improves the forecasting power of

return-forecasting regressions across the board. Returns on all size, maturity, and industry

portfolios are better forecasted once the EBP is included in the forecasting regressions. In

addition, the increase in R2 between BM and BM+ columns is pretty uniform across test

portfolios. Hence, the strong forecasting power of the EBP is hardly due to any specific size,

maturity, or industry group of bonds.

Full sample Excl. Sep-Dec’08
Maturity Size Industry Maturity Size Industry

BMarket 8 8 12 7 6 7
EBP 10 10 11 9 10 12
Memo: # of portf. 10 10 12 10 10 12

Table 2.7. Significance of explanatory variables in BM+ return-forecasting models
from Table 2.6 at the 95%-level . A number in row i of column j shows for how many
portfolios of type j factor i is a significant one-month ahead predictor of returns. Total
number of portfolios of type j is given in the last line of the table. The left three columns
build forecasting models over the full sample (Oct 2007 – Dec 2014), while the right three
columns drop the period from Sep 2008 to Dec 2008 inclusive.

Next, I check that the forecasting power of the EBP does not hinge on extreme return

observations of the end of 2008. In Table 2.7, I compare for how many test portfolios of each

type the coefficient on the EBP is significant in return forecasting-regressions both for the

entire sample and for the sample with observations from Sep 2008 to Dec 2008 removed.20

Table 2.7 demonstrates that the EBP remains a significant predictor of test portfolio returns

at the 95% level, even with four extreme monthly observations removed. Removing years

2008 and 2009 completely makes this monthly time series very short, but even in this case

20These are the months with very low market returns and very high EBPs.
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(not reported), the EBP remains a significant predictor of returns at a 90% confidence level

for most portfolios and for more portfolios than the market factor.

The logic behind the results of this section follows. Given the predictive power of the

EBP for bond market returns discussed in Section 2.5, one should expect the EBP to forecast

also whatever is strongly correlated with the market. As Table 2.6 shows, the market factor

explains the major portion of variation of a broad range of test portfolio returns. Hence, one

should expect the forecasting regressions in Table 2.7 to perform well, as they indeed do.

It is important, though, that this result is not attainable with other bond pricing factors.

The EBP outperforms DRF, LRF, and CRF factors in forecasting bond returns. In the next

paragraph, I demonstrate how the predictive power of the EBP can be used to construct an

investment strategy that outperforms the corporate bond market.

2.5.4 Corporate Bond Market-timing Strategy

I use the predictive power of the EBP for corporate bond market returns to design a

market-timing strategy that delivers risk-return characteristics superior to the buy-and-hold

the market strategy. My strategy uses only one risky instrument: the Barclays Aggregate

U.S. corporate bond market index (investable; several replicating ETFs are available). The

strategy consists of making one-week ahead forecasts of corporate bond market excess returns

using recent observations of the EBP, fitted GZ spread, yield curve factors, and market

returns. Based on these forecasts, an investor who has an amount of money W under

management at the end of week t can take one of the following three positions for the week

t+ 1:

– stay away from the corporate bond market and invest W in risk-free securities only

(when low returns are forecasted);

– follow the market and invest W in the index ETF (when the model provides no clear

signal about future returns);
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– borrow a certain fraction α of W at the risk-free rate, and invest (1+α)W in the index

ETF (when high positive returns are forecasted).

The forecasting model builds upon the results of Sections 2.5.1–2.5.3. The left-hand side

variable is the weekly corporate bond market excess returns. The right-hand side variables

are the five latest daily observations of the EBP, fitted GZ spread, three yield curve factors,

and daily corporate bond market returns one week prior to return observations. Hence,

there are 30 explanatory variables in total; selection among them is done by running LASSO

estimations. The model is re-estimated every week w (using ‘real-time’ estimates of the

EBP and fitted GZ spread of Section 2.5.2), and the LASSO penalty parameter λ is selected

to minimize the root mean squared error (RMSE) of the out-of-sample forecasts with the

‘leave-one-out’ cross validation. Once the model is estimated, the forecast for the next week

w + 1 is made using daily observations of predictors on week w.

The boundaries of the ‘inaction region’ in terms of predicted returns (when the investor

simply holds W in the corporate bond market ETF) and the leverage ratio α are selected over

the training sample, which is years 2009–2011. The selection problem is solved by maximizing

the Sharpe ratio of the market-timing strategy on the training sample. The optimization

is constrained, the lower bound of the inaction region is required to be negative, the upper

bound positive, and 0 6 α 6 0.5. The left chart of Figure 2.9a presents the out-of-sample

one-week ahead forecasts of market excess returns vis-a-vis actual excess returns. The two

are significantly correlated: the correlation coefficient is 0.26, the regression coefficient is 0.96

(in the regression of actual returns on predicted ones), and both are significant at the 1%-

level. Maximizing the Sharpe ratio yields α = 0.5, the lower bound of the inaction region of

-0.12%, and the upper bound of 0.06% (of predicted weekly market excess return). Table 2.8

and the right chart of Figure 2.9a show how the market-timing strategy performs on the

training sample. It delivers 50% cumulative return over the three years (1.5 times more than

the market) with a weekly Sharpe ratio of 0.37 (1.3 times higher than the market).
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(a) Training sample: 2009 – 2011. Expected return bounds (vertical dashed lines) that
determine investments for a week ahead (actions that are taken are given at the top of the
left chart) are selected to maximize the Sharpe ratio of the strategy. The leverage ratio is 0.5.
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(b) Testing sample: 2012 – 2017. Expected return bounds (vertical dashed lines) and
0.5 leverage ratio are as determined on the training sample.

Figure 2.9. Out-of-sample forecasts of corporate bond market excess returns vis-a-vis
actual returns, and comparative performance of the market timing strategy based
on these forecasts. The return forecasting model is a ‘leave-one-out’ cross-validated LASSO
regression with the penalty parameter selected to minimize the out-of-sample RMSE at each
re-estimation date, which is weekly. The dependent variable is weekly excess corporate bond
market returns. The regressors are 5 latest daily observations of excess returns, yield curve
factors (level, slope, and curvature), fitted GZ spreads, and the EBP, all one week prior to
returns observations. The EBP and the GZ spread are real-time expanding sample estimates
of Section 2.5.2. Transaction costs are not accounted for.
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Train (2009–2011) Test (2012–2017)
Market Strategy Market Strategy

Mean excess return 0.22 0.32 0.08 0.14
Standard devaition 0.76 0.88 0.59 0.71
Sharpe ratio 0.29 0.37 0.13 0.20
Information ratio 0.23 0.21
Max. excess return 2.46 2.80 1.34 2.01
Min. excess return -1.71 -2.48 -2.59 -2.10

Table 2.8. Comparative performance of the corporate bond market (Barclays Ag-
gregate U.S. corporate bond index, investable) and a proposed market timing strategy.
Returns and standard deviations are in % per week, not annualized. The strategy consists
in making 1-week ahead forecasts of market excess returns and taking positions in a market
ETF based on these forecasts. Three options are available: invest all in risk-free bonds (low
expected excess returns), follow the market (mediocre expected returns), lever up and invest
more in the market (high expected returns). Separation bounds in terms of expected returns
are determined by maximizing the strategy Sharpe ratio of the strategy over the training
sample (see Figure 2.9 also). The leverage ratio is 0.5, meaning that 50% of the accumulated
asset value is borrowed for one week and invested in the market whenever the strategy pre-
scribes to lever up. The return-forecasting model is a ‘leave-one-out’ cross-validated LASSO
regression with the penalty parameter selected to minimize the out-of-sample RMSE at each
re-estimation date, which is weekly. The dependent variable is weekly excess corporate bond
market returns. The regressors are 5 latest daily observations of excess returns, yield curve
factors (level, slope, and curvature), fitted GZ spreads, the EBP, and a month dummy all
one week prior to return observations. The EBP and the GZ spread are real time expand-
ing sample estimates of Section 2.5.2. The information ratio in the table is relative to the
corporate bond market returns. Transaction costs are not accounted for.

As Figure 2.9b and Table 2.8 demonstrate, the strategy performs equally well on the

testing sample, which is years 2012–2014 (with α = 0.5 and inaction region bounds fixed at

the values found on the training sample). Out-of-sample forecasts of market excess returns

are again strongly correlated with actual returns; the correlation coefficient is 0.22, and the

regression coefficient is 0.94, while both are significant at the 1%-level. Out of 155 weeks in

the testing sample, an investor follows the market for 49 weeks, levers up for 93 weeks, and

stays away from the market for 13 weeks. The strategy increases both mean weekly returns

and the Sharpe ratio by roughly one-half relative to the buy-and-hold market strategy.21

21Transaction costs are not accounted for, but given that the strategy uses only one instrument, which is
traded on the market, they will not considerably affect the results.
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Cumulative returns of the strategy over the three testing years is 28% compared to 16% of

the corporate bond market index.

2.6 Conclusion

In this chapter, I explore the forecasting power of the aggregate corporate bond risk

premium (EBP) with respect to the business cycle and corporate bond market returns.

Unlike the closest study Gilchrist and Zakraǰsek (2012), that defines the EBP as the portion

of credit spread not explained by firm-specific credit risk, I additionally project spreads

on bond-specific liquidity risk and economy-wide business risk. I do so using daily data

constructed from tick-by-tick high-frequency data, while the literature works so far with

historical monthly data.

The chapter demonstrates that the forecasting power of the EBP for future economic

activity depends on whether the EBP contains information about contemporaneous liquidity

and aggregate business risks. The residual spread that is free from only corporate credit risk

indeed forecasts activity, but this forecasting power mostly hinges on bond liquidity and

aggregate business cycle states. The latter two are readily measurable with daily frequency.

Once this information is taken away from credit spreads, both the statistical and the economic

significance of the residual for the forecasts of macroeconomic activity reduces a lot.

This residual spread, however, forecasts corporate bond market returns, unlike the EBP

correlated with bond liquidity and aggregate business risks. The forecasting power is robust

to different definitions of the bond market portfolio and to different estimation windows. I

demonstrate that major stock and bond risk factors, including contemporaneous bond mar-

ket returns per se, do not explain the time series variation of my risk premium measure.

Moreover, its forecasting power is not concentrated in any particular size, maturity, or in-

dustry portfolio; the risk premium improves forecasts of corporate bond portfolios across the

board.
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One can profit from the forecasting power of the residual spread by investing according

to the strategy designed to time the corporate bond market. The chapter constructs the

forecasting model for the corporate bond market excess returns that successfully forecasts

returns out-of-sample. The strategy consists of staying away from the market when low

negative returns are forecasted and levering up when high positive returns are forecasted;

otherwise, an investor just follows the market. The strategy is implemented with only

one risky instrument, an aggregate corporate bond market ETF, and delivers risk-adjusted

returns 50% higher than the buy-and-hold market strategy.
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Chapter 3

(In)frequently Traded Corporate

Bonds1

3.1 Introduction

Corporate bonds tend to trade actively on the secondary market for the first few months

up to two years after issuance while they settle into the most-desired portfolios, and after-

ward, the trading thins out as many bonds are held to maturity, redemption, or a credit-

default event. The early empirical literature on corporate bonds, e.g., Alexander, Edwards,

and Ferri (2000) documented this anecdotal evidence. Nowadays, as the comprehensive

TRACE data on corporate bonds trading has been available for more than a decade, it turns

out not all bonds follow the conventional wisdom and there are notable and numerous excep-

tions from that rule above. Figure 3.1 shows a corporate bond that experiences substantial

and long-lasting swings in trading activity sufficiently long after its issuance. We document

that roughly 25% of all plain-vanilla fixed-coupon bonds stand out from the conventional

wisdom and experience swings in trading activity in our sample period from January 2005

to July 2017. We call these bonds (in)frequently traded or the (I)TBs.

1This chapter is based on the paper co-authored with Artem Neklyudov, former Assistant Professor of
Finance at the University of Lausanne, currently at Lancaster University Management School.
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Figure 3.1. Fraction of zero-trading days per month for the Credit Suisse senior
unsecured USD-denominated 500 mln USD 10Y 5.85% bond issued in Aug’06; CUSIP:
225434CJ6.

Surprisingly, the (in)frequently traded bonds are almost indistinguishable from all other

plain-vanilla fixed-coupon bonds in major bond characteristics, including the issue size, av-

erage age, credit quality, etc. One cannot recover the information contained in the trading

activity waves from headline bond characteristics.

Moreover, we find substantial excess returns associated with changes in bond trading

frequency, but only post-crisis and only for the subsample of (in)frequently traded bonds.

Figure 3.2 compares excess returns for (in)frequently traded bonds and all other bonds in

our sample. The returns of the (I)TBs that move to states with higher trading frequency

are about 12 basis points per month higher compared to the (I)TBs that stay in the same

trading frequency state. We show that the exposure to Bai et al. (2019) risk factors does

not explain these returns. Abnormal excess returns of the (I)TBs jumping to higher trading

frequency states are of the same magnitude and statistically significant.
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Figure 3.2. Mean excess returns and jumps between trading frequency states.
State 1 is the state with the most frequent trading, and state 5 is the state with the least
frequent trading. The cross represents the case when the bond stays in the same trading
frequency state, the triangle pointed up represents a jump to a more frequent trading state
(from 3 to 2, for example), and the triangle pointed down represents a jump towards less
frequent trading (from 3 to 4, for example). Excess returns are returns above the 3-month
T-Bill rate.

We document substantial differences between the (I)TBs and all other bonds in the

structure of their trade flow and institutional ownership which as well sheds light on the

nature of trading frequency changes of the (I)TBs. We found that the (I)TBs are more

likely to be owned by mutual funds. Remarkably, there’s a relatively constant number of

funds that hold an (I)TB in any trading frequency state, unlike a Non-(I)TB that is held

by substantially fewer funds when it trades infrequently. We also demonstrate that in the

(I)TBs, compared to the rest of the sample, higher volumes are traded via small trades (less

than 100’000 USD), and it takes more days to trade the same additional volume in small

trades in the (I)TBs. It turns out that (I)TBs trading frequency goes up simultaneously

with increases in net purchases by mutual funds and higher sell volumes in small trades

by some investors. So, we link the waves of trading activity in the (I)TBs to mutual fund

rebalancing. We also show that time-varying issue and issuer characteristics explain only a
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tiny portion of the variation of changes in corporate bond trading frequencies. From this, we

conclude that mutual funds rebalancing that drives changes in trading activity is arguably

not due to public corporate news.

Given that trading activity of (in)frequently traded bonds is related to demand from

mutual funds, especially in the post-crisis period, one might expect that the link between

trading frequency jumps and excess returns is due to the market impact of mutual fund

purchases. We find some support for this view in the data, but institutional flows per se do

not fully explain excess returns of the (I)TBs; the latter remains a puzzle.

We tend to think that the impact of trading frequency jumps on returns emerges from the

interplay of higher demand from mutual funds, lower bond inventories among broker-dealers,

and the desire of some smaller investors (supposedly, hedge funds) to take profit from cash

corporate bond positions they have established in the wake of crisis sell-off. As documented

in Dick-Nielsen and Rossi (2018), dealers prefer to keep low bond inventories post-crisis. So,

the demand from mutual funds for the (I)TBs is not satisfied immediately as it takes time

for dealers to accumulate positions and for investors to trade to their desired allocations.

Smaller investors, who sell the (I)TBs, are likely to sell in small volumes, precisely as we

observe in the data. Smaller trades tend to have the highest price impact in corporate bonds,

as shown by Edwards, Harris, and Piwowar (2007b), and they contribute to excess returns

of the (I)TBs. Since we do not observe dealer inventories and hedge funds positions in

corporate bonds, we cannot test the described mechanism directly. However, much indirect

evidence we present in this chapter is consistent with such an explanation.

To our knowledge, ours is the first work to look closely at the bond-by-bond variation

in trading activity. Most empirical studies of corporate bond markets document that bonds

trade only several times per day, and most bonds trade less than once a month (e.g., Ed-

wards et al. (2007b), Bessembinder, Maxwell, and Venkataraman (2006)). We focus on

sudden changes in trading activity. Our trading frequency measure is weakly correlated with

changes in trading volume. Trading in corporate bonds is often pre-arranged. Harris (2015)
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documents that more than 40% of all trades in corporate bonds are riskless-principal trades.

Large volumes may be traded within one business day and will not affect the waves of trading

activity we analyze. Trading frequency is only weakly related to illiquidity measures either

(e.g., the Bao et al. (2011) measure), and the relationship is weaker for the (I)TBs than for

other bonds in our sample. Hence, this chapter extends beyond the existing discussion of

corporate bond illiquidity and its impact on bond prices.

The chapter is organized as follows. Section 3.2 describes the data and the measure of

trading frequency we use. In Section 3.3 we define (in)frequently traded bonds, document

the differences between the (I)TBs and the rest of the sample in trade flows and mutual fund

holdings, and attempt to explain monthly changes in trading frequency with institutional

flows into the (I)TBs. In Section 3.4 we demonstrate that public news about issuers and

issues do not drive changes in bond trading frequencies. Section 3.5 explores the relationship

between bond trading frequency, returns, mutual fund holdings, trade flows, and exposure

to corporate bond risk factors. Section 3.6 concludes.

3.2 Data and measurements

Corporate bonds in the U.S. are traded primarily on the OTC market, and trades are

reported to the FINRA’s Trade Reporting and Compliance Engine (TRACE). We use En-

hanced TRACE data (contain uncapped volume records) available through WRDS in our

study. Our sample consists of ‘plain vanilla’ corporate bonds only: unsecured fixed-coupon

or zero-coupon bonds nominated in USD with the most typical coupon schedules and quot-

ing conventions. We aggregate tick-by-tick TRACE data to the monthly frequency keeping

in the sample all months when an outstanding bond was not traded. Volume is assumed 0

and prices missing (NA) for such bond-months. The sample consists of about 940 thousand

bond-month observations covering approximately 14 thousand bonds issued by 2.6 thousand

firms and traded for at least two days between Jan 1, 2005, and Jun 30, 2017. Roughly 25%
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of bond-month observations refer to months when the bonds were not traded at all. We

present the details on sample selection and data cleaning in Appendix C.1.

We obtain individual bond characteristics from the Mergent Fixed Income Securities

Database (FISD) also available through WRDS. Besides, we use two pieces of data on insti-

tutional trading of corporate bonds. The transactions of insurance companies are reported

to NAIC and are also available via Mergent FISD. For mutual fund transactions, we scrape

the data from the SEC N-Q forms submitted by SEC-registered funds and available through

SEC’s Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system. N-Q forms

contain all mutual fund holdings; we focus on corporate bond holdings only. Changes in

holdings represent net purchases by mutual funds in the reporting period. We describe the

recovery of holdings from scraped textual data in Appendix C.2. As Table 3.1 shows, we

recover mutual fund holdings for about 12 thousand out of 14 thousand bonds of the original

sample; they cover about 740 thousand out of 940 thousand initial bond-month observations.

Full sample Subsample (SEC NQ)
Bond issues

Unique securities 14,234 11,796
of them, identified as (I)TB 3,884 3,721

Bond-month observations
Bond-month obs. (incl. non-traded) 938,229 736,514

of them, with identified returns 362,358 347,812
of them, identified as (I)TB 170,803 164,590

Table 3.1. Full sample and subsamples with identified mutual fund holdings and
returns. For details on sample construction see Appendix C.1 and C.2.

In Chapter 3.5 we work with bond returns that are recognized using Bai et al. (2019)

approach. First, we calculate volume-weighted daily (dirty) prices from the tick-by-tick

TRACE data. Then, we calculate monthly returns if there are days with trades within five

last business days of two consecutive months, or (if the first condition is false) in the first

five and in the last five business days of a given month. In the first case, we use the latest

volume-weighted daily prices of consecutive months to compute returns; in the second case,

we use the earliest and the latest volume-weighted daily prices of a given month. Monthly

returns in this study are total returns and contain coupon payments if there are any. Our
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return recognition approach results in about 360 thousand bond-month observations with

recognized returns, which is roughly 40% of the original bond-month sample. Remarkably,

about 96% of observations with recognized returns have identified mutual fund holdings.

In this chapter, we focus on the frequency of corporate bond trading. To measure the

trading infrequency of bond i in month t we construct the fraction of zero-trading business

days within that month, Zit. Assume there are Dt trading days in a month t, and the bond

i was only traded D̄t 6 Dt of them.2 Then

Zit = 100 ·
(

1− D̄t

Dt

)
.

Hence, if the bond is traded every business day in month t, then Zt = 0; if the bond is not

traded at all in month t, then Zt = 100. Zt is the measure of trading infrequency we use

throughout this chapter.

In a detailed study of trading cost and price impact proxies for corporate bonds Schestag

et al. (2016) document that Z measure does not relate strongly to trading cost and price

impact proxies both in the cross-section and in the time series. We find a similar pattern

in our sample. In the pooled data the correlation coefficient between Zit and, for instance,

Bao et al. (2011) illiquidity measure is significant but small: pre-2008 crisis it stands at 0.08,

post-crisis – at 0.13; the R2 is less than 1.5%. In first differences, the correlation coefficients

are twice smaller. Trading infrequency measure Z provides a different perspective on bond

trading properties than typical illiquidity measures. In the next chapter, we also demonstrate

that the relationship between illiquidity and trading infrequency differs across subsamples

of the data.

Z is not correlated with total trading volume in levels: in the pooled data the correlation

coefficient is statistically indifferent from zero. It comes as no surprise given the extent of

pre-arranged trading in the corporate bond market. According to market participants, it

2We count a day in D̄t if there is at least one trade of the bond on that day, regardless of the total trading
volume.
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Figure 3.3. Distribution of bonds by a median fraction of zero trading days per
month. The vertical axis counts bond issues in each bin. There are 14287 bonds in the
sample. For each bond, the median is taken over its lifespan (defined as the time between
dated date and maturity) that falls between Jan 1, 2005, and Jun 30, 2017.

takes time to discuss and prepare big trades, but once everything is set the execution occurs

within one day. In the data, we indeed observe a high number of bond-months with very

high volumes but very few trading days (hence, high Z). The relationship between changes

in Z and the trading volume is more pronounced: volume increases are associated with

decreases in Z. Interestingly, this relationship has different numerical properties in different

subsamples of the data, we discuss it in more details in the next chapter.

Figure 3.3 plots the histogram of Zmedian
i across bonds. It has two pronounced modes in

the tails: there are about 2300 issues in the sample with Zmedian below 5% (less than 5%

non-trading days in the median month) and a thousand more issues with Zmedian above 95%.

The remaining mass of issues is almost uniformly distributed between the two tails.

To study how the distribution of Z across bonds changes over time, we partition the

domain of Z (from 0 to 100%) into five intervals of equal length: 0 to 20% being the first

one, 80 to 100% – the fifth one. We refer to these intervals as ‘trading frequency groups’.

The first group, we call it G1 (Z between 0 and 20), consists of the bonds that traded at
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Figure 3.4. Distribution of bonds by trading frequency groups, per year. The
histogram presents the number of bond-month observations in a given trading frequency
group in a given year as % of the total number of bond-month observations in that year.

least four out of five trading days in each week on average in a month. These are frequently

traded bonds. The last group, G5 (Z between 80 and 100), consists of the bonds that traded

at most one out of five trading days in each week on average in a month. These are rarely

traded bonds.3 Figure 3.4 plots the distribution of bonds across trading frequency groups

over time. Intermediate groups, G2–G4, contain about 35% of bond-month observations

both pre- and post-2008 crisis. The mass in high trading frequency group G1 almost doubles

in the post-crisis decade and stands at around 30% in 2017; the mass in low trading frequency

group G1 shrunk accordingly. In the next chapters, we show that many bonds ‘travel’ across

trading frequency groups during their lifetime in a non-intuitive way and have a puzzling

relationship between changes in trading frequencies and prices.

3Our partition of Z into five intervals is immune to occasional distortions and short-lived jumps in trading
activity. It would take roughly 4-5 additional business days with non-zero trading per month to take a
particular bond to a higher trading frequency group.
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3.3 (In)frequently traded bonds

3.3.1 Main characteristics

A widespread view links trading frequencies of corporate bonds with their maturity: right

after issuance bonds trade actively on the secondary market, but after desired allocations

are achieved trading activity slows down, and the closer the maturity is the less trading we

observe. Such a pattern is indeed present in our data, but yet there is a large share of bonds

whose trading activity evolves differently.

For every bond in our sample, we record a sequence of trading frequency groups (as

defined in the previous chapter) that it belonged to. We are interested in the instances

when bonds that presently trade rarely but were traded actively in the past start trading

actively again. Table 3.2 counts the bonds that experienced this transition from frequent

to infrequent trading, and back. There are about 3.9 thousand bonds in the entire sample,

roughly 25% of all considered bonds, that make a trip from G1 (active trading) to G3-5

(inactive trading), and back to G1 at least once during the observed part of their lifetime.

We call these bonds (in)frequently traded bonds or the (I)TBs. Roughly 2 out of 3 (I)TBs

make the same trip, G1–G3-5–G1, at least twice in their life.

Full sample Pre-crisis Post-crisis
.. 1 .. 5 .. 1 .. 808 72 441
.. 1 .. 4 .. 1 .. 2,150 399 1,515
.. 1 .. 4 or 5 .. 1 .. 2,172 404 1,529
.. 1 .. 3 or 4 or 5 .. 1 .. 3,886 1,058 2,985
.. 1 .. 3 or 4 or 5 .. 1 .. x2 2,487 481 1,861
Total no. of issues 14,287 8,348 11,462

Table 3.2. Number of bonds that travelled from a frequently traded category
(G1) to infrequently traded categories (G3/4/5) and back (to G1). The sequences
in rows indicate trip types. The first line is a trip from G1 to G5 and back to G1. The
number of months spent in the intermediate states is unlimited. The second line is a trip
from G1 to G4 and back to G1, etc. Columns represent bond subsamples. The last line is
the total number of issues in the subsamples. The pre-crisis period is from Jan 2005 to Jun
2008; the post-crisis period is from Jan 2009 to Jun 2017.
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Table 3.2 also shows how the fraction of bonds classified into the (I)TB subsample changes

in pre- and post-crisis data treated separately. Throughout the chapter we define the pre-

crisis period as Jan 2005 to Jun 2008 and the post-crisis period as Jan 2009 to Jun 2017.4 In

pre-crisis data, only 13% of bonds are the (I)TBs, in post-crisis data this fraction doubles.

There is a substantially smaller fraction of the (I)TBs that make a G1–G3-5–G1 trip at least

twice pre-crisis than post-crisis.
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Figure 3.5. Number of months an average bond stays in a given trading frequency
state (sojourn time). The underlying model is a five-state continuous time Markov chain
with constant generator and instantaneous jumps to neighbouring states only.

To formally describe these ‘waves’ in trading activity we estimate a Markov model of the

evolution of trading activity across five previously defined trading frequency states. The five-

state Markov chain is defined in continuous time and instantaneous transitions are allowed

to neighboring states only. Once we have the estimates of transition intensities, we compute

monthly transition probabilities and average ‘sojourn’ times in each trading frequency states.

Figure 3.5 presents the latter, Table C.3 in Appendix C.3 gives the former. Figure 3.5 shows

that the (I)TBs stay in the active trading state G1 for about two months and in the inactive

4We remove the fall of 2008 from this data split to make sure that extreme crisis observations do not drive
our results.
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trading state G5 for three months on average. Both numbers are higher post-crisis than

pre-crisis. The (I)TBs leave intermediate states within one month. The Non-(I)TBs stay in

the boundary states for longer. For them, the average sojourn time is about fifteen months

in the active trading state and twice less in the inactive trading state.

Surprisingly, we find very little difference between the (I)TBs and the Non-(I)TBs in

primary bond characteristics. Table 3.3 presents means, medians, and inter-quartile range

for the number of indicators. An average (I)TB bond in our sample has between 400 and

500 million USD outstanding amount, a credit rating between BBB+ and BBB (investment

grade), it still has between 9 and 10 years to maturity (between 40% and 50% of its maturity

at issuance has already elapsed), it is traded between 3 and 4 times a day (when traded at

all) with an average volume per trade around 700 thousand USD, and in the same month we

observe about 8 other outstanding bonds issued by the same firm. This description remains

unchanged for an average Non-(I)TB bond except it has two more other outstanding bonds of

the same issuer. There are more pronounced differences in the median outstanding amounts,

relative age, and the number of trades between the (I)TBs and the Non-(I)TBs. The former

tend to be ‘younger’, have higher outstanding amounts, and the number of trades per day. We

experimented with different classification algorithms, including traditional logit regressions

as well as boosted trees with random forests and more modern methods, to try to recover

the classification into the (I)TBs and the Non-(I)TBs using primary bond characteristics

only to conclude that it does not work. The information contained in sequences of trading

frequency groups cannot be recovered from headline bond characteristics.

3.3.2 Trading volume and frequency

To give a better statistical description of the differences between the (I)TBs and the

Non-(I)TBs we analyze in more details their trading records. Table 3.4 compares retail-size

(trades 6 100’000 USD in volume) to institutional size (trades > 100’000 USD in volume)

trading volume in the (I)TBs and the Non-(I)TBs across trading frequency states. In all
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Mean Median IQR
(I)TB Other (I)TB Other (I)TB Other

Amount outstanding, mln USD 465.4 411.5 400.0 200.0 350.0 358.1
Credit rating 8.7 8.1 8.0 8.0 4.0 3.0
Time since issuance, years 5.9 7.3 4.7 5.9 6.1 7.6
Time to maturity, years 9.5 9.8 6.2 6.1 9.6 10.8
Relative age, % of lifetime 43.6 48.2 40.8 47.6 45.5 49.2
Number of trades per business day 3.8 3.5 2.8 1.7 2.1 3.1
Average volume per trade, th USD 657.4 738.4 287.8 266.0 727.7 768.3
Number of bonds of the same issuer 9.2 11.2 7.0 6.0 9.0 10.0

Table 3.3. Descriptive statistics for (in)frequently traded bonds and all the other
bonds. (In)frequently traded bonds are the bonds that made a trip G1–G3/4/5–G1. Credit
rating is in conventional numerical score from 1 to 21: 1 corresponds to AAA, 8 to BBB+,
21 to C. IQR is the inter-quartile range.

states, both pre-crisis and post-crisis, aggregate monthly retail-size volume measured in %

to institutional-size trading volume is substantially higher in the (I)TBs. The difference is

the largest in the active trading state G1: here the average aggregate volume in small trades

is roughly one-third of that in big trades for the (I)TBs and almost twice less in all other

bonds.

G1 G2 G3 G4 G5
Pre-crisis

(I)TB 31.43 24.05 19.58 12.77 6.36
Non-(I)TB 18.76 19.98 15.45 11.04 4.30

Post-crisis
(I)TB 31.69 23.84 20.77 17.46 9.27
Non-(I)TB 17.47 19.24 17.87 13.90 7.13

Table 3.4. Mean retail-size to institutional-size trading volume ratio, %.
Institutional-size trades are above 100k USD. The sample is restricted to bond-month ob-
servations with positive institutional volume.

To link the extent of retail-size trading to changes in trading frequencies ∆Zit (which

leads to jumps between trading frequency states) we regress ∆Zit on changes in trading

volume split by size, direction, and counterparty. Using TRACE counterparty marker we

classify every trade as either a buy transaction by a client from a dealer, or a sale by a client
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to a dealer, or an inter-dealer trade.5 Each of the three categories is further split into two

depending on the size of the trade.

Dependent variable: ∆(Zit)

(I)TB Non-(I)TB (I)TB Non-(I)TB
Pre-crisis Post-crisis

∆(Client sell volume in big trades)it −0.24∗∗∗ −0.21∗∗∗ −0.24∗∗∗ −0.24∗∗∗

∆(Client sell volume in small trades)it −11.14∗∗∗ −5.05∗∗∗ −11.60∗∗∗ −3.06∗∗∗

∆(Client buy volume in big trades)it −0.28∗∗∗ −0.29∗∗∗ −0.48∗∗∗ −0.33∗∗∗

∆(Client buy volume in small trades)it −13.09∗∗∗ −6.66∗∗∗ −7.86∗∗∗ −3.76∗∗∗

∆(Inter-dealer volume in big trades)it −0.22∗∗∗ −0.19∗∗∗ −0.15∗∗∗ −0.14∗∗∗

∆(Inter-dealer volume in small trades)it −6.23∗∗∗ −1.95∗∗∗ −7.42∗∗∗ −2.57∗∗∗

Month FE YES YES YES YES
Firm FE YES YES YES YES
Observations 37,552 221,951 194,326 441,579
Adjusted R2 0.14 0.11 0.11 0.08

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered by the bond CUSIP.

Table 3.5. Panel regressions of monthly changes in trading frequency ∆Zit on
trading volume split by size and type. Volumes are in % of the outstanding amount.

The sign of the relationship between changes in volume and ∆Z is straightforward: the

bigger is the change in volume the more trading days we likely observe (hence, the lower

∆Z is). What matters more is how different this relationship is in the (I)TBs and the Non-

(I)TBs. Table 3.5 shows that coefficients on trading volume in small trades are substantially

higher in absolute value for the (I)TBs both pre-crisis and post-crisis. Z falls by 7 to 12 p.p.

(percentage points) when an additional 1 p.p. of the bond outstanding amount is traded in

small trades in a given month for an (I)TB compared to only 2 to 4 p.p. drop in Z for a

Non-(I)TB. There is no such difference for big trades except for big trades that are client

buy transactions. From Tables 3.4 and 3.5 we conclude that it takes more days to trade in

small chunks the same volume of the (I)TBs than the Non-(I)TBs.

5TRACE contains trade reports by broker-dealers, hence every inter-dealer trade must appear twice in
TRACE records. Only one such record remains in our sample after cleaning as in Dick-Nielsen (2014).
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3.3.3 Mutual fund holdings, trading frequency, and illiquidity

We find differences between the (I)TBs and the Non-(I)TBs in mutual fund ownership

and in the reaction of their ∆Z on changes in mutual fund holdings. Table 3.6 compares

average mutual fund holdings of bonds in different trading frequency states (Table C.5 in

Appendix C.3 presents additional descriptive statistics of mutual fund holdings). We find

that mutual fund ownership ratios are higher for the (I)TBs both pre-crisis and post-crisis.

The difference is especially pronounced in the least active trading state G5: on average 19%

of the outstanding amount of a rarely traded (I)TB bond is held by mutual funds, 7 p.p.

more than for an average Non-(I)TB bond.

G1 G2 G3 G4 G5
Pre-crisis

(I)TB 8.18 8.90 9.91 10.87 18.27
Non-(I)TB 7.17 9.44 9.22 8.63 9.81

Post-crisis
(I)TB 12.08 12.29 12.63 12.92 19.11
Non-(I)TB 11.49 11.86 11.20 10.68 12.59

Table 3.6. Mean mutual fund holdings of bonds in different trading frequency
states, % of the outstanding amount. Holdings are winsorized at 5% and 95%.

The difference between the (I)TBs and the Non-(I)TBs in the dispersion of fund ownership

is even more striking. In Figure 3.6 we use a simple indicator: we count how many funds

have non-zero holdings of a given bond in a given month depending on the trading frequency

state. It turns out that for the (I)TBs this number is relatively constant across states. For

instance, there are on average about 30 funds that own an (I)TB post-crisis (this number is

close to 20 pre-crisis) regardless of whether the bond trades actively or not. This relationship

is different for the Non-(I)TBs both pre- and post-crisis. Many more funds own a Non-(I)TB

if it trades actively: there are more than 50 fund owners in G1 (more than for an (I)TB)

compared to less than 20 in G5 (less than for an (I)TB).

If one assumes that the dispersion of mutual fund ownership is associated with informa-

tion asymmetry in a given security (broader ownership arguably implies lower information

asymmetry), than it should also be related to the autocovariance in returns which is a mea-

104



● ● ●
●

●

0

10

20

30

40

50

60

Pre−crisis

Trading frequency state in month T

M
ea

n 
nu

m
be

r 
of

 M
F

 in
ve

st
ed

 in
 a

 b
on

d

G1 G2 G3 G4 G5

●

●

●

●

●

●

●

(I)TB
Non−(I)TB

●

●

●

●

●

0

10

20

30

40

50

60

Post−crisis

Trading frequency state in month T

G1 G2 G3 G4 G5

●

●

●

●
●

Figure 3.6. Mean number of mutual funds that hold the bond in different trading
frequency states.

sure of illiquidity. For instance, Llorente et al. (2002) show that return autocovariance is

more negative in stocks with higher information asymmetry (they are ‘more illiquid’). In

Table 3.7 we present the Bao et al. (2011) bond illiquidity measure (negative log return

autocovariance), for bonds in our sample in different trading frequency states. For the

Non-(I)TBs, illiquidity grows strongly with trading infrequency, which is in line with lower

dispersion in fund ownership and higher information asymmetry in lower trading frequency

states. For the (I)TBs, the dispersion of fund ownership is flatter across trading frequency

states, so is the illiquidity. Post-crisis, the (I)TBs are more liquid than the Non-(I)TBs in

states G3 and G4 according to the results in Table 3.7.

3.3.4 Changes in mutual fund demand and trading frequency

Changes in mutual fund net demand for corporate bonds significantly affect bond trading

frequencies. Moreover, trading frequency tends to increase more when mutual funds are

increasing their net demand for the (I)TBs rather than the Non-(I)TBs. Table 3.8 presents

the regressions of changes in the trading frequency ∆Zit of both types of bonds on changes
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G1 G2 G3 G4
Pre-crisis

(I)TB 0.25 0.21 0.26 0.50
Non-(I)TB 0.14 0.24 0.27 0.37

Post-crisis
(I)TB 0.26 0.27 0.36 0.50
Non-(I)TB 0.11 0.28 0.43 0.60

Table 3.7. Mean Bao et al. (2011) illiquidity measure for bonds in different
trading frequency states. The illiquidity measure is a negative covariance of daily changes
in volume-weighted average log-prices for months with at least 5 trading days. The illiquidity
measure is winsorized at 0.1% and 99.9% in the entire sample. There are no observations in
G5 because of the way the illiquidity measure is calculated.

in net purchases by mutual funds, insurance companies, and all other investors.6 Among

three types of investors considered, changes in net demand of mutual funds have the most

substantial impact on changes in trading frequency. The effect is also stronger for the (I)TBs

than for the Non-(I)TBs post-crisis. When mutual funds are buying 10 percentage points of

the outstanding amount of a given bond more in a current month than in a previous month,

Z falls by 2 percentage points for an (I)TB and by 1.4 percentage points for a Non-(I)TB.

Dependent variable: ∆(Zit)

(I)TB Non-(I)TB (I)TB Non-(I)TB
Pre-crisis Post-crisis

∆MF net purchaseit −0.10 −0.12∗∗ −0.20∗∗∗ −0.14∗∗∗

∆IC net purchaseit 0.06 0.06∗∗∗ −0.004 0.01
∆Other net purchaseit −0.003∗∗ 0.0005 −0.004∗∗ 0.001

Month FE YES YES YES YES
Firm FE YES YES YES YES
Observations 29,024 114,320 154,859 283,703
Adjusted R2 0.02 0.004 0.02 0.01

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered by the bond CUSIP.

Table 3.8. Panel regressions of monthly changes in trading frequency ∆Zit on
changes in net purchases by mutual funds, insurance companies, and other in-
vestors. Changes in net purchases are in % of the outstanding amount.

6We use interchangeably the terms ‘net purchases’ and ‘net demand’, both represent the difference between
total buy and sell transactions. Mutual funds net demand is simply the change in total mutual fund
holdings of a given bond. Net purchases by all other investors are the residual category. We know total
net demand from TRACE, net mutual fund demand from processed SEC N-Q forms and net insurance
companies demand from the NAIC data. Subtracting the last two from the first gives us net demand by
investors other than U.S. mutual funds or insurance companies.
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Dependent variable: ∆(Net MF purchase)it

(I)TB Non-(I)TB (I)TB Non-(I)TB
Pre-crisis Post-crisis

∆(Client sell volume in big trades)it 0.01 0.01∗∗∗ 0.01∗∗∗ 0.003
∆(Client sell volume in small trades)it 0.45 0.49∗∗ 0.20∗∗ 0.07
∆(Client buy volume in big trades)it 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

∆(Client buy volume in small trades)it −0.03 −0.06 −0.04 −0.02
∆(Inter-dealer volume in big trades)it 0.01 0.01 −0.002 0.01∗

∆(Inter-dealer volume in small trades)it −0.07 −0.04 0.08 0.03

Month FE YES YES YES YES
Firm FE YES YES YES YES
Observations 29,024 114,320 154,859 283,703
Adjusted R2 0.05 0.04 0.02 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered by the bond CUSIP.

Table 3.9. Panel regressions of monthly changes in net mutual fund purchases
on the trading volume split by size and type. Changes in net purchases and changes
in volume are in % of the outstanding amount.

So far we have established that similar changes in small trading volume (especially in

client sell trades) and in net mutual fund demand tend to have a stronger impact on changes

in the trading frequency of the (I)TBs compared to the Non-(I)TBs. Now we ask, is there

a relationship between changes in trading volume and net mutual fund demand at the first

place? Table 3.9 regresses the latter on the former splitting volume by size and type as

before. It turns out that post-crisis changes in net mutual fund demand are associated with

changes in sell volume in small trades rather than any other type of volume, and more so

for the (I)TBs. When some clients are selling 1 p.p. of the outstanding amount of an (I)TB

more in a current month, we observe a significant increase in net mutual fund demand of 0.2

p.p. The effect is three times smaller and statistically insignificant for the Non-(I)TBs.

3.4 Trading frequency and public information about

bond issuers and issues

There is a long list of potential issuer-level factors that might drive changes in bond trad-

ing frequencies. In this section, we first investigate how much variation in trading frequency
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changes is due to time-varying firm-level factors that we broadly refer to as ‘corporate news’

or simply ‘news’. Corporate disclosures and public corporate events, media coverage, up-

dates by equity analysts, spillovers from the equity market or the CDS market, etc. – any

piece of information that is relevant for all bonds of the same firm we call the ‘news’. Instead

of trying to measure the news directly (which would be problematic given our broad defini-

tion of the news), we employ a modern econometric technique to select among time-varying

firm-level dummies that proxy for the news and find that they explain only a small part of

the variation in trading frequency changes. Then we demonstrate that the remaining within-

firm within-month variation of bond trading frequencies is not well explained by bond-level

characteristics either.
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Figure 3.7. Cross-firm distribution of median pairwise correlation in ∆Z between
different bonds of the same firm. We require at least 2 bonds of a given type of the
same firm and at least 12 observation months per bond to compute correlations.

We start with a simple observation about correlations of changes in trading frequency

∆Zjt(k) between bonds j of the same firm k. For all pairs of bonds of firm k we compute

correlations ρ∆Zi(k),∆Zj(k) in trading frequency changes (we require at least 12 monthly ob-
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servations per bond), then take the median pairwise correlation per firm ρ(k)median, and plot

the distribution of this number across firms on Figure 3.7. If changes in trading frequen-

cies were mostly driven by firm-level factors, we would expect ρ(k)median to be positive and

relatively high.7 Instead, we observe on Figure 3.7 that the distributions are concentrated

around zero with a small and insignificantly positive mean of 0.06–0.08 for both types of

bonds considered. One should not expect high explanatory power of firm-level factors on

changes in bond trading frequencies in such case.

To formally measure the explanatory power of corporate news and bond-level factors

for changes in bond trading frequencies, we are using an econometric technique of double

partialling-out introduced in Belloni, Chernozhukov, and Hansen (2014). Here is how we

adapt it to our problem. Define ∆Zi as the cross-sectional extract from {∆Zit} for any

given month t. We will fit the models for ∆Zi in the cross-section of bonds independently

for each month t. The effect of firm-level news in month t will be captured by firm dummies

Df (where f = 1, . . . , F ; F being the total number of issuers) multiplied by respective

coefficients γf to be estimated. The model for ∆Zi at any given month is:

∆Zi = (β1∆X1,i + · · ·+ βP∆XP,i) + (γ1D1 + · · ·+ γFDF ) + εi,

where ∆X1, . . . ,∆XP are changes in bond-specific covariates of interest, and ε is orthogonal

to both ∆X = (∆Xp) and D = (Df ). There are no restrictions on the relationship among

estimated coefficients in different months, the month-by-month cross-sectional estimations

are fully independent from each other. The collection of estimates γ̂(t) = (γ̂1(t), . . . , γ̂F (t))

captures the total impact of time-varying firm-level factors on changes in bond trading

frequencies. Our primary interest here is the joint explanatory power of firm dummies for

∆Z and the coefficients β, we have no interest in particular values of γ coefficients.

7We assume here that corporate news should affect different bonds of the same firm similarly, but do not
test this assumption formally.
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The cross-sectional model can be estimated with the OLS. But the OLS regression would

suffer from over-fitting due to a relatively small number of bonds issued by each firm. We

observe a median of 7 and 6 bonds per firm in the (I)TB and Non-(I)TB subsamples re-

spectively. Firm dummies Df would over-fit the data in the OLS regression, R2 would be

inflated and the estimates of β would be biased. To overcome the problem of too many

explanatory variables relative to the sample size, Belloni et al. (2014) propose the following

two-step procedure:

1. Project ∆Z and ∆X on D using some high-quality penalized regression procedure (we

use LASSO here), compute the residuals ∆Z̃ = ∆Z −∆Ẑ and ∆X̃ = ∆X −∆X̂;

2. Run the OLS regression ∆Z̃ = ∆X̃β + u, the estimate β̂OLS is the consistent estimate

of β of the original model.

In our case, the first stage projection of ∆Z on D is interesting per se. LASSO selects

firms dummies and shrinks coefficients towards zero to avoid over-fitting. The intensity of

shrinkage (LASSO penalty parameter) is chosen by 10-fold cross-validation. Each LASSO

regression is run 30 times every month to explore the stability of the results. The explana-

tory power of this LASSO regression indicates what portion of the variation of ∆Z is due to

corporate news. The second stage OLS regression of ∆Z̃ on ∆X̃ investigates how the resid-

uals of bond-level covariates unexplained by firm dummies affect the residuals of changes in

trading frequencies.

Figure 3.8 presents theR2 from the first stage Ridge regressions of ∆Z onD for (in)frequently

traded bonds (the results for the Non-(I)TBs are similar). The R2 varies over time from 0 to

about 20% (shaded area), with the smoothed median value being close to 5% before 2010 and

even lower after that. It means that the impact of time-varying firm characteristics on the

frequency of bond trading is very limited. Even if we run a plain OLS regression of ∆Z on D

on the first-stage, the over-fitted R2 is around 40% in the post-crisis period (dashed-dotted

line on Figure 3.8). Observe also that the adjusted R2 of the OLS regression (dotted line)

is of the same order of magnitude as the R2 from the LASSO first-stage regression. Hence,
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Figure 3.8. R2 of the first stage cross-section regressions of ∆Zi on firm dummies.
The penalty parameter for the first stage LASSO regression is chosen by 10-fold cross-
validation. Each regression is estimated 30 times to investigate the stability of the results.
The range of R2 generated by these 30 runs is the shaded grey area on this plot. The
solid black line is the median value of that range after smoothing with 12-month backwards-
looking moving average. Dashed and dashed-dotted lines are respectively adjusted R2 and
simple R2 from (over-fitted) cross-section OLS-regressions. The sample is the (I)TBs.

changes in trading frequency of the (I)TBs remain largely unexplained by corporate news,

broadly defined.

The second stage regression of ∆Z̃ on ∆X̃ is presented on Figure 3.9. We consider three

explanatory variables: changes in outstanding amount (size), credit rating, and relative age

(% of bond lifetime that has already passed at the measurement date). These variables were

pre-selected by running multiple panel models of ∆Z on bond- and firm-level covariates with

independent firm and time fixed effects; they turned out to be the most significant ones across

different specifications. Solid lines on Figure 3.9 present point estimates of the coefficients on

corresponding covariates. The signs of coefficients on Figure 3.9 are similar to a simple panel

model with independent firm and time fixed effects (see Table C.6 in Appendix C.3): bond

redemptions and bond ageing are associated with lower trading frequencies. Yet, Figure 3.9
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Figure 3.9. Coefficients on candidate covariates in cross-section second stage OLS
regressions of ∆Z̃. Solid lines are 12-month moving-average point estimates. Dashed lines
are 12-month moving averages of 2 standard error bounds around point estimates. Some
months have no variability in covariates; they are excluded from estimation. Change in
size is the % change in the outstanding amount month-on-month. Age is the time elapsed
since issuance as a fraction of total maturity at issuance. Credit rating is on the conventional
numerical scale from 1 (AAA) to 21 (D), a unit change represents an upgrade or a downgrade
by one notch. The sample is the (I)TBs.

says that these effects are not stable over time and the statistical significance is often absent.

The effect of credit rating changes on trading frequencies is small and nowhere significant

(unlike in the panel model with independent firm and time fixed effects). The explanatory

power of ∆X̃ for ∆Z̃ in the second-stage regressions is small either: mean R2 is close to 5%.

So, the evidence presented on Figures 3.7–3.9 suggests that corporate news and major bond

characteristics can explain only a small portion of changes in bond trading frequencies ∆Z.

We further explore within-firm within-month variation in bond trading frequencies in the

subsample of issuers with many outstanding bonds (over-fitting with firm-dummies is less

likely here) to confirm our previous findings. We require at least 10 bonds per firm to be

observed for at least 12 months each for the issuer to be included in the sample. There are
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50 and 150 firms that satisfy these criteria for the (I)TBs and non-(I)TBs respectively. For

each of these firms k we run separately a fixed-effects panel model:

∆Zjt(k) = (β1∆X1,jt(k) + · · ·+ βP∆XP,jt(k)) + (τ1D1 + · · ·+ τTDT ) + ujt,

where ∆Zjt(k) is the change in trading frequency of bond j of firm k in month t, ∆X are

bond-specific factors, and month dummies D capture time fixed effects for all bonds of firm

k. Under the assumption that news affect changes in trading frequencies of all bonds of the

same firm similarly, time fixed effects in the regression above capture the effect of corporate

news on firm’s k bond trading frequencies.

Mean Med. Min. Max. No. firms

R2

(I)TB 0.15 0.14 0.09 0.30 50
Non-(I)TB 0.20 0.17 0.04 0.95 150

Adjusted R2

(I)TB 0.06 0.05 -0.06 0.20 50
Non-(I)TB 0.06 0.05 -0.43 0.77 150

Table 3.10. Explanatory power of firm-level regressions for ∆Zit in the subsample
of issuers with many outstanding bonds. The estimated model includes changes in
amount outstanding and credit rating, relative age, changes in the number of outstanding
bonds of the same issuer, coupon dummy, and month fixed effects as explanatory variables.
The model is estimated separately for each firm, hence, the dataset in each estimation
consists of different bonds of the same firm observed in different months. We require at least
10 bonds of certain type to be observed in at least 12 months for a firm to be included in the
sample. The number of firms in the last column shows how many firms satisfy these criteria
for two types of bonds considered.

We estimate the firm-level models with the OLS. The OLS still over-fits the data, but

now we have around 10 observations per estimated coefficient (if the panel is balanced).

Table 3.10 presents R2 and adjusted R2 from firm-level regressions. These numbers show

the percentage of variation in changes in trading frequency that is explained by corporate

news and bond-specific factors combined. The average R2 in Table 3.10 is around 15% for

(in)frequently traded bonds and 20% for all other bonds. Median R2 is a bit lower than

the mean, adjusted R2 are around 5-6% on average. These adjusted R2 values are in line
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with the evidence provided earlier in this chapter. About 5% – this is how much variance of

changes in bond trading frequency we can credibly explain with corporate news and bond-

specific factors. We believe that this number is quite low, and conclude that changes in bond

trading frequency are mostly due to factors unrelated to bond- or firm-level characteristics

and corporate news. Hence, spikes and dry-ups in bond trading activity are probably more

related to who trades the bonds rather than to what bonds are traded.

3.5 Trading frequency and returns

This chapter describes a puzzling observation: when the (I)TBs jump to states with more

(less) frequent trading, they generate positive (negative) returns that are not explained by

institutional trading flows and exposure to risk factors. There is no such effects for the

Non-(I)TBs.

We have already presented the phenomenon briefly in the introduction. Figure 3.2 shows

that the effect is two-fold. The states with more active trading in month T −1 are associated

with higher returns in month T , and these returns are higher or lower if trading frequency

increases or decreases in month T . Table C.7 presents the same result in a more elaborate

form comparing returns across 25 possible combinations of trading frequency states in months

T − 1 and T . In the rest of the chapter, we demonstrate that the effect appears only after

the 2008 crisis and is not subsumed by the exposure of the (I)TBs to main risk factors and

institutional flows.

We start with Figure 3.10, the analog of Figure 3.2, where instead of mean returns we

plot bond alphas. Here we first compute value-weighted return time series for 25 bond

baskets based on all combinations of five trading frequency states in the previous and in the

current month.8 We regress each of these 25 time series on 4 time series of Bai et al. (2019)

8These bond baskets are not investable since the trading frequency state in month T is not know apriori.
Switching from value-weighted to equally-weighted returns does not change the results.
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Figure 3.10. Estimated alphas and trading frequency jumps. The underlying model
is the Bai et al. (2019) model. Bond baskets here are not investable since the trading
frequency state in month T is not known apriori. Returns are computed by weighting
individual bond returns in excess of the 3-month T-Bill rate by the market value of issues.

pricing factors and extract alphas.9 All 25 estimated alphas are presented in Table C.8 in

Appendix C.3, Figure 3.10 presents the same result in a more intuitive form. We observe the

same relationship between alphas and trading frequency states as before and, again, only for

the (I)TBs. States with higher trading frequency in month T − 1 are associated with higher

abnormal returns in month T , and if an (I)TB jumps to a higher trading frequency state in

month T this abnormal return is even higher (lower if trading frequency falls).

It turns out that the relationship between trading frequency jumps and returns appears

only after the 2008 crisis. To demonstrate it formally we run panel regressions for excess

returns pre- and post-crisis separately. Our basic regression has the following form:

Rit =
5∑
s=2

(
βs ·DState = s

i,t−1

)
+

5∑
s=1

(
γs ·DState = s

i,t−1 · Jumpit
)

+ Month FE + Issuer FE + εit.

9These are the market, default, liquidity, and credit factors. The last 3 are constructed by double sorting
on 36-month 5% VaR, Bao et al. (2011) illiquidity measure, and credit rating in different combinations.

115



Dependent variable: Rit

(I)TB Non-(I)TB (I)TB Non-(I)TB
Pre crisis Post crisis

Statei,t−1 = G2 −0.050 −0.103∗∗ −0.106∗∗∗ −0.058∗

Statei,t−1 = G3 −0.230∗∗∗ −0.245∗∗∗ −0.151∗∗∗ −0.032
Statei,t−1 = G4 −0.249∗∗ −0.301∗∗∗ −0.271∗∗∗ −0.035
Statei,t−1 = G5 −0.517 −0.482∗∗∗ −0.651∗∗∗ −0.106∗

(Statei,t−1 = G1)× Jumpit 0.160∗∗∗ 0.084 0.148∗∗∗ 0.002
(Statei,t−1 = G2)× Jumpit 0.066∗ 0.012 0.077∗∗∗ 0.056
(Statei,t−1 = G3)× Jumpit 0.115∗∗ 0.090∗∗∗ 0.077∗∗∗ 0.088∗∗

(Statei,t−1 = G4)× Jumpit 0.108 0.153∗∗∗ 0.172∗∗∗ 0.060∗∗

(Statei,t−1 = G5)× Jumpit 0.264 0.120∗∗ 0.479∗∗∗ 0.109∗∗

Month FE YES YES YES YES
Issuer FE YES YES YES YES
Observations 22,446 54,548 113,598 148,280
Adjusted R2 0.097 0.122 0.191 0.205

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are clustered by bond CUSIP.

Table 3.11. Regressions of excess returns on trading frequency characteristics.
‘Jump’ is the integer variable that equals the difference in trading frequency state numbers
in months t − 1 and t. For instance, if the bond jumps from state G3 to state G1, the
Jumpit = 2. The reverse jump has the value of -2.

Here DState = s
i,t−1 is a dummy variable that takes the value of 1 if the bond i is in the trading

frequency state s ∈ 1, 2, . . . , 5 in month t−1. Coefficients βs capture the relationship between

past trading frequency states and current excess returns relative to excess returns in the most

active trading state G1. Jumpit is the integer variable that equals the difference in trading

frequency state numbers in months t− 1 and t. For instance, if the bond jumps from state

G3 to state G1, the Jumpit = 2. The reverse jump has the value of -2. If the bond stays in

the same trading frequency state then Jumpit = 0. Hence, coefficients γs capture additional

returns associated with trading frequency jumps in month t relative to returns in the case

when trading frequency state does not change.10

Table 3.11 shows that only for the (I)TBs and only post-crisis all β̂s and γ̂s are highly

significant. Coefficients β̂s monotonically decrease with s from -10 b.p. to -65 b.p. For

instance, average returns in month t of the bonds that were in state G2 in month t− 1 are

10 b.p. lower than of the bonds that were in state G1 in month t − 1. Coefficients γ̂s are

positive suggesting that that jumps towards more active trading yield additional positive

10We could also tell the same story with 25 estimated dummies for all the combinations of trading frequency
states in months t− 1 and t. We prefer this form with jump variables for its concise presentation.
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returns and jumps towards less active trading result in lower returns. The absolute value

of these additional returns is around 12 b.p. for jumps from states G1–4. Observe that

pre-crisis the effect is less significant or absent.11

Dependent variable: Rit

(I)TB Non-(I)TB (I)TB Non-(I)TB
Before Jun 2008 After Jan 2009

∆Net purchase in big tradesi,t 0.005 0.004 0.012∗∗∗ 0.008∗∗

∆Net purchase in small tradesi,t −0.824∗∗∗ −0.259 −0.240∗∗∗ −0.159∗∗

Statei,t−1 = G2 −0.038 −0.100∗∗ −0.102∗∗∗ −0.057
Statei,t−1 = G3 −0.223∗∗∗ −0.243∗∗∗ −0.147∗∗∗ −0.031
Statei,t−1 = G4 −0.257∗∗ −0.299∗∗∗ −0.270∗∗∗ −0.035
Statei,t−1 = G5 −0.579∗ −0.485∗∗∗ −0.669∗∗∗ −0.108∗

(Statei,t−1 = G1)× Jumpit 0.176∗∗∗ 0.092 0.152∗∗∗ 0.003
(Statei,t−1 = G2)× Jumpit 0.084∗∗ 0.018 0.081∗∗∗ 0.058
(Statei,t−1 = G3)× Jumpit 0.137∗∗∗ 0.095∗∗∗ 0.082∗∗∗ 0.090∗∗∗

(Statei,t−1 = G4)× Jumpit 0.131 0.157∗∗∗ 0.179∗∗∗ 0.063∗∗

(Statei,t−1 = G5)× Jumpit 0.338∗ 0.128∗∗ 0.501∗∗∗ 0.114∗∗

Month FE YES YES YES YES
Issuer FE YES YES YES YES
Observations 22,446 54,548 113,598 148,280
Adjusted R2 0.100 0.122 0.191 0.206

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are clustered by bond CUSIP.

Table 3.12. Regressions of returns on changes in net purchases grouped by size
and trading frequency characteristics. Trades with less than 100k volume are small
trades. ‘Jump’ is the integer variable that equals the difference in trading frequency state
numbers in months t− 1 and t. For instance, if the bond jumps from state G3 to state G1,
the Jumpit = 2. The reverse jump has the value of -2.

In Tables 3.12 and 3.13 we add either changes in net buy volume in big and small trades

or changes in net demand by institutional investors to the baseline regression specification.

Changes in volume in small trades and changes in net mutual fund purchases are related to

jumps in trading frequency. Hence, one might expect them to explain some of the effects of

trading frequency jumps on returns. It does not happen, at least for the (I)TBs post-crisis.

Remarkable though that the signs at changes in net buy volume in big and small trades in

Table 3.12 are opposite. Increases in net buy volume in big trades are associated with higher

returns while increases in net buy volume in small trades are associated with lower returns

(equivalently, increases in net sell volume in small trades occur in bond-months with higher

11Figure C.1 in Appendix C.3 plots cumulative returns on some of the 25 bond baskets described above.
These graphs also demonstrate that returns associated with trading frequency jumps accrue only after
2008.
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Dependent variable: Rit

(I)TB Non-(I)TB (I)TB Non-(I)TB
Before Jun 2008 After Jan 2009

∆MF net purchasei,t 0.030∗∗ 0.015 0.001 0.014
∆IC net purchasei,t 0.007 0.003 0.008 0.011∗

∆Other net purchasei,t −0.001 0.0003 −0.0005 0.00003
Statei,t−1 = G2 −0.061 −0.152∗∗∗ −0.105∗∗∗ −0.045
Statei,t−1 = G3 −0.246∗∗∗ −0.297∗∗∗ −0.152∗∗∗ 0.00001
Statei,t−1 = G4 −0.181 −0.351∗∗∗ −0.289∗∗∗ 0.019
Statei,t−1 = G5 −0.747 −0.621∗∗∗ −0.846∗∗∗ 0.048
(Statei,t−1 = G1)× Jumpit 0.175∗∗∗ 0.102 0.147∗∗∗ 0.025
(Statei,t−1 = G2)× Jumpit 0.059 0.041 0.075∗∗∗ 0.057
(Statei,t−1 = G3)× Jumpit 0.140∗∗ 0.111∗∗∗ 0.090∗∗∗ 0.082∗∗

(Statei,t−1 = G4)× Jumpit 0.023 0.161∗∗∗ 0.227∗∗∗ 0.064∗

(Statei,t−1 = G5)× Jumpit 0.552 0.122∗ 0.656∗∗∗ 0.054

Month FE YES YES YES YES
Issuer FE YES YES YES YES
Observations 19,221 44,182 98,324 131,236
Adjusted R2 0.100 0.122 0.191 0.204

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are clustered by bond CUSIP.

Table 3.13. Regressions of returns on changes in net institutional demand and
trading frequency characteristics. ‘MF’ stand for mutual funds, ‘IC’ for insurance
companies. ‘Jump’ is the integer variable that equals the difference in trading frequency
state numbers in months t− 1 and t. For instance, if the bond jumps from state G3 to state
G1, the Jumpit = 2. The reverse jump has the value of -2.

returns). A rise of net sales in small trades of 1 p.p. of the outstanding amount translates

into 25 b.p. of excess return in the (I)TBs and 16 b.p. in the Non-(I)TBs.

We like the following explanation for the positive impact of changes in big net buys and

small net sells on returns, especially in ITBs. We have established before that when mutual

funds increase their net purchases of the (I)TBs (arguably for non-informational reasons),

some other agents sell more of these bonds in small trades. Now we know that it also

pushes prices up. Given the time frame we are looking at, we tend to think that increases

in sell volumes in small trades represent profit-taking by hedge funds that were entering the

corporate bond market actively in 2008 and 2009 and closing positions several years later.

The fact that trading frequency jumps still affect returns even when we control for changes

in volumes and institutional flows suggests that there was potentially some friction in the

reallocation of bonds from hedge funds to mutual funds that pushed prices even further up.

It might be lower dealer inventory levels and longer intermediation chains post-crisis.
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Dependent variable: Rit

(I)TB Non-(I)TB

VaRi,t−1 0.084∗∗∗ 0.098∗∗∗

Ratingi,t−1 0.204∗∗∗ 0.128∗∗∗

Illiquidityi,t−1 0.090∗∗ 0.078
Statei,t−1 = G2 −0.071∗ −0.007
Statei,t−1 = G3 −0.139∗∗∗ −0.061
Statei,t−1 = G4 −0.297∗∗ −0.156
Statei,t−1 = G5 0.167∗∗∗ 0.090
(Statei,t−1 = G1)× Jumpit 0.107∗∗∗ 0.128
(Statei,t−1 = G2)× Jumpit 0.100∗∗ 0.163∗∗

(Statei,t−1 = G3)× Jumpit 0.061 0.062

Month FE YES YES
Issuer FE YES YES
Observations 42,792 47,441
Adjusted R2 0.197 0.201

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
SEs are clustered by bond CUSIP.

Table 3.14. Regressions of post-crisis returns on riskiness and trading frequency
characteristics. VaR is the 36-month rolling 5% value at risk (second smallest return).
Rating is the numerical score from 1 to 21. Illiquidity is the Bao et al. (2011) measure.
‘Jump’ is the integer variable that equals the difference in trading frequency state numbers
in months t − 1 and t. For instance, if the bond jumps from state G3 to state G1, the
Jumpit = 2. The reverse jump has the value of -2.

Indirectly supporting this point of view, we present in Table 3.14 the baseline regression

for returns extended with corporate bond risk proxies from Bai et al. (2019): bond-level

Value at Risk, Bao et al. (2011) illiquidity, and credit rating, all lagged one period. If the

effect of trading frequency jumps on returns was due to the exposure of the (I)TBs to these

risk factors rather than to a complicated interplay of institutional liquidity trading and low

inventory issues, then we would not observe significant coefficients at trading frequency levels

and jumps in the extended regression. Table 3.14 shows that it happens only to a minimal

extent. For the (I)TBs, all β̂s and γ̂s except for one are still significant.

3.6 Concluding Remarks

In this chapter, we analyzed a large subset of plain-vanilla fixed coupon corporate bonds

that experience prolonged swings in trading activity long after issuance. We called these

bonds that ‘travel’ from active to inactive trading and back (in)frequently traded, or the
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(I)TBs, and attempted to describe statistically the dimensions along which the (I)TBs are

different from the Non-(I)TBs. It turned out that headline bond characteristics like size,

maturity, and credit rating are not much different in our two subsamples of bonds. We

found substantial differences between the (I)TBs and the Non-(I)TBs in the structure of

their trade flow and institutional ownership.

First, we demonstrated that in the (I)TBs higher volumes are traded via small trades,

and it takes more days to trade the same additional volume in small trades in the (I)TBs

than in the Non-(I)TBs. The latter might indicate that intermediation chains are longer

in the (I)TBs. Second, we found that the (I)TBs are more likely to be owned by mutual

funds. Remarkably, there’s a relatively constant number of funds that hold an (I)TB in any

trading frequency state, unlike a Non-(I)TB that is held by substantially fewer funds when

it trades infrequently. Related to that, the illiquidity of the (I)TBs grows very moderately

with trading infrequency compared to the Non-(I)TBs. Third, we showed that positive

changes in mutual fund net demand are associated with positive changes in sell volume in

small trades and more frequent trading. Next, we argued that time-varying firm-level and

bond-level characteristics were able to explain only a minor fraction of variation of changes

in trading frequency, and so the long-lasting waves of trading activity we documented were

not attributed to public news about the issuers or the issues.

Finally, we documented that the (I)TBs yield abnormal returns that relate to the swings

of trading activity in a way unexplained by common bond-risk factors and institutional flows.

When the (I)TBs jumped to states with more (less) frequent trading, they generated positive

(negative) returns in the after-crisis period. There were no such effects for the Non-(I)TBs.

Overall, it seems that the (I)TBs happened to be the bonds that were in high demand

among mutual funds, especially in the post-crisis period. We tend to think that the sell

volume in small trades that goes up together with the (I)TBs trading frequency suggests that

mutual funds were ultimately purchasing these bonds from smaller investors like hedge funds

that populated the market in the aftermath of the 2008 crisis. Given dealers’ preferences
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for low inventory levels after 2008, the intermediation between selling small investors and

buying mutual funds was relatively slow and contributed to abnormal returns of the (I)TBs.
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Appendix A

Appendix of Chapter 1

A.1 Aspects of the model

A.1.1 Log-linear approximation of returns

Consider a homogeneous portfolio of perpetual defaultable bonds with invoice price Pt

and coupon rate C. Its next period return Rt+1 is:

1 +Rt+1 =
(1−Dt+1)(Pt+1 + C)

Pt
,

where Dt+1 = ht+1Lt+1, and ht+1 represents a default rate and Lt+1 ∈ [0, 1] represents loss

given default for bonds in the portfolio at time t+ 1.1 Define rt ≡ log(1 +Rt), pt ≡ log(Pt),

c ≡ log(C), and −dt ≡ log(1−Dt). Then

rt+1 = −dt+1 − pt + log(Pt+1 + C)

= −dt+1 − pt + pt+1 + log

(
1 +

C

Pt+1

)
= −dt+1 − pt + pt+1 + log

(
1 + ec−pt+1

)

1With probability 1− ht+1 the bond pays Pt+1 +C and with probability ht+1 it pays (1−Lt+1)(Pt+1 +C).
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Notice that the first-order Taylor expansion of log (1 + ec−x) around c− x̄ yields:

log
(
1 + ec−x

)
≈ log

(
1 + ec−x̄

)
+

ec−x̄

1 + ec−x̄
((c− x)− (c− x̄)) .

Then the expression for returns becomes:

rt+1 = −dt+1 − pt + pt+1 + log
(
1 + ec−p̄t+1

)
+

ec−p̄

1 + ec−p̄
(c− pt+1)− ec−p̄

1 + ec−p̄
(c− p̄)︸ ︷︷ ︸

Call θ= 1
1+ec−p̄⇒

ec−p̄

1+ec−p̄ =1−θ

= −dt+1 − pt + pt+1 − log θ + (1− θ)(c− pt+1)− (1− θ)(c− p̄)

= θpt+1 − pt − dt+1 + (1− θ)c+ (− log θ − (1− θ) log
(
θ−1 − 1

)︸ ︷︷ ︸
≡κ

,

which is equation (1.4). I set p̄ = 0 (the steady-state bond price is par), then θ = 1
1+C

.

A.1.2 Learning by uninformed investors

The uninformed investor is a Bayesian agent learning about gt and zt at time t by ob-

serving p̃t and st. Recall that

p̃t = −a(gt + bzt + est).

Hence, the agent knows gt + bzt and an estimate of gt immediately gives an estimate of zt.

The conditional distribution of p̃t given gt and st is

p̃t|gt, st ∼ N
(
−a(gt + est), a

2b2σ2
z

)
.

The unconditional distribution of gt is N(0, σ2
g). Bayes theorem implies that gt|p̃t, st is also

Normal with a PDF fg|p̃,s:

fg|p̃,s ∝ exp

(
−(p̃t + a(gt + est))

2

2a2b2σ2
z

− g2
t

2σ2
g

)
︸ ︷︷ ︸

≡− 1
2
K

.
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Expanding the square and collecting terms, one gets:

K =

g2
t − 2gt

[
−aσ2

g p̃t+a
2σ2

gest

a2(σ2
g+b2σ2

z)

]
+ Λ(p̃t, st)

b2σ2
zσ

2
g

σ2
g+b2σ2

z

,

where Λ(p̃t, st) does not depend on gt. Plug in the expression for the pricing function

p̃t = −a(gt + bzt + est) to get:

E(2)
t [gt|p̃t, st] =

σ2
g

σ2
g + b2σ2

z︸ ︷︷ ︸
≡γ

(gt + bzt),

V(2)
t [gt|p̃t, st] = (1− γ)σ2

g .

A.1.3 Optimal demands

The informed investor is solving the following problem:

max
X

(1)
t

Et
[
e
−
(
W

(1)
t +X

(1)
t rt+1+Zt(1+nt+1)

)]
,

where the distributions of rt+1 and nt+1 given the informed investor’s information set at time

t are both Normal with means E(1)
t [rt+1] and 0, and variances V(1)

t [rt+1] and σ2
n correspond-

ingly. The covariance between rt+1 and nt+1 is time-invariant and equals σrn by assumption.

The solution of the informed investor’s optimization problem is

X
(1)
t =

E(1)
t [rt+1]− σrnZt

V(1)
t [rt+1]

.

The optimization problem for the uninformed investor (who does not own the non-traded

asset by assumption) is the same up to Zt component in the wealth dynamic and yields

X
(2)
t =

E(2)
t [rt+1]

V(2)
t [rt+1]

.
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Conditional variances V(1)
t [rt+1] and V(2)

t [rt+1] are constant:

V(1)
t [rt+1] = θ2(σ2

f + σ2
p̃),

V(2)
t [rt+1] = θ2(σ2

f + σ2
p̃) + (1− γ)σ2

g ,

Now, call σ2
r ≡ θ2(σ2

f + σ2
p̃) and plug in the expressions for conditional expected returns and

variances into the expressions for optimal demand to get:

X
(1)
t =

a− 1

σ2
r

gt +
b(a− 1)

σ2
r

zt +
ae(1− θδ)

σ2
r

st,

X
(2)
t =

a− γ
σ2
r + (1− γ)σ2

g

gt +
b(a− γ)

σ2
r + (1− γ)σ2

g

zt +
ae(1− θδ)

σ2
r + (1− γ)σ2

g

st.

A.1.4 Existence of the equilibrium

The equilibrium conditions imply the following system of three non-linear equations in

a, b, and e:
ω(a−1)
σ2
r

+ (1−ω)(a−γ)
σ2
r+(1−γ)σ2

g
= 0,

ω(ab−σrn)
σ2
r

+ (1−ω)(a−γ)b
σ2
r+(1−γ)σ2

g
= 0,

ωae(1−θδ)
σ2
r

+ (1−ω)ae(1−θδ)
σ2
r+(1−γ)σ2

g
= 1.

The second equation immediately implies that b = σrn is the only possible solution for b.

The system of two remaining equations for a and e can be re-written as

0 = φ1(a, e) ≡ (a− ā)(σ2
r + ω(1− γ)σ2

g)− (1− ā)ω(1− γ)σ2
g ,

0 = φ2(a, e) ≡ ae(1− θδ)ω(1− γ)− σ2
r(a− γ),

where ā = ω + γ − ωγ > γ > 0. Observe from the first equation that φ1(ā, e) < 0 and

φ1(1, e) > 0. Hence, if the solution a∗ exists, it must be that a∗ ∈ (ā, 1). Then, take the
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derivative of the first equation with respect to a treating e as a function of a:

d

da
[φ1(a, e(a))] = σ2

r + ω(1− γ)σ2
g + (a− ā)(σ2

g + b2σ2
z + σ2

se
2 + σ2

sae
d

da
[e(a)]),

which is positive for a ∈ (ā, 1) if e∗(a) that solves the second equation 0 = φ2(a, e) grows

in a. In this case we would have a unique positive solution a∗ ∈ (ā, 1). Now, I am going to

establish the conditions under which this is indeed the case.

The second equation can be re-written as a quadratic equation with respect to e:

0 = φ2(a, e) =
(
a2(a− γ)θ2σ2

s

)
e2 − (a(1− θδ)ω(1− γ)) e+ (a− γ)θ2(σ2

f + a2(σ2
g + b2σ2

z)).

Since a∗ > ā > γ, it must be that φ2(a, 0) > 0, and if the solution e∗ exists it must be that

e∗ > 0. Two candidate solutions of the quadratic equation can be written as:

e∗(a) = v(a)± v(a)k(a) where

v(a) ≡ (1− θδ)(1− γ)ω

2θ2σ2
s︸ ︷︷ ︸

≡1/B

1

a(a− γ)
,

k(a) ≡
√

1−B2ψ(a),

ψ(a) ≡ (a− γ)2

(
σ2
f

σ2
s

+
σ2
g + b2σ2

z

σ2
s

a2

)
;

and for a ∈ (ā, 1) v > 0, v′ < 0, 0 < k < 1, k′ < 0, ψ > 0, ψ′ > 0. For the solutions to exist it

must be that ψ < B−2 for a ∈ (ā, 1). Observe that

ψ = (a− γ)2

(
σ2
f

σ2
s

+
σ2
f

σ2
s

a2

)
< (1− γ)2

(
σ2
f

σ2
s

+
σ2
f

σ2
s

a2

)
and

B−2 =
(1− θδ)2(1− γ)2ω2

4θ4σ4
s

.
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So, it is suffice to impose the following restriction on model parameters:

(1− θδ)2ω2

4θ4

1

σ2
s

(
σ2
f + σ2

g + b2σ2
z

) > 1,

to guarantee that the discriminant is non-negative and the quadratic equation for e has

solutions. The condition is easy to obey since the shocks in the left-hand side denominator

are small numbers. From now on I assume that the condition is satisfied.

Of the two roots of the quadratic equation for e, I am going to focus on the smaller one,

e∗(a) = v(a) − v(a)k(a). First, it is the root that guarantees that e∗(a) grows with a when

a ∈ (ā, 1) as I am about to prove. Second, for reasonable parameters values v(a) is a fairly

large number (in a numerical example in Section 1.6 it is around 60) and a positive root

v(a) + v(a)k(a) does not make much economic sense.

The smaller root e∗(a) = v(a)− v(a)k(a) grows with a ∈ (ā, 1) if d
da

[e∗(a)] > 0, i.e.:

v′ − v′k − vk′ > 0⇔

v′(1− k) > vk′ ⇔
v′

v
>

k′

1− k
⇔

v′

v
>
k′(1 + k)

1− k2
⇔

v′

v
>
− 1

2k
B2ψ′(1 + k)

B2ψ
⇔

v′

v
> −1

2

ψ′
(
1 + 1

k

)
ψ

⇔

− 2a− γ
a(a− γ)

> −1

2

ψ′
(
1 + 1

k

)
ψ

⇔

− 2a− γ
a(a− γ)

> −
σ2
f

σ2
s
(a− γ) +

σ2
g+b2σ2

z

σ2
s

a(a− γ)(2a− γ)

(a− γ)2
(
σ2
f

σ2
s

+
σ2
g+b2σ2

z

σ2
s

a2
) (

1 +
1

k

)
⇔
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2− γ

a
<

σ2
f

σ2
s

+
σ2
g+b2σ2

z

σ2
s

a(2a− γ)

σ2
f

σ2
s

+
σ2
g+b2σ2

z

σ2
s

a2

(
1 +

1

k

)
and observe that

2− γ

a
< 2 < 1 +

1

k
<

σ2
f

σ2
s

+
σ2
g+b2σ2

z

σ2
s

a(2a− γ)

σ2
f

σ2
s

+
σ2
g+b2σ2

z

σ2
s

a2

(
1 +

1

k

)
,

which is indeed true.

To sum up, under the condition

(1− θδ)2ω2

4θ4

1

σ2
s

(
σ2
f + σ2

g + b2σ2
z

) > 1

the equation 0 = φ2(a, e) always has a root e∗(a) > 0 that grows with a ∈ (ā, 1), and it leads

to the unique solution a∗ ∈ (ā, 1) of 0 = φ1(a, e∗(a)).

A.1.5 Derivation of the volume-return relationship

Plug in the expression for the pricing function p̃t = −a(gt + bzt + est) into (1.7) to get

rt = −θ(ft −mf )− aθgt − aθbzt − aθest + (a− 1)gt−1 + abzt−1 + aest−1.

Assume an econometrician also observes vc,t = |α(∆gt + σrn∆zt)| and vs,t = st − st−1. Now,

the goal is to compute Et [rt+1|rt, vc,t, vs,t] .

Call, for the sake of convenience of notations, x ≡ rt+1, y ≡ rt, v ≡ α(∆gt+σrn∆zt), and

u ≡ vs,t. The unconditional distribution of (x, y, v, u) is Gaussian:

(x, y, v, u)
′ ∼ N

0,

 Σ11 Σ12

Σ
′
12 Σ22


 ,
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where Σ11 = σxx, Σ12 ≡ [σxy σxv σxu] and

Σ22 ≡


σyy σyv σyu

σyv σvv 0

σyu 0 σuu

 .

The projection theorem for multivariate Normal distributions implies:

E [x|y, v, u] = βxyy + βxvv + βxuu,

where (βxy βxv βxu) = Σ12Σ−1
22 .

Now consider E [x|y, |v|, u] . First, apply the law of iterated expectations:

E [x|y, |v|, u] = E [E [x|y, v, u] |y, |v|, u]

= E [βxyy + βxvv + βxuu|y, |v|, u]

= βxyy + βxvE [v|y, |v|, u] + βxuu.

Notice that E [v|y, |v|, u] = E [v|y, |v|] since σvu = 0. Now, use the fact that for any random

variable Q with a PDF fQ(q):

E [Q||q|] = |q|fQ(|q|)− fQ(−|q|)
fQ(|q|) + fQ(−|q|)

.

In this case, it implies:

E [v|y, |v|] = |v|
fv|y(|v|)− fv|y(−|v|)
fv|y(|v|) + fv|y(−|v|)

,

where

v|y ∼ N
(
σyv
σyy

y, σvv −
σ2
yv

σyy

)
.
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After straightforward algebra, one finds that

E [v|y, |v|] = |v|e
ρ|v|y − e−ρ|v|y

eρ|v|y + e−ρ|v|y
≈ ρyv|v|2y

for small values of v, where ρyv = σyv
σvvσyy−σ2

yv
.

Assembling altogether:

E [x|y, |v|, u] ≈
(
βxy + ρβxv|v|2

)
y + βxuu.

Since v and u are assumed independent, an additional conditioning on |u| in the expectation

sign is straightforward:

E [x|y, |v|, |u|] ≈
(
βxy + ρyvβxv|v|2 + ρyuβxu|u|2

)
y,

which is the analogue of (1.10). Above, ρyu = σyu
σuuσyy−σ2

yu
. To compute the coefficients in this

relationship given model parameters one needs to compute the covariance matrix Σ. Direct

calculations yield:

σxx = θ2σ2
f +

(
(aθ)2 + (a− 1)2

)
σ2
g + (ab)2(θ2 + 1)σ2

z +
(ae)2(θ2 + 1− 2θδ)

1− δ2
σ2
s ;

σxy = (1− a)aθσ2
g − (ab)2θσ2

z +
(ae)2(θδ(1− δ) + δ − θ)

1− δ2
σ2
s ;

σxv = α(a(σ2
g + b2σ2

z)− σ2
g);

σxu =
ae(1− θδ)

1 + δ
σ2
s ;

σyy = σxx;

σyv = α(1− a(1 + θ))σ2
g − αab2(1 + θ)σ2

z ;

σyu = −ae(1 + θ)

1 + δ
σ2
s ;

σvv = 2α2(σ2
g + b2σ2

z); σuu =
2

1 + δ
σ2
s .
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A.2 Data and sample

A.2.1 Sample selection

I apply some filters to the TRACE database after cleaning it as in Dick-Nielsen (2014).

Here are the criteria I use to select the bonds in the sample:

• The bond is nominated in USD;

• It is a fixed coupon (including zero-coupon), non-asset backed, non-convertible, non-

enhanced bond;

• Not privately issued and not issued under Rule 144A;

• Of one of the following types according to the Mergent FISD classification: CMTN (US

Corporate MTN), CDEB (US Corporate Debentures), CMTZ (US Corporate MTN

Zero), CZ (US Corporate Zero), USBN (US Corporate Bank Note), PS (Preferred

Security), UCID (US Corporate Insured Debenture);

• The interest is paid 1, 2, 4, or 12 times a year, or the bond is zero-coupon;

• The quoting convention is 30/360.

Four additional criteria must be jointly satisfied to keep a trade record in the sample:

• The trade is executed between Jan 1, 2010, and Jun 30, 2017;

• Executed at eligible times (time stamps of the trades are between 00:00:00 and 23:59:59;

there is a small number of trades in TRACE with misreported times that do not fall

into this range, I remove them from the sample);

• Executed on NYSE business days;

• Executed on or after the dated date of the bond (the date when the interest starts to

accrue).

Agency transactions with commissions are retained in the sample.
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A.2.2 Actively traded CDS contracts

DTCC publishes a list of 1000 most actively traded single-name CDS contracts quarterly

since June 2009.2 It includes both American and European, sovereign, and corporate issuers.

I machine-read the data from these quarterly DTCC reports and remove all sovereign and

all non-American reference entities. The DTCC reports contain some aggregate information

on CDS transactions like the total number of clearing dealers and average daily notional

amount. In this chapter, I use only the fact that an entity is listed among 1000 most actively

traded contracts and do not use additional characteristics provided by DTCC.

The reference entities in DTCC reports are text strings; other firm IDs are not provided.

I match text strings from DTCC reports to issuer names from Mergent FISD database (after

some usual text cleaning) by computing Jaro-Winkler distance and keeping all name pairs

where the distance is less than 0.2. Then I manually check all matched pairs to ensure that I

do not have any false matches. All the entities that were not matched or were not mentioned

in the DTCC report in a given quarter are assigned the CDS dummy value of 0. All matched

entities are assigned the value of 1 for all days in a given quarter. Among 1000 U.S. firms

mentioned at least once in DTCC reports from 2010 to 2017, I match a bit more than 800.

I might have some ‘true negatives’ in the final sample (the firms that were not matched due

to some text processing errors), but it should not affect my results as long as ‘false positives’

(wrongly matched firms) are absent.

A.2.3 Winsorization

To ensure that my results are not driven by extreme observations, I winsorize some

variables. In particular, in the original bond-day panel (before active periods are determined)

I winsorize:

• C-to-C trading volume at 99%;

2See DTCC website.
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• C-to-D trading volume at 1% and 99%;

• Credit spread at 99.9%;

• Bid-ask spread at 99.9%;

• Total daily returns at 0.1% and 99.9%.

A.3 Additional Tables and Charts

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.
Issue size, mln USD 655.24 500.00 708.38 0.61 9.40 250.00 850.00 2000.00 15000.00 5746678
Rating 7.97 7.33 3.27 1.00 4.00 6.00 10.00 14.00 21.00 5746678
Age, years 4.93 3.58 4.63 0.00 0.33 1.67 6.75 15.50 62.42 5746678
Maturity, years 9.37 6.50 8.05 1.00 1.50 3.50 12.08 27.33 29.92 5746678
Duration 6.75 5.57 4.49 0.84 1.41 3.20 9.00 15.86 27.93 5746678
Total return, % 0.03 0.03 1.25 -8.19 -1.85 -0.36 0.43 1.90 8.49 5746678
Credit spread, % 2.55 1.90 2.84 0.00 0.69 1.28 2.98 6.24 88.70 5746678
Average bid-ask, % 1.14 0.74 1.16 0.00 0.08 0.31 1.62 3.37 19.99 2308138
No. trades per day 6.45 3.00 11.17 1.00 1.00 2.00 7.00 22.00 2540.00 5746678
No. days since last trade 2.33 1.00 7.25 1.00 1.00 1.00 2.00 7.00 1436.00 5735632
C-to-C volume, % of size 0.50 0.00 1.97 0.00 0.00 0.00 0.08 2.50 15.99 5746678
C-to-D volume, % of size 0.01 0.00 3.52 -19.67 -4.35 -0.22 0.33 4.29 17.91 5746678
|C-to-D volume|, % of size 1.52 0.28 3.18 0.00 0.00 0.05 1.31 7.86 19.67 5746678

Table A.1. Summary statistics of the unfiltered bond-day panel. This is a counterpart
of Table 1.1 that shows how sample characteristics change in the full unfiltered bond-day
panel (no restriction on the number of days since the previous trade).
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Figure A.1. Point estimates for high-volume day reversals. The calculations are
based on models (8) from Tables 1.6-1.8. On the x-axis from left to right are the deciles of
information asymmetry proxies. For instance, ‘Low asymmetry’ bond is the one that has
the number of fund owners, active CDS dummy, issue size, number of dealers, and issuer
size all in the 90-th percentile and stock volatility in the 10-th percentile. ‘High asymmetry’
bond has the number of fund owners, active CDS dummy, issue size, number of dealers, and
issuer size all in the 10-th percentile and stock volatility in the 90-th percentile. All other
covariates from the regression models (average bid-ask spread, volume correlations, return
volatility, and credit spread) are fixed at the median level. High C-to-C volume day is the day
with C-to-C volume 2 standard deviations above the average (and average C-to-D volume);
its reversal is E[β̂1|covariates] + 2E[β̂2|covariates]. High C-to-D volume day is the day with
C-to-D volume 2 standard deviations above the average (and average C-to-C volume); its
reversal is E[β̂1|covariates] + 2E[β̂3|covariates]. The reversal on the average volume day is
simply E[β̂1|covariates].
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IG HY IG HY IG HY

β̂1 β̂2 β̂3

Intercept −0.438∗∗∗ −0.515∗∗∗ 0.131∗∗∗ 0.134∗∗∗ 0.068∗∗∗ 0.090∗∗∗

(0.010) (0.028) (0.013) (0.029) (0.010) (0.026)
Average bid-ask −0.076∗∗∗ −0.069∗∗∗ 0.015∗∗ −0.010 −0.034∗∗∗ −0.042∗∗∗

(0.006) (0.011) (0.006) (0.011) (0.005) (0.010)
No. funds 0.002 0.012∗∗ −0.004 −0.006∗ 0.001 0.002

(0.002) (0.005) (0.002) (0.004) (0.002) (0.004)
CDS dummy 0.002 −0.004 −0.003 0.002 0.002 −0.004

(0.001) (0.004) (0.002) (0.004) (0.001) (0.004)
Issue size 0.045∗∗∗ 0.059∗∗∗ −0.008∗∗∗ −0.017∗ 0.002 0.009

(0.004) (0.013) (0.003) (0.010) (0.002) (0.010)
No. dealers 0.012∗∗∗ 0.039∗∗∗ −0.013∗∗∗ 0.003 −0.005∗ 0.005

(0.003) (0.010) (0.003) (0.006) (0.003) (0.007)
Issuer size 0.011∗∗∗ −0.002 −0.0004 0.0004 −0.004∗ −0.026∗∗∗

(0.002) (0.007) (0.002) (0.006) (0.002) (0.005)
–Equity volatility 0.004∗ 0.006∗ −0.010∗∗∗ 0.003 0.008∗∗∗ −0.002

(0.002) (0.004) (0.003) (0.003) (0.003) (0.003)

Risk controls YES YES YES YES YES YES
Vlm correlations YES YES YES YES YES YES
Observations 3,971 710 3,971 710 3,971 710
R2 0.440 0.381 0.040 0.045 0.097 0.116

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2. Cross-sectional regressions of β̂1, β̂2, and β̂3; investment-grade and
high-yield bonds separately. Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Average bid-ask is the percentage difference between the daily
buy and sell prices, excluding inter-dealer trades. Volume correlations are the first autocorre-
lations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the bond. CDS

dummy equals 1 if the average Active CDS dummy for the bond across its active periods is
above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in bln USD.
The issuer size is market cap in bln USD. ‘No. dealers’ is the average number of unique
dealers that intermediate trades in each bond. Stock return volatility is the average realized
volatility of daily stock returns across all active periods for each bond. Risk controls include
credit spread and realized bond return volatility.
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Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs.

β̂1 -0.3823 -0.3944 17 9745 0 9160 9762

β̂2 0.0651 0.0558 6919 2843 1600 201 9762

β̂3 0.0531 0.0504 6767 2995 1934 357 9762

Table A.3. Summary statistics for the cross-section of volume-return coefficients
(estimated controlling for the market return in the first-step regression). This is

a counterpart of Table 1.4, but the first-step regression here is Rt+1 = β0 +β1Rt+β2RtṼ
(c)
t +

β3RtṼ
(s)
t + β4R

mkt
t + εt+1. The market return Rmkt

t is the return on Barclays IG Corporate
Bond index.

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3

Intercept −0.480∗∗∗ −0.487∗∗∗ 0.116∗∗∗ 0.115∗∗∗ 0.044∗∗∗ 0.049∗∗∗

(0.006) (0.007) (0.008) (0.009) (0.006) (0.007)
Average bid-ask −0.037∗∗∗ −0.042∗∗∗ 0.012∗∗ 0.013∗∗ −0.037∗∗∗ −0.032∗∗∗

(0.004) (0.004) (0.005) (0.005) (0.004) (0.004)
C-to-C vlm corr. 0.008∗∗∗ 0.008∗∗∗ 0.013∗∗∗ 0.012∗∗∗ 0.002 0.001

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
C-to-D vlm corr. −0.007∗∗∗ −0.008∗∗∗ −0.014∗∗∗ −0.014∗∗∗ −0.002 −0.002

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
No. funds 0.016∗∗∗ 0.014∗∗∗ −0.002 −0.002 0.006∗∗∗ 0.004∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
CDS dummy −0.001 −0.001 −0.003∗ −0.003∗ 0.002 0.001

(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)
Issue size 0.019∗∗∗ 0.020∗∗∗ −0.011∗∗∗ −0.010∗∗∗ −0.002 −0.0001

(0.003) (0.003) (0.003) (0.003) (0.002) (0.002)
No. dealers 0.013∗∗∗ 0.013∗∗∗ −0.009∗∗∗ −0.011∗∗∗ −0.005∗∗ −0.002

(0.002) (0.003) (0.003) (0.003) (0.002) (0.002)
Issuer size −0.003∗ −0.002 −0.006∗∗∗

(0.002) (0.002) (0.002)
–Equity volatility −0.011∗∗∗ −0.009∗∗∗ 0.004∗∗

(0.002) (0.002) (0.002)

Risk controls YES YES YES YES YES YES
Observations 4,985 4,656 4,985 4,656 4,985 4,656
R2 0.256 0.270 0.030 0.036 0.090 0.087

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.4. Cross-sectional regressions of β̂1, β̂2, and β̂3 (market return included
in the first-step regression). Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all
active periods, so are the predictors. Average bid-ask is the percentage difference between
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.

142



−0.40

−0.38

−0.36

−0.34

−0.32

E[β1̂|covariates]

HighAverageLow

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E[β2̂|covariates]

HighAverageLow

Info asymmetry

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E[β3̂|covariates]

HighAverageLow

Figure A.2. Point estimates and confidence intervals for the expected values of
volume-return coefficients (market return included in the first-step regression).
This figure is a counterpart of Figure 1.3, but the volume-return coefficients are estimated
controlling for market return in the first-step regression (see Table A.3).
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Mean Med. No.>0 No.<0 No.>0* No.<0* No. Obs.

β̂1 -0.3112 -0.3252 179 9644 12 8302 9823

β̂2 0.1126 0.0798 7414 2409 1948 157 9823

β̂3 0.0778 0.0732 7304 2519 2405 289 9823

Table A.5. Summary statistics for the cross-section of volume-return coefficients
(estimated controlling for volumes in the first-step regression). This is a counterpart

of Table 1.4, but the first step equation here is Rt+1 = β0 + β1Rt + β2RtṼ
(c)
t + β3RtṼ

(s)
t +

β4Ṽ
(c)
t + β5Ṽ

(s)
t + εt+1.

β̂1 β̂1 β̂2 β̂2 β̂3 β̂3

Intercept −0.417∗∗∗ −0.440∗∗∗ 0.186∗∗∗ 0.187∗∗∗ 0.071∗∗∗ 0.078∗∗∗

(0.007) (0.008) (0.012) (0.013) (0.007) (0.008)
Average bid-ask −0.073∗∗∗ −0.082∗∗∗ 0.021∗∗∗ 0.020∗∗ −0.044∗∗∗ −0.039∗∗∗

(0.005) (0.005) (0.007) (0.008) (0.004) (0.005)
C-to-C vlm corr. 0.012∗∗∗ 0.011∗∗∗ 0.003 0.003 −0.002 −0.002

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
C-to-D vlm corr. −0.009∗∗∗ −0.009∗∗∗ −0.012∗∗∗ −0.009∗ 0.002 0.001

(0.002) (0.002) (0.004) (0.005) (0.002) (0.002)
No. funds 0.006∗∗∗ 0.006∗∗∗ −0.008∗∗∗ −0.008∗∗∗ 0.006∗∗∗ 0.003

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002)
CDS dummy 0.001 0.001 −0.002 −0.002 0.003∗ 0.001

(0.001) (0.001) (0.003) (0.003) (0.001) (0.001)
Issue size 0.041∗∗∗ 0.037∗∗∗ −0.016∗∗∗ −0.013∗∗∗ −0.006∗∗ −0.004

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003)
No. dealers 0.018∗∗∗ 0.021∗∗∗ −0.014∗∗∗ −0.014∗∗∗ −0.004 −0.001

(0.003) (0.003) (0.004) (0.004) (0.002) (0.003)
Issuer size 0.010∗∗∗ −0.007∗∗ −0.008∗∗∗

(0.002) (0.003) (0.002)
–Equity volatility 0.005∗∗ −0.005 0.005∗∗

(0.002) (0.003) (0.002)

Risk controls YES YES YES YES YES YES
Observations 5,018 4,691 5,018 4,691 5,018 4,691
R2 0.363 0.382 0.031 0.030 0.089 0.089

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.6. Cross-sectional regressions of β̂1, β̂2, and β̂3 (volumes included in
the first-step regression). Each model is an OLS regression with heteroscedasticity-
consistent standard errors. Volume-return coefficients are averaged for every bond across all
active periods, so are the predictors. Average bid-ask is the percentage difference between
the daily buy and sell prices, excluding inter-dealer trades. Volume correlations are the first
autocorrelations of Ṽ

(c)
t and Ṽ

(s)
t . ‘No. funds’ is the number of mutual funds that own the

bond. CDS dummy equals 1 if the average Active CDS dummy for the bond across its active
periods is above 0.5 and 0 otherwise. The issue size is the outstanding notional amount in
bln USD. The issuer size is market cap in bln USD. ‘No. dealers’ is the average number
of unique dealers that intermediate trades in each bond. Equity volatility is the average
realized volatility of daily stock returns across all active periods for each bond. Risk controls
include credit spread and realized bond return volatility.
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Figure A.3. Point estimates and confidence intervals for the expected values of
volume-return coefficients (volumes included in the first-step regression). This
figure is a counterpart of Figure 1.3, but the volume-return coefficients are estimated con-
trolling for trading volumes in the first-step regression (see Table A.5).
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Appendix B

Appendix of Chapter 2

B.1 Constructing the Dataset

B.1.1 Data Sources

This appendix describes step by step how the sample is constructed. Since I work in this

chapter on the daily frequency, sample construction methodology differs in certain aspects

from that for the monthly frequency.

Step 1. I start with the Enhanced TRACE intra-day bond market transactional data.

The main difference of the Enhanced TRACE from regular TRACE is no cap on the reported

transaction volume. This comes at a cost of a reporting lag. As of spring 2017 the Enhanced

TRACE data are available through the WRDS only till the end of 2014, while plain TRACE

data are available till the end of 2016. For the purpose of this study, it is not critical,

though, to work with the most recent data; to have data on the exact transaction volume is

more important. Full transaction volume allows me to compute bond liquidity measures. To

ensure representativeness of the data I look at the so-called ‘Phase 3’ of the TRACE only

(from October 2004 onwards). For detailed quantitative comparison of different phases of

the TRACE see Asquith, Covert, and Pathak (2013b).
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The Enhanced TRACE data needs to be cleaned of trade cancellations, reversals, correc-

tions and agency transactions. The cleaning procedure I follow is described in Dick-Nielsen

(2014). I also apply price filters to the data. All transactions with reported bond prices

below 1 or above 500, as well as transactions with absolute returns above 20% (to a previous

trade) are removed. Then I compute a daily average volume-weighted bond price and daily

liquidity measures for each bond.1 From this point onwards I work with the daily data.

Step 2. To obtain characteristics of the bonds I match securities from TRACE with

Mergent FISD by CUSIP numbers. Once this is done, I reduce the sample to only non-

convertible senior unsecured corporate bonds with less than 30 years to maturity.

Callable bonds are not removed from the sample, but remaining outstanding amounts are

tracked thanks to the file with historical outstanding amounts that is available in Mergent

FISD.

Next, I determine for each bond for each day the exact remaining coupon payment/principal

repayment schedule. This allows to compute daily prices of risk-free counterparts of the

bonds by discounting remaining cash flows with Treasury zero-coupon rates for each par-

ticular day.2 Then, observed bond prices and the prices of their risk-free counterparts are

converted into yields to maturity. The difference in yields to maturity is the GZ spread (after

Gilchrist and Zakraǰsek, 2012).

I also obtain the history of credit rating revisions from Mergent FISD and add credit

ratings to the sample. Throughout the chapter I use a numerical rating scale: 1 corresponds

to ‘AAA’, 2 corresponds to ‘AAA-’, and so on, up to 22 that corresponds to ‘D’.

Step 3. In this step, I add issuing firms’ characteristics to the data. For this purpose, I

match the issuers with the firms in CRSP and Compustat. By matching on either tickers,

1I re-did the study for simple daily average prices and daily last prices; it doesn’t affect the results.
2These historical yield curves constructed as in Gürkaynak, Sack, and Wright (2007) are readily available
via Quandl, https://www.quandl.com/. Here, the yield curve construction method is a modified Nelson-
Siegel approach with additional parameters included to better fit the long end of the curve – the so-called
‘Nelson-Siegel-Svensson’ method.
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or trade symbols, or 6-digit CUSIP numbers I am able to get the characteristics of issuing

firms for more than 95% of the bonds (the rest are removed from the sample).

The ultimate goal of this step is to compute the Merton (1974) distance-to-default vari-

able for each issuing firm for each day. For that I need firm equity value, volatility, and

indebtedness for each day (see computational details in Appendix B.1.2). I obtain equity

characteristics on the daily frequency from CRSP. Equity volatility is computed as the stan-

dard deviation of daily returns in the one-year rolling window. Firm indebtedness for each

day is the latest available quarterly observation from Compustat carried forward. The de-

fault threshold needed to compute the distance-to-default is defined as all short-term debt

and half of the long-term debt. Since the distance-to-default is a numerical solution to a

system of equations, I remove bond(firm)-day observations for which this system doesn’t

have a solution with reasonable starting values.

Step 4. This is the step when I apply a number of final filters to the bond-day data.

Below is the list of criteria according to which I remove observations from the sample. I

remove:

– issuing firms from the financial and the real estate industry;

– bonds with less than one year to maturity;

– days with abnormally few trades;3

– observations in the 1st and the 99th percentiles of daily total returns;

– observations with the GZ spread below 5 b.p. or above 35%;4

– observations in the 99th percentile according to the Amihud illiquidity measure.

3These are the days with total number of trades per day at least 20% lower than the average daily number
of trades over a 30-day rolling window. This criteria is reverse engineered – it allows to remove pre-holiday
trading days. Cross-sectional distributions of bond prices and spreads on these days were found to be very
different from the ones on regular days.

4Same filter as in Gilchrist and Zakraǰsek (2012).
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B.1.2 Daily Measure of Merton’s Distance-to-default

In the Merton (1974) model firm’s default probability at time t is determined by:

P [VA ≤ D] = Φ (−DD) = Φ (d1) = Φ

− log
(
VA
D

)
+
(
r − σ2

A

2

)
(T − t)

σA
√
T − t

 ,

where VA is the value of firm’s assets, D is the default threshold, σA is the volatility of VA,

T − t is the time to maturity, r is the discount rate, and Φ(·) is the standard normal c.d.f.

To compute the DD variable one needs to know VA and σA that are unobserved (unlike

other parameters). There exist multiple methods to estimate these parameters, see Duan

and Wang (2012) for a detailed overview. In this chapter, I use the ‘volatility restriction’

method that consists in solving for VA and σA the following system of equations:

0 = VAΦ(d1)− exp {−r(T − t)}DΦ(d2)− VE,

0 =
VA
VE

Φ(d1)σA − σE,

where d2 = d1−σA
√
T − t, and VE and σE are correspondingly the value of the firm’s equity

and its volatility (these parameters are observed). I didn’t use the transformed-data MLE

approach to estimate the distance-to-default and opted for the volatility restriction method

instead in order to speed up the computations. Solving numerically the system of equations

above is orders of magnitude faster than running MLE estimations for each firm for each

day. Experiments on a small sub-sample of the data didn’t give considerably different results

for the two methods.

In Section 2.2, I solve for VA and σA for each firm for each day. VE is the value of firm’s

equity from CRSP. σE is the standard deviation of daily equity returns from CRSP estimated

over a backward-looking one-year long window. D is all short-term debt (less than one year

to maturity) plus half of the long-term debt. Starting values for the solution algorithm are

149



always VA[0] = VE and σA[0] = σE. I disregard all firm-days when this approach doesn’t

lead to a reasonable solution.

B.2 Explanatory Variables

Here is the list of explanatory variables used in Sections 2.3–2.5.

– DD, the distance-to-default computed as presented in Appendix B.1.2. The values

presented in Table 2.1 and further used in the analysis are scaled by 1000.

– DUR, the Macaulay duration.

– PAR, outstanding amount of a bond issue in mln USD. This variable contains the

history of changes in the outstanding amount for each bond; a corresponding historical

file is included in Mergent FISD (available through the WRDS server).

– CPN , a coupon rate of a bond, in % per annum.

– AGE, time elapsed since a bond was issued, in years.

– CALL, a call option dummy; equals to 1 if the bond issue is redeemable and to 0

otherwise.

– ADS, Aruoba et al. (2009) daily aggregate activity index for the US computed by the

Philadelphia Fed and available (with historical vintages) at https://goo.gl/mZJ5Sj.

This is a smoothed business cycle signal derived from 6 real activity series of differ-

ent reporting frequency: weekly initial jobless claims, monthly payroll employment,

industrial production, personal income less transfer payments, and manufacturing and

trade sales, and quarterly real GDP. Since the index is obtained by running the Kalman

smoother, its historical paths change a little bit as the new data become available.

– AMH, the Amihud liquidity measure, computed as presented in Section 2.2.

– LEV , an empirical proxy for the ‘level’ of the yield curve: 10-year zero-coupon rate

y10Y .
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– SLP , an empirical proxy for the ‘slope’ of the yield curve: the difference between

10-year and 3-month zero-coupon rates y10Y − y3M .

– CRV , an empirical proxy for the ‘curvature’ of the yield curve: 2y2Y − y10Y − y3M .

– V OL, volatility of the long-rate: the standard deviation of the 10-year zero coupon

rate computed over the 30-day rolling window.

– RFF , Real Federal funds rate, the difference between nominal effective Federal funds

rate and realized (one month prior to a rate observation) 12-month CPI growth rate.

– TS, Term spread, same as the yield curve slope SLP .

– GZ spread, the corporate bond spread computed as in Gilchrist and Zakraǰsek (2012).

– Fitted GZ spread, the portion of GZ spread explained by one the models of Table 2.2.

– EBP , excess bond premium, the difference between GZ spread and Fitted GZ spread.

– DRF , the default risk factor of Bai et al. (2019). This is the value-weighted aver-

age return difference between the highest-VaR quintile portfolio and the lowest-VaR

quintile portfolio within each rating quintile portfolio. VaR is computed at the 5%

level. For daily-rebalanced portfolios VaR is computed over the latest 100 days, for

monthly-rebalanced portfolios over the latest 36 months.

– CRF , the credit risk factor of Bai et al. (2019). This is the value-weighted average

return difference between the lowest-rating quintile portfolio and the highest-rating

quinitle portfolio within each illiquidity quintile portfolio. Illiquidity portfolios are

formed using the Amihud measure, unlike Bai et al. (2019), who use negative covariance

between daily price changes as a low-frequency illiquidity proxy.

– LRF , the liquidity risk bond pricing factors of Bai et al. (2019). This is the value-

weighted average return difference between the highest-illiquidity quintile portfolio and

the lowest-illiquidity quintile portfolio within each rating quintile portfolio.

– SMB, HML, and UMD, are, correspondingly, small-minus-big, high-minus-low, and

momentum stock pricing factors. Available from the Ken French’s database via Quandl

at: https://www.quandl.com/data/KFRENCH-Ken-French.
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B.3 Time fixed effects in regressions for spreads

Here I consider alternative specifications for log spread fitting models with the time fixed

effect TFEt included:

log
(
SGZit [k]

)
= β ·DDit + (Proxies for recovery rate and liquidity) + (Call adjustment) +

+ η · AMHit[k] + (Industry and rating FE) + TFEt + εit[k].

Compared to specifications in Section 2.3, this specification replaces ADSt with TFEt.

Otherwise, the models are identical. As d’Avernas (2017) discusses in his Appendix E, such

specification provides unbiased parameter estimates, unlike the benchmark Gilchrist and

Zakraǰsek (2012) model. My goal here is to extract the time fixed effect and investigate to

what extent it is explained by aggregate business activity as measured by the ADS index.

Table B.1 presents the estimated models with time fixed effects. The first two columns

correspond to a simple option adjustment with the same call dummy for all callable bonds

(as Models 1–3 in Table 2.2), the last two columns also control for the interactions of a

call dummy with the yield curve and bond-specific factors (correspond to Models 4–6 in

Table 2.2). Note that the time fixed effect improves the overall fit of the models (compared

to the specifications with the ADS index in Table 2.2). The models in Table B.1 capture

more than 80% of the variation of log spreads. The coefficients on the Amihud measure

in Tables 2.2 and B.1 are very close. However, the coefficients on the distance-to-default

are considerably lower when the time fixed effect is included, in line with d’Avernas (2017)

arguments.

Estimated TFEs from four alternative models are almost identical, the left chart on

Figure B.1 shows. I will work with the TFE from Model 4 of Table B.1 since this model is

the closest analogue of my preferred Model 6 of Table 2.2. To investigate the relationship

between the TFE and the ADS I first run a standard OLS of the TFE on the ADS and a

constant on the daily sample from Oct 2004 to Dec 2014. Such model has an R2 of 0.63.
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Dependent variable: log(Spreadit[k])

(1) (2) (3) (4)

−DDit 0.342∗∗∗ 0.341∗∗∗ 0.106 0.105
(0.050) (0.050) (0.069) (0.068)

log(DURit[k]) 0.321∗∗∗ 0.311∗∗∗ 0.295∗∗∗ 0.282∗∗∗

(0.010) (0.010) (0.020) (0.019)
log(PARit[k]) −0.087∗∗∗ −0.082∗∗∗ −0.075∗∗∗ −0.070∗∗∗

(0.011) (0.011) (0.019) (0.019)
log(CPNi[k]) 0.470∗∗∗ 0.472∗∗∗ 0.694∗∗∗ 0.691∗∗∗

(0.019) (0.019) (0.048) (0.047)
log(AGEit[k]) 0.005 −0.0002 −0.032 −0.036∗

(0.006) (0.006) (0.021) (0.021)
CALLi[k] 0.025 0.029 0.719∗∗∗ 0.726∗∗∗

(0.020) (0.020) (0.263) (0.259)
AMHit[k] 0.043∗∗∗ 0.044∗∗∗

(0.002) (0.002)
−DDit · CALLi[k] 0.283∗∗∗ 0.284∗∗∗

(0.062) (0.060)
log(DURit[k]) · CALLi[k] 0.033∗ 0.037∗∗

(0.017) (0.017)
log(PARit[k]) · CALLi[k] −0.013 −0.014

(0.020) (0.020)
log(CPNi[k]) · CALLi[k] −0.248∗∗∗ −0.245∗∗∗

(0.049) (0.049)
log(AGEit[k]) · CALLi[k] 0.041∗ 0.039∗

(0.021) (0.021)
LEVt · CALLi[k] 0.020∗ 0.020∗

(0.012) (0.012)
SLPt · CALLi[k] −0.026∗∗ −0.026∗∗

(0.012) (0.012)
CRVt · CALLi[k] 0.025 0.024

(0.016) (0.016)
V OLt · CALLi[k] −0.002 −0.001

(0.083) (0.082)

Time FE YES YES YES YES
Industry FE YES YES YES YES
Credit rating FE YES YES YES YES
Observations 2,756,326 2,756,326 2,756,326 2,756,326
Adjusted R2 0.835 0.836 0.836 0.838

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.1. Explanatory models for the bond k of firm i – day t panel of credit spreads
for the entire sample (Oct 4, 2004 – Dec 23, 2014) with the time fixed effect included. The
dependent variable is the log of GZ spread. DD is the distance-to-default, DUR is duration,
PAR is amount outstanding, CPN is the coupon rate, AGE is time elapsed from issuance,
and CALL is a callable bond dummy. AMH is the Amihud liquidity measure. LEV , SLP ,
and CRV are correspondingly level, slope, and curvature yield curve factors, and V OL is
the realized volatility of the 10-year rate (30-day moving average). See Appendix B.2 for the
details on explanatory variables. All models include also industry (the first two digits of the
NAICS code) and credit rating (22-grade numeric scale) fixed effects. Standard errors are
clustered in both firm i and time t dimensions.

The explained portion of the TFE is presented on the right chart of Figure B.1. To be sure

that the result is not spurious I also do the Johansen cointegration test for the TFE and the

ADS and estimate a corresponding error-correction model.5

5Both the TFE and the ADS are I(1) over 2004–2014 period.
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Figure B.1. Time fixed effect (TFE) extracted from the models of Table B.1. The left
chart presents four alternative daily time-series of the TFE. The right chart plots the TFE
from Model 4 vis-a-vis its fitted counterpart from the regression of the TFE on a constant
and the ADS index. The sample is daily from Oct 4, 2003 to Dec 23, 2014.

Table B.2 demonstrates that the strong link between the TFE and the ADS is not spu-

rious. The Johansen test (Table B.2a) rejects no-cointegration null at the 95% confidence

level when more than two lags are included (the optimal number of lags is 15 according

to the AIC). The estimated cointegration vector (Table B.2b) is statistically significant and

economically reasonable. When the ADS drops from zero (‘normal’ times) to negative values

(low activity states), the TFE jumps above its mean of 34 b.p.

In economic terms, the TFE absorbs time-varying portions of the remuneration for credit

risk and of the credit risk premium. In this appendix, I demonstrated that this time-varying

object is explained to a large extent by the aggregate business risk fluctuations as measured

by the ADS index. This finding is in line with the results of Section 2.3 of the main text

that emphasises aggregate business risk as the factor of credit spreads.
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Lag length Critical values
H0 2 3 15 90% 95% 99%
r = 1 2.54 2.99 4.60 7.52 9.24 12.97
r = 0 16.65 25.85 33.44 17.85 19.96 24.60

(a) Johansen cointegration test with trace-type test
statistics. Lag length of 15 is optimal according to
AIC. The null is in the leftmost column (r is the num-
ber of cointegration vectors). The null is rejected when
the test statistics exceeds the critical value (the right-
most part of the table).

TFE ADS Const

β̂T 1 0.43 0.14
– (8.45) (3.29)

α̂T -0.01 -0.01 –
(-3.19) (-4.36) –

(b) Cointegration vectors β̂
and coefficients on the error-
correction terms α̂ in the VECM
with 15 lags. t-stats are in
parenthesis.

Table B.2. Cointegration tests and vectors for the vector error-correction model (VECM)
of daily TFE (Model 4 of Table B.1) and the ADS index. The sample is daily from Oct 4,
2003 to Dec 23, 2014.
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B.4 EBP and VIX as predictors of returns

Here I show that the predictive power of EBP for corporate bond market returns is

immune to the inclusion of the VIX index in return forecasting regressions of Section 2.5.1.

Estimation results are presented in Figure B.2. It is analogous to Figure 2.5, and the only

difference is the VIX added to the right-hand side of forecasting models. On the top panel,

Figure B.2a, the bond market is the TRACE portfolio of bonds, while on the bottom panel,

Figure B.2b, the market is the Barclays Aggregate index.

As Figure B.2 demonstrates, the VIX itself predicts market returns significantly only on

horizons more than 50 days and only when the market is the TRACE portfolio. When the

market is restricted to investment-grade bonds of the Barclays index only, the VIX is not

significant on any horizon.

The coefficients on EBP remain significant for a wide range of forecasting horizons in

the models with the VIX index added. When the market is the investment-grade index

(Figure B.2b), EBP significantly predicts excess market returns on horizons up to several

months, and the economic significance is only marginally lower than in regressions without

VIX in Figure 2.5. This result applies to the TRACE portfolio as well, but here the addition

of VIX compromises statistical significance on shorter horizons.

Daily VIX is a difference-stationary variable over the years 2004–2014, while the EBP is

a level-stationary series. Replacing the levels of VIX in return-forecasting models by its first

differences doesn’t undermine the predictive power of EBP for market returns (not reported).

Same applies to regressions with only the EBP and the VIX or its first differences on the

right-hand side (also not reported). To sum up, even though the VIX might be a predictor

of corporate bond market returns on some horizons, it doesn’t stand behind the forecasting

power of EBP for market returns.
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Parameter estimates for cumulative returns on different horizons
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(a) Dependent variable: returns on TRACE portfolio of bonds; fitted GZ spread and
EBP of Model 6 as explanatory variables.
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(b) Dependent variable: returns on Barclays Aggregate U.S. corporate bond
index; fitted GZ spread and EBP of Model 6 as explanatory variables.

Figure B.2. Estimated forecasting regressions for cumulative bond market excess
returns. Same explanatory variables as in Figure 2.5, plus the VIX index.
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Appendix C

Appendix of Chapter 3

C.1 Sample selection

We apply the number of filters to the TRACE database after cleaning it as in Dick-

Nielsen (2014) (we do not remove agency trades). Here are the criteria we use to select the

sample:

• The trade was executed between Oct 4, 2004 and Dec 31, 2014;

• The bond is nominated in USD;

• Fixed coupon (including zero-coupon), non-asset backed, non-convertible, non-enhanced

bond;

• Of one of the following types according to the Mergent FISD classification: CMTN (US

Corporate MTN), CDEB (US Corporate Debentures), CMTZ (US Corporate MTN

Zero), CZ (US Corporate Zero), USBN (US Corporate Bank Note), PS (Preferred

Security), UCID (US Corporate Insured Debenture);

• The interest is paid 1, 2, 4, or 12 times a year;

• The quoting convention is 30/360;

158



• The trades are executed at eligible times (time stamps of the trades are between

00:00:00 and 23:59:59; there is a small number of trades in TRACE with misreported

times that don’t fall into this range, they are removed from the sample);

• The trades are executed on NYSE business days;

• The bond was traded for at least two days in the sample period;

• The trade was executed on or after the dated date of the bond (the date when the

interest starts to accrue).

C.2 SEC N-Q forms and holdings data

Mutual fund N-Q forms are available online through the SEC EDGAR system. We

machine-read these forms and recover holdings from this scraped textual data. Mutual

funds have a lot of discretion in how they fill their N-Q forms which makes the recovery of

holdings difficult. We discuss the main steps we take below.

First and foremost, funds normally do not report bond CUSIP numbers in N-Q forms.

Bond holdings in N-Q forms are identified by the issuer name, maturity, and coupon rate.

Instead of trying to fill CUSIP numbers for all N-Q records we find N-Q records matching

the CUSIPs we are interested in. We start with a list of CUSIPs from our sample (about

14 thousand as stated in Table 3.1), take their maturity, coupon rate, and issuer name; and

match this dataset with N-Q records by maturity and coupon rate. Several possibilities arise.

If there is no match, we remove such CUSIP from our ‘NQ-matched subsample’ (column 2

of Table 3.1).1 If there is a match it may or may not be unique. Even if the match is

unique (which is the dominant case observed for about 9 thousand bonds of interest), there

is no guarantee that it is not some other bond, not from our plain-vanilla USD-denominated

corporate bond sample, with the same coupon rate and maturity. To check that we compute

a cosine text similarity measure between the true issuer name from the FISD database and

1An alternative way would be to assign the value of zero to mutual fund holdings of such bonds. Since funds
rebalance infrequently, we do not want to overpopulate our sample with 0 changes in fund holdings.
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an issuer name we recover from N-Q forms.2 Table C.1 provides some examples. Table C.1a

shows a record with a uniquely identified bond while Table C.1b shows a record with double

matching: one bond is the true bond we are looking for, another bond is a mortgage-backed

security with the same coupon and maturity. Regardless of whether the match is unique or

not, we keep a record in our sample only if the similarity measure is above 0.45.

cusip id issuer maturity rate report CIK what similarity
22541LAL7 credit suisse first boston (usa) inc 2009-01-15 3.88 2005-01-31 0000933996 credit suisse fb usa inc 0.67

(a) Unique maturity and coupon rate pair

cusip id issuer maturity rate report CIK what similarity
36158FAA8 ge global ins hldg corp 2026-02-15 7.00 2005-01-31 0000933996 ge global insurance holding 0.56
36158FAA8 ge global ins hldg corp 2026-02-15 7.00 2005-01-31 0000933996 fhlmc pool 0.17

(b) Non-unique maturity and coupon rate pair

Table C.1. Examples of records with unique and non-unique combination of
maturity and coupon rate. First four columns (CUSIP number, issuer name, maturity,
and coupon rate) are the data from Mergent FISD. The next three columns (report date,
investment fund identifier CIK, and ‘what’) are the data from an N-Q filing matched to the
FISD data by maturity and coupon rate. ‘Similarity’ is a cosine similarity between ‘issuer’
and ‘what’ fields.

On the next step, we recover dollar holdings of the matched securities for every combi-

nation of bond–fund–reporting date. The raw data we have for every such observation is a

string of dollar-like values, see an example in Table C.2. The most frequent case is when the

par value and the market value are reported. We attempt to recover the par value, which is

usually a number with a string of zeroes in the end. Sometimes funds also report the number

of securities held (which is the par value divided by 1000 in almost all cases), together with

the dollar par value or instead of it. Another complication comes from the fact that funds

often scale dollar values in their reports by 1,000 or 1,000,000. In this case, the string that

captures the table header contains a scaling unit, in numerical or textual form. We develop

an algorithm that takes into account these and some other less frequent reporting patterns

and recovers a dollar par value for every bond–fund–reporting date observation.

Given the nature of the data, we can not be sure that the algorithm recovers all holdings

correctly. Because of that, we apply some additional checks and adjustments once we obtain

2We experimented with different similarity measures and did not observe much difference in results.
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cusip id issuer maturity rate report CIK dollars
22541LAL7 credit suisse first boston (usa) inc 2009-01-15 3.88 2005-01-31 0000933996 [365000, 362038]

Table C.2. An entry with dollar fields. Same entry as in Table C.1a. ‘Dollar’ field is a
text string that contains all dollar values found in the row corresponding to the entry.

all candidate holding values. For instance, we track the holdings that are ‘too high’ relative to

the outstanding amounts and scale them down assuming that we did not capture the scaling

unit correctly at the previous step. Similarly, we scale down holdings that are unrealistically

high relative to the average fund ownership in a given bond in a given month. We also

truncate holdings at 1% and 99% in the entire bond–fund–reporting date sample; the tails

are removed from the data.

In this chapter, we are interested in aggregated fund holdings per bond per month. Be-

fore aggregating holdings across funds we need to make an additional assumption about

how funds rebalance their holdings. N-Q forms are submitted twice every fiscal year, which

is fund-specific. So, funds report their holdings asynchronously. We test several ways of

interpolating these data to the monthly frequency: ‘last observation carried forward’ (all

rebalancing happens in the reporting month), linear interpolation (rebalancing in equal por-

tions throughout six months), and exponential interpolation (more rebalancing in months

right before the reporting months). In the chapter we present the results with the ‘last ob-

servation carried forward’ approach, they are qualitatively similar to the two other methods.
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C.3 Additional tables and charts

State 1 State 2 State 3 State 4 State 5

State 1 0.609 0.285 0.089 0.015 0.001
State 2 0.227 0.442 0.257 0.065 0.009
State 3 0.075 0.271 0.424 0.189 0.040
State 4 0.018 0.098 0.272 0.430 0.182
State 5 0.002 0.017 0.070 0.220 0.691

(a) (I)TB, pre-crisis

State 1 State 2 State 3 State 4 State 5

State 1 0.674 0.246 0.070 0.010 0.001
State 2 0.249 0.454 0.239 0.052 0.006
State 3 0.093 0.314 0.414 0.153 0.027
State 4 0.029 0.149 0.334 0.352 0.136
State 5 0.002 0.018 0.064 0.145 0.770

(b) (I)TB, post-crisis

State 1 State 2 State 3 State 4 State 5

State 1 0.900 0.071 0.022 0.006 0.001
State 2 0.199 0.395 0.263 0.113 0.030
State 3 0.032 0.139 0.391 0.306 0.132
State 4 0.004 0.031 0.158 0.426 0.381
State 5 0.000 0.002 0.015 0.083 0.900

(c) Non-(I)TB, pre-crisis

State 1 State 2 State 3 State 4 State 5

State 1 0.920 0.059 0.016 0.004 0.001
State 2 0.228 0.403 0.240 0.104 0.025
State 3 0.035 0.134 0.396 0.314 0.121
State 4 0.006 0.036 0.192 0.430 0.336
State 5 0.000 0.002 0.021 0.097 0.879

(d) Non-(I)TB, post-crisis

Table C.3. Estimated monthly transition probabilities. State 1 is G1 of trading
frequency (Z ∈ [0, 20)), state 2 is G2 (Z ∈ [20, 40)), etc. The underlying model is a five-
state continuous time Markov chain with constant generator and instantaneous jumps to
neighbouring states only.
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Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.
(I)TB

Big trades -0.03 0.00 2.19 -17.98 -2.78 -0.37 0.30 2.72 15.30 305763
Small trades 0.04 0.00 0.27 -5.72 -0.09 -0.02 0.04 0.26 9.49 305763

Non-(I)TB
Big trades -0.02 0.00 1.81 -17.98 -1.88 0.00 0.00 1.80 15.30 651880
Small trades 0.02 0.00 0.32 -5.72 -0.06 0.00 0.01 0.16 9.49 651880

(a) Levels

Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.
(I)TB

Big trades -0.01 0.00 3.18 -33.28 -4.22 -0.72 0.58 4.38 33.28 301877
Small trades -0.00 0.00 0.27 -10.15 -0.18 -0.03 0.03 0.18 9.51 301877

Non-(I)TB
Big trades -0.00 0.00 2.64 -33.28 -3.06 -0.11 0.02 3.05 33.28 641479
Small trades -0.00 0.00 0.40 -15.20 -0.12 -0.01 0.01 0.11 15.20 641479

(b) Changes

Table C.4. Distribution of monthly levels and changes in net client buy volume
conditional on trade size, in % of outstanding amounts. Volumes are winsorized at
0.001% and 0.999%.

Bond type Mean Median S.D. Min 5th 25th 75th 95th Max N.Obs.
Mutual fund holdings

(I)TB 12.29 9.20 10.78 0.00 0.66 4.41 16.78 40.29 42.08 280748
Non-(I)TB 10.78 7.28 11.00 0.00 0.34 2.82 14.29 42.08 42.08 455766

Net purchases by mutual funds
(I)TB 0.11 0.00 0.84 -19.98 -0.30 0.00 0.01 0.99 37.62 255010
Non-(I)TB 0.09 0.00 0.76 -26.12 -0.19 0.00 0.00 0.84 40.93 406569

Net purchases by insurance companies
(I)TB -0.03 0.00 3.47 -70.35 -1.48 0.00 0.00 1.32 39.89 301874
Non-(I)TB -0.17 0.00 4.45 -70.35 -0.82 0.00 0.00 0.69 39.89 636355

Table C.5. Distribution of mutual fund holdings, changes in holdings, and net
purchases of insurance companies. Mutual fund (MF) holdings are analyzed for the sub-
set of data that contains only bonds matched in SEC NQ filings. MF holdings are winsorized
at 5% and 95%, changes in holdings are computed on the winsorized data. Insurance com-
panies’ (IC) net purchases are analyzed in the entire sample (all bond-month observations
with no recorded purchases by insurance companies are filled with zeros). IC net purchases
are winsorized at 0.1% and 99.9%.
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Dependent variable: ∆Zit
(1)-(3) = (I)TB (4)-(6) = Non-(I)TB

(1) (2) (3) (4) (5) (6)

Intercept 0.09∗∗∗ −0.40∗∗∗

∆(Amount outstanding)it, % −0.001 −0.001 −0.001 −0.05∗∗ −0.05∗∗ −0.04∗∗

∆(Credit rating)it, notch −0.28∗∗∗ −0.20∗∗ −0.20∗∗ −0.28∗∗∗ −0.25∗∗∗ −0.26∗∗∗

Ageit, % of maturity at issuance 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ −0.003∗∗∗ −0.002∗∗∗ 0.004∗∗∗

∆(No. bonds of same issuer)it −0.43∗∗∗ −0.41∗∗∗ −0.45∗∗∗ −0.18∗∗∗ −0.18∗∗∗ −0.17∗∗∗

Coupon month dummyit −2.57∗∗∗ −2.78∗∗∗ −2.84∗∗∗ −1.48∗∗∗ −1.62∗∗∗ −2.15∗∗∗

Month FE NO YES YES NO YES YES
Firm FE NO NO YES NO NO YES
Observations 283,532 283,532 283,532 422,353 422,353 422,353
Adjusted R2 0.002 0.03 0.02 0.001 0.01 0.02

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors are clustered by the bond CUSIP.

Table C.6. Panel models for monthly changes in trading frequency ∆Zit. Models
(1) and (4) are pooled OLS, the rest are fixed-effect panel models.
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Figure C.1. Cumulative excess returns on (I)TB baskets based on the pairs of
trading frequency. Excess returns are value-weighted returns in excess of the 3-month
T-Bill rate. Baskets here are not investable since the trading frequency state in month T is
not known apriori.
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(I)TB Non-(I)TB
GRt−1 GRt Rt Diff Rt Diff
G1 G1 0.51** 0.25**
G1 G2 0.23** -0.28** 0.18** -0.08*
G1 G3 0.24** -0.26** 0.66** 0.41
G1 G4 -0.12 -0.63** -0.64 -0.89*
G1 G5 0.41 -0.09 0.67 0.42
G2 G1 0.42** 0.22** 0.10* -0.05
G2 G2 0.20** 0.15**
G2 G3 0.15** -0.06 0.24** 0.09
G2 G4 -0.03 -0.23** 0.10 -0.05
G2 G5 0.29 0.09 -0.02 -0.17
G3 G1 0.44** 0.32** 0.54* 0.38
G3 G2 0.27** 0.14** 0.27** 0.11*
G3 G3 0.13** 0.16**
G3 G4 -0.13* -0.26** 0.10** -0.05
G3 G5 -0.28 -0.41 -0.12 -0.27**
G4 G1 1.06** 1.16** 0.49* 0.41*
G4 G2 0.47** 0.57** 0.35** 0.27**
G4 G3 0.21** 0.31** 0.21** 0.12**
G4 G4 -0.10 0.08**
G4 G5 -0.38* -0.28* -0.10 -0.18**
G5 G1 1.28* 1.55** 1.48* 1.56**
G5 G2 1.83** 2.10** 0.79** 0.87**
G5 G3 0.87** 1.14** 0.32** 0.39**
G5 G4 -0.13 0.14 0.14** 0.22**
G5 G5 -0.27 -0.08

Table C.7. Mean excess returns for the pairs of trading frequency groups in
months t−1 and t. Rt is the mean return above the 3-month T-Bill rate in month t, Diff
is the difference in mean excess return relative to the case when a bond stays in the same
trading frequency state in both months t − 1 and t. **, and * correspond to 1%, and 5%
significance.
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(I)TB Non-(I)TB
G1-G1 0.196** 0.081
G1-G2 0.115 0.151
G1-G3 0.021 0.516**
G1-G4 -0.187 0.014
G1-G5 -0.202 1.242
G2-G1 0.167** -0.020
G2-G2 0.141* 0.161
G2-G3 0.032 0.142
G2-G4 -0.003 0.193
G2-G5 0.288 -0.219
G3-G1 0.150* 0.500
G3-G2 0.197* 0.189
G3-G3 0.113 0.172*
G3-G4 -0.002 0.164
G3-G5 -0.414 0.368*
G4-G1 0.391 -0.019
G4-G2 0.272** 0.131
G4-G3 0.228* 0.215*
G4-G4 0.095 0.153
G4-G5 -0.058 0.035
G5-G1 0.378 0.695
G5-G2 2.075** 0.523*
G5-G3 0.454* 0.189
G5-G4 -0.003 0.139
G5-G5 -0.204 -0.178

Table C.8. Estimated alphas for bond portfolios formed by the pairs of trading
frequencies in months T −1 and T . The underlying model is the Bai et al. (2019) corpo-
rate bond pricing model. ‘Portfolios’ here are not investable since the trading frequency state
in month T is not known a-priori. Portfolio returns are computed by weighting individual
bond excess returns by the market value of issues.
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