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Abstract. The role of symbiosis in macro-evolution is poorly understood. On the 

one hand, symbiosis seems to be a perfectly normal manifestation of individual 

selection, on the other hand, in some of the major transitions in evolution it 

seems to be implicated in the creation of new higher-level units of selection. Here 

we present a model of individual selection for symbiotic relationships where 

individuals can genetically specify traits which partially control which other 

species they associate with – i.e. they can evolve species-specific grouping. We 

find that when the genetic evolution of symbiotic relationships occurs slowly 

compared to ecological population dynamics, symbioses form which canalise the 

combinations of species that commonly occur at local ESSs into new units of 

selection. Thus even though symbioses will only evolve if they are beneficial to 

the individual, we find that the symbiotic groups that form are selectively 

significant and result in combinations of species that are more cooperative than 

would be possible under individual selection. These findings thus provide a 

systematic mechanism for creating significant higher-level selective units from 

individual selection, and support the notion of a significant and systematic role of 

symbiosis in macro-evolution.  

Introduction: Can individual selection create higher-level selection? 

Symbiotic relationships in general are ubiquitous and uncontroversial, but the role of 

symbiosis in macro-evolutionary processes such as the major evolutionary transitions ( 1) 

and symbiogenesis (the creation of new species through symbiosis) ( 2), is poorly 

understood. Clearly, the evolution of symbiotic relationships may change the effective 

selection pressures on individuals in complex ways – but can they enable higher-level 

selection? When the fitness of individuals is context sensitive (i.e. under frequency 

dependent selection) grouping individuals together in small groups can change the average 

selection pressure on cooperative traits by altering the variance in contexts ( 3,  4). This 

effect is stronger when group membership is assortative on behavioural traits ( 5). In most 

models, however, the existence of groups is presupposed and accordingly any group 

selection effect observed is unsurprising in the sense that it is fully explained by changes 

in individual selection given the context of these groups. In contrast, we are interested in 

scenarios where individually selected traits affect the strength of group selection or create 

group selection de novo ( 6). For example, related work addresses the evolution of 

individually specified traits that affect group size ( 7,  8), or the evolution of markers that 

influence behavioural grouping ( 9). Here we address a multi-species scenario where 

species can evolve symbiotic relationships that allow explicit control over whether they 

group and who they group with. 

Symbiosis, the living together of different species, implies that one species ‘seeks out’ 

another, actively controlling (to a limited extent) the species composition of its 

environmental context. When organisms create their own environments a complex 
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dynamic is created between the traits they evolve that affect their symbiotic relationships, 

and the ‘ordinary traits’ (traits that do not affect symbioses) they evolve given the context 

they have created for themselves. Our research question concerns whether it is possible for 

an individual to evolve symbiotic relationships that cause it to create a significant higher-

level unit of selection. This might seem to be a logical impossibility because for a higher-

level unit of selection to be significant one would ordinarily assert that it must oppose 

individual selection. And, if a group opposes individual selection then a defector or selfish 

individual that exploits the group will be fit and take over. Of course, group selection that 

acts in alignment with individual selection is possible – e.g. individual selection may 

cause a mixed population to reach some evolutionarily stable strategy (ESS) ( 10) and 

group selection that acts in alignment with individual selection might cause a population 

to reach this ESS more quickly, but it cannot cause it to go somewhere other than the local 

ESS. But we show this conclusion is too hasty. We show that in cases where group 

selection acts in alignment with individual selection it can alter evolutionary outcomes. 

This requires that we consider a different type of evolutionary game, however. 

The literature on group selection is largely preoccupied with the prisoners’ dilemma 

( 11) – a game that has only one ESS ( 10) – ‘Defect’. Although a group of cooperative 

individuals is collectively fitter than a group of defectors, the cooperative group can never 

be stable given that the payoff for Defect is higher than the payoff for Cooperate when 

playing against other cooperators. Thus if groups are imposed Cooperate:Cooperate will 

beat Defect:Defect but it is not possible that a Cooperate:Cooperate group can be 

maintained by individual selection. In contrast, a game that has more than one ESS is a 

different matter. A coordination game of two strategies, for example, has two ESSs, let’s 

call them A-A and B-B, and these ESSs may have different overall utility, let’s say that an 

A-A group beats a B-B group. But the difference is that in a game that has multiple ESSs, 

each ESS can be supported by individual selection (there is no ‘cheat’ strategy that can 

invade either ESS) and this means that the two groups need not be externally imposed in 

order to be stable. Nonetheless, the evolutionary outcome can be significantly different 

from the outcome of individual selection without grouping. For example, with no 

grouping, if the utility of A-A is only slightly higher than B-B, then the population will 

reach the ESS that is closest to the initial conditions – for example, if B has a significant 

majority this will be the B-B ESS. But with grouping, the A-A ESS can be reached even if 

B has a significant majority because when A’s interact disproportionately with other A’s 

they are fitter than B’s. In the models that follow we will show that individual selection 

causes groups to form that represent combinations of species from different ESSs and thus 

allows the highest utility ESS to be found. 

We intend our model to represent the evolution of symbiotic relationships between 

species, not just assortativity of behaviours within a single species. Thus we permit 

competition between heterogeneous groups (e.g. AB vs CD, where A and B are 

behaviours provided by unrelated species) rather than homogeneous groups (e.g. AA vs 

BB) as would be more conventional in a single-species assortative grouping model (where 

relatedness and inclusive fitness concepts straightforwardly apply) ( 12). By using a poly-

species model we can show that the process we model significantly increases the 

likelihood of reaching a higher-utility ESS even in cases where the basin of attraction for 

high-utility ESSs is initially very small ( 13). Note that we do not change the interaction 

coefficients between species but only change the co-location or interaction probability of 

species. A species might thus change its fitness by increasing the probability of interacting 

with another (which is what we mean be a symbiosis) but it cannot change its intrinsic 

fitness dependency on that species (as might be part of a more general model of 
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coevolution -  4, 14, 15). There are clearly many ways in which organisms can change 

interaction probabilities with other organisms either subtly or radically ( 16). 

An ecosystem model with evolved symbioses 

Our abstract model of an ecosystem contains 2N species, each of which contains P 

individuals. The fitness of each individual in each species will depend on the other species 

present in its local environmental context. A separation of timescales is crucial in this 

model ( 15): On the (fast) ecological dynamics timescale species densities within an 

environmental context change and quickly reach equilibrium, but on this timescale genetic 

changes are assumed to be negligible. At a much slower genetic evolution timescale, 

genetic changes that alter symbiotic relationships are significant. The genotype of an 

individual specifies partnerships with the other 2N-1 species that can partially (or 

completely) determine the combination of species it appears with in the environmental 

context. We assume that the initial composition of the local environment contains a 

random combination of species, but for the scenarios we investigate the ecological 

dynamics have only stable attractors, so the composition of the ecology quickly 

equilibrates to a subset of species that are stable. Although the frequency of a species may 

go to zero in a particular ecological context, in other contexts it will persist (i.e. no species 

are lost). Different individuals are evaluated in the environmental context for some time, 

and at the end of each period we turn attention to a new randomly initialised ecological 

context. Ours is therefore not an explicitly spatial model since we have no need to model 

different environmental contexts simultaneously. 

We choose a very simple representation of the local environmental context – a binary 

vector representing which species are present in non-zero frequency. We suppose that each 

position in the vector is a ‘niche’ that may be occupied by one of two possible species that 

are mutually exclusive, such that some species cannot coexist in the same ecological 

context. For example, in a forest where deciduous and coniferous trees are competing, 

patches of the forest may, in simplistic terms, contain either one or the other but not both 

simultaneously, and simultaneously a patch may contain one species of ant or another but 

not both, and moreover, the type of tree present may influence which type of ant is fittest., 

and vice versa. An N-bit vector thus indicates which N species, of the possible 2N, are 

present in the environmental context. A species, ‘------0---’, indicates which type it is (e.g. 

‘0’) and which environmental niche in the environmental context it occupies (e.g. 6
th
). 

This choice of representation has some properties that are required and some that are 

merely convenient. It is necessary for our purposes that not all species are present in all 

environmental contexts – otherwise, genetically specifying a symbiotic partnership would 

be redundant.  It is also necessary that there are many different possibilities for the species 

composition in an environmental context – so the number of species present in any one 

environment should be large and many combinations of species should be allowed. The 

fact that species are arranged in mutually exclusive pairs is a contrivance for convenience: 

having all environmental states contain exactly N species allows us to define the 

environmental state and as N-dimensional space and to define fitness interactions between 

species using an energy function discussed below. And the fact that environmental states 

are defined using a binary ‘present or not’ representation rather than a continuous species 

density model is again a convenience – a continuous model would be interesting to 

investigate in future. 

Each individual in the ecosystem has a fitness that is a function of the other species 

present in the current environmental context. In principle, this requires an environmentally 

sensitive fitness function for each species and the resultant ecological dynamics could be 

arbitrarily complex in general. In the experiments that follow we restrict our attention to 
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ecosystems with simple monotone dynamics and point attractors. Such dynamics can be 

modelled using an ‘energy function’ ( 17, 18) over environmental states, e(E), such that the 

fitness of an individual of species, s, given an environmental context, E, is determined by 

the change in energy, ∆e(E, s) produced by adding s to E. That is, the fitness of an 

individual of species s in context E is, fitness(s, E) = ∆e(E, s) = e(E+s) - e(E), where ‘E+s’ 

is the environmental state E modified by adding species s.  (Dynamical systems theory 

would normally minimise energy, but for familiarity we let positive ∆e correspond to 

positive fitness such that selection tends to increase e). 

Each individual has a genotype that defines which other species it forms groups with 

(see Figure 1). This genotype is simply a binary vector length 2N defining which of N 

possible ‘0’ species it groups with followed by which of N possible ‘1’ species it groups 

with. Binary relationships of this form are somewhat crude perhaps, but although the 

partnerships of any one individual are binary, the evolved associations of the species as a 

whole, as represented by the frequencies of partnerships in the population of individuals 

for that species, is a continuous variable (to the resolution of 1/population-size). We use 

the term ‘association’ to refer to this population-level inter-species average and reserve the 

word ‘partnership’ for the binary relationships specified by the genotype of an individual. 

The meaning of the binary partnership vector for an individual is simply that its fitness, 

already a function of the environmental context, is modified by the inclusion of its 

symbiotic partners into that context. Specifically, the fitness of an individual genotype, g, 

belonging to species, s, given a context, E, is defined as fitness(g, E)= ∆e(E, s+S) = 

e(E+s+S) - e(E), where S is the set of species that g specifies as partners.  

Using the components introduced above, illustrated in Figure 1, our model operates as 

defined in Figure 2. 

A species, s: -------0--  

May contain an individual genotype: <0001100100,0100000010> 
#
 

This example individual specifies partnerships with the following 5 species: 
 ----0-----, -----0----, -------0-- †,  -1--------, --------1- 

So, if this individual is placed into an environmental context, it and these partner 

species will be present: i.e. s+S = -1--00-01-. 

For example, if this individual is placed into E= 1000100000, with e(E)=α. 

It will create E+S+s=1100000010, with e(E+S+s)=β. 

And it will receive a fitness of  ∆e(E, S+s) = e(E+S+s) - e(E) = β-α. 

Figure 1: An individual, its partners and its fitness in an environmental context.  (†For 

implementational convenience, each individual specifies a partnership with itself. #A comma 

indicates separation of 0-partnerships from 1-partnerships.) 

A poly-ESS ecological dynamics 

We define the energy of an environmental state, E, as a sum over B copies of the sub-

function, f, applied to disjoint subsets of species as follows: 
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where B is the number of sub-functions, and k=N/B is the number of species in each sub-

function. For convenience f is defined as a function of G, the number of 1-species in the 

subset of species. f, defines a simple ‘U-shaped’ energy function with local optima at all-

0s and all-1s, but all-1s has higher energy than all-0s. Concatenating B of these U-shaped 

sub-functions creates a poly-attractor system. Five subsystems with two attractors each, as   
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Figure 2: Model details. 1) Initially, each species associates with itself only. 2) Associating with self 

makes implementation of E+S+s identical to E+S. 3) This insertion of a species into the ecological state is 

cumbersome because there are 2N species that fit into N niches. 5) If an individual associates with ‘1’-
species and ‘0’-species that are mutually exclusive (i.e. occupy the same niche) – then either species is 

added to E with equal probability. 6) Individuals specifying deleterious partnerships (negative fitness) have 

probability 0 of reproducing, but it is important that individuals specifying neutral partnerships have non-
zero probability to reproduce. For the following experiments, N=50, P=100, and T=5N was sufficient to 

ensure an environmental context found a local ESS before being reinitialised. Mutation is single bit-flip. 

used in the following experiments, creates a system with 2
5
=32 point attractors (local 

optima in the energy function, corresponding to ESSs with N species each). For N=25, 

B=5, k=10, a local attractor under individual selection is: 

11111111111111111111000000000011111111110000000000. The attractor with the globally-maximal 

e-value is simply the concatenation of the superior solution to each sub-system, i.e. 

11111111111111111111111111111111111111111111111111. However, which of the two-possible local 

‘sub-attractors’ for each sub-system (e.g. …1111111111… or …0000000000…) will be found 

depends (under individual selection) on whether the initial environmental conditions have 

type-0s or type-1s in the majority. The all-type-1 attractor for each sub-system is thus 

found with probability 0.5 from a random initial condition and the probability of finding 

the global-maximal energy attractor is 0.5
B
=1/32. (This poly-attractor system is identical 

to a building-block function used in ( 19) to show sexual recombination permits selection 

on subfunctions if genetic linkage is ‘tight’ – but here we evolve useful linkages.) 

Results and Discussion 

Figure 3 (left) shows that under individual selection (before associations are evolved) 

different attractors are found (categorised by G). The globally-maximal energy attractor is 

Initialise Ecosystem containing 2N species, s1...s2N.  
 For each species, sn, initialise P individuals, gn1...gnP. 
  For each individual, gn, initialise 2N associations: ai=n =1, ai≠n =0.    (notes 1 & 2) 
 

Until (stopping-criterion) evolve species: 
 For i from 1 to N:  Ei=rand({0,1}). //create random context E.  
 t=1. // counter to decide when to reinitialise the context. 
 //Evaluate g in context E. 

  For all, g, from Ecosystem in random order:   
  E’=add(E,g).  (note 2) 
  Fit(g) = e(E’) - e(E). 
 //Update environmental context 
  If (Fit(g) > 0) then {E=E’. t=1.} else t++. 
  If (t>T) {For i from 1 to N:  Ei=rand({0,1}). t=1.} 
 For each species s: s=reproduce(s). 
 

add(E,S) → E’:  // add individual, with partners, to ecosystem state to create E’. 
 For n from 1 to N: 
  If ((an==1) and (an+N==0)) E'n=0. (note 4) 
  If ((an==0) and (an+N==1)) E'n=1. 
  If ((an==1) and (an+N==1)) E'n=rand({0,1}).  (note 5) 
  
 

reproduce(s) → s’: // reproduce all the individuals in a species s 
 For p from 1 to P:  
  Select g1 and g2 from s with uniform probability (note 6).  
  If (Fit(g1)>Fit(g2)) s’p= mutate(g1) else s’p= mutate(g2). 
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not found in any of the 16 samples depicted.  Figure 3 (right) shows that after associations 

have evolved the globally optimal attractor is being reached in every instance of the local 

ecological dynamics, regardless of the random initial conditions of the environmental 

context. Thus the basin of attraction of the globally optimal species configuration now 

absorbs the entire space of possible initial species configurations (Figure 4). 

To examine the evolved partnerships that have enabled these changes in the ecological 

dynamics, we can display an association matrix, Figure 5. Figure 5 (left) clearly shows not 

only that the majority of evolved associations are correct (between species of the same 

type) but also that they are correctly restricted to partnerships between species in the same 

sub-systems not across sub-systems. The evolution of partnerships is therefore successful 

at  identifying  sub-systems  correctly,  and  identifying  correct  (single-type) partnerships  

      0
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Figure 3: ecosystem dynamics: Left) before associations evolve (initial 10,000 time steps), 

Right) after associations evolve (around 2.8·107 time steps). G=1 → globally optimal attractor, 

G=0.2,0.4,0.6,0.8, 0.0 → other local attractors. Vertical lines indicate points at which a new 

random initial ecological condition is created.  
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Figure 4: change in size of basins of attraction for different attractor classes over 

evolutionary time: Shades indicate attractor classes grouped by energy values.  

  

Figure 5 Evolved associations. Pixel (i,j) depicts the strength and correctness (i.e. 1s with 

1s, and 0s with 0s) of the associations between the species i and j (and species i+N and j+N). 

Left) associations in the main experiment reveal the modularity of the fitness dependencies 

defined in the energy function. Right) a control experiment fails to separate modules, see text. 
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within those subsystems. Figure 5, right shows that the ability to evolve these correct 

associations is dependent on the separation of timescales. Specifically, if ecological 

dynamics are not allowed to settle to a local attractor (by setting T=1 in Figure 2), i.e. 

partnerships evolve in arbitrary ecological contexts, then although they find useful 

associations within sub-systems, they find incorrect associations between sub-systems.  

These results show that individual selection for symbiotic relationships is capable of 

creating groups that are adaptively significant. After the relationships have evolved, the 

only attractor of the ecological dynamics is the attractor with the maximal energy. This is 

surprisingly ‘cooperative’ since ecological energy corresponds to collective fitness 

whereas individual selection should just go to the local ESS. The selective pressures that 

cause individuals to form these groups has two possible components: a) When the 

ecological context is not yet at an ESS, an individual that brings with it a partner that 

accelerates approach to the ESS is fitter than one that does not. Thus directional selection 

on two species promotes symbiosis between them (see ( 20) for an analogous argument 

regarding “relational QTLs”). b) When the ecological context is already at an ESS, an 

individual that brings with it a partner that is also part of the ESS has the same fitness as 

one that does not (because the species is already present). But an individual that brings a 

partner that is not part of the ESS will have negative ∆e – the partnership is deleterious 

because it attempts to introduce a species that is selected against in that context. Thus 

stabilising selection on two species also promotes symbiosis between them albeit in a 

rather subtle manner.  

We suggest that the former direct effect is less significant than the latter subtle effect 

given that the ecosystem spends most of its time at ESSs. This implies that the fommon 

form of evolved symbioses is to create associations between species that co-occur most 

often, and suggests that relationship formation in ecosystems will be basically Hebbian 

( 15, 18, 21, 22) – ‘species that fire together wire together’. This has the effect of reinforcing 

the future co-occurrence of species that already co-occur, and enlarges the basin of 

attraction for those species combinations in the same manner as Hebbian learning forms 

an associative memory ( 18, 22). Note that the groups that form do not represent an entire 

N-species ESS but only contain 10 species each (Figure 5) as per the interactions in the 

energy function. These small groups are both sufficient and selectively efficient in the 

sense that they create B independent competitions between the two sub-ESSs in each sub-

function rather than a single competition between all 2
B
 complete ESSs ( 19, 24). These 

small groups form because the co-occurrence of species within each sub-function is more 

reliable than the co-occurrence of species in different sub-functions. In ( 13) we provide a 

model where we assume that relationships form in a manner that reflects species co-

occurrence at ESSs and show that this is sufficient to produce the same effects on 

attractors as those shown here. Using this abstraction we are also able to assess the 

scalability of the effect and show that it can evolve rare, high-fitness complexes that are 

unevolvable via non-associative evolution. This suggests a scalable optimisation method 

for automatic problem decomposition ( 24), creating algorithmic leverage similar to that 

demonstrated by ( 25). 

How does individual selection create higher-level selection? Well, from one point of 

view it doesn’t. If we take into account the combined genetic space of characters, both 

those addressed directly in the energy function and the genetic loci that control 

partnerships, then all that happens in our model is that natural selection finds a local 

attractor in this space. It is only when we pretend not to know about the evolved 

partnerships, and examine the attractors in the energy function alone, that we see group 

selection. However, this separation is biologically meaningful and relates to the separation 

of timescales. That is, the most obvious characteristics of species are those that are under 
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direct selection – the ones whose frequencies are affected by selection on short timescales 

– the ecological population dynamics. But less obvious characteristics are simultaneously 

under indirect selection – characters that affect co-location of species for example. These 

change more slowly, over genetic evolution timescales rather than population dynamic 

timescales ( 15). When both systems are taken into account, individual selection explains 

all the observations (if it did not, we would not be satisfied that an evolutionary 

explanation had been provided). Specifically, partnerships form when group selection is in 

alignment with individual selection (at ESSs), but in multi-ESS games, these same 

groupings can cause selection that acts in opposition to (non-associative) individual 

selection and alter future selective trajectories when individuals are far from that ESS. 

Because the indirectly selected characters only have fitness consequences via the 

directly selected characters their evolution is characterisable by statistics such as co-

occurrence of the directly selected characters. This produces systematic consequences on 

the attractors of directly selected characters – i.e. they enlarge attractors for species 

combinations reliably found at ESSs. This is equivalent to effecting higher-level selection 

on these combinations of species. Thus in our opinion, the two types of language - ‘higher 

levels of selection are created’ and ‘it is all explained by individual selection’ – are 

entirely reconcilable.  
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