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Résumé 

Le neuroblastome (NB) est la tumeur maligne solide extra-crânienne la plus fréquente chez le 

jeune enfant. L’évolution clinique est très hétérogène, et les NBs de haut risque échappent encore 

aux traitements les plus agressifs. Diverses études ont montré que les chimiokines et leurs 

récepteurs, particulièrement l’axe CXCR4/CXCL12, sont impliqués dans la progression tumorale. Dans 

le NB, l’expression de CXCR4 est corrélée à un pronostic défavorable. De récentes études ont 

identifié l’expression d’un autre récepteur, CXCR7, présentant une forte affinité pour le ligand 

CXCL12. Cependant, son implication potentielle dans l’agressivité des NBs reste encore inconnue. 

Notre étude a pour objectif d’analyser le rôle de CXCR7 dans le comportement malin du NB, 

et son influence sur la fonctionnalité de l’axe CXCR4/CXCL12. Les profils d’expression de CXCR7 et 

CXCL12 ont d’abord été évalués sur un large échantillonnage de tissus de NB, incluant des tissus de 

tumeurs primaires et de métastases, provenant de 156 patients. CXCL12 est fortement détecté dans 

les vaisseaux et le stroma des tumeurs. Contrairement à CXCR4, CXCR7 n’est que très faiblement 

exprimé par les tumeurs indifférenciées. Néanmoins, l’expression de CXCR7 augmente dans les 

tumeurs matures, et se trouve spécifiquement associée aux cellules neurales différentiées, telles que 

les cellules ganglionnaires. L’expression de CXCR7 est faiblement détectée dans un nombre réduit de 

lignées de NB, mais peut-être induite suite à des traitements avec des agents de différenciation in 

vitro. 

La surexpression de CXCR7, CXCR4 et une combinaison des deux récepteurs dans les lignées 

IGR-NB8 et SH-SY5Y a permis l’analyse de leur fonction respective. En réponse à leur ligand commun, 

chaque récepteur induit l’activation de la voie ERK 1/2, mais pas celle de la voie Akt. Contrairement à 

CXCR4, l’expression exogène de CXCR7 réduit fortement la prolifération des cellules de NB in vitro, et 

in vivo dans un modèle d’injection sous-cutanée de souris immunodéprimées. CXCR7 altère 

également la migration des cellules induite par l’axe CXCR4/CXCL12. De plus, l’utilisation d’un modèle 

orthotopique murin a démontré que la croissance tumorale induite par CXCR4 peut être fortement 

retardée lorsque les deux récepteurs sont co-exprimés dans les cellules de NB. Aucune induction de 

métastases n’a pu être observée dans ce modèle.  

Cette étude a permis d’identifier un profil d’expression opposé et des rôles distincts pour 

CXCR7 et CXCR4 dans le NB. En effet, contrairement à CXCR4, CXCR7 présente des propriétés non 

tumorigéniques et peut être associé au processus de différenciation du NB. De plus, nos analyses 

suggèrent que CXCR7 peut réguler les mécanismes induits par CXCR4. Ces données ouvrent donc de 

nouvelles perspectives de recherche quant au rôle de l’axe CXCR7/CXCR4/CXCL12 dans la biologie 

des NBs. 
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Summary 

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient 

targeted therapy for high-risk tumours is not yet identified. The chemokine CXCL12, and its receptors 

CXCR4 and CXCR7 have been involved in tumour progression and dissemination in various cancer 

models. In the context of NB, CXCR4 expression is associated to undifferentiated tumours and poor 

prognosis, while the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been 

elucidated. 

In this report, CXCR7 and CXCL12 expression were evaluated using a tissue micro-array (TMA) 

including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB 

vascular and stromal structures. In opposite to the CXCR4 expression pattern, the neural-associated 

CXCR7 expression was extremely low in undifferentiated tumours, while its expression increased in 

maturated tissues and was specifically associated to the differentiated neural tumour cells. As 

determined by RT-PCR, CXCR7 expression was only found in a minority of NB cell lines. Moreover, its 

expression in two CXCR7-negative NB cell lines was further induce upon treatment with 

differentiation agents in vitro.  

The relative roles of the two CXCL12 receptors was further assessed by overexpressing 

individual CXCR7 or CXCR4 receptors, or a combination of both, in the IGR-NB8 and SH-SY5Y NB cell 

lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors 

induced activation of ERK 1/2 cascade, but not Akt signaling pathway. CXCR7 strongly reduced in vitro 

growth, in contrast to CXCR4. Sub-cutaneous implantations of CXCR7-expressing NB cells showed 

that CXCR7 also drastically reduced in vivo growth. Moreover, CXCR7 impaired CXCR4-mediated 

chemotaxis, and altered CXCR4-mediated growth when CXCR4/CXCR7-expressing NB cells were 

engrafted orthotopically in mouse adrenal gland, a CXCL12-producing environment. In such model, 

CXCR7 alone, or in association with CXCR4, did not induce NB cell metastatic dissemination. 

In conclusion, the CXCL12 receptors, CXCR7 and CXCR4, revealed opposite expression 

patterns and distinct functional roles in NB. While CXCR4 favours NB growth and chemotaxis, CXCR7 

elicits anti-tumorigenic properties and may be associated with NB differentiation. Importantly, CXCR7 

may act as a negative modulator of CXCR4 signaling, further opening new research perspectives for 

the role of the global CXCR7/CXCR4/CXCL12 axis in NB. 
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Introduction 

Oncogenesis 

Oncogenesis or carcinogenesis is literally the creation of cancer. From the last decades, 

pivotal advances have enriched our understanding of processes by which normal cells are 

transformed into cancer cells. In particular, cancer research have pointed out “cancer to be a 

disease involving dynamic changes in the genome” (1). These modifications involve gene 

mutations, which ultimately reprogram a normal cell to undergo uncontrolled cell division 

and deregulated homeostasis, thus forming a malignant tumour mass. Such mutations may 

result from the action of endogenous chemical products generated during physiological 

processes such as cell death, or exogenous factors including chemicals, radiation, and 

viruses. Moreover, germ-line transmission of already mutated genes also contributes to the 

occurrence of aggressively growing tumour cells, and may be responsible for rare familial 

cancer syndromes (2;3). Various types of human cancers, as well as their associated tumour 

subtypes in specific organs, have been described, revealing a considerable and complex list 

of cancer cell genotypes. Beyond genetic alterations, a multistep approach has been 

proposed to characterize human oncogenesis. This model reflects the acquisition of eight 

essential alterations, the so-called « hallmarks of cancer », that affect normal cell physiology 

(phenotype) and collectively dictate malignant growth of transformed cells (1;4): 

 

- Sustaining proliferative signaling and evading anti-growth signals, 

- Resisting programmed cell death (apoptosis), 

- Enabling replicative immortality, 

- Deregulating cellular energetics (metabolism), 

- Avoiding immune destruction, 

- Inducing angiogenesis, 

- Activating invasion, 

- Inducing metastasis 

 

To date, cancer research has been focusing on either hallmark, with the aim to elucidate 

new anti-cancer drugs able to prevent cancer formation, or to cure those that already 

developed. 
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Tumour microenvironment 

Besides the diversity of cancer cell genotypes and phenotypes, the complexity of 

carcinogenesis lies as well in the fact that a tumour is not just a mass of individual infinitely 

growing cancer cells, but it is also strikingly linked to its specific surrounding tissues (4). 

Indeed, tumour environment has recently gained considerable interest, as it has been 

observed that the tumour and its microenvironment form a functional entity, which 

continuously evolves as the tumour progresses (5;6). Tumour cells are embedded in a 

microenvironment which is composed of stromal cells, such as fibroblasts, endothelial cells, 

infiltrating immune cells, and of non-cellular compartments, including secreted soluble 

factors and the solid-state structural extracellular matrix (ECM) (7). It has been proposed 

that tumour cells receive signals from the microenvironment and bilaterally communicate 

with host stromal cells (8). 

During cancer progression, these cellular communications dramatically alter the 

cellular and molecular composition of a particular tumour microenvironment to support 

cancer cell proliferation, migration, and invasion (8;9). In particular, it has been recently 

proposed that anti-tumorigenic functions mediated by immune effector cells, recruited to 

the tumour site, were downregulated in response to tumour-derived signals (7). Therefore, 

the constant and mutual exchange of various mitogenic and trophic factors between each 

cell type within the tumour vicinity, results in a functional interdependence between tumour 

cells and their microenvironment. 

Interestingly, tumour microenvironment may also display both pro- and anti-

tumorigenic properties, thus acting either as a tumour suppressor or enhancer. In particular, 

host-derived soluble cytokines, such as interferon-γ (IFN-γ), has been proposed to reduce 

tumour formation by controlling inflammation and immunity (10). On the other hand, 

tumour cells have been shown to exploit host-derived cytokines, such as tumour necrosis 

factor-α (TNF-α) and interleukin-6 (IL-6), to increase resistance to apoptosis, and to promote 

or enhance angiogenesis and tumour dissemination (11;12). 

The process of tumour dissemination, or metastasis, consists of a long series of 

sequential, interrelated selective steps that only few cells are able to complete and is tightly 

link to the tumour microenvironment. Globally, the multistep process of metastasis starts 

with tumour cell detachment from the primary tumour, followed by invasion of the ECM and 

surrounding vessels (intravasation), and finally with tumour cell escape from vessel 
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(extravasation) to invasion of secondary organs (13;14). Accumulated evidences indicate that 

molecular factors present in the microenvironment of specific secondary organs may 

influence the implantation, growth and neoangiogenesis of various types of cancer cells, 

thus increasing aggressive cancer cell invasion potential (metastasis) in those tissues (15-17). 

For instance, a recent study reported that transient interactions between breast carcinoma 

cells with normal fibroblasts may increase tumour cell malignancy and expand the tumour 

cell metastatic capacity, through a transforming growth factor β (TGF-β)-dependent 

mechanism (18). The acquisition of motility and invasive properties allowing tumour cells to 

invade adjacent tissues is a key process of tumour dissemination. Importantly, soluble 

proteins other than growth factors, such as chemokines, secreted by the tumour itself 

and/or by its environment, have been shown to enhance invasive tumour cell motility 

potential (19). 

 

 

Chemokines and their receptors 

Chemokines are a super family of chemoattracting, small cytokine-like proteins. 

Based on the positions of the two conserved cystein residues in their N- termini, chemokines 

are divided into four families: CC, CXC, CX3C, and C (20-22). The two main families are the 

CXC and CC chemokines, which interact with seven-transmembrane CXC and CC receptors, 

respectively (CXCR and CCR, respectively) (23). To date, at least 50 chemokines and 20 

chemokine receptors have been identified (22). Chemokines bind with the extracellular 

domain of their receptors, which comprises the N-terminus and three extracellular loops 

(24). On the other hand, the chemokine receptor intracellular domain couples with 

heterotrimeric G proteins which, upon binding of chemokines, mediate biological responses 

such as cytoskeletal rearrangement, firm integrin-dependent adhesion to endothelial cells 

and directional migration. Association of chemokine(s) with their corresponding receptor(s) 

is ubiquitous as some chemokines bind to multiple receptors, while some receptors may 

recognize multiple chemokine ligands (Annexe). 

 

Chemokine/chemokine receptor axes: complex players in tumorigenesis 

Chemokines and their receptors have been originally described as essential 

mediators of leukocyte directional migration, particularly during infection and inflammation, 
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and further emerged as crucial players in all stages of tumour development (19;20;25;26). 

Both tumour and stromal cells express a large pattern of chemokines/chemokine receptors 

axes (27;28), suggesting that chemokine receptors, associated to their corresponding 

chemokine ligands, represent major paracrine/autocrine complex players within the tumour 

and its microenvironment. For instance, the expression of chemokines, such as CCL5, CXCL1, 

CXCL3, CXCL8, CXCL10, CXCL12, and their corresponding receptors on tumour cells have 

been associated with both autocrine and paracrine tumour growth stimulation (27). 

The binding of chemokines to their cognate G protein-coupled receptors (GPCRs) 

elicits typical cellular responses essential in tumour biology, such as directional migration, 

through activation of classical mitogen-activated protein kinases (MAPK) or 

phosphatidylinositol 3-kinases (PI3K) signaling cascades (28;29). In particular, recent studies 

have shown that tumour cells express patterns of chemokine receptors that “match” 

chemokines which are specifically expressed in organs to which these cancers commonly 

metastasize, suggesting that chemokine/chemokine receptor axes may play a pivotal role in 

determining the metastatic destination of tumour cells (30-34). For instance, the 

CXCR4/CXCL12 and CCR7/CCL21 axes have been mentioned as essential players in predicting 

breast cancer cell dissemination to lung and lymph node, respectively (35). In melanoma, the 

CXCR4/CXCL12 axis was highly associated with pulmonary and liver metastasis formation, 

whereas the CXCR3/CXCL9, CCR7/CCL21, and CCR10/CCL27 axes were preferentially 

implicated in lymph node and skin metastases, respectively (36;37). 

Beside their implication in promoting tumour growth and dissemination, some 

chemokine/chemokine receptor axes may be directly or indirectly, via complex interaction 

with stromal cells or tumour/host-secreted cytokines, involved in tumour angiogenesis 

(27;38). Angiogenesis is a biological process of new blood vessel formation from pre-existing 

ones, and is fundamental to many physiological as well as pathological processes, such as 

tumorigenesis (39;40). The process of angiogenesis is regulated by many angiogenic growth 

factors and proteins, including the chemokine superfamily. Specific members of the 

chemokine superfamily can act as pro-angiogenic molecules and support the formation of 

new blood vessels. For instance, CXCL8 and CCL2 have been proposed as potent mediators 

of angiogenesis, by enabling survival and proliferation of endothelial cells in tumours (41;42).  

The role played by chemokines and their receptors in tumour physiopathology is 

complex as some chemokines favour tumour growth, dissemination and/or angiogenesis, as 
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mentioned above, while others may elicit anti-tumour properties. For instance, the 

chemokine CXCL11 has been shown to elicit anti-tumorigenic property in vivo, in the context 

of lymphoma, by promoting CXCR3-positive immune T cell infiltration to the tumour site 

(43). In addition, the chemokine CXCL10 was shown to present angiostatic activities, limiting 

tumour progression (44). 

Globally, chemokine-mediated pro-tumorigenic, or inversely anti-tumorigenic effects 

are part of a complex signaling network involving multiple soluble factors, such as cytokines, 

which may be specific to the type of tumour and to its microenvironment (Figure 1). 

 

 

From R.Somasundaram, D. Herlyn/Seminars in Cancer Biology (2009) 

Figure 1: Role of chemokines and chemokine receptors in tumorigenesis 

Chemokines secreted by tumour cells can induce autocrine tumour growth stimulation by binding to 

chemokine receptors on tumour cells, can promote angiogenesis by activating endothelial cells, or 

can attract leukocytes such as dendritic cells (DC), lymphocytes, macrophages (Mϕ) and neutrophils 

from the periphery to the tumour site. Stromal cells within the tumour, including fibroblasts, DC, 

lymphocytes, Mϕ and neutrophils, may be activated by tumour cells through cytokines or 

chemokines secretion. The activated stromal cells may then secrete cytokines (such as TNF-α, TGF-β, 

IL-1, IL-10) and chemokines (such as CCL2, CXCL8, CXCL12) that can directly or indirectly promote 

tumour growth (paracrine tumour growth stimulation), angiogenesis, and metastasis. Thus, tumour 

cell growth stimulation can occur through autocrine and/or paracrine loops. Chemokine receptor-

positive tumour cells can migrate toward stromal derived chemokines produced in distant organs 

(bone marrow, gut, lung, lymph node and skin) resulting in disease progression and metastasis. 



   

20 

 

The CXCR4/CXCL12 axis in tumorigenesis 

CXCL12, also known as stromal cell-derived factor-1 (SDF-1), is a homeostatic 

chemokine that binds to the CXCR4 chemokine receptor. CXCL12 was initially cloned from 

bone marrow-derived stromal cells and further characterized as a pre–B-cell growth-

stimulating factor, as recombinant CXCL12 supported the proliferation of a stromal cell–

dependent B-cell line (45). Initial studies reported a pivotal role for the CXCR4 chemokine 

receptor in the pathogenesis of HIV infection, particularly as a co-receptor for entry of T-

tropic (X4) HIV viruses into CD4-positive T cells (46). In parallel, various reports have shown 

that CXCL12 supports the survival and growth of a variety of normal cell types, such as 

hematopoietic progenitors and germ cells, and, in association with its receptor CXCR4, 

regulate migration of leukocytes and hematopoietic progenitors cells in physiological 

processes (22;47-49). Further investigation clearly showed that the CXCL12/CXCR4 axis plays 

a pivotal role in hematopoiesis, development, and organization of the immune system (50). 

Indeed, deletion of either the cxcl12 or cxcr4 gene is lethal at a relatively late stage of mouse 

embryogenesis. In addition, the cxcr4 and cxcl12-deficient mice exhibited common particular 

phenotypes presenting defects in the cardiovascular, gastrointestinal, central nervous, and 

in the immune systems (46-49). 

 

CXCL12 is a highly conserved chemokine that has 99% homology between mouse and 

human, enabling CXCL12 to act across species barriers what further facilitates human 

CXCL12 chemokine receptor investigation in mouse models.  

 

Once CXCL12 binds to CXCR4, the receptor may form a complex with the G protein 

subunits, leading to activation of multiple downstream targets (such as MAPK, and Akt 

effectors), and resulting in part, in inhibition of cyclic adenosine monophosphate (cAMP) 

production and intracellular calcium mobilization (22) (Figure 2). 
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Figure 2 : Ligand-bound CXCR4 signaling. 

Binding of CXCL12 to CXCR4 activates G protein subunits 

(Gα,Gβ and Gγ), leading to inhibition of cAMP production, 

and activation of calcium (Ca
2+

) flux, MAPK and PI3K/Akt 

signaling cascades. These signaling pathway activations 

mediate tumour proliferation, survival and chemotaxis. 

 

 

In the context of cancer, CXCR4 is the most commonly found chemokine receptor on 

tumour cells. At least 23 different types of cancer, including breast, ovarian, colon and 

prostate cancers and melanoma, express a functional axis (28;31). Besides its critical role in 

tumour cell growth, survival and angiogenesis in multiple cancers, including breast, lung, 

colon and prostate carcinomas (22), this receptor/ligand pair has been particularly shown to 

mediate organ-specific cancer cells homing, particularly in CXCL12-producing organs such as 

liver and bone marrow (22;51;52). Consequently, the CXCR4/CXCL12 axis represents to date 

a major investigation target in tumorigenesis. 

 

The CXCR7 receptor in tumorigenesis 

CXCR4 has long been considered as the unique receptor for CXCL12, and as the only 

mediator of CXCL12-induced biological effects. However, CXCR7 formerly called RDC1, has 

been recently identified as an alternate receptor for CXCL12. This new chemokine receptor 

has been demonstrated to bind with high affinity to CXCL12 and with low affinity to a second 

chemokine, interferon-inducible T cell chemoattractant (I-TAC; also known as CXCL11). 

CXCR7 was shown to be expressed on activated endothelial cells, fetal liver cells, T 

lymphocyte, neuronal cells and on few other cell types (53-56). Moreover, in vivo 

investigation have detailed that Cxcr7-mice died in the first week after birth, and mainly 

presented cardiovascular defects (57-59). 

Despite its phylogenetic relation and ligand binding properties, CXCR7 does not 

mediate typical chemokine responses such as G protein-coupled receptor-mediated calcium 
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mobilization (53;54;60;61). Although coupling of the CXCR7 receptor with G proteins is still 

under debate (61;62), the possibility that the receptor is able to induce signal transduction is 

suggested by reports demonstrating MAPK and Akt pathway activation upon CXCR7-

expressing cell exposure to CXCL12 (63-65). On the other hand, a G protein-independent β-

arrestin-mediated pathway has been shown to play a pivotal role in the biology of GPCRs 

(66). Recently, it has been demonstrated that CXCR7 interacts with β-arrestin in a ligand-

dependent manner (67) (Figure 3). 

 

 

 

 

 

 

Figure 3: Ligand-bound CXCR7 signaling. 

Binding of CXCL12 to CXCR7 activates MAPK, Akt, and 

β-arrestin-dependent pathways. Whether the 

CXCL12/CXCR7 axis signals through G protein-

mediated pathways is still under debate. 

 

Recent studies particularly identified a specific role for CXCR7 as a CXCL12 scavenger. 

Indeed, by sequestrating CXCL12, CXCR7 allowed rapid dynamic changes in the ligand 

distribution and thereby imposed a control of CXCR4/CXCL12-mediated migration (68-71). In 

addition, CXCR7 was shown to mediate similar function regarding its other chemokine ligand 

CXCL11 (72) (Annexe). CXCR7 association with T lymphocyte migration, B cell survival, and 

increased adhesion property of renal progenitor cells into injured renal tissue, was also 

reported (22;60;73), further arising debate whether CXCR7 functions like a classical GPCR or 

a decoy receptor. 

CXCR7 has been reported to be highly expressed in several tumours, and particularly 

in the endothelial cells-associated vasculature (22;33;65), suggesting a role in regulating 

immunity, angiogenesis, and organ-specific metastasis (22). In vivo growth assessment in 

different mouse models revealed a pivotal role for CXCR7 in enhancing growth and 

neovascularisation of prostate and colon cell-derived tumours, and enabling organ-specific 

dissemination of breast and lung cancer cells (33;65;74). Moreover, in a human Burkitt's 

lymphoma cell model, CXCR7 was shown to favour CXCL12-mediated migration of 
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CXCR4/CXCR7-expressing
 
tumour cells into lymph nodes, suggesting that, in association, the 

two CXCL12 receptors may enhance tumour dissemination (75). Combined CXCR4/CXCR7 

expression has been detected in T- and B-cell subsets, endothelial cells, human renal 

progenitor cells, as well as in primary human tumours and tumour cell lines (53;60;75;76). In 

human rhabdomyosarcomas, either CXCR7 or CXCR4 receptor was shown to enhance in vivo 

invasive tumour cell potential, suggesting that targeting the CXCR4/CXCL12 axis alone 

without simultaneous blockage of CXCR7 would be an inefficient strategy for inhibiting 

CXCL12-mediated pro-metastatic tumour cell responses (77). In addition, CXCR7 receptor 

expression was proposed to be related with poor prognosis in breast, lung, and pancreatic 

carcinomas (22).  

 

 

Neuroblastoma: Clinical and biological characterizations 

Among childhood solid tumours, neuroectodermal tumours originate from the 

multipotent neural crest cells, which are generated in the early embryo and give rise to the 

central and peripheral nervous systems. Neuroectodermal tumours include several 

paediatric cancers such as neuroblastomas (NBs), Ewing sarcomas, medulloblastomas, and 

melanomas (78). 

NB accounts for 7 to 10% of all childhood malignancies (79). This neoplasm was 

shown to recapitulate characteristics and features of its originating pluripotent neural crest 

cells, with an extensive heterogeneity, pluripotential differentiation and migratory abilities, 

indicating that NB results from defects in mechanisms that control normal development (80-

83). The median age at diagnosis for NB patients is about 18 months, approximately 40% of 

patients are diagnosed by one year of age, 75% by four years of age and 98% by ten years of 

age (84). The origin and migration pattern of immature neuroblasts during foetal 

development explains the multiple anatomic sites where these tumours occur. Tumours may 

occur in the abdominal cavity (40% adrenal, 25% paraspinal ganglia) or involve other sites 

(15% thoracic, 5% pelvic, 3% cervical tumours, 12% miscellaneous). Location of NB varies 

with age of patients, while infants are more likely to have thoracic and cervical tumours, 

older children more frequently present abdominal NBs (85). 

As shown in Figure 4, NB tumours are divided into four different stages according to 

the International Neuroblastoma Staging System (INSS).   
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Figure 4: International Neuroblastoma Staging System (INSS) 

Stage 1  

• Localized tumour with complete gross excision and/or microscopic residual disease  

• Ipsilateral lymph nodes negative for tumour (nodes attached to the primary tumour may be 

positive for tumour) 

Stage 2A  

• Localized tumour with incomplete gross resection  

• Representative ipsilateral non adherent lymph nodes negative for tumour microscopically 

Stage 2B  

• Localized tumour and/or complete gross excision, with ipsilateral non adherent lymph nodes 

positive for tumour  

• Enlarged contralateral lymph nodes, which are negative for tumour microscopically 

Stage 3  

• Unresectable unilateral tumour infiltrating across the midline and/or regional lymph node 

involvement  

• Alternately, localized unilateral tumour with contralateral regional lymph node involvement 

Stage 4  

• Any primary tumour with dissemination to distant lymph nodes, bone, bone marrow, liver, 

skin, and/or other organs (except as defined for stage 4S) 

Stage 4S  

• Localized primary tumour (as defined for stages 1, 2A, or 2B) with dissemination limited to 

skin, liver, and/or bone marrow (<10% involvement)  

• Limited to infants 

 

Of note, NB classification is in constant evolution as clinical protocols are 

systematically updated. Although the INSS classification has been redefined in 2007 by the 

new International Neuroblastoma Risk Group (INRG) classification composed of four NB 

categories: L1/L2 for localized tumours, M for metastatic disease (stage 4), and MS for stage 

4s, the INSS is still a relevant reference. 
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NB displays a remarkable clinical diversity, ranging from spontaneous regression to fatal 

progression and dissemination (80;85). A favourable outcome, essentially due to 

spontaneous maturations and regressions, is generally associated to low stages and localized 

tumours, and represents 80-90% 3-year event-free survival rate. However, stage 3 (large, 

progressing tumours) and stage 4 (metastatic tumours) NBs have bad prognosis and are 

extremely difficult to treat, due to the rapidly progressive, metastatic and drug-resistant 

disease. Interestingly, the spontaneous regression of NB is often observed in patients under 

one year-old presenting a stage 4s NB. Thus, stage 4s NB is associated with a good prognosis 

even if patients presenting a unique and unexplained pattern of metastatic spread limited to 

bone marrow, liver, and skin. Inversely, patients older than one year with metastatic disease 

to privileged sites such as bone, bone-marrow and liver, have very severe prognosis; with 

long-term survival still less than 40% (86;87).  

 

Histology of NB tumours 

Histologically, neural crest tumours can be classified as NB, ganglioneuroblastoma 

(GGNB), and ganglioneuroma (GGN), depending on the degree of maturation/differentiation 

of the tumour (88). Most of NBs are undifferentiated and small round blue cell 

(“neuroblast”) tumours, characterized by the presence of neuritic processes, neuropil and/or 

Homer-Wright rosettes (neuroblasts surrounded by eosinophilic neuropil). The typical 

tumour shows uniform neuroblasts with scant cytoplasm and hyperchromatic nuclei. GGNBs 

and GGNs show a higher degree of histological differentiation with a predominant stroma 

and more mature cells (88). The most differentiated form consists in the completely benign 

GGN which is typically composed of clusters of mature ganglions cells surrounded by a dense 

stroma of Schwann cells; whereas GGNB is composed of both mature ganglion cells and 

immature neuroblasts, Schwann cells, and has an intermediate malignant potential. 

Because of the presence of different histological components, the pathologist must 

evaluate the tumour thoroughly; the regions with different gross appearance may 

demonstrate a different histology. Neuron specific enolase (NSE), neurofilament protein 

(NF), chromogranin, synaptophysin, glial fibrillary acidic protein (GFAP), and S-100 are 

known neuroblastic, glial and shwannian markers usually used for immunohistochemical 

detection of NB, GGNB, and GGN tissues (89). 
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Shimada and colleagues have developed a classification system based on 

histopathological features, such as the presence or absence of schwannian stroma, the 

degree of differentiation, and the mitosis-karyorrhexis index (MKI) (88). 

 

Clinical prognostic consideration 

Stage of tumour at time of diagnosis, age of patient, bone marrow involvement, and 

clearance have been shown to be the most important clinical prognostic factors (91;92). 

Moreover, NB was found to secrete catecholamine metabolites excreted in urine, thus 

offering a non invasive diagnostic technique. Mass screening (MS) with the use of specific 

catecholamine markers was thus considered for alternative screening for NB in infants. 

Several studies have been performed for the relevance of MS in NB, showing that most 

tumours identified by this method revealed to be tumours with a favourable prognosis. 

However, MS was not shown to reduce either the disease-related mortality or the yearly 

numbers of aggressive NBs, and is still under debate whether such technique may be 

adopted as a relevant clinical prognostic factor (87;93). 

 

Beside clinical consideration, biological features encountered in tumour cells are 

essential prognostic factors being used for NB risk classification and treatment assignment. 

 

Genomic and biologic markers in NB 

Chromosome alterations 

During the last 2 decades, the genetic alterations of NB tumours have been explored 

through a panel of techniques including array-CGH. Many chromosomal abnormalities have 

been identified in NB, and evaluated to determine their value in assigning prognosis (94-97). 

NB can be classified into subtypes that are predictive of clinical behaviour based on these 

patterns of genetic changes. The oncogene MYCN amplification, the first genetic alteration 

described in NB, is observed in 25-30% of cases and is strongly associated to advanced-stage 

disease and poor outcome. Deletion of the short arm of chromosome 1 is one of the most 

common chromosomal abnormalities present in NB, and is associated with a high risk of 

relapse and poor prognosis. The 1p chromosome region likely harbours tumour suppressor 

genes or genes that control neuroblast differentiation. Deletion of 1p is more common in 

near-diploid tumours and is associated with a more advanced stage of the disease. Most of 
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the deletions of 1p are located in the 1p36 area of the chromosome (98-100). The other 

segmental copy number alterations mainly include deletions of chromosome 1p, 3p, 4p, 9p, 

11q, 18q and gain of 1q, 2p and 17q (101-103). Partial 17q gain is frequently observed in 

primary tumours in association with segmental alterations, whatever MYCN status. The 

recurrent segmental alterations are thought to lead to the loss of putative tumour 

suppressor genes and/or to the gain of oncogenes (104;105). The expression profiles of 

these regions, where genetic alterations occur, suggest some candidate genes involved in NB 

progression (106;107). Tumours from the youngest patients with lower stages of the disease 

are often hyperdiploid or near-triploid, and numerical chromosomal alterations without 

structural rearrangements are associated with a favourable outcome (108-110). 

 

Molecular markers 

Abnormal patterns of expression for some molecular markers can also distinguish 

different NB clinical groups. It has been proposed that the three neurotrophin TrkA, TrkB, 

and TrkC receptors (encoded by NTRK1, NTRK2 and NTRK3, respectively) and their ligands 

nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 

(NT3), respectively, are important regulators of survival, growth, and differentiation of 

neural cells (87). Indeed, the TrkA/NGF signaling have been associated to NB differentiation, 

while the TrkB/BDNF autocrine pathway has been proposed to contribute to either 

enhanced angiogenesis and drug resistance (111-114). Interestingly, NTRK1 gene expression 

is correlated with lower stage disease and absence of MYCN amplification (115;116), while 

the expression of NTRK2 gene is strongly associated with MYCN-amplified tumours. 

Other biological markers have been identified and associated with NB poor prognosis 

include the increase of the multidrug resistance 1 transporter (MDR1), the multidrug 

resistance-related protein (MRP), high telomerase activity, as well as the lack of expression 

of glycoprotein CD44 on the tumour cell surface (117-123). 

More recently, studies have implicated various activating anaplastic lymphoma 

kinase (ALK) gene mutations in both familial and sporadic cases of NB. Importantly, somatic 

ALK mutations have been associated with NB aggressive forms. The protein product of ALK is 

a tyrosine kinase, an enzyme that regulates the activity of other proteins through 

phosphorylation. Abnormal activity of the ALK protein has been implicated in other various 

solid tumours, including non-small-cell lung cancers (124-127). 
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Risk assessment 

Using both clinical and biological criteria, low, intermediate, and high-risk groups have been 

defined to adapt patient treatment strategies. In the Children’s Oncology Group (COG), risk-

group assignment is currently based on INSS stage, age of the patient, MYCN copy number, 

tumour cell ploidy, and Shimada tumour histopathology. Low-risk patients have an excellent 

event-free survival with surgical excision of tumour only, while high-risk patients require 

treatment with multi-agent chemotherapy, surgery, and radiotherapy, followed by 

consolidation with high-dose chemotherapy and peripheral blood stem cell rescue. 

 

 

Neuroblastoma cell lines 

The neural crest is a transitory structure of the vertebrate embryo formed by the 

lateral borders of the neural tube. Multi-potent neural crest cells migrate ventrally and 

laterally to contribute to a variety of tissues such as the peripheral nervous system, 

medullary cells of the adrenal gland, calcitonin producing cells of thyroid, pigmented cells, 

and ectomesenchymal derivatives. Growth and differentiation specific factors encountered 

by migratory neural crest cells are thought to influence their development and lineage 

specific differentiation (90).  

 

Most NB cell lines originate from the more aggressive tumours, and present, like their 

tumour of origin, an important biological heterogeneity. A model has been proposed leading 

to a classification of established NB cell lines in the three following morphological types: the 

neuroblastic (N), the flat or substrate adherent (S) and the intermediate (I) types. These 

distinct variants were proposed to recapitulate the sympathetic nervous systems 

development from neural crest cells, by reflecting their derivation from multi-potent neural 

crest precursors. Indeed, N-type cells display properties of embryonic sympathoblasts, 

whereas S-type cells harbour those of schwannian, glial or melanocytic progenitor cells or 

ectomesenchymal derivatives. I-type cells are rather classified as morphologically 

intermediate cells, regarding their potential to differentiate into N- or S-type cells 

(80;128;129). 
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Neuroblastoma and chemokines 

Over the last years, a multiple number of chemokine receptors such as CCR1, CCR5, 

CCR6, CCR9, CXCR1, CXCR2, CXCR4, CXCR5, and CXCR6 were found expressed in NB, 

suggesting that several chemokine/chemokine receptor axes may either contribute to NB 

progression or inversely, elicit anti-tumorigenic properties (130). 

For instance, the chemokine IL-8 (also known as CXCL8) and its receptors (CXCR1 and 

CXCR2) were proposed to displayed angiogenic properties in NBs, while CCL5 (also known as 

RANTES) was shown to induce cell death in CCR5-positive NB cells (131;132). 

As efficient targeted therapies for high-risk and metastatic NB tumours are not yet 

identified, various studies have been focused on the identification of chemokines that either 

promote or inhibit the metastatic spread of NB cells. For instance, studies have reported that 

CXCR5-positive neuroblastic cells in aggressive tumours might easily disseminate to CXCL13-

producing distal sites, such as the bone marrow (133;134). On the other hand, the CXCL13 

ligand was also shown to be specifically produced by schwannian stroma in favourable 

stroma-rich tumours, and was proposed to potentially limit dissemination of CXCR5-

expressing neuroblasts to distal sites of metastasis (134). In parallel, a study demonstrated 

that, although secreted by the bone marrow stroma cells, the CXCL10 chemokine elicited 

anti-malignancy functions, such a growth and migration inhibitory potentials, through its 

interaction with a CXCR3-like receptor in NB cells (135). 

 

 

The CXCR4 and CXCR7 receptors in neuroblastoma 

The CXCR4/CXCL12 axis has been largely shown to participate in tumour 

development and progression. Indeed, reports have proposed a predominant role of the 

CXCR4 receptor and its ligand CXCL12 in mediating invasion of malignant tumour cells to 

sites of metastasis in several cancer models (31).  

In NB, the CXCR4 receptor expression was shown to correlate with poor prognosis, 

thus warranting its implication in the aggressive behaviour of NB tumours (136-138). 

Moreover, Nevo et al. reported that NB cells highly expressing CXCR4, have a different 

profile of metastasis-associated gene products than cells expressing low levels of this 

receptor (139). Indeed, high CXCR4-positive NB cells were shown to differentially express 

genes that are known to enhance tumour progression, such as the oncogene c-kit receptor, 



   

30 

 

previously reported to increase NB cell proliferation in vitro (140), as well as the IL-8 

chemokine and the vascular endothelial growth factor (VEGF), two known angiogenic factors 

(141). Nonetheless, the specific involvement of the CXCR4/CXCL12 axis in cell invasion is still 

under debate. Even though the receptor CXCR4 has been previously demonstrated as an 

essential mediator of aggressive NB cell dissemination to the CXCL12-producing bone 

marrow (138), contradicting reports have been published on the relative contribution of the 

CXCR4/CXCL12 axis in NB invasion (137;142-145). Moreover, CXCR4 was found on either 

metastatic stage 4 and non-metastatic stage 3 NB tumours, further supporting a more 

general and complex role of the receptor in advanced stage disease (137). By using in vivo 

growth and metastasis assessment in an orthotopic NB mouse model (146), we previously 

showed that CXCR4 strongly increased growth of primary tumours and liver metastases, 

without altering the frequency or the localisation of metastases (137). Our data thus pointed 

to a predominant and tumour type-specific growth-promoting influence of CXCR4 in NB. 

High levels of CXCL12 were detected in the adrenal gland (primary tumour site), as in the 

liver (preferred site of metastasis), suggesting an essential and paracrine role for CXCL12 in 

increasing NB tumour growth and survival. These observations strengthened a pivotal role 

for CXCR4 in NB growth and underlined the impact of a CXCL12-producing 

microenvironment on NB tumour cell behaviour. However, the mechanisms by which the 

CXCR4/CXCL12 axis influences NB tumour growth are yet to be identified and may strongly 

depend on complex signals from the microenvironment.  

 

The identification of CXCR7, as a second receptor for CXCL12, has added considerable 

complexity and also new perspectives for the implication of the CXCR4/CXL12 axis in tumour 

biology. The contribution of CXCR7 in tumour progression and dissemination has already 

been proposed in different tumour systems (22).  

In addition, a very recent study reported that CXCR7 was expressed in some NB cell 

lines and that the receptor might enhance NB migration in vitro in presence of CXCL12-

producing mesenchymal cells (147). Moreover, this study reported a higher CXCR7 gene 

expression in NB tumours (from 19 patients) as compared to control neuronal tissues. As a 

relevant player in NB pathogenesis, CXCR7 expression in larger panel of NB tissues and its 

contribution to NB progression should be further elucidated. 
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Importantly, CXCR7 and CXCR4 share a common ligand, CXCL12 which elicits higher 

affinity to the newly discovered CXCR7 receptor than to CXCR4 (53). Moreover, several 

evidences suggest that the two CXCL12 receptors may interact to enhance tumour 

progression. Consequently, investigating the functional impact of the CXCL12/CXCR7 axis on 

CXCR4 functionality in NB might help to gain further insight into NB pathogenesis, and more 

precisely into the particular and atypical role of CXCR4 in NB.  
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Aims of the project 

The CXCR4/CXCL12 axis may have a crucial role in conferring aggressive behaviour to 

many types of cancer, especially in the context of NB. Nonetheless, the specific involvement 

of the CXCR4/CXCL12 axis in NB cell proliferation, survival, and invasion is still under debate. 

The recent identification of CXCR7, as a second CXCL12 high affinity receptor, has shed a 

new light on the role of the CXCR4/CXL12 axis in tumour biology. As several hypotheses on 

CXCR7 function(s) and possible interactions between the two CXCL12 receptors have been 

proposed in different tumour systems, research is now focusing on the roles and 

relationships between these two very closely related receptors. As few investigations on 

CXCR7 have been reported so far in NB, it appears essential to explore, not only the 

individual role of CXCR7, but also to address the global CXCL12/CXCR4/CXCR7 system that 

may confer malignant behaviour to NB. 

 

Therefore, the present project aims at exploring the functional role and signaling 

networks mediated by CXCR7, and its impact on the CXCR4/CXCL12-mediated signaling in 

NB. 

We first investigated the expression of CXCR7 and CXCL12 in a large panel of NB 

tissues by using tissue-microarray technology. Then, individual CXCR7, CXCR4, and a 

combination of the two receptors were ectopically expressed in two NB cell lines, and the 

resulting in vitro growth, survival and migration properties of CXCR7 or/and CXCR4-

expressing NB cells were explored. Proliferative and invasive capacities of these transduced 

cells were further evaluated in vivo, by using either heterotypic or orthotopic NB mouse 

models. 
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Materials and methods 

 

Patients and tissue-microarray (TMA) 

The TMA is composed of tumour samples from 156 patients with neuroblastic tumours 

treated and followed in four clinical centers: Bicêtre hospital and Gustave Roussy Institute 

(Villejuif, France), the American Hospital (Reims, France), CHU Sainte Justine (Montréal, 

Canada), and Shiga University hospital (Otsu, Japan). These patients were diagnosed 

between July 1988 and April 2002. On average, four tissue cylinders with a 0.6 mm diameter 

were obtained and transferred into a recipient paraffin block using a manual tissue arrayer 

(Alphelys, Plaisir, France) at the Institut Gustave Roussy, France. NB samples consisted of 

156 primary tumours, 56 metastases (48 lymph nodes, 6 hepatic and 2 cutaneous 

metastases) and 65 controls (50 adrenal glands and 15 sympathetic ganglia). Clinical 

parameters of the patients and associated tumours are detailed in Table 1 (p46). 

Immunohistochemical study on patient tissues was performed after patients’ informed 

consent and according to the ethical regulations of the institution. All Immunohistochemical 

procedures on TMA tissues were carried out at the Institute of Pathology of Lausanne. 5-μm 

sections of the TMA blocks were deparaffinated in a xylol bath for 10 min, rinsed with xylol, 

rehydrated by transfers in alcohol baths for 5 min with decreasing concentration (100%, 

95%, 70%, and 40%), and finally in H20. Then, sections were washed for 5 min in 3% H2O2 to 

inhibit endogenous peroxydase. For antigen retrieval, slides were incubated in a cooking-pot 

with a Tris-EDTA buffer pH 9.0 for 1 min and 30 sec as soon as the steamer is under pressure. 

They were then incubated with the monoclonal mouse anti-human CXCL12 antibody (clone 

79018, R&D systems, Minneapolis, MN, USA) and the monoclonal mouse anti-human CXCR7 

antibody (clone 9C4, kind gift from Pr. M. Thelen, IRB, Bellinzona, Switzerland) in Dako 

REAL
TM

 antibody diluent (Dako), overnight at 4°C. Incubation with secondary antibody was 

performed using EnVision
TM

 HRP-antibodies (Dako, Glostrup, Denmark) for 30 min, followed 

by treatment with 100 μl DAB (Dako) at 1/50 dilution for 8 min. Slides were then incubated 

in hematoxylin bath for 10 s, and then dehydrated in baths with increasing alcohol 

concentration (70%, 95%, and 100%), and finally in xylol. Washes between each step were 

done in TBS pH 7.6. Slides were mounted using Eukitt Mounting Medium (EMS, Hatfield, PA, 

USA). Immunostaining scores (0-4) were established for each stained tissue by semi-
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quantitative optical analysis by two independent investigators, blinded for clinical data, at 

the Institute of Pathology of Montreal. The percentage of positive cells in each sample was 

scored as follows: 0, all cells negative ; 1+, up to 25% of cells were positive ; 2+, 26% to 50% ; 

3+, 51% to 75% ; 4+, more than 75%.  

 

Cell lines 

Two main cell lines were used in this study: the IGR-NB8 and the SH-SY5Y N-type NB cell lines 

(90). The IGR-NB8 cell line is derived from a xenotransplanted human stage 3 abdominal NB. 

IGR-NB8 xenograft and cell line are para-diploid with 1p36 LOH and MYCN amplification. The 

SH-SY5Y cell line originates from the SK-N-SH cell line which derives from highly involved 

bone marrow of a 4-year-old girl with stage 4 NB and exhibits MYCN single copy. Other well-

characterized cell lines used in this study include the N-type IGR-N91, IMR-32, SK-N-SH, LAN-

1, SJNB-12, GI-M-EN, and CLB-Ber-Lud2; the I-type SK-N-BE(2c), SH-IN and LAN-5; and the S-

type SK-N-AS and SH-EP NB cell lines (90); the SW480 colon cancer cell line (148); the PC-3 

prostate cancer cell line (149); and the breast cancer cell line MCF-7 (53). Unless specified, 

all cell lines were cultured in Dubelcco’s modified Eagle’s medium (D-MEM) (Gibco, Paisley, 

UK), supplemented with 1% penicillin/streptomycin (Gibco) and 10% heat inactivated Foetal 

Calf Serum (FCS) (Sigma-Aldrich, S
t
 Louis, MO, USA), and under standard culture conditions in 

a humidified incubator at 37°C with 5% CO2. 

 

RNA isolation 

1 µg of total RNA was extracted from cell lines using the RNeasy Mini kit (Qiagen, Hilden, 

Germany), and reverse-transcribed using PrimeScript™ RT reagent Kit according to the 

manufacturer’s instructions (TAKARA Bio Inc., Shiga, Japan). The quality of each RNA sample 

was verified by a Nanodrop (Agilent Technologies). 

 

Qualitative RT-PCR and semi-quantitative real-time PCR 

CXCR4 and CXCR7 mRNAs relative expressions were measured in cell lines by qualitative RT-

PCR (standard) and semi-quantitative real-time PCR.  

For standard procedure, 1 μl of cDNA was added to 5 U/μl GoTaq® Hot Start Polymerase 

(Promega, Madison, MI, USA), specific buffer, 0.2 mM dNTPs and 1 μM specific primer pairs. 

The PCR reaction consisted of 2 min at 95°C, followed by 30 cycles of 30 s at 95°C, 30 s at 
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60°C, and 30 s at 72°C, with a final extension step of 5 min at 72°C. For CXCR3 detection, 35 

cycles were processed with a 30 s annealing step at 58°C as described elsewhere (150). To 

visualize the amplification products, RT-PCR reactions were loaded on 2% agarose gels.  

Real-time PCR was performed using the ABI PRISM 7900 HT real-time PCR system (Applied 

Biosystem) with SYBR Green© detection (Qiagen). The expression levels of CXCR4 and CXCR7 

transcripts for each sample were calculated relatively to the level of the housekeeping gene 

HPRTI. The ΔΔCt method was used to evaluate the relative gene expression. PCR program 

corresponded to: 2 min at 50°C for stabilization, 5 min at 95°C for SYBR activation, 40 cycles 

of three repeated steps of amplification (10 s at 95°C, 30 s at 60°C, 15 s at 95°C).  

Human-specific pairs of primers :  

CXCR7 (5’-TGGGCTTTGCCGTTCCCTTC-3’ and 5’-TCTTCCGGCTGCTGTGCTTC-3’),  

CXCR4 (5’-TATCTGTGACCGCTTCTACC-3’ and 5’-GCAGGACAGGATGACAATAC-3’),  

CXCR3 (5’-TGCCAATACAACTTCCCACA-3′ and 5’-CGGAACTTGACCCCTACAAA-3′),  

GAPDH (5'-AGATCATCAGCAATGCCTCC-3' and 5'-GTGGCAGTGATGGCATGGAC-3'),  

HPRT1 (5’-TGACACTGGCAAAACAATGCA-3’ and 5’-GGTCCTTTTCACCAGCAAGCT-3’). 

 

Plasmid constructs and transduction 

The complete coding sequence of CXCR7 (1.089 kb) was amplified by
 
PCR from a pcDNA3 

plasmid containing CXCR7 (kindly provided by Prof. Marcus Thelen, Bellinzona) using 5' and 

3' primers containing
 
XhoI and EcoRI sites as follows: sense: 5’-GCGCCTCGAGATGGATCTGCA-

TCTCTTCGACTACT-3’; antisense: 5’-GCGCGAATTCTCATTTGGTGCTCTGCTCCA-3’. The 

amplified
 
cDNA was subcloned into the pMigr vector (kind gift from F. Louache, Institut 

Gustave Roussy, Villejuif, France) containing IRES-EGFP sequence. The pMigr plasmid 

containing complete coding region of CXCR4 (1.1 kb) was already used and described 

elsewhere (137;146). CXCR7 and CXCR4 expression in vectors were verified by DNA 

sequencing. 

The pMigr-EGFP vectors encoding for EGFP with or without CXCR4 or CXCR7 genes was 

inserted by retroviral-mediated infection into IGR-NB8 and SH-SY5Y cells. For the 

transfection of the two receptor in the IGR-NB8 cell line, the pMigr-CXCR7 vector was 

inserted into NB8 cells, preliminary transduced with the pMigr-CXCR4 vector.  

The day before transduction, 2×10
6 

293T cells were plated on 6-well plates in DMEM, 10% 

FCS. 250 µl of a DNA solution containing 10 µg of pMIGR vector, 20 µg of pHit60 and 2.5 µg 
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of pCG, was mixed with 250 µl CaCl2 0.5 M, and incubated at room temperature (RT) for 10 

min. The CaCl2/DNA mix was added to a HBS buffer pH 7.1 (280 mM NaCl, 10 mM KCl, 1.5 

mM Na2HPO4-2H2O, 12 mM Glucose, 50 mM HEPES), incubated for 15 min at RT, and then 

added onto 293T cells. Cells were incubated at 37°C for 16 h. Viral medium was replaced by 

fresh culture medium containing 10 mM sodium butyrate (Sigma). After 8 h incubation at 

37°C, transfection medium was then replaced by fresh DMEM/10% FCS and cells were 

incubated again for 20 h at 37°C. Viral supernatant was harvested, supplemented with 8 

µg/ml polybrene (Sigma, S
t
 Louis, MO, USA), filtrated through a 0.45 µm filter (Milian SA, 

Geneva, Switzerland) and added to NB cells, preliminary seeded in a 6-well plate the day 

before, at a density of 2×10
5
 cell per well. After 20 h incubation of NB cells at 37°C, viral 

supernatant was replaced by fresh DMEM/10% FCS. This step was repeated every 48 h for at 

least two weeks. Infection efficiency was then evaluated by fluorescence-activated cell 

sorting for green fluorescent protein (GFP) expression using the FACS AriaI
TM

 cell sorter (BD 

Biosciences, San Jose, CA, USA). 

 

Cell surface expression of CXCR7 and CXCR4 by flow cytometry 

For CXCR4 cell surface detection, NB cells were collected, washed in FACS buffer (PBS 

supplemented with 0.5% BSA and 2 mM EDTA), and stained with phycoerythrin(PE)-labelled 

monoclonal mouse anti-human CXCR4 antibody (clone 12G5, BD Pharmingen, San Jose, CA, 

USA) for 20 min at 4°C. Cells were then washed three times in FACS buffer and analyzed by 

FACScan (BD Biosciences, San Jose, CA, USA). For the detection of CXCR7 expression levels, 

cells were collected with 0.02% EDTA in PBS pH 7.2, washed once with PBS, blocked 20 min 

at 4°C with 10% goat serum (Sigma) in PBS, and then incubated 1 h at 4°C with the 

monoclonal mouse anti-human CXCR7 antibody clone 9C4 (kind gift of Dr. Marcus Thelen, 

Bellinzona, Switzerland), diluted in PBS containing 1% goat serum. Then, cells were washed 

with PBS prior to incubation with Alexa Fluor
®
 647-labelled secondary antibody (Invitrogen, 

Carlsbad, CA, USA) for 20 min at 4°C in PBS supplemented with 1% goat serum. Cells were 

washed three times in PBS before analyses. For each condition, a total of 10
4
 events were 

analysed. 
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Immunofluorescence 

10
5
 cells were plated in Lab-Tek

R 
Chamber Slide™ System (Nunc, Ny, USA), 48 h before 

immunofluorescence analysis. Cells were processed as previously described (63). Briefly, 

cells were washed twice with PBS, fixed in 4% PFA (Fluka, Buchs, Switzerland) for 10 min at 

room temperature (RT), and then permeabilized with SAP buffer (0.1% saponin (sigma)-

0.05%NaN3 in PBS) for 15 min at RT. Cells were washed twice with SAP buffer before 20 min 

blocking at RT in SAP buffer supplemented with 10% goat serum (Sigma). Incubation of fixed 

cells with anti-CXCR7 (clone 9C4) or anti human β3-tubulin antibodies (clone 2G10, Sigma-

Aldrich, S
t
 Louis, MO, USA) in SAP buffer supplemented with 1.5% goat serum (dilution: 

1/100 and 1/1000 respectively) was performed. Then, cells were washed three times in SAP 

buffer, and incubated for 30 min at RT with Cy3-conjugated secondary antibody (Jackson 

ImmunoResearch Laboratories, West Grove, PA, USA). DAPI (Sigma) was added for nuclear 

staining, and Slides were mounted using DAKO
®
 Fluorescent mounting medium (Dako, 

Carpinteria, CA, USA). Imaging was performed using a camera DFC345 FX (Leica 

Microsystems Schweiz AG, Switzerland) and analysed with the Leica Application Suite (LAS) 

software. 

 

Differentiation assay 

In vitro neuronal or glial differentiation assays was performed by treating NB cells with All-

Trans Retinoic Acid (RA) or Bromodeoxyuridine (BrdU), respectively, as previously described 

(151-153). RA (Sigma, S
t
 Louis, USA) was dissolved in DMSO to a concentration of 3.5 mg/ml 

and stored in light protected vials at -20°C. Aliquots of stock solution were freshly thawed 

for each experiment and diluted in DMEM, 10% FCS. NB cells were plated 24 h before 

treatment with either 10 μM RA or BrdU. Untreated cells or cells cultured in DMSO were 

used as controls. Treated and untreated cells, as well as supernatants, were collected at day 

3, 7, 14, and 30 for RNA, protein extractions and CXCL12 ELISA assay. Medium containing 

each differentiating agent was renewed every three days. 

 

Apoptosis assay 

Cells were harvested by trypsinization, washed twice with ice-cold PBS, resuspended in 1 ml 

of ice-cold PBS, and fixed with 3 ml of 100% ice-cold ethanol for 1 h at 4°C. For staining with 

propidium iodide (PI) (Sigma), cells were washed twice in ice-cold PBS and incubated for at 
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least 30 min at RT in 0.2 ml of PBS containing 200 μg/ml RNase A and 10 μg/ml PI. The 

stained cells were analyzed using a FACScan flow cytometer (Becton Dickinson). In parallel, 

NB cells were treated for 48h with 1 μg/ml Doxorubicin (Sigma) as positive control. 

 

CXCL12 ELISA 

Supernatant of cultured NB cell was harvested and filtrated through a 0.45 µm filter (Milian 

SA, Geneva, Switzerland), to quantify the release of the ligand CXCL12 by NB cell lines. The 

CXCL12 production was measured as well in NB cell lines, normal mouse adrenal gland 

tissue, and sub-cutaneous xenografts. Cultured NB cells were washed once with PBS pH 7.2 

and suspended in 400 μl lysis buffer (Sigma), supplemented with a protease inhibitor cocktail 

(Complete mini, EDTA-free, Roche, Mannheim, Germany). Snap frozen tumours and mouse 

tissues were cut in small pieces and suspended in the above described lysis buffer. 

Sonication for 30 s followed by centrifugation for 15 min at 20’000 g were performed. Total 

protein amount was quantified using the Bradford method (Biorad Laboratories, Richmond, 

CA, USA). CXCL12 extra- and intra-cellular levels were measured using an ELISA kit (R&D 

Systems, Minnesota, MN, USA) in triplicates according to the manufacturer’s guide. 

 

Immunoblotting 

Cultured cells were harvested by trypsinization, washed once with PBS pH 7.2, and then 

suspended in 30 µl of Lysis buffer (Sigma), supplemented with a protease inhibitor cocktail 

(Complete mini, EDTA-free, Roche, Mannheim, Germany). Cell extracts were then agitated 

for 15 min at 4°C and centrifugated at 20'000 g for 10 min. Total protein amount was 

quantified using the Bradford method (Biorad Laboratories, Richmond, CA, USA). Protein 

extracts (25–50 μg) were loaded on 10% SDS-PAGE and transferred on nitrocellulose 

membranes. Blots were saturated with 5% milk, 0.1 % Tween 20 in TBS and revealed using 

the polyclonal rabbit anti-human enolase-2 (Cell Signaling) at a dilution of 1/1000, and the 

monoclonal mouse anti-human vimentin (clone RV202, GeneTex®, Irvine, CA, USA) at a 

dilution of 1/500. Binding of the first antibody was revealed by incubation with either goat 

anti-mouse IgG (Jackson ImmunoResearch) or goat anti-rabbit IgG (Nordic Immunological 

Laboratories). Bound antibodies were detected using the Lumi-light western blotting 

substrate (Roche) according manufacturer's instructions. 
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ERK 1/2 and Akt phosphorylation 

Following overnight serum starvation, cells were either unstimulated or stimulated with 100 

ng/ml human recombinant CXCL12 or CXCL11 (PeproTech, Rocky Hill, NJ, USA) for indicated 

time, or pre-treated with 1 μM of the specific CXCR4 blocker 4F-benzoyl TN14003 (kind gift 

of N.Fujii, Kyto, Japan) prior to ligand stimulation. Cells were washed once in cold PBS and 

then lysed by the addition of 200 μl 4x concentrated sample buffer (250 mM Tris-HCl at pH 

6.8, 10% SDS, 40% Glycerol, 16% β-mercaptoethanol, 0.04% Bromo-phenol-blue). Lysates 

were sonicated for 15 s in cold water to shear DNA and reduce sample viscosity, and heated 

at 95°C for 5 min to denaturate proteins. Diluted samples were separated on SDS-PAGE gels, 

and then transferred to Immobilon-P membranes (Millipore, Volketswil, Switzerland). 

Membranes were sequentially blocked for 1 h in TBS-Tween 0.01% containing 2% ECL 

Advance
TM

 Blocking Agent (Amersham
TM

 ECL Advance
TM

 Western Blotting Detection Kit, GE 

Healthcare, Buckinghamshire, UK) at RT, incubated overnight at 4°C with the phospho-

p44/42 MAPK (thr202/Tyr204) or Phospho-Akt (Ser 473) antibodies (Cell Signaling, Danvers, 

MA, USA) followed by 30 min incubation with HRP-labelled rabbit secondary antibody (Dako) 

at RT. The ECL system (GE Healthcare, Buckinghamshire, UK) was used for detection. The 

first antibody was removed by incubation of the membrane for 20 min at 50°C in a stripping 

solution containing 2% SDS, 65.5 mM Tris-HCL pH 6.8, and 100 mM β-mercaptoethanol. 

Membranes were then blocked and probed with the antibodies against total p44/42 MAPK 

or total Akt (Cell Signaling, Danvers, MA, USA) for 1 h at RT followed by 30 min incubation 

with the secondary antibody and proteins were revelated using the ECL system. When 

stipulated, cells were treated with 10 ng/ml recombinant human IGF-1 (PrepoTech) for 1 h, 

or 50 ng/ml recombinant human EGF (R&D Systems) for 5 min as positive controls for AKT or 

ERK 1/2 cascade activation, respectively (154;155). 

 

Cell viability 

10
4
 cells in 100 μl DMEM containing 2% or 10% FCS were plated in triplicates in a 96-well 

plate (Corning Inc, Corning, NY, USA). Cell viability after 0, 24, 48, 72 and 96 h was assessed 

using the MTS/PMS cell proliferation kit (Promega) according to the manufacturer’s 

protocol. When specified, cells were treated with 100 ng/ml CXCL12 or CXCL11 (Peprotech) 

in 2% FCS. OD was measured using an ELISA reader (Dynatech MRX Microplate Reader, 
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Dynatech Laboratories, Chantilly, VA, USA). Values were set to an OD 0 as a baseline (time 

point 0 h). 

 

Soft agar assay 

Anchorage-independent colony formation assay, modified from a previously described 

bioassay of human tumour stem cells (156), was performed using double-layer soft agar in 6-

well plates (Corning) with a top layer of 0.175% agar (Difco
TM

 Agar Noble, BD Biosciences, 

MA, USA) and a bottom layer of 0.35% agar. Briefly, 5×10
4
 NB cells were suspended in 

0.175% agar diluted in DMEM/10% FCS, and laid on the top of the supporting agar layer. 100 

µl per well of fresh medium were added weekly. When stipulated, fresh medium 

supplemented with 100 ng/ml CXCL12 was weekly added to the top of the double-layer soft 

agar. Colonies were allowed to form in an incubator at 37°C for at least two weeks. Colony 

cell viability was assessed using the MTS/PMS cell proliferation kit (Promega), and viable 

colonies were counted using light microscopy (Leica Laborluc D). 

 

Chemotaxis assay 

Cell migration was measured using Transwell Costar® cell culture chambers with 

polycarbonate filters of 8 µm porosity (BD Biosciences), as previously described (137). 

Briefly, 2×10
5
 cells suspended in DMEM/2% FCS were seeded in the upper compartment of 

the chambers system. The lower compartment was filled with DMEM/2% FCS supplemented 

or not with 100 ng/ml CXCL12 (PrepoTech). The cells were allowed to settle down for 4 h. 

After washing with PBS, membranes were fixed for 10 min in 4% PFA (Fluka, Buchs, 

Switzerland) in PBS at RT. After three washing steps in PBS, membranes were stained with 

haematoxylin (Polysciences, Warrington, PA, USA) for 3 min at RT. The non-migrated cells 

were carefully scraped from the upper side of the filter, and migrated cells on the lower side 

were counted by light microscopy (Leica Laborluc D). 

 

In vivo studies 

All animal experiments were carried out with Swiss athymic nude mice (Balb/C nu/nu), in 

accordance with established guidelines for animal care of the Swiss veterinary services. For 

surgical and ultrasonic procedures, mice were anaesthetized using isoflurane (Baxter) and 

received paracetamol as analgesia the day before the surgery. 
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For heterotypic assays, groups of three mice were subcutaneously injected in the flank with 

2×10
5
 cells suspended in 200 µl 1:1 mix of DMEM and BD Matrigel

TM
 Basement Membrane 

Matrix (BD Biosciences, Bedford, MA, USA). The grafted animals were then weekly 

monitored with calipers for tumour growth assessment. The tumour volume was calculated 

using the formula: volume = (length×width
2
)/2. Standard H/E and immunostaining 

procedures on s.c tumours were performed at the Mouse Pathology Facility of Epalinges. To 

evaluate cell proliferation and vascular structure of tumours, 4 μm-thick paraffin-embedded 

tissues were incubated with the monoclonal anti-human Ki67 (clone MIB-1, Dako, 

Carpinteria, CA, USA) at a dilution of 1/50, and the polyclonal anti-human CD31 (Thermo 

Fisher Scientific, Waltham, MA, USA) at a dilution of 1/200. Immunostaining was analysed at 

the Institute of Pathology of Lausanne. 

For orthotopic assays, seven animals per cell line were engrafted with NB cells directly in the 

left adrenal gland, as previously described (137;146). Briefly, the implantation was 

performed through a midline incision practiced under microscope. A total of 5×10
5
 cells in 15 

µl DMEM were injected in the adrenal gland using a 22G needle connected to a Hamilton 

syringe. The abdominal wall and skin were closed with a continuous suture of 4/0 Safil® 

Quick
+
 (B Braun). Tumour take and growth were followed by ultrasound imaging every 10 

days at the Lausanne Cardiovascular Assessment Facilities. Macroscopic metastases were 

assessed by gross examination. 

 

Statistical analyses 

TMA analyses were
 
performed using SAS software, version 8.2 (SAS Institute). The Student’s 

t-test was used to assess correlation between the expression of CXCR7 and CXCL12, and 

clinical data. Event-free survival was computed from the time of surgery of the primary 

tumour to the time of first event (local relapse, metastasis, or death) or at last follow-up. 

Overall survival was computed from the time of surgery to the time of death or last follow-

up. Differences in survival between patients with a low (inferior to the median score) versus 

a high (superior to the median score) level of CXCR7 and CXCL12 expression were assessed 

on a log-rank test, and displayed using the Kaplan-Meier procedure. 

For in vitro and in vivo experiments, statistical analyses (Student’s t-test, Mann-Whitney test, 

Two-way ANOVA) were performed using GraphPadPrism 5.0 (GraphPad Software Inc., San 
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Diego, CA, USA). *p<0.05 was considered to represent significance, **p≤0.01 and 

***p≤0.001 were interpreted to be highly significant. 
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Results 

 

Expression of CXCR7, and its ligand CXCL12 in NB tissues 

There is now a body of evidences that chemokine receptors, associated to their 

corresponding chemokine ligands, represent major paracrine/autocrine complex players 

within the tumour and its microenvironment (8). Defining the precise pattern of expression 

of chemokine/chemokine receptor in NB appears thus essential to elucidate their functional 

role within the tumour. To that purpose we screened a NB TMA, including a panel of 156 

primary NB tumours, 56 metastatic and 65 control normal tissues, such as normal adrenal 

gland (AG) and normal sympathetic ganglion (SG), for CXCR7 and CXCL12 expression. Clinical 

parameters of the patients and associated tumours are detailed in Table 1.  

 

Expression of the receptor and its ligand were semi-quantitatively assessed as an 

immunostaining score (0-4), representing percentage of positive cells, in three distinct cell 

populations within each tissue sample: neural, endothelial and stromal compartments. 

Neuroblasts and tumour ganglion cells were included in the neural compartment of NBs, 

while adrenal medulla and normal ganglion cells represented the neural part of AG and SG, 

respectively. Fibroblasts in tumours and AG, and Schwann cells in tumours and SG were 

attributed to the stroma. 
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Table 1. TMA : clinical characteristics 

Patient at diagnosis (N = 156) 

Age (mo)  

    Median (range) 26 (0-151) 

    < 12 mo, n (%) 78 (50) 

    ≥ 12 mo, n (%) 78 (50) 

Follow-up (mo)  

    Median (range) 101 (1-243) 

Survival  

    Alive at time of last follow-up, n (%) 117 (75) 

INSS stage  

    1, n (%) 31 (20) 

    2, n (%) 19 (12) 

    3, n (%) 32 (21) 

    4, n (%) 58 (37) 

    4S, n (%) 16 (10) 

N-myc oncogene analysis  

    Amplified, n (%) 19 (14) 

    Non amplified, n (%) 114 (86) 

    Unknown, n (%) 23 (14) 

Children’s Oncology Group Risk Classification  

    Low, n (%) 54 (35) 

    Intermediate, n (%) 44 (28) 

    High, n (%) 58 (37) 

Neuroblastoma type  

    Standard, n (%) 101 (65) 

    Mass screening, n (%) 55 (35) 

Sample type  

    Primary tumour, n  156  

    Metastasis, n 56  

    Control normal tissues, n 65 

          Adrenal Gland, n (%) 50 (77) 

          Sympathetic ganglion, n (%) 15 (23) 

Differentiation Stage  

    NBnd, n (%) 130 (83) 

    UnNB, n (%) 36 (23) 

    GGNB, n (%) 20 (12) 

    GGN, n (%) 6 (3) 

mo : month 

n : number of cases 

INSS : International Neuroblastoma Staging System 

NB : neuroblastoma 

NBnd : not differentiated NB 

UnNB : undifferentiated NB 

GGNB : ganglioneuroblastoma 

GGN : ganglioneuroma 
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CXCR7 is preferentially expressed by mature neural cells in differentiated NB tumours 

As shown in Figure 5A and in Table 2, a low CXCR7 expression (median score of 0.92) 

was globally observed in neural cells in 76% of primary tumours (PTs), while an even lower 

staining was measured in the vascular structure, and in the stroma of 33% and 58% of PTs, 

respectively (median score of 0.15 and 0.48, respectively). Thus, CXCR7 staining, albeit low, 

was generally localized in the neural compartment of NBs. 

 

No significant variations of the neural CXCR7 expression were noted between NB PTs, 

metastases and control tissues (median score of 0.92, 0.93 and 0.78, respectively, Table 2).  

The neural-associated CXCR7 expression was then further evaluated in different NB 

tissues regarding their pattern of differentiation. To that extent, we analysed the receptor 

expression in undifferentiated tumours (UnNBs), in differentiated tumours such as 

ganglioneuroblastomas (GGNBs) and ganglioneuromas (GGNs), and finally in not 

differentiated (NBnd) NBs which include all NB tumours except GGNBs and GGNs. Our data 

first showed that CXCR7 expression was particularly associated to GGNBs and GGNs, as 

compared to UnNBs (Figure 5B). Moreover, CXCR7 staining was almost restricted to the 

more mature neural elements of GGNBs and GGNs, such as tumour ganglion cells, while no 

similar staining was observed in normal ganglion cells in SG tissues. As shown in Figure 5C, 

the neural-associated CXCR7 staining score was significantly enhanced in NBnd tumours 

(median score of 0.81±0.43, p<0.05), in GGNB (median score of 0.93±0.65, p<0.05), and in 

GGN (median score of 1.62±0.64, p<0.01) tissues, as compared to that of UnNB tumours 

(median score of 0.57±0.37). In addition, all GGN tissues expressed CXCR7 as compared to 

other tumours. Thus, CXCR7 is preferentially expressed by the more mature elements in 

differentiated tumours. 
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Figure 5: Expression of CXCR7 in NB tissues by TMA analyses 

(A) Semi-quantitative assessment of CXCR7 expression in the neural, endothelial and stromal cell 

compartments of NB primary tumours. Columns represent the average of the immunostaining score 

of each cell compartment. Percentage (%) of chemokine receptor positive tumours indicates the % of 

positive tissues. (B) Immunohistochemical analysis of CXCR7 in Undifferentiated tumour (UnNB), 

Ganglioneuroblastoma (GGNB), Ganglioneuroma (GGN) and control normal sympathetic ganglion 

(SG) tissues. Black arrows represent CXCR7-positive tumour ganglion cells. (C) CXCR7 expression level 

(median score) in not differentiated tumours (NBnd), UnNBs, differentiated tumour tissues, (D) and 

in tumours of patient according to the age of patient at diagnosis. Student’s t-test: *p<0.05, 

**p<0.01. 
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Table 2. Expression of CXCR7 and CXCL12 in NB primary tumours, metastases and control tissues 

 
Neural cells Endothelial cells Stromal cells 

Primary tumour Metastasis Control Primary tumour Metastasis Control Primary tumour Metastasis Control 

CXCR7           

Positive tissues (%) 76 75 63 33 33 26 58 53 24 

Number of cases 119 42 41 52 19 17 92 30 16 

Median score 0.92 0.93 0.78 0.15 0.18 0.14 0.48 0.45 0.2 

p-value  ns ns  ns ns  ns 0.01 

 

CXCL12  
         

Positive tissues (%) 77 92 70 100 100 100 98 98 93 

Number of cases 121 52 46 156 56 65 153 55 61 

Median score 0.82 1.04 0.59 3.12 3.13 3 1.97 1.93 1.98 

p-value  0.02 0.01  ns 0.01  ns ns 

Control represents normal adrenal gland and sympathetic ganglion tissues 

Median score means average tumour score, established by semiquantitative analysis of the immunostaining 

p-value (Student’s t-test) refers to primary tumour. ns : not significant ; p < 0.05 : significant ; p ≤ 0.01 : very significant 
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We next analysed CXCR7 expression in different NB clinical groups (Table 3). The 

neuroblast-associated CXCR7 expression did not vary between NB stages 1-2 versus 3-4, as 

well as in NB stages 4 versus 4S (p=0.54 and p=0.07, respectively). Thus, CXCR7 expression in 

neural compartment of tumours is independent of NB clinical stages. However, the receptor 

expression significantly increased in tumours from less than 1 year-old patients (p=0.02, 

Figure 5D). Most children of less than 1 year of age present tumours with the potential to 

regress spontaneously, or to mature into benign differentiated tumours such as GGNs. Our 

analyses thus suggest an association of CXCR7 expression with a favourable outcome. MYCN 

oncogene amplification is linked with more aggressive tumours and poor prognosis (85). 

However, when the MYCN status in NB tumours was considered, no correlation with CXCR7 

expression was statistically found (data not shown). Similarly, CXCR7 expression did not 

correlate with overall nor even-free survival of patients (Figure 6). Therefore, even though 

CXCR7 is expressed by mature tumour cells in differentiated GGNB and GGN tissues, our 

TMA analyses did not allow us to assign CXCR7 a statistically significant and favourable 

prognosis value.  
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Table 3. Expression of CXCR7 and CXCL12 in NB clinical groups 

INSS stage 

Neural cells Endothelial cells Stromal cells 

1 2 3 4 4S 1 2 3 4 4S 1 2 3 4 4S 

CXCR7                 

Positive tumours (%) 61 78 87 67 93 41 26 53 43 18 54 52 75 48 50 

Number of cases 19 15 28 39 15 13 5 17 25 3 17 10 24 28 8 

Median score  0.94 1.04 0.98 0.87 0.94 0.14 0.05 0.23 0.21 0.01 0.4 0.39 0.63 0.55 0.29 

p-value 0.54
(+)

 0.07
(-)

 0.208
(+)

 0.004
(-)

 0.001
(§)

 0.157
(+)

 0.0002
(-)

 

 

CXCL12 
               

Positive tumours (%) 77 89 93 84 87 100 100 100 100 100 100 100 100 96 93 

Number of cases 24 17 29 49 14 31 19 32 58 16 31 19 32 56 15 

Median score  0.77 0.89 0.84 0.79 0.98 3.09 3.05 3.16 3.16 3.06 1.95 2.45 1.97 1.93 1.91 

p-value 0.83
(+)

 0.25
(-)

 0.14
(+)

 0.42
(-)

 0.25
(+)

 0.99
(-)

 

INSS : International Neuroblastoma Staging System 

Median score means average tumour score, established by semiquantitative analysis of the immunostaining 

p-value (Student’s t-test) : 
(+) 

represents p-value between stages 1-2 and  stages 3-4 ;  
(-)

 represents p-value between stage 4 and stage 4s ;   
(§)

 represents p-value between stage 1 and stage 4 ; p < 0.05 (significant); p ≤ 0.01 and p ≤ 0.001(highly significant) 
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Figure 6: Survival of patients grouped by NB tumour cell expression of CXCR7. 

Graphs represent Kaplan-Meier analyses of overall survival (p=0.9) and event-free survival (p=0.83) 

of patients. All NB tissues were classified regarding their neural-associated pattern of CXCR7 

immunostaining score: CXCR7
inf

 represents NB tumours with a CXCR7 score inferior to the median, 

while CXCR7
sup

 represents NB tumours with a staining score superior to the median. 

 

CXCR7 is not expressed in the microenvironment of NB tumours and metastases 

As mentioned above, CXCR7 expression was almost undetectable in the stromal and 

vascular compartments of NB PTs and metastases (Table 2). Indeed, as all median scores 

were inferior to 0.5 in NB PTs, metastases and in control normal tissues, no relevant CXCR7 

expressions were taken into account (statistical variations in Table 2). Similarly, no relevant 

variations of receptor expression were observed in the different NB clinical groups (Table 3). 

 

CXCL12 is predominantly associated to the vascular and stromal structures of NBs 

In parallel, our TMA analyses revealed that the CXCL12 ligand was strongly expressed 

in endothelial cells in all PTs (median score of 3.12), and highly associated to the stroma 

(median score of 1.97), while weakly expressed in the neural compartment (median score of 

0.82) in NB PTs (Figure 7A, 7B, Table 2). Thus, these data showed that the CXCR7 ligand is 

likely associated to the tumour microenvironment. 

 

In particular, tumour endothelial cells expressed higher levels of CXCL12 when 

compared to normal tissues (p=0.01, Table 2). Although vascular CXCL12 expression was 

found independent of NB clinical stages (Table 3), it increased in tumours from patients over 

one year-old (p=0.02, Figure 7C). 

 

In parallel, even though intense basal CXCL12 levels were observed in the stromal 

compartment of tumours and controls (mean scores of 1.9, Table 2), its expression was 
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further enhanced in the schwannian stroma of GGNBs and GGNs (albeit not statistically 

significant probably due to the low number of analysed GGN tissues in our TMA), as 

compared to stromal elements present in UnNBs (Figure 7D). No particular pattern of 

stroma-associated CXCL12 expression was noted in the different NB clinical stages (Table 3). 

 

Finally, neural-associated ligand expression, albeit low, enhanced in 92% of 

metastatic samples as compared to PTs, as well as in 77% of PTs as compared to controls 

(Table 2). However, it was not correlated with NB clinical (Table 3) nor differentiation stages 

(data not shown). 
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Figure 7: Expression of CXCL12 in NB tissues by TMA analyses 

(A) Semi-quantitative assessment of CXCL12 expression in the neural, endothelial and stromal cell 

compartments of NB tissues. Columns represent the average of the CXCL12 immunostaining score in 

each cell compartment. Percentage (%) of chemokine positive tumours indicates the % of positive 

tissues. (B) Immunohistochemical analysis of CXCL12 in undifferentiated tumour (UnNB), 

Ganglioneuroblastoma (GGNB), Ganglioneuroma (GGN) and control normal sympathetic ganglion 

(SG) tissues. Red arrows represent CXCL12-positive endothelial cells. (C) Ligand expression level 

(median score) in tumours of patient according to the age of patient at diagnosis, and (D) in not 

differentiated tumours (NBnd), UnNBs, and differentiated tumour tissues. Student’s t-test: *p<0.05, 

**p<0.01. 
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Expression of the CXCR7 and CXCR4 receptors in NB cell lines 

To corroborate our TMA analyses, we next assessed CXCR7 expression in a panel of 

well-characterized N-, I- and S-type NB cell lines (90). As illustrated in Figure 8, RT-PCR 

analyses did not reveal any CXCR7 expression in all selected I-type NB cell lines (SK-N-Be(2c), 

LAN-5, SH-IN), while 5/9 N-type cell lines (IGR-N91, LAN-1, IMR-32, CLB-Ber-Lud2, SJN-B12) 

and 1/2 S-type cell line (SH-EP) expressed the receptor. In contrast, CXCR4 expression was 

expressed in almost all selected NB cell lines. 

 

Figure 8: Expression of the CXCL12 receptors in NB cell lines 

Qualitative RT-PCR analyses for CXCR7 and CXCR4 mRNA expression level in a panel of NB cell lines. 

GAPDH was used as gene of reference. The prostate cancer cell line PC-3 and the breast cancer cell 

line MCF-7 were used as positive controls for CXCR7 expression. 

 

As only a minority of NB cell lines expressed CXCR7, we further asked whether 

external stimuli, such as serum deprivation or presence of the ligand CXCL12, could regulate 

the receptor expression (Figure 9). 

 

 

Figure 9: Induction of both CXCR7 and CXCR4 expression in NB cell lines upon exposure to CXCL12 

The IGR- NB8 and SH-SY-5Y NB cell lines were cultured in stressful condition (2% serum) and exposed 

to 100 ng/ml CXCL12, for indicated time points. (A) Qualitative RT-PCR analyses for CXCR7 mRNA 

expression level in the IGR- NB8 and SH-SY-5Y NB cell lines. (B) RT-PCR analyses for CXCR4 mRNA 

expression level in the IGR-NB8 and SH-SY-5Y NB cell lines. GAPDH was used as gene of reference. 
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As shown in Figure 9A, CXCR7 expression was not further induced in the CXCR7-

negative IGR-NB8 and SH-SY-5Y NB cell lines in either stressful culture condition (2% serum) 

or in presence of CXCL12. Similar observation was noted when NB cells were exposed to the 

other CXCR7 ligand, CXCL11 (data not shown). Moreover, no induction of CXCR4 expression 

in the CXCR4-negative IGR-NB8 cell line was observed in 2% serum, and in presence of 

CXCL12 (Figure 9B). 

The two CXCL12 receptors seem to be differentially expressed by NB cell lines. To 

evaluate functional implications of both CXCR7 and CXCR4 receptors, we next quantified and 

compared CXCR7 and CXCR4 surface expressions in selected RT-PCR-positive NB cells by flow 

cytometry (Figure 10).  

 

 

Figure 10: Expression of the CXCL12 receptors in NB cell lines 

(A) CXCR7 cell surface expression was analysed by flow cytometry. Grey dotted line : cells stained 

without the primary Ab. Black line : cells stained with anti-CXCR7 antibody clone 9C4. (B) CXCR4 cell 

surface expression. Grey dotted line: cells stained with PE-conjugated secondary antibody. Black line: 

cells stained with anti-CXCR4 antibody clone 12G5. Percent represent CXCR7 or CXCR4 positive cells. 



   

57 

 

Very low cell surface expression of the CXCR7 receptor was detected in most of the 

selected NB cells, while 25% of IMR-32 cells harboured a moderate CXCR7 cell surface 

expression (Figure 10A). In addition, heterogeneous CXCR4 surface expression was measured 

in NB cell lines, for which rather moderate or intense expression levels were detected 

(Figure 10B), as already described (137;157). 

 

Taken together, our data showed a distinct expression pattern of the two CXCL12 

receptors in NB cell lines. 

 

 

CXCR7 and NB differentiation in vitro 

Our TMA and in vitro observations showed that the CXCR7 receptor was 

preferentially expressed in the more mature elements of tumours, and in a minority of NB 

cell lines. Taken together, these data thus suggest that CXCR7 may be associated to NB cell 

differentiation. 

To further confirm this hypothesis, we performed NB differentiation assay in vitro. 

All-trans retinoic acid (RA) and bromodeoxyuridine (BrdU) have been fully characterized as 

primordial tools to evaluate the in vitro capacity of NB cell lines to differentiate towards the 

neuronal and glial lineages, respectively (151;158-161). As N- and I-type NB cell subtypes 

were shown to progress towards neuronal and glial fates upon either all-trans retinoic acid 

(RA) or Bromodeoxyuridine (BrdU) treatment, respectively (158), the N-type IGR-NB8 and 

the I-type SK-N-Be(2c) NB cell lines were used in this study. 

 

Differentiation of NB cells by treatment with all-trans retinoic acid and bromodeoxyuridine 

The IGR-NB8 and the SK-N-Be(2c) cell lines were exposed to 10 μM of either RA or 

BrdU for 30 days. To detect morphological changes in NB cells, we used an antibody directed 

against β3-tubulin (162). NB cell morphology changes appeared as early as 3 days after both 

RA or BrdU treatment, and persisted during all the differentiation induction experiment (30 

days), as previously observed (158) (Figure 11).  
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Figure 11: Morphological features of NB cells upon RA or BrdU treatment in vitro 

The IGR-NB8 and the SK-N-Be(2c) cell lines were exposed to 10 μM all-trans Retinoic Acid (RA) or 10 

μM 5-bromo-2-deoxyuridine (BrdU). Pictures represent immunofluoresence staining of β3-tubulin 

(red) and DAPI (blue). (A) 3 day-treatment of the IGR-NB8 cell line ; (B) 3 day-(upper panel) and 30 

day-(lower panel) treatment of the SK-N-Be(2c) cell line. 

 

Indeed, RA-treated NB cells elaborated enhanced neuritic processes and proliferated 

by forming interconnected cell clumps (Figures 11A and 11B). During BrdU treatment, NB 

cells presented glial-like morphology, with large flat cytoplasm and enhanced adherence 

capacity to the flask surface, which was fully acquired after 30 days of treatment (Figure 

11B). Morphological changes were not detected in the untreated (DMEM, 10%FCS), nor in 

the DMSO-treated control cell lines. 

 

To further confirm the RA and BrdU-induced differentiation in vitro, we assessed the 

influence of differentiation agents on NB growth and apoptosis (Figure 12). 
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Figure 12: Growth and apoptosis assays upon NB cell differentiation in vitro 

(A,B) Growth of the SK-N-Be(2c) and the IGR-NB8 cell lines was followed upon treatment with 

differentiation agents for 96 h. Columns represent OD mean ± SEM of two independent experiments. 

(C) Apoptosis was measured by detection of the sub-G1 apoptotic cell using the PI staining method. 

Such assay was performed after 7 days of treatment with both 10 µM RA and BrdU. Treatment of NB 

cells with 1 μg/ml doxorubycin (Dox) for 48 h was used as positive control. 

 

As previously described (158), RA enhanced SK-N-Be(2c) cell growth for 72 h, as 

compared to cells exposed to DMSO, before inducing a growth arrest in those cells at 96 h 

(Figure 12A). In parallel, the proliferation of IGR-NB8 cells already slowed down after 72 h of 

RA treatment, as compared to DMSO-treated control cells (Figure 12B). BrdU-treatment 

induced a reduction of both SK-N-Be(2c) and IGR-NB8 cell growth, as compared to non 

treated cells.  

Then, we evaluated the percentage of apoptotic cells after exposure of NB cells to 

either RA or BrdU. Doxorubicin (dox) is a cytotoxic drug known to induce NB cell death in 

vitro. As positive control, cells were thus treated in parallel with 1 μg/ml doxorubicin, which 

is known to induce apoptosis in approximatively 50% of NB cells (118). A slight induction of 
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mortality was noted for the SK-N-Be(2c) cell line when treated with RA, which was also 

reported in a previous study (158), while no effect was observed upon treatment with BrdU, 

as compared to control cells. None of the treatments induced apoptosis of IGR-NB8 cells 

(Figure 12C).  

Taken together, these data showed that both RA and BrdU treatments affected NB 

cell growth, without promoting apoptosis, further confirming the in vitro RA/BrdU-induced 

differentiation capacity of NB cells. 

 

Expression of early neuronal and glial differentiation markers 

Neurone specific enolase (NSE), also known as enolase-2, and vimentin have been 

proposed as early markers of neuronal and glial phenotypes, respectively (159;163). Finally, 

to further characterize the neuronal- and glial-like profile of in vitro differentiated NB cells, 

we evaluated the expression levels of both proteins after 3, 7 and 30 days of RA and BrdU 

treatments (Figure 13).  

 

 

Figure 13: Expression of differentiation marker in NB cell lines after differentiation in vitro 

Expression level of vimentin and enolase-2 were assessed by immunoblotting in the SK-N-Be(2c) and 

in the IGR-NB8 cell lines after 3, 7 and 30 days of treatment with 10 µM RA or BrdU. 

 

As shown in Figure 13 (upper panel), the expression of vimentin in SK-N-Be(2c) cells 

did not change at day 3, but enhanced at day 7 until day 30 of BrdU treatment, when 

compared to not treated cells. Inversely, NSE expression in SK-N-Be(2c) cells decreased from 
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day 7 in presence of BrdU, and was totally abolished after 30 days of treatment. However, 

RA-induced differentiation did not further enhance NSE expression, due to the already high 

endogenous protein expression levels in those cells. 

The IGR-NB8 cell line expresses high levels of both enolase-2 and vimentin (Figure 13, 

lower panel). Then, we could not detect any increase in both protein expressions upon RA or 

BrdU treatment, respectively. Nonetheless, a slight reduced expression of vimentin was 

observed after 7 and 30 days of RA treatment. 

 

Expression of CXCR7 upon neuronal and glial differentiation of NB cells in vitro 

With the aim to evaluate the putative implication/association of the CXCR7 receptor 

in NB differentiation, we evaluated whether CXCR7 expression changed upon neuronal 

and/or glial differentiation of NB cells in vitro. As shown in Figure 14, CXCR7 expression was 

induced in IGR-NB8 cells after 3 days of RA treatment (p<0.01), whereas its expression was 

weakly detectable upon BrdU exposure. Similar RA-induced CXCR7 expression pattern was 

detected in the SK-N-Be(2c) and the SH-SY5Y cell lines (data not shown). These data suggest 

that CXCR7 induction, albeit weak, may occur when NB cells undergo neuronal rather than 

glial differentiation. 

 

Figure 14: Expression level of CXCR7 mRNA upon differentiation of NB8 cells in vitro 

Semi-quantitative real-time PCR analyses of CXCR7 mRNA expression level in the IGR-NB8 cell line 

after 3 days of treatment with 10 µM RA or BrdU. Expression levels of CXCR7 transcripts were 

calculated relatively to the level of the housekeeping gene HPRTI. The breast cancer cell line MCF-7 

was used as positive control for CXCR7 expression. Columns indicate results in triplicates and were 

representative of two independent experiments. Error bars indicate S.D. Student’s t-test: *p<0.05, 

**p<0.01.  
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However, overall induced-receptor expression remained weak, as compared to the 

CXCR7 endogenous expression levels in the MCF-7 positive control cell line. Of note, the 

CXCR7 receptor has been shown to be functional in the MCF-7 cells, particularly in presence 

of its ligand CXCL12 (164). However, it does not mean that comparable levels of CXCR7 

transcripts are required in NB cells to express a functional receptor. Then, to assess the 

putative implication of RA-induced CXCR7 expression, we next measured CXCR7 protein 

expression in differentiated cells. No CXCR7 expression could be detected during the 30 days 

of differentiation induction experiment, neither at the surface membrane as assessed by 

flow cytometry, nor in the intracellular space as measured by immunofluorescence (data not 

shown). 

 

As detected levels of CXCR7 expression were low, we asked whether cell culture 

conditions were adequate to induce receptor expression. Our TMA data showed that CXCL12 

was markedly enhanced in the stroma of differentiated tumours (Figure 7D). Consequently, 

we postulated that a CXCL12-producing environment might favour CXCR7 induction in 

differentiating NB cells. Induction experiment was thus repeated in presence of the ligand. 

However, CXCL12 did not further enhanced CXCR7 expression in the SK-N-Be(2c) cell line 

(Figure 15), nor in the IGR-NB8 cell line (data not shown), after RA treatment. 

 

Figure 15: Expression level of CXCR7 mRNA upon neuronal differentiation of the SK-N-Be(2c) cells 

in vitro 

Real-time PCR analyses of CXCR7 mRNA expression level in the SK-N-Be(2c) cell line after 3 days of 

treatment with 10 µM RA and BrdU, and in presence or in absence of 100 ng/ml CXCL12. Expression 

levels of CXCR7 transcripts were calculated relatively to the level of the housekeeping gene HPRTI. 

The breast cancer cell line MCF-7 was used as positive control for CXCR7 expression. The experiment 

was performed in triplicates. Error bars indicate S.D. Student’s t-test: **p<0.01. 
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Importantly, these results were not biased by an autocrine production of the ligand, 

as no CXCL12 was released by NB cells during in vitro differentiation treatment (Figure 16). 

 

 

Figure 16: CXCL12 release upon differentiation of NB cells in vitro 

The release of CXCL12 was measured by ELISA in the IGR-NB8 and the SK-N-Be(2c) cell lines after 3 

days of treatment with 10 µM RA or BrdU. A gradient of human recombinant CXCL12 and normal 

medium corresponding to DMEM+10% FCS were also measured as positive and negative controls 

respectively. Columns indicate results in triplicates. 

 

Regarding the above results, further investigation will be necessary to determine the 

putative involvement of CXCR7 in cell maturation and whether it might represent a neural 

and/or a differentiation marker for NB. 

 

 

Overexpression of the two CXCL12 receptors in NB cell lines 

With the identification of CXCR7, research has focused on interactions between the 

two CXCL12 receptors. As the functional role of CXCR7 in NB is still elusive, we analyzed the 

relative contribution of CXCR7 alone, or together with CXCR4 in mediating NB biological 

functions in vitro. In that purpose, we overexpressed CXCR7, CXCR4 or a combination of the 

two receptors in the CXCR4/CXCR7-negative IGR-NB8 cell line (respectively NB8x7, NB8x4 

and NB8x4x7 cell lines). CXCR7 was also ectopically overexpressed in the SH-SY5Y cell line 

(SHSYx7 cells), which already showed a high CXCR4 endogenous expression (Figure 10B).  

Transfection efficiency was analysed by assessing the cell surface and intra-cellular 

expression of CXCR7 and CXCR4 in transduced cell lines (Figure 17). In parallel, expression 
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levels of CXCR7 and CXCR4 transcripts were measured by semi-quantitative real-time PCR 

(Figure 18).  

 

Figure 17: Expression of the CXCL12 receptors in NB transduced cell lines 

(A) Both NB8pMigr and SHSYpMigr cell lines represented control cells transduced with the pMigr 

empty vector. Percent of CXCR7 and CXCR4 positive transduced cells, and the mean fluorescent 

intensity (brackets) for CXCR7 and CXCR4 staining are indicated. Dark and grey lines : cells stained 

without anti-CXCR7 and anti-CXCR4 Abs, respectively; Green and blue lines: cells stained with anti-

CXCR7 and anti-CXCR4 Abs, respectively. (B) Immunofluorescence for CXCR7 expression in the 

permeabilized NB8 and SHSY transduced cell lines. Control staining represents incubation of cells 

without the primary antibody.  
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Figure 18: Semi-quantitative real-time PCR analyses for CXCR7 and CXCR4 expression 

(A, B) Semi-quantitative real-time PCR analyses for CXCR7 and CXCR4 mRNA expression level, 

respectively, in the NB8pMigr, CXCR4-expressing NB8x4, CXCR7-expressing NB8x7, and 

CXCR7/CXCR4-expressing NB8x4x7 cell lines. Expression levels of CXCR7 and CXCR4 transcripts were 

calculated relatively to the level of the housekeeping gene HPRTI. Experiment was performed in 

triplicates. Error bars indicate SEM. 

 

CXCR7 was highly expressed at the cell surface of the NB8x7 and the NB8x4x7 cell 

lines (Figure 17A). Similarly, CXCR4 surface expression was also strongly detected in the 

NB8x4 and the NB8x4x7 cell lines. In addition, neither CXCR7 nor CXCR4 expression was 

induced in the CXCR4-expressing NB8x4 or in the CXCR7-expressing cell lines, respectively, 

showing the specificity of receptor transfection (Figure 18).  

Interestingly, surface expression of CXCR7 was slightly higher in the NB8x4x7 (mean 

fluorescent intensity of 60) than in the SHSYx7 cell lines (mean fluorescent intensity of 44), 

whereas that of CXCR4 was similar in both cell lines (Figure 17A).  

Moreover, a reduced CXCR7 surface expression level was detected in the double 

receptor-positive NB8x4x7 cells (mean fluorescent intensity of 60), as compared to NB8x7 

cells (mean fluorescent intensity of 457) (Figure 17A). Intra-cellular CXCR7 staining also 

decreased in the NB8x4x7 group as compared to the NB8x7 group (Figure 17B). These 

observations was further confirmed by real-time PCR analyses (Figure 18A), suggesting that 

the CXCR7 receptor expression might be modulated by a translational control, or affected by 

transfection process. 

In contrast, CXCR4 surface expression was slightly enhanced in the NB8x4x7 cells 

(mean fluorescent intensity of 47), as compared to NB8x4 cells (mean fluorescent intensity 

of 33) (Figure 17A). An increase of CXCR4 mRNA expression was also found by real-time PCR 

in the NB8x4x7 cells, as compared to NB8x4 cells (Figure 18B). 
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Taken together, these data suggest a mutual CXCR7 and CXCR4 expression regulation 

in the NB8x4x7 cell line. Of note, the CXCR4 surface expression was not altered upon ectopic 

expression of CXCR7 in the CXCR4-positive SHSYx7 cell line (Figure 17A). No alteration of the 

CXCR4 endogenous expression was noted in those cells by semi-quantitative real-time PCR 

analyses (data not shown), suggesting that ectopic CXCR7 expression did not affect CXCR4 

endogenous expression in SHSYx7 cells. 

 

 

The CXCR7/CXCL12/CXCL11 and the CXCR4/CXCL12 axes activate ERK 1/2 cascade in NB 

cell lines 

Extracellular regulated kinases 1 and 2 (ERK 1/2) are known key regulators of 

pathways involved in the control of growth and survival signals. Several studies strongly link 

the CXCR4/CXCL12 axis to enhanced NB growth and survival (165), and activation of the ERK 

1/2 cascade in response to CXCL12 binding to CXCR4 has been previously reported in NB 

(137). Although it has been proposed that CXCR7 (alone) does not mediate typical 

chemokine receptors signals, such as calcium mobilization (61), CXCR7/CXCL12-mediated 

ERK1/2 activation have been detected in different models (63;64).  

 

Therefore, to assess the functionality of (co-)transduced receptors in NB cells, we first 

monitored CXCL12-mediated ERK 1/2 phosphorylation in NB transduced cell lines (Figure 

19). 
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Figure 19: ERK 1/2 signaling in NB cell lines 

Immunobloting of phospho-ERK (pERK) and total ERK (T-ERK) in transduced cells, treated with 100 

ng/ml CXCL12, in presence or in absence of the CXCR4 blocker TN14003. 

 

As shown in Figure 19, ERK 1/2 cascade was highly activated in all transduced cells 

after CXCL12 stimulation. Thus, CXCR7, as CXCR4, was able to activate downstream 

pathways in response to the CXCL12 ligand. Interestingly, a constant ERK 1/2 activation was 

maintained until 30 min after CXCL12 stimulation in the NB8x4 cells, whereas a peak of 

intensity from 5 to 10 min followed by a signal decrease was observed in the NB8x7 and 

NB8x4x7 cell lines. These data suggest that CXCR7 and CXCR4 may mediate different CXCL12-

induced downstream pathways, and that CXCR7 may affect CXCR4/CXCL12-mediated 

signaling in NB8x4x7 cells.  

In addition, ERK 1/2 activation was lost in CXCR4-expressing NB8x4 cells upon 

addition of the specific CXCR4 inhibitor (TN14003), confirming that this activation was 

specific to the CXCR4/CXCL12 axis in those cells. However, CXCL12-mediated ERK1/2 
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activation in NB8x4x7 cells was not completely inhibited by TN14003 treatment, suggesting 

that ERK1/2 activation is partially mediated through CXCR7. 

In the SHSYx7 cell line, CXCR7 alone was not able to mediate ERK 1/2 activation, as no 

signal was detected after addition of the TN14003 inhibitor. However, the receptor slightly 

weakened the intensity of the CXCR4/CXCL12-mediated ERK 1/2 activation in those cells, as 

compared to that observed in the SHSYpMigr control cell line.  

 

These data suggest that CXCR7, upon exposure to CXCL12, may not activate ERK 1/2 

by its own in SHSYx7 cells in contrast to NB8x4x7 cells, and that the receptor differently 

affect the in vitro CXCR4/CXCL12-mediated ERK 1/2 activation in these two double receptor-

positive NB cell lines. 

 

The CXCR7 receptor is also known to bind to another chemokine ligand, CXCL11. 

Thus, we next addressed the functionality of the receptor by evaluating ERK 1/2 activation in 

CXCR7-expressing NB transduced cells in presence of CXCL11. As shown in Figure 20, CXCR7 

was able to activate ERK 1/2 cascade in the NB8x7 and NB8x4x7 cell lines upon CXCL11 

engagement, but not in the CXCR7-expressing SHSYx7 cells. These observations showed that 

the two CXCR7/CXCR4-expressing SHSYx7 and NB8x4x7 cell lines might differently respond 

to CXCL11, as observed above after stimulation of these cells with CXCL12.  

Interestingly, the CXCL11-induced signaling by CXCR7 was sustained after 30 min of 

CXCL11 exposure in the NB8x7 cell line, while the signal weakened after 10 min in NB8x4x7 

cells. These data suggested that CXCR4 might interfere with CXCR7 response to CXCL11. 

 

 

Figure 20: CXCL11 mediated ERK 1/2 activation in NB cell lines 

Immunobloting of phospho-ERK (pERK) and total ERK (T-ERK) in transduced cells treated with 100 

ng/ml CXCL11. Cells were treated with 50 ng/ml EGF for 5 min as positive control for ERK1/2 

activation. 
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Importantly, CXCR7/CXCL11-mediated ERK 1/2 cascade activation was not biased by 

the presence of the other CXCL11 receptor, CXCR3, as no detectable mRNA expression level 

of this receptor was noticed in CXCR7-positive cell lines (Figure 21). 

 

 

Figure 21: Expression of CXCR3 in the CXCR7-positive cell lines 

Qualitative RT-PCR analyses for CXCR3 mRNA expression level in the NB8, and the SHSY transduced 

cell lines. GAPDH was used as gene of reference. 

 

 

Akt activation is neither mediated by CXCR4 nor by CXCR7 in NB cell lines 

Akt is a downstream effector of the phosphoinositide 3-kinase (PI3K)–dependent 

signaling cascade. Activation of Akt mediates diverse cellular functions, including cell 

proliferation, survival, and its signaling network is considered as a key determinant of the 

biological aggressiveness of tumours (166). In various models, binding of CXCL12 to its 

receptors CXCR4 and CXCR7 has been previously reported to activate the Akt pathway 

(22;63-65;165). The PI3K/Akt pathway is thus a potential candidate to transmit 

CXCR7/CXCL12/CXCL11 and CXCR4/CXCL12-mediated signals in NB. Consequently, we next 

measured the activation of Akt by phosphorylation, in NB transduced cell lines upon CXCL12 

or CXCL11 exposure. 

While IGF-1 induced Akt activation in all NB transduced cell lines (Figure 22A), as 

previously described (154), no phospho-Akt was detected upon stimulation of NB cells with 

CXCL12, in contrast to the positive control SW480 cell line (Figure 22B). Therefore, neither 

CXCR4/CXCL12 nor CXCR7/CXCL12 axes were able to signal through the Akt pathway in NB 

cells. 
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Figure 22: Akt pathway activation upon CXCL12 stimulation 

(A) Immunobloting of phospho-Akt (pAKT) and total Akt (T-AKT) in transduced cells stimulated with 

either 100 ng/ml CXCL12 at indicated time points, or 10 ng/ml IGF-1 for 1 h. (B) Left panel: 

CXCR4/CXCL12-mediated Akt activation in the CXCR4-positive SW480 colon cancer cell line. Right 

panel: flow cytometry analyses of the CXCR4 surface expression in the SW480 cell line. Percent 

represents CXCR4 positive SW480 cells. 

 

Similarly, no activation of the Akt pathway was detected in any CXCR7-positive NB 

cells upon CXCL11 stimulation (Figure 23A), in contrast to the positive control PC3 cell line 

(Figure 23B). 
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Figure 23: Akt activation unpon stimulation of NB cells with CXCL11 

(A) Immunobloting of phospho-Akt (pAKT) and total Akt (T-AKT) in transduced cells treated with 

either 100 ng/ml CXCL11 or 10 ng/ml IGF-1. (B) CXCR7/CXCL11-mediated AKT activation in the 

CXCR7-expressing PC-3 prostate cancer cell line (left panel). Immunofluorescence staining for CXCR7 

expression in PC-3 cells (right panel); control staining represents incubation of cells without the 

primary anti-CXCR7 antibody. 

 

 

Impact of CXCR7 on NB growth in a two dimensional (2D) culture system 

As we showed above that the CXCR7/CXCL12 and the CXCR4/CXCL12 axes 

potentiated ERK 1/2 activation, we next addressed the impact of CXCR7, CXCR4 and the 

combination of the two receptors in mediating growth of NB cells in vitro in absence and in 

presence of the chemokine ligand. 

Ectopic expression of CXCR7 slightly enhanced NB8x7 cell proliferation in 2% serum, 

as compared to NB8pMigr control cells (p<0.05, Figure 24A). However, CXCR7 did not affect 

the growth of NB8x7 cells in 10% serum, as compared to NB8pMigr cells. In contrast, CXCR4 

highly increased both NB8x4 and NB8x4x7 cell growth in 10% and 2% serum, as compared to 

control NB8pMigr cells (p<0.001). Interestingly, a slight but significant additive effect (p-

value not shown) of CXCR4 and CXCR7 on NB8x4x7 cell growth was noted in either 10% or 

2% serum (mean OD value at 96h of 0.41 and 0.19, respectively), as compared to NB8x4 cell 
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growth in those culture conditions (mean OD value at 96h of 0.36 and 0.14, respectively). 

Moreover, CXCL12 stimulated growth of CXCR4-expressing NB8x4 and NB8x4x7 cells 

(p<0.001), but had no impact on CXCR4-non expressing NB8x7 cell growth. Interestingly, an 

additive growth promoting effect of both receptors in NB8x4x7 cells was also noted in 

presence of the ligand. Altogether, our data suggest that the CXCR7/CXCL12 axis alone may 

not mediate in vitro NB growth, and that the CXCR7 receptor may further increase the 

CXCR4-mediated growth promoting effect in such 2D culture system. 

 

In parallel, CXCR7 did not influence the CXCR7/CXCR4-expressing SHSYx7 cell growth 

in 10% nor in 2% serum, comparing to the mock transduced control SHSYpMigr cells (Figure 

24B). Presence of the ligand CXCL12 significantly increased the proliferation of CXCR4-

expressing SHSYpMigr cells as compared to stress conditions (p<0.05), but such effect was 

lost in the SHSYx7 cell line (p<0.05). In contrast to the growth-promoting effect observed in 

NB8x4x7 cells, these data reveal the existence of a competition between the CXCL12 

receptors, as CXCR4/CXCL12 signaling is impaired when the two receptors are co-expressed 

in SHSYx7 cells. 
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Figure 24: Impact of ectopic CXCR7 expression on NB growth in vitro 

In vitro growth of (A) NB8 and (B) SH-SY transduced cell lines were measured by PMS/MTS cell 

proliferation kit in normal (10% FCS), or stress (2% FCS) culture conditions, and in presence of 100 

ng/ml CXCL12 (in 2% FCS). Dotted lines represent max OD values at 96 h for NB8pMigr control cell 

line growth in 10% (black) and 2% (grey) serum. Graphs represent mean OD values ± SEM of at least 

three independent experiments. Student’s t-test: *p<0.05, ***p<0.001. 

 

As the CXCR7/CXCL11 axis was also shown to activate ERK 1/2 cascade, we also 

evaluated the impact of the other CXCR7 ligand, CXCL11 on CXCR7-expressing NB cell growth 
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using similar in vitro proliferation assay (data not shown). We did not observe any CXCL11 

influence on either NB8x7 or NB8x4x7 cell growth, as compared to NB8pMigr or NB8x7 cell 

growth, respectively, nor on that of SHSYx7 cells, as compared to SHSYpMigr cells, 

suggesting that the CXCR7/CXCL11 axis is not able to mediate in vitro NB growth in 2D 

culture conditions. 

 

 

CXCR7 alters in vitro NB growth in a three dimensional (3D) environment 

Soft agar assay is an essential tool to evaluate the in vitro tumorigenicity of tumour 

cells, based on their ability to form colonies in an anchorage-independent manner. We 

therefore examined whether in vitro clonogenic properties of NB cell were influenced by 

exogenous CXCR7, CXCR4 or a combination of the two receptors in such 3D culture condition 

(Figure 25). 

 

 

Figure 25: Impact of ectopic CXCR7 expression on NB growth in 3D culture system in vitro 

Clonogenic growth of the (A) NB8 and the (B) SHSY transduced cell lines in soft agar assay. Columns 

represent mean values ± SEM of two independent experiments. Student’s t-test: *p<0.05, **p<0.01, 

***p<0.001. 

 

As shown in Figure 25A, CXCR4 significantly enhanced the clonogenic ability of NB8x4 

and NB8x4x7 cell lines (p<0.01 and p<0.05 respectively), in absence of the ligand, when 

compared to the NB8pMigr cell line. Inversely, CXCR7 expression in NB8x7 cells resulted in 

significantly decreased colonies number (p<0.05). In contrast to 2D culture system, CXCR7 

was not able to influence CXCR4-mediated NB8x4x7 growth in such 3D model, as no 

significative effects were noted between the clonogenic abilities of NB8x4 and NB8x4x7 

cells. 
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 Interestingly, CXCR7 significantly decreased the number of colonies derived from the 

SHSYx7 cell line, in absence (p<0.001) and in presence (p<0.01) of CXCL12, as compared to 

the SHSYpMigr cell line (Figure 25B). Addition of the ligand markedly increased the 

clonogenic capacity of the CXCR4-positive SHSYpMigr cell line (p<0.001), without affecting 

that of SHSYx7 cells. These data thus suggest that CXCR7 may also affect the CXCR4/CXCL12-

mediated SHSYx7 growth in in vitro 3D culture. 

 

 

CXCR7 affects CXCR4-mediated NB cell migration in vitro 

Chemotaxis is a major feature of aggressive tumour cells in vitro, and a critical 

indicator of NB cell metastatic dissemination potential in vivo. As the CXCR4/CXCL12 axis has 

been previously shown to mediate chemotaxis of NB cells (137), we next addressed the role 

of CXCR7 on NB cell migration and its impact on CXCR4/CXCL12 axis mediated chemotaxis. 

As illustrated in Figure 26, overexpression of both receptors did not modify the migratory 

capacities of transduced cells in the absence of ligand. The presence of CXCL12 enhanced the 

migration of both CXCR4-expressing NB8x4 (p<0.05, Figure 26A) and SHSYpMigr (p<0.05, 

Figure 26B) cells, while no effect was noted for the CXCR7-expressing NB8x7, NB8x4x7 and 

SHSYx7 cell lines. These results suggest that CXCR7 may not be involved in NB chemotaxis 

but may affect CXCR4/CXCL12-mediated migration. 

 

 

Figure 26: Effect of CXCR7 on cell migration in vitro 

Chemotaxis of transduced (A) NB8 and (B) SHSY cells toward 100 ng/ml CXCL12. Each experiment was 

performed in duplicate. Columns represent mean values ± SEM of two independent experiments. 

Student’s t-test: *p<0.05. 
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In addition, we observed that CXCR7 might not promote NB chemotaxis in presence 

of its other ligand CXCL11 (preliminary data, not shown in this report). 

 

 

CXCR7 impairs in vivo NB growth upon subcutaneous implantation of NB cells 

As the in vivo environment is a major player in tumour biology, we first addressed the 

ability of CXCR7 to regulate and/or impair the CXCR4-mediated NB growth in heterotypic 

conditions in vivo. To that purpose, NB8 transduced cell lines were subcutaneously 

implanted in the flanks of nude mice. Three animals per cell line were injected in both left 

and right flanks (n=6) (Figure 27).  

 

 

Figure 27: Effect of CXCR7 on NB growth in a model of subcutaneous injection in nude mice 

(A) In vivo tumour take (number of sites with tumour/total sites) and growth (mean tumour volume ± 

SEM) after s.c implantation of NB cells in nude mice. Two-way ANOVA: **p<0.01. (B) s.c. tumour 

weight at sacrifice (day 33). Student’s t-test : **p<0.01. 

 

Overall tumour take was reduced in the group of mice injected with NB8x7, as only 

3/6 sites presented a tumour versus 6/6 sites for the other groups. Moreover, CXCR7 ectopic 

expression in NB8 cells was shown to drastically reduce both the growth and the volume of 

NB8x7-derived tumours, as compared with tumours derived from the control cell line 

(p<0.01, Figure 27A). At day 33 after implantation, mice in the NB8pMigr, NB8x4 and 

NB8x4x7–implanted groups had developed tumours with a mean volume of 1605, 835 and 

655 mm
3
, respectively, which required sacrifice of all animals. At sacrifice, the mean volume 

of tumours from the group engrafted with NB8x7 was 120 mm
3
.  
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As shown in Figure 27B, tumour weight was significantly reduced in the group of mice 

engrafted with the NB8x7 cells, as compared to the group implanted with the control 

NB8pMigr cell line (p<0.01). Thus, these data support CXCR7 as a critical actor of NB growth 

regulation in vivo. However, both growth and size of NB8 cell-derived tumours were not 

significantly affected by the presence of CXCR4 alone, nor in association with CXCR7 in such 

conditions. 

 

The tumour histology and microenvironment organization was then evaluated by 

H/E, CD31 and Ki67 staining in paraffin-embedded sections of s.c. tumours (Figure 28).  

 

 

Figure 28: Histology of s.c. tumours in nude mice 

Paraffin-embedded sections of s.c. tumours, derived from the NB8pMigr, NB8x4, NB8x7 and NB8x4x7 

cell lines, were stained with H&E. To evaluate cell proliferation and vascular structure, tumours were 

stained with anti-Ki67 and anti-CD31 antibodies. 

 

Although CXCR7 strongly reduced volume and growth of s.c NB8x7-derived 

xenografts, no particular phenotype (such as induced-differentiation or necrosis) was noted 

in those tumours as compared to those of the other groups. Moreover, the histology of all 

tumours, with undifferentiated neuroblasts (small blue round cells), presented similar 

pattern of vascularisation and proliferation rates. 
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CXCR7 anti-proliferative effect may not require the presence of CXCL12 in a heterotypic 

environment 

 To evaluate a putative functionality of the CXCL12 ligand in CXCR7-mediated effect in 

our heterotypic mouse model, we measured the concentration of CXCL12 in NB transduced 

cell lines, associated s.c xenografts, and in a normal mouse adrenal gland tissue. As 

previously demonstrated (137), high levels of CXCL12 were found in the adrenal gland 

(Figure 29).  

 

 

Figure 29: CXCL12 production in s.c. NB tumours 

The production of CXCL12 was measured by ELISA in normal nude mouse adrenal gland, as well as in 

NB8 transduced cell lines, and derived s.c tumours. Results are expressed in triplicates as pg of 

CXCL12 per mg of extracted protein. Error bars indicate S.D. of triplicates. 

 

However, CXCL12 production in NB cell lines and xenografts was low (mean 

concentration of CXCL12 < 180 pg/mg of protein) and did not vary between either cell lines 

or derived tumours. Thus, these data suggest that the CXCR7-mediated anti-proliferative 

effect, as observed in in vivo heterotypic conditions, is unlikely due to the presence of its 

ligand CXCL12. As CXCL11 production was not assessed in cell lines and s.c. xenografts, we 

cannot exclude a putative role of the second CXCR7 chemokine ligand in NB growth 

regulation, which should be further evaluated. 
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CXCR7 delays CXCR4-mediated in vivo growth in an orthotopic environment 

Orthotopic animal model is a critical and essential tool to investigate the influence of 

tumour microenvironment in chemokine/receptor-induced proliferative and invasive NB 

behaviour (146). Indeed, CXCR4 was previously shown to tremendously increase growth of 

NB cells only by using our CXCL12-producing orthotopic NB mouse model (137). In addition, 

CXCR7 was shown to drastically reduce NB growth in a heterotypic mouse model (Figure 27), 

and to affect CXCR4/CXCL12-mediated migration in NB8x4x7 cells (Figure 26). Therefore, we 

further evaluated the extent to which CXCR7 would affect the in vivo CXCR4-mediated 

growth signaling in a CXCL12-producing orthotopic environment. To that purpose, the 

NB8x4, NB8x7 and NB8x4x7 cell lines were directly implanted in the adrenal gland of nude 

mice (seven animals per group), as previously described (146) (Figure 30).  

 

 

Figure 30: CXCR7 impact on in vivo tumour growth in a NB mouse orthotopic model 

NB8 transduced cell lines were orthotopically implanted in the adrenal gland of nude mice. Tumour 

growth was followed by ultrasound every 10 days. Upper panel: tumour take represented as fraction 

and percentage of tumour-bearing mice at week 3, 5 and 6. Lower panel: kinetics of tumour volume 

for each mouse at week 3 and 5. Bar: mean tumour volume. Mann-Whitney test: *p<0.05. 
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One animal of the NB8x4 group died within 24 h after the procedure, due to 

perioperative complications. All mice were examined by echography at week 3, 5 and 6 for 

tumour growth measurement. At week 3, two out of six animals (33%) in the group 

engrafted with NB8x4 cells developed a tumour at the site of injection, whereas no tumours 

were detected in the group of mice engrafted with NB8x7 and NB8x4x7 cells. However, at 

week 5, 43% and 57% of animals engrafted with NB8x7 and NB8x4x7 cells, respectively, 

presented tumours as compared to the 83% of mice of the NB8x4 group. 

Tumours in each group presented a high heterogeneity in their growth behaviour, 

especially in the group implanted with NB8x4 and NB8x7 cells. Indeed, NB8x4–implanted 

mice had developed tumours with a volume between 77 and 2400 mm
3
, while tumours with 

a volume between 30 and 605 mm
3
 were detected in the group of NB8x7.  

Interestingly, the growth of NB8x4x7 cell-derived tumours was significantly reduced 

as compared to that of the NB8x4 cell-derived tumour (p<0.05), suggesting that CXCR7 might 

alter in vivo CXCR4-mediated growth promoting effect. Due to excessive volume of tumours 

in the NB8x4 group, mice had to be sacrificed at earlier time point (week 5) compared to 

those injected with NB8x7 and NB8x4x7 cell lines (week 6). At week 6, 3/7 mice of the group 

engrafted with NB8x7 presented a tumour with a mean volume of 353 mm
3
, while 6/7 mice 

of the group engrafted with NB8x4x7 harboured a tumour with a mean volume 607 mm
3
. No 

macroscopic metastases were observed after tumour resection in each group. 

 

Thus, in contrast with CXCR4, CXCR7 may decrease the ability of NB cells to seed and 

to proliferate in the adrenal gland. Indeed, CXCR7, in association with CXCR4, delayed the 

proliferative CXCR4-mediated effect in orthotopic conditions. Therefore, present 

observations support a functional implication of the global CXCR7/CXCR4/CXCL12 axis in the 

NB8x4x7 cell line, and suggest a critical role for CXCR7 in regulating the CXCR4-mediated NB 

growth in a CXCL12-producing orthotopic environment. Importantly, CXCR7 co-expression 

with CXCR4 did not further induce NB dissemination. 
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Discussion 

 

Background of the study 

The CXCR4/CXCL12 axis has been largely shown to participate in tumour 

development and progression. Indeed, reports have proposed a predominant role of the 

CXCR4 receptor and its ligand CXCL12 in mediating invasion of malignant tumour cells to 

sites of metastasis in several cancer models (31). In NB, CXCR4 receptor expression was 

shown to correlate with poor prognosis (136;137;157). Nonetheless, the specific 

involvement of the CXCR4/CXCL12 axis in cell proliferation, survival, and invasion is still 

under debate. Even though the CXCR4 receptor has been previously demonstrated as an 

essential mediator of aggressive NB cell dissemination to CXCL12-producing bone marrow 

(138), contradicting reports have been published on the relative contribution of the 

CXCR4/CXCL12 axis in NB growth and survival (137;142-145). 

The identification of CXCR7, as a second receptor for CXCL12, has added considerable 

complexity and also new perspectives for the implication of the CXCR4/CXCL12 axis in 

tumour biology. Although several hypotheses on the role of CXCR7 and possible interactions 

between the two CXCL12 receptors have been proposed in different tumour systems (22), 

the implication of the CXCL12/CXCR7 axis and its impact on CXCR4 functionality in NB is still 

unknown. 

 

 

Distinct expression patterns for the CXCR7 and CXCR4 receptors in NB tumours 

The pattern of CXCR4 expression in many tumour types, including NB, has been 

already shown to be related to advanced stage disease (136;137). In the present study, we 

reported the pattern of CXCR7/CXCL12 expression in NB, by using an array of different 

clinical stage, histological type of tumours and control tissues (Table 1). Our TMA analyses 

revealed a weak CXCR7 expression in NB (Figure 5). Moreover, in contrast to breast, lung and 

hepatocellular carcinomas (33;167), CXCR7 was not expressed in NB vasculature but rather 

preferentially associated to its neural compartment. Furthermore, we observed a strong 

CXCR7 expression in tumour ganglion cells in 77% of GGNB and in all GGN tissues, while 75% 

of UnNBs presented a poor neuroblast-associated CXCR7 staining. Thus, our data reveal that 
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CXCR7 expression is specifically associated to mature neural cells in stroma-rich GGNB and 

GGN tumours. 

The presence of neuroblastic maturation toward ganglion cells and a high proportion 

of Schwannian stroma are recognized as a favourable histological feature and good 

prognosis (152). The CXCR7 receptor expression significantly increased in tumours from less 

than 1 year-old patients, whom are known to present tumours with the potential to regress 

spontaneously, or to mature into benign differentiated tumours, such as GGNs (85). Despite 

these observations, the TMA analyses did not allow to assign CXCR7 a statistically significant 

favourable prognosis value. Indeed, no correlations between MYCN status, overall or event-

free survivals, and CXCR7 expression were noted (Figure 6). The absence of significance may 

be due to the low levels of CXCR7 expression, as well as a limited panel of matured tumour 

tissues included in the TMA. On the other hand, CXCR7 intensity staining associated to 

tumour ganglion cells in differentiated tumours was higher compared to neuroblast-

associated staining in undifferentiated NBs. However, as assessing positive percentage of 

cells is more precise than quantifying associated immunostaining intensity in TMA analyses, 

percent of CXCR7 positive cells rather than CXCR7 staining intensity was evaluated in this 

study. Although this method is more relevant, it might explain as well the lack of significance 

in investigating the putative CXCR7 prognostic value. 

As previous studies have reported that the CXCR4 receptor expression is associated 

to undifferentiated and high stage NB tumours (136;137), our data revealed an inversely 

correlated expression pattern for the CXCR4 and the CXCR7 receptors.  

 

Interestingly, the TMA analyses also revealed a strong CXCL12 expression in 

endothelial and stromal cells in NB tumours (Figure 7). As both CXCR7 and CXCR4 receptors 

are expressed in tumour neural cells, these data suggest a paracrine role of the chemokine 

ligand in NB. Moreover, CXCL12 expression levels in tumour endothelial cells slightly 

increased in patients over one year-old, whom are known to present most aggressive NBs as 

compared to infants (85). Although endothelial-associated CXCL12 expression did not vary in 

the different NB clinical stages (Table 3), our data suggest an implication of the ligand in NB 

aggressive behaviour. In particular, a putative implication of the ligand in NB angiogenesis is 

likely and should be further investigated, as already reported in the context of ovarian and 

colon cancers (168;169). In addition, neural-associated CXCL12 expression, albeit low 
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compared to ligand expression levels in the endothelial and stromal compartments, 

enhanced in metastatic samples as compared to primary NB tumours (PTs), and in PTs as 

compared to control tissues (Table 2). Although neural CXCL12 expression in tumour cells 

was found independent of NB stages, we cannot exclude a putative autocrine function of the 

ligand in NB progression, which should be further evaluated. 

 

Taken together, TMA analyses suggest a complex contribution of the two CXCR7 and 

CXCR4 receptors in NB pathogenesis, which may be tightly modulated by a permanent cross-

talk with their common ligand CXCL12, highly produced by tumour microenvironment. 

 

 

Differential expression of the two CXCL12 receptors in NB cell lines 

To further corroborate our TMA analyses, we next assessed the expression pattern of 

both CXCL12 receptors in a panel of well-characterized N-, I- and S-type NB cell lines (90). RT-

PCR analyses revealed that CXCR7 expression was detected in 6/14 NB cell lines (Figure 8). 

Moreover, CXCR7 cell surface expression was very weak in most NB cell lines (Figure 10). 

These results supported our TMA analyses showing that some of undifferentiated tumours 

(UnNBs) poorly expressed CXCR7. 

In contrast, CXCR4 expression was detected in almost all NB cell lines, and 

heterogeneous CXCR4 surface expression levels were observed in selected RT-PCR-positive 

NB cells, as already detailed elsewhere (157). Altogether, these observations showed a low 

and more discrete CXCR7 expression in NB cell lines, as compared to CXCR4. 

Furthermore, CXCR7 was detected in N-type and S-type NB cell lines, rather than in 

the most undifferentiated I-type cells. Although most NB cell lines originate from the more 

aggressive clones in vitro (especially N-type cell lines), our data suggest an association of 

CXCR7 with neuronal and glial/schwannian lineage specific differentiation in vitro. 

 

 

CXCR7 association with NB differentiation 

Interestingly, a link between CXCR7 expression and cell maturation/differentiation 

has already been reported in immune cells. Indeed, CXCR7 expression was proposed to 

correlate with dendritic cell maturation, and described as a potential maker of 
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differentiating memory B cells (73). In the context of cancer, CXCR7 expression has been 

shown to drastically increase in FCS-induced differentiation of glioma cells in vitro (76). 

Together with the particular CXCR7 expression pattern observed on mature tumour 

cells, our data suggest an association of CXCR7 with NB differentiation. To further evaluate 

the putative implication of the CXCR7 receptor in NB differentiation, we quantified its 

expression upon RA and BrdU-induced differentiation of the IGR-NB8 and SK-N-Be(2c) cell 

lines in vitro. In agreement with a previous report, treated NB cells elicited morphological 

changes, and global reduced proliferation (without enhanced apoptosis) starting from the 

third day after exposure to both RA and BrdU treatments (158) (Figures 11-12). 

Characteristics of differentiating NB cell profile was further confirmed by assessing the 

expression pattern of neurone specific enolase (NSE) and vimentin, two early neuronal and 

glial markers, respectively (159;163). As already noted elsewhere (158), dysregulation of 

both marker expression was observed later than the occurrence of morphological changes, 

which was however fully acquired at day 30 of treatment (Figure 13). Together, these 

observations further confirm the potential of IGR-NB8 and SK-N-Be(2c) cell lines to 

differentiate toward different lineage in vitro. A weak induced CXCR7 expression was 

observed by quantitative real-time PCR analyses in NB cells exposed to RA, but not to BrdU, 

suggesting that CXCR7 is associated with neuronal rather than glial differentiation (Figure 

14). These data thus correlated our TMA analyses showing that tumour ganglion cells, rather 

than schwannian stroma, specifically expressed CXCR7 (Figure 5).  

 

However, CXCR7 could be neither detected at the surface, nor in the intra-cellular 

space of NB cells during all the differentiation induction experiment. In addition, treatment 

with both RA and BrdU did not further enhance CXCR7 expression at the surface of the 

CXCR7-positive IMR32 cell line (data not shown). These observations suggest that the 

receptor expression may be modulated by potential post-translational modifications, or that 

the putative induced protein expression is too low to be detected by the antibody used in 

this study.  

In addition, CXCR7 expression was particularly found in mature neural cells, such as 

ganglion cells, in GGNBs and in GGNs (Figure 5). As we drove immature NB cell line subtypes 

to early neuronal fate, we cannot exclude a later induction of CXCR7 expression during final 

stages of NB differentiation. 
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Our TMA analyses revealed an enhanced CXCL12 expression in the stroma of 

differentiated tumours, as compared to undifferentiated NBs (Figure 7). Consequently, we 

asked whether the presence of the ligand could have an impact on CXCR7 expression during 

in vitro differentiation. Even in presence of CXCL12, no further increased of the receptor 

expression was noted in RA/BrdU-treated NB cells (Figure 15). The potential role of CXCL12 

in NB differentiation in the early steps of NB differentiation may then require further 

investigation. 

 

M.J. Bissell and others have proposed that « three-dimensional (3D) context may 

produce distinct cellular morphology and signaling events, as compared with a rigid 2D 

culture system, which may thus result in important changes on the fate of the culturing 

cells », especially in differentiation processes (170-172). Moreover, it has been proposed 

that a 3D environment may play a pivotal role in regulating gene expression (173). 

Importantly, a recent study reported that the expression of CXCR4 in human mesenchymal 

stromal cells was tightly linked to the cell culture context, as a markedly difference in the 

receptor expression was found between the 3D and monolayer cultures (174). Therefore, 

the lack of induced CXCR7 expression in RA/BrdU-treated NB cells may also results from an 

inappropriate culture environment. Additional experiment in 3D culture conditions, such as 

in soft agar, might be considered to further evaluate the putative association of CXCR7 in NB 

differentiation. 

 

Interestingly, exogenous CXCR7 did not induce differentiation of slow proliferating-

tumours in our heterotypic mouse model, as no ganglion-like cells and no differentiating 

neuroblasts were detected in s.c. tumours derived from CXCR7-overexpressing NB8x7 cells 

(Figure 28). These observations suggest that CXCR7 may not directly induce NB 

differentiation or maturation by its own. However, additional in vivo experiment should be 

performed using NB cell lines expressing endogenous CXCR7 expression levels, to further 

corroborate these observations.  

 

In conclusion, further investigation will be necessary to determine whether the 

CXCR7 receptor (or the CXCR7/CXCL12 axis) is associated to, or sufficient to induce NB cell 
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differentiation/maturation, and whether it might represent a neural and/or differentiation 

marker for NB. 

 

 

Individual role of the CXCR7 receptor in NB 

Our data showed distinct expression pattern for the CXCR7 and the CXCR4 receptors 

in NB tissues and cell lines, suggesting distinct and probably opposed roles for the two 

CXCL12 receptors in NB aggressive behaviour. Thus, we examined in an initial step the 

function of CXCR7 compared to CXCR4 in NB by overexpressing either CXCR7 or CXCR4 

receptor in the CXCR4/CXCR7-negative IGR-NB8 cell line (the NB8x7 and NB8x4 cell lines, 

respectively) (Figures 17-18). 

 

CXCR7 and CXCR4 signaling cascade 

We first assessed the ability of each chemokine receptor to activate ERK 1/2 cascade 

in the NB transduced cell lines (Figures 19-20). We showed that CXCR7 was able to induce 

downstream signaling pathway on its own, as the ERK 1/2 cascade was activated in the 

CXCR7-expressing NB8x7 cell line upon either CXCL12 or CXCL11 stimulation. In NB8x4 cells, 

a CXCR4/CXCL12-mediated ERK 1/2 pathway activation was also highly detected, as 

previously demonstrated (137). 

It has been shown that activation of Akt mediates diverse cellular functions, including 

cell proliferation, survival, and its signaling network is considered as a key determinant of 

the biological aggressiveness of tumours (166). Activation of Akt has been reported in NB 

upon stimulation of NB cells with insulin growth factor 1 (IGF-1) (154). Here, neither the 

CXCR4/CXCL12 nor the CXCR7/CXCL12/CXCL11 axes were able to signal through the Akt 

pathway in NB8x7 and NB8x4 cells, respectively (Figures 22-23). 

Cell signaling is a complex network, which in many systems turns out to be cell type-

dependent. It has been shown that activation of CXCL12–induced Akt and ERK 1/2 cascades 

in HeLa cells were independent and arised from different signaling pathways (175). In 

addition, other results obtained with human glioblastoma and glioma cells showed that ERK 

1/2 activation did not require that of the PI3K/Akt pathway (76;176). Consequently, the lack 

of Akt activation upon CXCL12 or CXCL11 binding to CXCR7 (or CXCR4) in NB may be a 

feature of NB cell lines. 
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Ligand-dependent role for the CXCR7 receptor in NB growth and chemotaxis 

As CXCR7/CXCL12 and CXCR7/CXCL11 axes were able to activate ERK1/2 pathway, we 

examined whether CXCR7 would elicit particular functions in response to its two ligands, 

especially in NB growth and migration processes.  

We showed that the presence of either CXCL12 (Figure 24) or CXCL11 (data not 

shown) did not influence CXCR7-expressing NB8x7 cell proliferation in 2D culture conditions. 

In contrast, CXCL12 highly increased growth of NB8x4 cells, as previously noted (137). Our 

data were further supported by a recent study showing that proliferation of CXCR7-positive 

glioma cells was not affected by CXCL12 (76). Similarly, the CXCR7/CXCL11 axis, albeit 

functional, was not shown to be implicated in rhabdomyosarcoma and glioblastoma cell 

proliferation in vitro, as detailed elsewhere (177). 

 

In addition, we observed that CXCR7 ectopic expression did not favour migration of 

NB cells toward CXCL12, in contrast to CXCR4 (137) (Figure 26). Inversely, a very recent study 

reported that CXCR7 enhanced chemotaxis of CXCR7-expressing NB cells in a conditioned 

medium obtained from CXCL12-producing mesenchymal stromal cells (147). However, it was 

not clear whether additional factors released by stromal cells were required for truly 

activating CXCR7/CXCL12-mediated NB chemotaxis. Our mouse orthotopic model is a 

powerful tool to examine specific NB organ-specific dissemination, upon engraftment of 

malignant NB cells into CXCL12-producing mouse adrenal gland (137;146). Using such model, 

we did not observe any macroscopic metastases upon engraftment of NB8x7 cells. Thus, our 

data suggest that the CXCR7/CXCL12 axis may not promote NB cell migration in vivo, even in 

presence of specific stromal factors. 

In parallel, CXCR7 might not promote NB chemotaxis in presence of its other ligand 

CXCL11 (preliminary data, not shown in this report). Although under current investigation, 

these preliminary data are nonetheless consistent with a recent study proposing that the 

CXCR7/CXCL11 axis may not directly favour chemotaxis in various tumour cell lines (177). 

 

Altogether, our analyses suggest that the CXCR7/CXCL12 and the CXCR7/CXCL11 axes 

do not mediate NB growth in 2D culture, or chemotaxis in vitro. 
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Opposite ligand-independent functions for the CXCR7 and CXCR4 receptors in NB 

Interestingly, our data also showed a functional role of the CXCR7 receptor, 

independently of its ligands CXCL12 and CXCL11. Indeed, as shown by our 2D culture system 

assay, CXCR7 slightly enhanced CXCR7-expressing NB8x7 cell growth in stress condition (2% 

serum), in absence of its ligands (Figure 24). This observation is consistent with previous 

reports showing a growth promoting effect of CXCR7 independently of its ligand in breast 

and lung tumour cell lines (22;53). Surprisingly, CXCR7 alone was shown to significantly 

reduce clonogenicity of NB cells in a 3D culture system (Figure 25). Thus, different effects 

were noted in 2D and in 3D, further highlighting the critical impact of the culture system in 

investigating chemokine receptor function. Supporting in vitro 3D analyses, CXCR7 drastically 

reduced both kinetics and volume of CXCR7-expressing NB8x7 cell-derived tumours, in our 

subcutaneous model of injection in nude mice (Figure 27). Such effect was likely 

independent of CXCL12, as the ligand was only poorly produced by s.c xenograft (Figure 29). 

A ligand-independent proliferative role for CXCR7 has been recently demonstrated in a 

prostate cancer model (178). Although CXCR7 rather reduced NB cell proliferation in our 

model, s.c NB8x7 cell-derived tumours presented an undifferentiated phenotype, with 

proliferation index and vascularisation rate similar to those of NB8pMigr/NB8x4 cell-derived 

xenografts (Figure 28). Thus, we cannot totally exclude the possibility that the NB8x7-

implanted mice would have later developed tumours similar to the other groups, what 

would have suggested a role for CXCR7 in regulating tumour take rather than overall tumour 

growth.  

 

In contrast to CXCR7, CXCR4 significantly increased in vitro proliferation/survival in 

absence of its ligand, as previously detailed (137). In 3D, CXCR4 was also shown to enhance 

clonogenic abilities of CXCR4-expressing NB cells in absence of CXCL12. Supporting our in 

vitro observations, CXCR4 has been proposed elsewhere to regulate in vivo growth of colon 

cancer cells independently of CXCL12 (74). However, we did not observe a particular 

proliferative-promoting role for CXCR4, upon s.c. engraftment (non producing CXCL12 

environment) of NB cells (Figure 27), further supporting our previous in vivo study showing a 

critical and exclusive NB growth promoting role for CXCR4 in a CXCL12-producing and 

orthotopic environment (137). 
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Distinct roles for the two CXCL12 receptors in NB 

Taken together, our data suggest that CXCR4 and CXCR7 may display two distinct 

roles in NB, either in presence and in absence of their common ligand CXCL12. As shown in 

Figure 31, CXCR7 decreases NB growth and chemotaxis, in contrast to CXCR4. In addition, 

CXCR4 has been linked with NB aggressive behaviour, while CXCR7 may be associated to NB 

differentiation. 

 

 

Figure 31: Putative roles for the CXCR7 and CXCR4 receptors in NB 

(A) In contrast to other cancer models, CXCR7 displays anti-tumorigenic properties in NB and may be 

implicated in NB differentiation. (B) CXCR4 promotes NB proliferation, survival in presence and in 

absence of CXCL12, and is required for CXCL12-induced NB chemotaxis. 

 

 

Impact of CXCR7 on CXCR4/CXCL12-mediated signaling in NB 

We further examined the function of CXCR7 by focusing more precisely on its impact 

on CXCR4-mediated signaling. To that extent, we co-expressed CXCR7 and CXCR4 in the 

CXCR4/CXCR7-negative IGR-NB8 cell line (NB8x4x7 cells). As a second model for our study, 

CXCR7 was also ectopically expressed in the SH-SY5Y cell line (SHSYx7 cells), which expresses 

already high endogeneous levels of CXCR4 (Figures 17-18). 

 

CXCR7, in association with CXCR4, affects ERK 1/2 cascade activation 

Both receptors were functional in NB8x4x7 cells, as specific CXCR4/CXCL12-, 

CXCR7/CXCL12 and CXCR7/CXCL11-mediated ERK 1/2 activations were reported in those 

cells (Figures 19-20). Interestingly, we observed a shorter signal with an enhanced intensity 

for the CXCR4/CXCL12-mediated ERK 1/2 activation in the NB8x4x7 cell line, when compared 
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to the signal measured in the CXCR4-expressing NB8x4 cell line. Similar observation was also 

noted for the CXCR7/CXCL11-mediated ERK 1/2 activation in NB8x4x7 cells as compared to 

NB8x7 cells. Thus, our data highly suggest that, in association in NB8x4x7 cells, the CXCR7 

and CXCR4 receptors may display reciprocal modulation of the ERK1/2 pathway in response 

to their ligands. 

In contrast, only the CXCR4/CXCL12 axis was able to signal through ERK 1/2 pathway 

in the SHSYx7 cell line. Indeed, CXCR7 alone could not activate ERK 1/2 cascade in those 

cells, either in presence of CXCL12 or CXCL11. However, SHSYx7 cells displayed a particular 

and functional behaviour in vitro, as compared to control SHSYpMigr cells (Figures 24-26), 

supporting that the CXCR7 receptor is functional in those cells but may signal through other 

downstream signaling cascade. In addition, a modulation of the CXCL12-induced ERK 1/2 

activation was observed in the CXCR7/CXCR4-expressing SHSYx7 cell line, as compared to 

that of CXCR4-expressing SHSYpMigr cell line. Such modulation suggests that CXCR7 may 

also affect CXCR4/CXCL12-mediated signaling in those cells. However, the impact of CXCR7 

was different to that observed in NB8x4x7 cells, as ERK 1/2 activation was only slightly 

weakened in SHSYx7 cells. 

Although both NB8x4x7 and SHSYx7 cell lines expressed similar CXCR4 expression 

levels, discrepancy in ERK 1/2 activation between those cell lines might result from the 

endogenous CXCR4 expression in SHSYx7 cells, as compared to the exogenous CXCR4 levels 

in NB8x4x7 cells. In addition, it could be due to a different pattern of CXCR7 expression in 

those cells, as higher CXCR7 expression levels were observed in NB8x4x7 cells as compared 

to SHSYx7 cells (Figures 17-18). 

  

CXCR7 affects CXCR4/CXCL12-mediated growth promoting effects in vitro 

A significant reduction of the CXCR4-mediated NB cell proliferation was observed in 

2D culture, in the CXCR7/CXCR4-expressing SHSYx7 cell line, only in the presence of the 

ligand (Figure 24). A decrease of CXCR4-mediated clonogenicity was also observed in SHSYx7 

cells in a 3D soft agar assay (Figure 25). However, such alteration was observed in presence 

and in absence of CXCL12. Thus, the regulation of CXCR4-mediated growth promoting effect 

by CXCR7 might not necessarily require the presence of CXCL12 in vitro. 

Interestingly, the ectopic expression of CXCR7 further enhanced CXCR4–mediated 

growth promoting effect in the NB8x4x7 cell line, in presence and in absence of CXCL12, as 
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compared to the NB8x4 cell line in our 2D culture system. However, such additive growth-

promoting effect was not observed in our 3D culture model (Figure 25) nor in vivo (Figure 

27), suggesting that such 2D culture system may affect chemokine receptor function(s), as 

already mentioned in this report. Importantly, and in contrast to the SHSY transduced cell 

model, 3D soft agar assay revealed that CXCR7 was not sufficient to affect CXCR4-mediated 

growth of NB8x4x7 cells in absence of the ligand. An increase of CXCR4 expression together 

with a decrease of that of CXCR7 was quantified in the NB8x4x7 cells, as compared to NB8x4 

and NB8x7 cells, respectively (Figures 17-18). Therefore, these observations suggest a 

predominant role of the CXCR4 receptor over that of CXCR7 in absence of CXCL12 in the 

NB8x4x7 cells, which would explain why NB8x4x7 cells behave as similarly as NB8x4 cells in 

vitro.  

 

CXCR7 impairs CXCR4/CXCL12-mediated NB chemotaxis 

As the role of CXCR4 in enhancing motility of NB cells has been previously described 

(137), we asked whether CXCR7 could also regulate CXCR4-mediated NB function in vitro, 

such as chemotaxis, in presence of CXCL12. Indeed, CXCR7 significantly altered the CXCR4-

mediated chemotaxis of both CXCR7/CXCR4-expressing NB8x4x7 and SHSYx7 cell lines 

toward CXCL12, further suggesting the existence of a putative competition between the two 

receptors for their common ligand (Figure 26). 

 

CXCR7 delays CXCR4/CXCL12-mediated growth promoting effects in vivo 

Using our mouse orthotopic model, we also showed that CXCR7 delayed tumour take 

and growth of NB8x4x7-derived tumours, as compared to NB8x4-derived tumours (Figure 

30). Our TMA analyses revealed a high ligand expression in the vascular and stromal 

structures of control tissues, such as the normal adrenal gland of patients (Figure 7). 

Similarly, strong CXCL12 expression was detected in the adrenal gland of nude mice (Figure 

29), as previously described (137). Thus, these data suggest that a regulation of the CXCR4-

mediated growth promoting effect by CXCR7 in NB8 transduced cell model may occur and 

may be dependent on the presence of CXCL12 in vivo.  

Many studies agree that signals from the tumour microenvironment may play pivotal 

contributions to cancer progression (8;16;17). For example, hypoxia-induced pathways have 

been reported to enhance the function of the CXCR4 receptor in lung and breast tumours, as 
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well as in hematopoietic malignancies, by up-regulating its expression (50). In hepato-and 

rhabdomyo-sarcomas models, a dysregulation of CXCR7 expression was also induced in 

hypoxic conditions (77;167). Moreover, cytokines (such as IL-17, IL-1β and IFN-γ) have been 

shown to dysregulate CXCR7 expression in brain endothelial cells, and to influence receptor 

function in vivo (179). In contrast to orthotopic conditions, no CXCR7-mediated regulation 

was observed when the NB8x4 and the NB8x4x7 cell lines were subcutaneously engrafted in 

mouse flanks (Figure 27). Thus, regulation of CXCR4 signaling by CXCR7 may be tightly 

dependent on the presence of CXCL12 and additional stromal factors. As we also showed a 

critical and exclusive NB growth promoting role for CXCR4 in a CXCL12-producing and 

orthotopic environment (137), these remarks suggest a complex role for CXCR7 and CXCR4 in 

NB tumorigenesis, in which receptor expressions and associated function(s), may be 

influenced by stromal stimuli other than the ligand. 

Finally, CXCR7 in association with CXCR4 did not enhance the invasive potential of 

NB8x4x7 cells compared to NB8x4 cells in vivo, as no metastases were detected in our 

orthotopic mouse model. In contrast to other tumour models (75;77), cooperation of the 

two CXCL12 receptors in enhancing NB dissemination is then unlikely. 

 

 

Two hypothetic models for the negative regulation of the CXCR4/CXCL12 axis-mediated 

signaling by CXCR7 in NB 

 

In this, study, we showed that CXCR7 was sufficient to affect CXCR4-mediated 

signaling and functions, especially in presence of CXCL12. Two models have been proposed 

in the literature and may uncover mechanisms implicated in the regulation of CXCR4 

signaling by CXCR7 in NB.  

 

CXCR7 as a ligand scavenger in NB? 

It has recently been hypothesized that CXCR7 may not promote classical G protein-

coupled receptor (GPCR)-mediated functions in response to its ligands (72;180). Indeed, 

some « altered » GPCR responsiveness can occur as a result of the 

sequestration/internalization of the receptor, that « enables either its recycling to a 

responsive form or facilitates receptor loss by lysosomal degradation » (66). In particular, 
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Luker et al proposed that a balance between constitutive internalization and recycling of the 

receptor CXCR7 to the cell surface occurred after binding to CXCL12, in a dose-dependent 

manner (68). In this context, CXCR7 was shown to control CXCL12 distribution by 

sequestrating the ligand present in the extracellular space. Such scavenger function for 

CXCR7 resulted in limiting acute CXCR4/CXCL12-mediated signaling (68;69). For instance, 

recent studies showed a critical role for CXCR7, as a ligand scavenger, in controlling cell 

migration in a zebrafish model (69-71). Moreover, the scavenging role of CXCR7 has been 

clearly demonstrated to regulate migratory advantage provided by CXCR4 in CXCR4/CXCR7-

expressing primary T cells (180). As CXCR7 was shown to affect CXCR4-mediated chemotaxis 

of NB8x4x7 and SHSYx7 cells (Figure 26), a role for CXCR7 as a CXCL12 scavenger is likely in 

those cells. In addition, CXCR7 was proposed to delay CXCR4-mediated NB8x4x7 orthotopic 

growth (Figure 30), supporting that the CXCR7/CXCL12 axis may limit acute CXCR4/CXCL12-

mediated growth promoting effect in vivo, thus further suggesting a role for CXCR7 as a 

ligand scavenger in NB8x4x7 cells. 

Interestingly, ligand binding to the “decoy receptor CXCR7” has been shown to 

activate MAP kinase pathways, such as ERK1/2, through β-arrestin rather than G protein 

signaling (67) (Figure 3). Moreover, CXCR4 is known to predominantly signal through 

classical G-mediated pathways (31) (Figure 2). In this study, different CXCR7/CXCL12-

mediated ERK 1/2 cascade activations were noted in the NB8x7 and NB8x4x7 cell lines, as 

compared to the signal mediated by the CXCR4/CXCL12 axis in NB8x4 cells (Figure 19). These 

observations suggest that the CXCL12-induced ERK1/2 activation in those cells might not be 

mediated by G-proteins, but rather by other actors, such as β-arrestins, further supporting a 

scavenger role for CXCR7 in NB8x7 and NB8x4x7 cells. 

However, the CXCR7/CXCL12/CXCL11 axes did not activate ERK 1/2 in SHSYx7 cells, 

suggesting that another mechanism may occur in those cells (Figure 19-20). Moreover, in 

vitro soft agar assay showed that CXCR7 regulated CXCR4-mediated SHSYx7 cell growth in 

absence of CXCL12 (Figure 25), further excluding a unique ligand scavenger function for the 

CXCR7 receptor in those cells. 

 

Heterodimerization of CXCR7 and CXCR4 in NB cell lines? 

Evidences to date suggest that many, if not all, GPCRs function as either mono- or 

hetero-oligomers. Such oligomeric complexes have been shown to involve mechanistic 
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implication on receptor efficacy and represent a key paradigm in GPCR biology (181). There 

is now a body of evidence that GPCR heterodimerization can alter G protein specificity, thus 

influencing activation of specific downstream pathways (182). Combined CXCR4/CXCR7 

expression has been detected in T- and B-cell subsets, endothelial cells, human renal 

progenitor cells, as well as in primary human tumours and tumour cell lines (53;60;75;76). 

Importantly, it has been hypothesized that CXCR7, once engaged in heterodimers with 

CXCR4, may regulate CXCR4 functions through an allosteric mechanism (independently of 

CXCL12), further affecting ligand binding to CXCR4 and/or its downstream signaling (180). 

However, the direct impact of CXCR7/CXCR4 heterodimer activity in enhancing or conversely 

decreasing CXCR4-mediated proliferation/survival/migration in tumours is still elusive (183). 

As CXCR7 affects CXCR4-mediated signaling in SHSYx7 cells independently of CXCL12, we 

postulate that the negative regulation of CXCR4-induced signaling by CXCR7 in NB might also 

result from the heterodimeric association of both receptors in those cells. 

In addition, it has been proposed that heterodimers “can synergistically increase 

signaling”, “or conversely, negatively interact” thus decreasing the response initially 

mediated by interaction of respective monomers with their ligand(s) (184;185). Constitutive 

association of CXCR4 and CXCR7 as heterodimers has been also reported to alter CXCR4 

signaling, in a CXCL12 dependent manner (70;180;183). As CXCR7 modulated CXCR4/CXCL12-

mediated ERK 1/2 activation in the SHSYx7 cells, it further supports an association of CXCR7 

and CXCR4 as heterodimeric complexes in those cells (Figure 19). In such context, the 

putative heterodimeric form of these receptors may also influence efficacy of the CXCR7 

receptor in response to CXCL12 or CXCL11, which may explain why both CXCR7/CXCL12 and 

CXCR7/CXCL11 axes failed to activate ERK 1/2 cascade in SHSYx7 cells. 

 

Two distinct or combined models? 

In this study, an “antagonist effect” between the two CXCL12 receptors in NB was 

strongly suggested. However, whether CXCR7 modulates CXCR4 signaling as a result of their 

heterodimeric expression or/and by scavenging the ligand needs further analyses. Our data 

suggest that the modulation of the CXCR4-mediated signaling by CXCR7 might be NB cell-line 

dependent, as important variations between the NB8 and the SHSY transduced cell lines 

were noted. In regards to results obtained in this study, we hypothesize that CXCR7 may 

modulate CXCR4 function(s) as detailed in the two following non-exhaustive models: 
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� CXCR7 as a ligand scavenger (model A, Figure 32): The two CXCL12 receptors are co-

expressed at the surface of NB cells where they individually mediate their own signaling 

activation cascade in response to specific stimuli (ligand, stromal factors, and stress 

culture conditions). In such model, CXCR7 would modulate CXCR4/CXCL12 signaling by 

acting as a ligand scavenger. This model may be proposed for the regulation of the 

CXCR4-mediated signaling by CXCR7 in the NB8x4x7 cell line. 

 

 

Figure 32: Regulation of CXCR4-mediated NB signaling in vitro and in vivo: model A 

i) Upon co-expression, the two CXCL12 receptors CXCR7 and CXCR4 may form monomers (or 

homodimers), thus mediating their own function(s). Expression of one receptor may modulate that 

of the other, as observed in the NB8x4x7 cell line (Figures 17-18). In absence of the ligand, both 

receptors may individually mediate opposite growth-related function in vitro, with a predominant 

CXCR4-mediated proliferation/survival promoting effect. ii) CXCR7 presents higher affinity for CXCL12 

than CXCR4. Thus, in presence of the ligand, CXCR7 may act as a ligand scavenger, preventing CXCL12 

binding to CXCR4 and thus resulting in limiting CXCR4/CXCL12-mediated chemotaxis in vitro. CXCR4 

on its own may additionally elicits a ligand-independent NB growth promoting role. iii) In orthotopic 

conditions, additional stromal factors may modulate CXCR4, CXCR7, or both receptor expression 

levels, which in turn may favour CXCR4-mediated NB growth, rather than CXCR7-mediated anti-

proliferative function. 
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� Heterodimerization of the two receptors (model B, Figure 33): The two CXCL12 receptors 

are co-expressed as heterodimers at the surface of NB cells, influencing the individual 

efficacy, function(s) and ligand selectivity of each receptor. Modulation of the CXCR4 (or 

CXCR7) signaling would be a direct result of the heterodimeric association of the two 

receptors. This model may be proposed for the regulation of the CXCR4-mediated 

signaling by CXCR7 in the SHSYx7 cell line. 

 

 

Figure 33: Regulation of CXCR4-mediated NB signaling in vitro: model B 

i) Upon co-expression, CXCR7 and CXCR4 may form heterodimers at the surface of NB cells. Such 

chemokine receptor complex may impair CXCR4-mediated growth promoting effect, in absence of 

the ligand, as observed in SHSYx7 cells. ii) In presence of the ligand, the “CXCR7-CXCR4” complex may 

be internalized, thus limiting CXCR4/CXCL12-mediated NB proliferation/chemotaxis. As 

heterodimerization has been proposed to modulate ligand selectivity (183), whether CXCL12 

preferentially binds to CXCR7 or to CXCR4 will need further investigations. 

 

 

In this study, we noted that the expression of CXCR4 also affected the 

CXCR7/CXCL11-mediated ERK 1/2 activation, especially in NB8x4x7 cells (Figure 20). 

However, CXCL11 is not a ligand for the CXCR4 receptor, and CXCR3, the other known 

CXCL11 receptor, is not expressed by NB8x4x7 cells (Figure 21). Except if CXCR4 may elicit 

remote regulator function on CXCR7 via a more complex signaling network, the model A 
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cannot provide by itself a suitable explanation for such observations, as the two receptors 

would not be physically associated at NB8x4x7 cell surface.  

Therefore, we cannot exclude the possibility that a more global regulation 

mechanism may occur in NB cells which may be a combination of these two models. 
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Conclusion and perspectives 

In this study, we propose that CXCR4 and CXCR7 may display two distinct roles in NB: 

CXCR4 favours NB growth/survival and chemotaxis, while CXCR7 decreases NB growth and 

may be associated to NB differentiation. Importantly, we postulate that CXCR7, in 

association with CXCR4, may elicit anti-tumorigenic function by regulating CXCR4-mediated 

signaling, potentially as a heterodimeric partner or/and as a ligand scavenger. 

 

It has been shown that the two CXCL12 receptors, when co-expressed, may form 

homodimers as efficiently as heterodimers (180). Thus, whether the different CXCR7 and 

CXCR4 expression levels detected in NB8x4x7 and SHSYx7 cells may differently influence 

their conformational association at NB cell surface should be further investigated. 

Experimental procedures, such as immunoprecipitation and bioluminescence resonance 

energy transfer (BRET) assays, will help to determine whether CXCR7 and CXCR4 efficiently 

form hetero- or homo-dimers in NB cell lines. Furthermore, it has been proposed that 

CXCR4/CXCR7 heterodimers result in attenuation of classical CXCL12-mediated G-activated 

signaling, by predominantly activating β-arrestin-dependent pathways (64;183). Ligand 

scavenger function of CXCR7 has also been shown to result from β-arrestin activation (67). 

Thus, extending our analyses on the activation of the p38 and Jun N-terminal kinases (two β-

arrestin-dependent pathway mediators) in NB cells expressing CXCR7, CXCR4 or both 

receptors, in response to CXCL12 (and CXCL11), may help to further understand mechanisms 

mediated by individual CXCR7, CXCR4 or by potential heterodimeric complexes of both 

receptors. In this study, we reported that the IMR-32 NB cell line expresses endogenous 

levels of both CXCR7 (moderate) and CXCR4 (high) receptors (Figure 10). Thus, the IMR-32 

cell line may be a suitable model to further investigate the consequences of CXCR4/CXCR7 

co-expression on CXCL12/CXCL11-induced responses in NB.  

 

As postulated in this report, 3D culture systems may be essential tools to go on 

investigating chemokine receptor function(s) in vitro, and particularly to further clarify the 

putative association of CXCR7 with NB differentiation processes.  
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Finally, our orthotopic studies suggest a critical role for stromal factors, together with 

CXCR7, in mediating regulation of CXCR4-mediated growth-promoting signals in vivo. 

Elucidating other chemokine (such as CXCL11), cytokine (such as TNF-α, IFN-γ) and growth 

factor (such as TGF-β, IGF, VEGF) productions in either normal mouse adrenal gland or after 

implantation of CXCR4/CXCR7-expressing tumour cells will be essential to further 

characterize the CXCR7/CXCR4/CXCL12 axis in NB progression. 

 

Altogether, our preliminary findings open new research perspectives for the complex 

role of the CXCR7 and CXCR4 chemokine receptors and their common ligand CXCL12 in the 

malignant behaviour of NB. Elucidating the contribution of the CXCR7/CXCR4/CXCL12 axis in 

NB growth and differentiation, and implicated mechanisms, may help to reveal news targets 

for novel therapeutic approaches. 
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Annexe: Chemokines and their cognate receptors 

Most chemokines can bind multiple receptors, and a single receptor can bind multiple 

chemokines. Decoy receptors can also interact with multiple chemokines. By contrast, a 

minority of specific chemokine receptors binds to only one ligand (22;27;130;186-188). 

 

 

 Chemokine Receptors Chemokine Ligands 

Specific receptors 

CCR9 CCL25 

CCR6 CCL20 

CXCR5 CXCL13 

CXCR6 CXCL16 

CX3CR1 CX3CL1 

CXCR4 CXCL12 

Shared receptors 

XCR1 XCL1, XCL2 

CXCR1 CXCL6,8 

CXCR2 CXCL1,2,3,5,6,7,8 

CXCR3 
CXCL4,9,10,11 

CXCL4L1 

CCR1 CCL3,4,5,7,14,15,16,23 

CCR2 CCL2,7,8,12,13,16 

CCR3 CCL5,7,11,13,15,24,26,28 

CCR4 CCL2,3,5,7,17,22 

CCR5 CCL3,4,5,8,11,14,16 

CCR7 CCL19,21 

CCR8 CCL1,4,17 

CCR10 CCL27,28 

Decoy receptors 

CCX-CKR 
CCL19,21,25 

CXCL13 

DARC 
CCL2,5,11,13,14 

CXCL1,2,3,7,8 

D6 CCL2,3,4,5,7,8,12,13,14,17,22 

CXCR7 CXCL12,11 
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