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THE ADDITIVE GENETIC VARIANCE AFTER BOTTLENECKS IS AFFECTED BY THE
NUMBER OF LOCI INVOLVED IN EPISTATIC INTERACTIONS
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Abstract. We investigated the role of the number of loci coding for a neutral trait on the release of additive variance
for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of
genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices.
First, we extended Cheverud and Routman’s model by defining matrices of ‘‘pure’’ epistasis for three and four
independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distri-
butions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these
matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases
from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance
released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and
duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases
with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into
additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant
role in the increase of additive variance following bottlenecks.
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The role of population bottlenecks in reducing the genetic
variability has often been emphasized because reduced var-
iability is thought to alter the evolutionary potential of pop-
ulations (Nei et al. 1975; Falconer and Mackay 1996). In
purely additive models of quantitative variation, the loss of
genetic variation resulting from a population bottleneck is
expected to decrease the amount of additive variance ( ),2s A

and thus the capacity of bottlenecked populations to respond
to selection (Wright 1931; Lande 1980). But Wright (1931)
also put forward the idea that evolution could be favored in
small populations. In the first phase of his Shifting Balance
Theory of Evolution, Wright proposed that allele frequencies
at multiple loci fluctuate as a consequence of genetic drift
and therefore explore the allelic frequency space, allowing
new favorable gene combinations to appear. Fisher (1958)
strongly opposed to this view, dismissed the importance of
drift for evolution and focused his attention on individual
effects of genes on fitness in large populations.

Experimental and theoretical studies have since demon-
strated that additive genetic variance (and therefore an en-
hanced ability to evolve) can increase after episodes of re-
duced population sizes. Experimentally, the phenomenon
has been observed for morphometric traits as well as be-
havioral traits in the housefly Musca domestica (for a review,
see Meffert 2000), and for components of fitness in Dro-
sophila melanogaster (López-Fanjul and Villaverde 1989;
Garcia et al. 1994), Tribolium castaneum (Fernández et al.
1995; Wade et al. 1996), Bicyclus anynana (Saccheri et al.
1996), and Mus musculus (Cheverud et al. 1999). Theoretical
studies by Robertson (1952), Willis and Orr (1993), and
Wang et al. (1998) have shown that dominance can explain
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an increase in additive variance following a bottleneck,
whereas Goodnight (1987, 1988); Cockerham and Tashida
(1988); Whitlock et al. (1993) as well as Cheverud and
Routman (1995, 1996) have suggested that the loss of ad-
ditive variance following a bottleneck could be limited or
even reversed with epistasis. Accordingly, some of the ex-
perimental studies have emphasized the role played by in-
breeding and dominance in inflating the additive variance
after population bottlenecks (López-Fanjul and Villaverde
1989; Garcia et al. 1994; Fernández et al. 1995; Saccheri
et al. 1996) whereas others have found their results to be a
confirmation that epistasis can be converted into additive
variance (Bryant and Meffert 1995, 1996; Cheverud et al.
1999). Although models of dominance have been exten-
sively studied in the past years at a theoretical level, through
studies on the effect of dominance on additive variance
(Robertson 1952; Rose 1982; Willis and Orr 1993; Wang
et al. 1998; López-Fanjul et al. 2002) or mutation accu-
mulation experiments (Lynch et al. 1995; Keightley and
Eyre-Walker 1999), models of epistatic interactions have
been less explored and were based on only two interacting
loci (Goodnight 1987, 1988; Cheverud and Routman 1995,
1996; López-Fanjul et al. 1999, 2000, 2002; see also the
recent book edited by Wolf et al. 2000). However, the num-
ber of loci underlying quantitative traits is usually larger
than two (Lynch and Walsh 1998) and this could be all the
more true for fitness traits (Merilä and Sheldon 1999).

In this paper we investigate how epistatic interactions
between up to four biallelic independent loci coding for a
neutral trait can influence the amount of additive variance
generated after population bottlenecks of varying sizes.
Our aim is to test the hypothesis that the number of genes
(two, three, or four) involved in interactions is an important
factor affecting the release in additive variance after pop-
ulation bottlenecks, using different matrices of genotypic
values.
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THEORY

Our study builds on the Markov Chain transition of allele
frequencies of a Wright-Fisher model with an initial infinite
population from which bottlenecked populations are derived.
We simulated four independent neutral biallelic loci, coding
for a neutral trait.

Genetic Effects for the Four Locus Model

Calling Gijklmnop the genotypic value of genotype ij at locus
1, kl at locus 2, mn at locus 3, and op at locus 4, additive
and dominance effects were computed for the four locus mod-
el using the general least squares model for genetic effects
(Lynch and Walsh 1998, pp. 84–85) as follows:

a 5 G 2 m (1)i i...... G

b 5 G 2 m 2 a 2 a (2)i j i j...... G i j

where ai is the additive effect of allele i, bij is the dominance
effect between alleles i and j, mG is the population mean
genotypic value, and Gi...... (respectively, Gij......) the condi-
tional mean genotypic value of individuals with allele i (re-
spectively with alleles i and j) at the first locus. We restricted
the study to the case of biallelism at each locus (i, j, k, l, m,
n, o, p ∈[1, 2]). Similar definitions hold for the second (ak,
bkl), the third (am, bmn),and the fourth gene (ao, bop). The
additive ( ) and dominance ( ) variances were then de-2 2s sA D

rived as:
4 2

2 2s 5 2p a (3)O OA ij ij
i51 j51

where i indices the locus and j the allele,
4 2 2

2 2s 5 p b (4)O O OD ijk ijk
i51 j51 k51

where i indexes loci and j and k the two alleles at the i locus.
The epistatic variance ( ) was computed as the difference2sI

between the genetic variance and its additive and dominance
components:

2 2 2 2s 5 s 2 (s 1 s )I G A D (5)

where is the genetic variance of the population defined2sG

as:
2 2 2s 5 p G 2 m (6)OG ijklmnop ijklmnop G

i,j,k,l,m,n,o,p

This mode of calculation for the interaction variance implies
that we cannot separate its underlying components, in terms
of additive-by-additive (AA), additive-by-dominance (AD)
and dominance-by-dominance (DD) types of epistasis (see
below). But this separation would have been cumbersome,
since each component is represented by terms for two, three,
and four loci interactions.

For the two locus model, one allele was fixed at the first
and second loci, whereas it was fixed at the first locus only
for the three locus model.

Numerical Computations

We ran numerical computations based on the Markov chain
transition of allele frequency in a Wright-Fisher model de-

scribed in Hartl and Clark (1997). In a population of constant
size N, allele copy number can vary between 0 and 2N. Under
the effect of drift only, the probability of moving from a
copies in generation t to b copies in generation (t 1 1) is Tab

5 ( )(a/2N)b(1 2 a/2N)2N2b. These coefficients were stored2N
b

in a matrix ([2N 1 1] 3 [2N 1 1]) for all the generations
after the first bottleneck and up to the twentieth generation.
For the transition between the initial infinite population and
the first bottlenecked generation, we consider 11 allele fre-
quencies, from 0 to 1 by steps of 0.1. The transition matrix
from the initial to the first generation was thus (11 3 [2N 1
1]). Bottleneck sizes were set at N 5 2, 4, or 8 individuals
and the inbreeding coefficient in the randomly mating bot-
tlenecked populations was estimated as F 5 1 2 (1 2 1/2N)t.
This inbreeding coefficient was used as a scale on all the
figures, since it combines adequately bottleneck size and
number of generations (it should be kept in mind that this
inbreeding coefficient is the direct result of drift in allele
frequencies, rather than increased homozygosity at constant
allele frequencies). The matrices of genotypic values used in
the simulations are described below. Each simulation was
run for twenty generations. The average magnitude of the
change in additive variance following a bottleneck was quan-
tified by looking at the standardized release in additive var-
iance (R ) between the initial infinite population and the(t 2t )i 0

ith bottlenecked generation derived from it. R is estimated(t 2t )i 0

over all the allele frequency space as:

1 2 2 2R 5 (s 2 s )/s , (7)O O O O(t 2t ) Ai A0 G0i 0 411 p1 p2 p3 p4

where and are the additive variances in the initial2 2s sA0 Ai

infinite population and after i generations of bottleneck re-
spectively, is the initial total genetic variance and p1,2sG0
p2, p3, and p4 index allele frequencies at locus 1, 2, 3, and
4, respectively. R was used to estimate both the amount(t 2t )i 0

and the direction of the changes in additive variance since
R might be either positive or negative. An important(t 2t )i 0

point to emphasize is that R is the proportion of changes(t 2t )i 0

in additive variance relative to the initial total genetic vari-
ance. It is thus unaffected by the mean and variance of the
matrix of genotypic values. Owing to this standardization,
our results cannot be considered as an artifact due to changes
in the over all level of genetic variance (Keightley 1989).
An associated quantity of interest is the maximum amount
of release in additive variance achieved. This quantity will
be noted Max R below. Programs to carry out these cal-(t 2t )i 0

culations are available upon request from JG.

Genotypic Values

Three different sets of genotypic values were used in the
simulations. The first set is a generalization to four loci of
‘‘pure’’ forms of additive-by-additive (AA), additive-by-
dominance (AD), and dominance-by-dominance (DD) epis-
tasis described in Cheverud and Routman (1996). In these
matrices, both a (the single locus additive value defined as
half the difference between homozygotes) and d (the single
locus dominance value defined as the difference between the
heterozygote and the mean of the two homozygotes) were
always 0 for a given locus when the effects of the remaining
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TABLE 2. Proportion of the different variance components in the initial infinite population. These proportions are averages over the
allele frequency space, with frequencies ranging from 0 to 1 by step of 0.1. Mean of the ten matrices with standard deviation in parentheses.

Variance
components

Gene
number

‘‘Pure’’ epistasis

AA AD DD

Statistical distributions

Exponential Uniform Normal

Physiological
epistasis

DMP AMP

Additivity 2
3
4

70
45
27

33
22–11a

7

15
5
2

41.8 (9.0)
30.3 (4.4)
20.5 (2.2)

35.0 (13.7)
28.1 (6.8)
21.4 (2.2)

46.5 (13.1)
30.0 (7.7)
22.4 (2.5)

63
56
48

84
67
52

Dominance 2
3
4

0
0
0

25
12–12a

6

25
8
3

36.3 (6.1)
25.3 (5.7)
16.3 (2.4)

34.9 (10.6)
26.7 (6.7)
17.2 (2.5)

26.2 (9.9)
23.0 (6.0)
16.5 (2.8)

26
19
14

0
0
0

Epistasis 2
3
4

30
55
73

41
66–78a

88

61
87
96

21.9 (10.0)
44.6 (8.2)
63.2 (3.9)

30.1 (18.3)
45.2 (10.0)
61.4 (3.0)

27.6 (7.7)
46.9 (8.0)
61.2 (3.2)

11
25
38

16
33
48

a The two figures are for ADAD and DADA genotypic matrices.

loci were summed. In our generalization, we insured that a
and d remains equal to zero over all loci, while allowing for
epistatic interactions of higher order to be present. For in-
stance, in the AAAA matrix ‘‘pure’’ AA, AAA, and AAAA
epistatic interactions are present. To account for the asym-
metry of the three locus model, four matrices were designed,
corresponding to AAAA, ADAD, DADA, and DDDD epis-
tasis (see Appendix).

Next, genotypic values were chosen at random from three
distributions. First we used the exponential distribution be-
cause numerous QTL analyses show a L-shaped distribution
of gene effects (Lynch and Walsh 1998; Bost et al. 1999).
Moreover, in a QTL-simulation study Otto and Jones (2000)
showed that there is a strong theoretical support in using the
exponential distribution to fit gene effects distribution. We
also used normal and uniform distributions in order to mimic
different levels of variance, skewness, and kurtosis in the
distribution of genotypic values. For each of these distri-
butions, 10 matrices of 81 genotypic values were drawn ran-
domly.

Last, two matrices of genotypic values were built to mimic
a simple metabolic pathway consisting of two to four steps
(according to the number of loci). As before, the loci were
biallelic. For these two matrices, allele 1 is not functional
and therefore homozygotes 1:1 at any of the loci have a
genotypic value of 0. In the first matrix, called dominant
metabolic pathway (DMP), the presence of 1 copy of allele
2 at each locus is sufficient to restore complete functioning
of the pathway (genotypic value of 1). In the second, called
additive metabolic pathway (AMP), the heterozygote 1:2 pro-
duces half the amount of metabolites produced by homo-
zygote 2:2 at each locus. Therefore, the quadruple homo-
zygote (genotypic value of 16) produces 16 times as much
as the quadruple heterozygotes (genotypic value of 1, see
Appendix). According to Templeton (2000) and Goodnight
(2000), these forms of epistasis can be referred as physio-
logical, or functional epistasis. It is not so for matrices de-
rived from Cheverud and Routman’s model which correspond
to ‘‘pure’’ forms of epistasis, without any reference to gene
action.

For the second and the third sets of genotypic values, ad-
ditive and dominance effects exist in addition to epistatic
effects, so that changes in additive variance are not due to

epistatic conversion only (this is also the case for ‘‘pure’’
forms of epistasis, when the allele frequencies are different
from 0.5). All these matrices correspond to the genotypic
values of traits that are neutral, and therefore not subject to
selection.

RESULTS

Table 1 clearly shows that for all genotypic matrices the
proportion of epistatic variance in the initial infinite pop-
ulation increases with the number of loci, and both additive
and dominance variance proportions diminish accordingly.
Among the randomly drawn matrices, the apportionment of
the different types of variance is very similar and more
similar as the number of genes increases (note the low stan-
dard deviations in Table 1 for the four locus model). The
largest difference in the proportion of the different variances
is seen among the matrices of ‘‘pure’’ epistatic forms, in
particular between the AA and DD matrices.

The average release in additive variance following a bot-
tleneck, R , is plotted on Figures 1 to 3 as a function of(t 2t )i 0

the inbreeding coefficient.

‘‘Pure’’ Epistasis

The results for ‘‘pure’’ epistasis are shown in Figure 1.
For two, three, and four loci, it is ‘‘pure’’ AA epistasis that
leads to the largest increase in additive variance (panel A).
With two genes, the average release in additive variance
(R ) is never positive except with AA epistasis. With three(t 2t )i 0

and four interacting genes, R becomes positive for each(t 2t )i 0

of the ‘‘pure’’ epistasis types. With AA epistasis and two
genes, R is maximum (5%) for F 5 0.23 and becomes(t 2t )i 0

negative when F is larger than 0.43. With three genes,
R is maximum (40%) for F 5 0.50 and becomes negative(t 2t )i 0

when F is higher than 0.85. With four genes, the maximum
release of additive variance reaches 88% for an inbreeding
coefficient of 0.62, and additive variance diminishes com-
pared to the initial population for F larger than 0.96. DD is
the type of ‘‘pure’’ epistasis for which the maximum
R is lowest (panel D), even with the four locus model(t 2t )i 0

(Max R 5 2% and F 5 0.54), whereas AD epistasis(t 2t )i 0

(panels B and C) is intermediate (Max R 5 14% and F(t 2t )i 0

5 0.60 for the four locus model).
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FIG. 1. Average release in additive variance after bottlenecks of size 2, 4, and 8, expressed as the average over the whole frequency
space of R(t 2 t0) 5 ( [t] 2 [t0])/ (t0) as a function of the inbreeding coefficient (F 5 1 2 (1 2 1/2N)t) for ‘‘pure’’ epistasis. (A)2 2 2s s sA A G
Additive-additive epistasis (AA and AAA and AAAA); (B) Additive-dominance epistasis (AD and ADA and ADAD); (C) Dominance-
additive epistasis (DA and DAD and DADA); (D) Dominance-dominance epistasis (DD and DDD and DDDD). Squares: two locus model;
circles: three locus model; and diamonds: four locus model. Small sized symbols are for bottleneck of size 2, medium sized symbols
are for bottlenecks of size 4, and large sized symbols are for bottlenecks of size 8.

For the two and four locus models with mixed ‘‘pure’’
epistasis effects ADAD and DADA (panels B and C), the
order in which additive and dominance effects are entered
makes no difference. For the three locus model, DAD epis-
tasis displays a pattern similar to DDD, whereas ADA epis-
tasis displays a pattern similar to AAA.

Random Matrices of Genotypic Values

The results for random matrices of genotypic values are
shown on Figure 2. For the two locus model, R is nearly(t 2t )i 0

always negative. R becomes positive in the three and(t 2t )i 0

four locus models for an important range of inbreeding level
(0 , F # 0.50 and 0 , F # 0.70, respectively). The max-

imum R is observed for the four locus model no matter(t 2t )i 0

what the underlying distribution, but the exponential ma-
trices (panel A) give on average the higher R values,(t 2t )i 0

followed by matrices generated from the uniform (panel C)
and the normal (panel B). The maximum release in additive
variance is below 10% on average and none of the 30 ma-
trices showed a maximum release in additive variance in
excess of 15%. We observed that for four genes, all the 30
matrices showed at least some increase in additive variance
following a bottleneck. As is apparent from Figure 2, the
differences in the average release of additive variance
among the three types of distributions are quantitative rather
than qualitative.
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FIG. 2. Average release in additive variance after bottlenecks of size 2, 4, and 8, expressed as the average over the whole frequency
space of R(t 2 t0) 5 ( [t] 2 [t0])/ (t0) as a function of the inbreeding coefficient (F) for exponential (A), normal (B), and2 2 2s s sA A G
uniform (C) distributions. Squares: two locus model; circles: three locus model; and diamonds: four locus model. Small sized
symbols are for bottleneck of size 2, medium sized symbols are for bottlenecks of size 4, and large sized symbols are for bottlenecks
of size 8.

Metabolic Pathways

The two simple metabolic pathways show very different
patterns (Fig. 3). When there is dominance at each locus
(DMP model, panel A), a bottleneck always reduces the
amount of additive variance and the trend is little affected
by the number of loci. In striking contrast, when alleles at
each locus interact additively (AMP model, panel B), a bot-
tleneck will reduce additive variance when interactions take
place among two loci, but additive variance will be increased
for three and four loci over a large range of inbreeding values
(F between 0 and 0.5 for three genes and up to 0.8 for four
genes). Increases could also be very substantial, as the max-
imum R for four genes is 28%.(t 2t )i 0

From the inspection of these figures, three major trends

are noticeable: (1) increasing the number of genes underlying
quantitative characters increases the release in additive var-
iance or slows down its loss. (2) For a given genotypic value
and number of genes, it is the inbreeding coefficient rather
than the size of the bottleneck that determines mostly the
release in additive variance. (3) As the number of genes in-
creases, the inbreeding coefficient for which there is a max-
imum release in additive variance also increases. We also
observe that for a given number of loci and over the three
different types of genotypic matrices (‘‘pure,’’ physiological,
or statistical epistasis), no clear relation emerges between the
way genetic variance is initially partitioned into additivity,
dominance, and epistasis and the amount of release in ad-
ditive variance after population bottlenecks (Table 1 and Figs.
1–3).
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FIG. 3. Average release in additive variance after bottlenecks of size 2, 4, and 8, expressed as the average over the whole frequency
space of R(t 2 t0) 5 ( [t] 2 [t0])/ (t0) as a function of the inbreeding coefficient (F) for the two models of physiological epistasis:2 2 2s s sA A G
dominant metabolic pathway (A) and additive metabolic pathway (B). Squares: two locus model; circles: three locus model; and diamonds:
four locus model. Small sized symbols are for bottleneck of size 2, medium sized symbols are for bottlenecks of size 4, and large sized
symbols are for bottlenecks of size 8.

DISCUSSION

Before discussing our results, a few words are necessary
concerning the model and the metric we used. The effect of
bottlenecks on genetic variance could be modeled using either
of two approaches. One is the coancestry approach, first de-
scribed by Goodnight (1988), which has the advantage of
being independent of allelic frequencies, but requires trickier
mathematics. The other is the Markov Chain model we used.
One drawback of this method is that it depends on allele
frequencies, even if Goodnight (2000) showed that the Mar-
kov-Chain method gives results similar to the coancestry ap-
proach. To correct for a potential bias in the results due to
starting allelic frequencies, we present the results of the mod-
el for a total of 114 5 14,641 starting points from which drift

is allowed to operate. We also choose a metric to quantify
the release in additive variance (equation 7) that should be
insensitive to initial levels of additive variance. Previous au-
thors used the ratio of post- and prebottleneck additive var-
iance to quantify the conversion (Willis and Orr 1993; López-
Fanjul et al. 2002). This ratio suffers from being very sen-
sitive to low levels of additive variance before the bottleneck
(see for instance Fig. 3 of López-Fanjul et al. 2002). Here,
we take the difference between post- and prebottleneck ad-
ditive variance, a quantity less dependant on the initial ad-
ditive variance. This difference is divided by the total pre-
bottleneck total genetic variance (expected to be larger in
models with four genes than in model with two, see Keightley
1989) to make amount of additive variance comparable be-
tween the two, three and four locus models.
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As gene number increases, the number of possible epistatic
interactions increases exponentially. We show here that this
increase in gene number translates in an increase in the pro-
portion of epistatic variance present before a bottleneck (Ta-
ble 1). We also show that after a population bottleneck, the
release in additive variance increases with the number of
genes for all the matrices of genotypic values studied except
the Dominant Metabolic Pathway (DMP). The two models
(AA and AMP) with neither dominance nor dominance in-
teractions (and therefore for which a transfer of variance from
dominance to additivity cannot be suspected) are also the
models where the release in additive variance is maximum.
AA epistasis (the only form of epistasis present in the AA
and AMP models) is the only form of epistasis substantially
converted in additive variance. This is so even though the
initial proportion of epistatic variance is lower for ‘‘pure’’
AA than for AD and DD epistasis (Table 1). For additive
variance to increase, the type of epistasis is therefore more
prominent than the initial fraction of the genetic variance it
represents. This was already noticed for two loci by Good-
night (1988), Cheverud and Routman (1996) and Cheverud
(2000), but our results generalize this conclusion.

Respective Roles of Dominance and Epistasis

It is common knowledge that when only additive variance
is present, the effect of a bottleneck is to decrease it by a
factor (1-F) (see Lande 1980; Lynch and Walsh 1998). How-
ever, in a two locus model restricted to AA epistasis, Good-
night (1988) showed that the additive variance is enhanced
after population bottlenecks whenever / . 1/3, because2 2s sAA A

the loss in additive variance due to inbreeding is balanced
by the transfer from epistasis to additive variance. Our results
show that this prediction seems to hold for two, three, and
four genes. Indeed, for the AA model, / is always higher2 2s sAA A

than 0.43 (Table 1) and an increase in additive variance is
observed (Fig. 1). For the AMP model with two genes, /2sAA

is less than one-third (0.19, Table 1) and the additive2sA

variance always decreases (Fig. 3), whereas for three and
four genes, / is larger or equal to one-third, and an2 2s sAA A

increase in additive variance is observed. This increase in
additive variance even when / for the three locus2 2s s 5 1/3AA A

model is an indication that the conditions for this increase
for three genes are perhaps less strict than for two genes.
This is perhaps due to the value of not being necessarily2sAA

representative of (and generally underestimating) the amount
of individual-level epistasis.

Other types of epistasis have a less pronounced effect on
the release in additive variance as exemplified by DD ‘‘pure’’
epistasis and to a lesser extend by AD ‘‘pure’’ epistasis (Fig.
1), even though the initial proportion of total epistatic var-
iance is higher for both AD and DD than for AA epistasis
(Table 1). It remains that even when epistasis is not purely
additive-by-additive (our method of estimation of the dif-
ferent variance components does not allow to distinguish the
different epistatic terms, see above), with three and four loci,
we still see an increase in the proportion of additive variance
following a bottleneck (Figs. 1 and 2).

From our results, dominance variance seems to have a very
limited influence on the release in additive variance after

population bottlenecks. First, the initial proportion of dom-
inance variance decreases with the number of genes (Table
1) for all the matrices of genotypic values explored. Thus, it
is difficult to explain the increased release in additive vari-
ance with the number of loci by the sole transfer from dom-
inance to additivity. Robertson (1952), Rose (1982), and Wil-
lis and Orr (1993) have shown that dominance variance can
be converted into additive variance and could therefore coun-
terbalance the loss in additive variance with inbreeding. This
is in particular the case when genetic drift increases the fre-
quency of a rare recessive allele. But averaged over the allele
frequency space, a pure dominance model with one locus (a
5 0, d 5 1) leads to an average decrease in additive variance
following a bottleneck (for instance, the decrease in additive
variance after a bottleneck of two individuals averaged over
initial frequencies 0.1, 0.2. . . 0.9 is 18%). This comes from
two separate processes. First, the additive variance itself de-
creases. Second, dominance variance is converted into ad-
ditive variance for a large proportion of the allele frequency
spectrum, but this is not sufficient to balance the loss of

over the whole frequency space.2sA

The DMP model (Fig. 3) with four genes is particularly
informative on this issue. In this model, a strong decrease in
additive variance (48% on average initially, Table 1) is ob-
served despite the presence of dominance (14%) and epistatic
(38%) variance in the initial infinite population. A near linear
negative relation between R and F is seen for two, three,(t 2t )i 0

and four loci. This decrease is the pattern expected under a
pure additive model. The results for the AMP model are quite
different. In this model (with 52% , an initial proportion2sA
similar to the DMP model, and 48% , Table 1) additive2sI
variance increases quite dramatically after the successive bot-
tlenecks (Fig. 3). What differs between these two models are
first that there is no dominance variance in the AMP model,
and second, that the epistatic variance in the AMP model is
exclusively of the AA type (There can be no AD or DD
epistatic variance with no dominance). In these two models
at least, it is clear that dominance variance is not the main
factor in the transfer to additive variance following bottle-
necks, but that AA epistatic variance plays a prominent role.
Because AA epistasis does not contribute to inbreeding de-
pression (see Lynch and Walsh 1998, p. 258), this increase
in additive variance will not be penalized by inbreeding de-
pression, in opposition to what was suggested by López-
Fanjul et al. (2002). A further difference between our findings
and those of López-Fanjul et al. (2002) is that we found
conversion occurring despite initial additive variance being
present.

Respective Roles of Bottleneck Size and Duration

Different levels of inbreeding were obtained by changing
both the size and number of successive bottlenecks. Previous
authors (e.g., Cheverud and Routman 1995) emphasized the
effect of bottleneck size on the rate of conversion of epistatic
variance. However, Walsh and Lynch (1998) have suggested
that the important factor is neither the size of the bottleneck
nor its duration, but rather the inbreeding level attained by
the population. We confirm here that maximum releases in
additive variance were obtained for given inbreeding levels
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independently of the bottleneck size and we also show that
increasing the number and level of interactions between loci
increases the level of inbreeding after which a decline in
additive variance is observed after population bottlenecks.

How Many Loci Are Concerned in Nature?

The present study was limited to the simulation of four
different independent genes displaying epistasis. This num-
ber of loci is more than what is found in theoretical inves-
tigations published to date, but still questionable because it
is commonly agreed that quantitative traits are made of a
large number of genes. Estimating the number of genes un-
derlying variation has been the challenge of many geneticists,
and has led to the development of different tools from the
Castle-Wright estimator (Castle 1921; Wright 1968; Otto and
Jones 2000) to QTL analysis (Lynch and Walsh 1998). Ac-
cording to the literature, the number of genes we simulated
is in agreement with what is found in the literature for QTL
analyses. As a matter of fact, QTL analyses usually identify
between two and eight different QTLs with a mean of 4.21
and a standard deviation of 1.82 (reviewed in Roff 1997).
However, other studies have pointed out that QTL analyses
systematically underestimate the number of actual QTLs, ei-
ther because of experimental designs with low power (Beavis
1994) or because QTLs of low average effects are structurally
not detectable. Indeed, only QTLs with large or moderate
effects are detected (Otto and Jones 2000). This indicates that
the number of genes used in this study could be representative
of a large number of characters whose determinism is directed
by a small number of genes with large effects and a much
higher number of genes with small effects. Because we have
demonstrated that the release in additive variance after pop-
ulation bottlenecks increases with the number of genes, there-
fore we can expect that the observed pattern would be re-
inforced with traits directed by more than four genes, because
epistatic interactions grow exponentially with the number of
genes.

Are There Epistatic Interactions in Nature?

From our results, it is clear that epistasis, and in particular
AA epistasis, plays a more prominent role than dominance
in inflating the additive variance after population bottlenecks.
However, the role that epistasis can play may only be sig-
nificant if gene interactions are demonstrated to be common.
This is what has been postulated in several models of evo-
lutionary change, beside Wright’s shifting balance theory,
like Templeton’s genetic transilience mode of speciation
(Templeton 1980a,b; Carson 1982), or Schmalhausen’s
(1949) concept of stabilizing selection. Although Wright’s
principle of ‘‘universality of gene interactions’’ has been
acknowledged by many geneticists, the occurrence of epis-
tasis is still considerably discussed in both plants and ani-
mals. This is due to several factors, among them is the dif-
ficulty to measure gene interactions. There can indeed be
substantial epistatic gene action (physiological and/or
‘‘pure’’ epistasis) but still little manifestation of this in the
form of epistatic genetic variance within a population (sta-
tistical epistasis) (Cheverud and Routman 1995; Whitlock et
al. 1995). For instance, Keightley (1989) showed that, when

modeling epistasis in metabolic pathways, the epistatic var-
iance is expected to be small in spite of the prevalence of
epistatic interactions. The analysis of variance techniques,
and the underlying Fisherian model of quantitative genetics
classically used for analyzing variation, are also known to
minimize epistatic variance since the least-mean-square anal-
ysis implicitly maximizes the main effects against interaction
effects (see Templeton 2000; and Wade 1992, p. 44, and his
description of Neyman’s Monte Carlo experiment). More-
over, confidence limits for epistatic variance are generally
larger than for the other fractions of the genetic variance,
because of the small coefficient associated with the epistatic
variance in the covariance among relatives. Also, focusing
on the detection of interactions between two loci or QTLs
might hide epistasis between three or more loci (Templeton
2000). These factors considerably increase the size of ex-
perimental designs needed to measure epistasis and therefore
reduce the number of cases where designs are powerful
enough to detect gene interactions. Nevertheless, it seems
that epistasis is often found when adequate designs are used.
This is particularly the case with crop plants for which ex-
tensive analyses have been conducted for improvement pur-
poses (among others, Bailey et al. (1980) on wheat; Vasquez
and Sanchez-Monge (1987) and Choo and Reinberg (1988)
on barley; Moreno-Gonzalez and Dudley (1981), Damerval
et al. (1994), Doebley et al. (1995) on maize; Lark et al.
(1995) on soybean; Li et al. (1997) on rice, and Mirzaie-
Nodoushan et al. (1999) on red clover), or for some laboratory
models like Drosophila (Long et al. 1995; Clark and Wang
1997) or mice (Cheverud and Routman 1996). Epistasis has
also been found extensively in humans (for review, see Tem-
pleton 2000).

QTL identification and analysis are a promising method in
this field, because they allow to measure epistatic effects
rather than epistatic variance (Kao et al. 1999; Templeton
2000; Jannink and Jansen 2001; Kao and Zeng 2002) as ex-
emplified by Cheverud and Routman (1996), Eshed and Za-
mir (1996), Cockerham and Zeng (1996), Bailey et al. (1997),
Routman and Cheverud (1997), Gurganus et al. (1999), Kao
et al. (1999), Shook and Johnson (1999), and Ungerer et al.
(2002), among others. This is an important outcome since
the evolutionary potential of allelic combinations depends on
their epistatic effects, rather than their epistatic variance
(Whitlock et al. 1995).

How Applicable Are These Results to Traits
under Selection?

We did not include the effect of selection (nor did all other
theoretical studies of this kind) because our main goal was
to estimate the effect of the number of genes on the release
in additive variance after population bottlenecks. Beside the
intrinsic interest of quantifying the effect of a bottleneck on
neutral genetic variance, focalizing on neutral genes is also
tenable for two reasons. First, when a population is submitted
to a bottleneck, drift should become the prominent force af-
fecting allele frequencies changes, even if selection of mod-
erate strength is present. Second, one expects the additive
variance for a selected trait to be small in a population at
equilibrium, while the other component of genetic variance
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can be quite important (Mousseau and Roff 1987; Roff and
Mousseau 1987). Because the proportion of additive variance
for a selected trait before a bottleneck is expected to be close
to zero, changes in allele frequencies due to a bottleneck are
therefore bound to increase the amount of additive variance
by epistasis and/or dominance conversion, and allele fre-
quencies at equilibrium are likely those from which one ex-
pects the largest amount of conversion. As the increase in
additive variance reported here is an average taken over all
the surface of possible allele frequencies, and therefore fre-
quencies for which ± 0, it is likely that our results are2sA

an underestimate of what is expected from selected traits at
equilibrium (see López-Fanjul et al. 2002).

The former arguments, while explaining the adequacy of
a neutral model in the context of small populations, clearly
do not dismiss the need for more complex and realistic mod-
els including selection. It remains that our results show that
epistasis, rather than dominance, plays a significant role in
the increase of additive variance following bottlenecks.
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APPENDIX

Genotypic values for ‘‘pure’’ form of epistasis (AA, AD, and DD) and for physiological epistasis (additive and dominant metabolic
pathways).

‘‘Pure’’ AA epistasis

A1A1 A1A2 A2A2

‘‘Pure’’ AD epistasis
(ADAD and DADA)

A1A1 A1A2 A2A2

‘‘Pure’’ DD epistasis

A1A1 A1A2 A2A2
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Metabolic

Pathway (AMP)

A1A1 A1A2 A2A2

Additive
Metabolic

Pathway (DMP)

A1A1 A1A2 A2A2
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