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The aim of the present study was to investigate the genetic structure of the Valais shrew (Sorex antinorii) by a
combined phylogeographical and landscape genetic approach, and thereby to infer the locations of glacial refugia and
establish the influence of geographical barriers. We sequenced part of the mitochondrial cytochrome b (cyt b) gene
of 179 individuals of S. antinorii sampled across the entire species’ range. Six specimens attributed to S. arunchi were
included in the analysis. The phylogeographical pattern was assessed by Bayesian molecular phylogenetic
reconstruction, population genetic analyses, and a species distribution modelling (SDM)-based hindcasting approach.
We also used landscape genetics (including isolation-by-resistance) to infer the determinants of current intra-specific
genetic structure. The phylogeographical analysis revealed shallow divergence among haplotypes and no clear
substructure within S. antinorii. The starlike structure of the median-joining network is consistent with population
expansion from a single refugium, probably located in the Apennines. Long branches observed on the same network
also suggest that another refugium may have existed in the north-eastern part of Italy. This result is consistent with
SDM, which also suggests several habitable areas for S. antinorii in the Italian peninsula during the LGM. Therefore
S. antinorii appears to have occupied disconnected glacial refugia in the Italian peninsula, supporting previous data
for other species showing multiple refugia within southern refugial areas. By coupling genetic analyses and SDM,
we were able to infer how past climatic suitability contributed to genetic divergence of populations. The genetic
differentiation shown in the present study does not support the specific status of S. arunchi. © 2012 The Linnean
Society of London, Biological Journal of the Linnean Society, 2012, 105, 864–880.
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INTRODUCTION

Understanding the factors that both determine the
distribution of species and contribute to the formation
and the maintenance of population genetic structure
is a central tenet of biogeography. Moreover, such
an understanding enables the prediction of the
consequences of global change, such as future range
contraction and loss of genetic variation. In Europe,
the current patterns of species richness and genetic
structure can partially be explained by constraints
imposed during the Pleistocene ice ages. In particular,
the three southern European peninsulas (Iberian,
Italian, and Balkan) have traditionally been recog-
nized as glacial refugia during these ice ages, and are
currently considered as species-rich areas, as well as
hotspots of intra-specific diversity (Bilton et al., 1998;
Hewitt, 2000; Petit et al., 2003; Ruedi et al., 2008).
Although the southern European peninsulas are often
assumed to have been single areas from which species
recolonized higher latitudes after the Last Glacial
Maximum (LGM; Hewitt, 2000; Petit et al., 2003), it
has recently been suggested that populations within
species in a single southern peninsula may have been
distributed among multiple disconnected refugia
(Gómez & Lunt, 2007). Evidence for multiple glacial
refugia within single southern peninsulas is now sub-
stantial (Schmitt et al., 2006; Canestrelli, Cimmaruta
& Nascetti, 2007; Gómez & Lunt, 2007; Kryštufek
et al., 2007; Canestrelli & Nascetti, 2008; Ruedi et al.,
2008; Centeno-Cuadros, Delibes & Godoy, 2009; Grill
et al., 2009). However, further studies are required to
determine whether this is a common pattern or only
applicable to a few species, given its importance for
our interpretation of European phylogeography and
our understanding of biological and genetic diversity.
For example, although patterns in current genetic
variation in a certain species may reflect past popu-
lation structure at the LGM (i.e. the ‘refugia within
refugia’ considered above; Gómez & Lunt, 2007), the
patterns could also be explained by current genetic
discontinuity as a result of strong geographical
barriers. Therefore, the causes of genetic structure
should be investigated using multiple approaches,
including both species distribution modelling (SDM;
Guisan & Zimmermann, 2000; Waltari et al., 2007)
and the use of current landscape features to infer
which factor(s) are most responsible for shaping
intra-specific genetic subdivision.

SDM uses species occurrences and environmental
(usually climatic) data to estimate the range of suit-
able environmental conditions for the species (Guisan
& Zimmermann, 2000; Pellissier et al., 2010) (i.e. its
environmental niche). The defined environmental
niche can then be used to identify areas where the
past climatic environment was suitable for the species

(Nogues-Bravo, 2009), in this case at the LGM. The
major advantage of such integrative approaches is
that hindcasted models can be used to derive hypoth-
eses concerning species distribution, which can sub-
sequently be compared with the observed genetic
structure (Knowles, Carstens & Keat, 2007; Richards,
Carstens & Knowles, 2007).

Although the aforementioned phylogeography
investigates the historical processes generating pat-
terns of genetic variation, current landscape features,
especially across increasingly fragmented landscapes,
can also deeply influence the genetic diversity parti-
tioning and gene flow between populations (Manel
et al., 2003; Storfer et al., 2007). Genotyping can be
combined with spatially explicit data of landscape
structure (LS) and a variety of statistical methods can
be used to evaluate the role that current landscape
variables play in shaping current population struc-
ture and genetic diversity (Storfer et al., 2007).

The present study aimed to better understand the
factors determining the current pattern of genetic
variation of the Valais shrew, Sorex antinorii, over
its entire distribution by combining these two
approaches in an investigation of genetic structure
using both SDM (hindcasted in the LGM) and LS.
Despite their potential, very few studies have inter-
rogated putative ‘refugia within refugia’ using these
complementary approaches (Waltari et al., 2007). In
addition, we used a framework to determine the influ-
ence of LS on current gene flow among S. antinorii
populations. Sorex antinorii is a small insectivorous
species belonging to the Sorex araneus group (Hoff-
mann, 1971; Meylan & Hausser, 1973). Its current
known distribution is restricted to Italy, southern
Switzerland up to the central Alps and south-eastern
France (Brünner et al., 2002). It was formerly con-
sidered a chromosome race of S. araneus, although
Brünner et al. (2002) argued that morphological,
karyotypic, and genetic differences warrant recogniz-
ing S. antinorii as a separate species. Sorex antinorii
probably diverged from the other taxa of the S. ara-
neus group during the late Pleistocene glaciations
(Taberlet, Fumagalli & Hausser, 1994; Brünner et al.,
2002; Yannic, Basset & Hausser, 2008a) in refugia
situated in Italy, when the Alps were covered with an
immense ice sheet (Hewitt, 1996). Previous molecular
studies focused in Switzerland suggested that two
already differentiated genetic lineages colonized the
Swiss Alps from Italy after the last glaciations, and
came into secondary contact in the Rhône Valley
(Lugon-Moulin & Hausser, 2002; Basset, Yannic &
Hausser, 2006; Yannic, Basset & Hausser, 2008b).
Mitochondrial DNA (mtDNA) has become a powerful
tool for identifying evolutionary lineages or species
in animals (Hebert et al., 2003; Tautz et al., 2003;
Knowles & Carstens, 2007) as a result of its low or
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absent recombination, uniparental inheritance, con-
served structure, and relatively high evolutionary
rate (Avise, 2000). The cytochrome b (cyt b) gene is
one of the most frequently employed mtDNA genes for
investigating phylogeographical patterns and histo-
ries at the intraspecies level. In the present study, we
used mtDNA cyt b sequence data to examine the
phylogeography of S. antinorii over its range.

MATERIAL AND METHODS
PHYLOGEOGRAPHICAL ANALYSIS

Sampling
The geographical locations of sampling sites are
shown in Figure 1 and deposited in the Dryad reposi-
tory (Yannic et al., 2012). For the present study, we
analyzed 179 individuals from 39 localities spanning
the entire known species range (i.e. Italy, France, and
Switzerland) (Fig. 1). This set of samples included
material collected during fieldwork and from museum
collections (see Acknowledgements). Additionally,
based on the results of allozymic, morphologic and
morphometric studies, the existence of a relic of the
subgenus Sorex in north-eastern Italy has been sug-
gested (Lapini & Testone, 1998; Lapini, Filippucci &
Filacorda, 2001). This taxon, named Sorex arunchi,
was assumed to have recently diverged from S. anti-
norii (end of Pleistocene-lower Holocene) with a
current occurrence in the wet lowland woods of north-
eastern Italy (Terra Typica: ‘Bosco Baredi-Selva di
Arvonchi’ and ‘Bosco Coda di Manin’, community of
Muzzana del Turgnano, province of Udine, north-
eastern Italy) (Lapini et al., 2001). However, no study
has subsequently confirmed the existence of the taxon
either genetically or karyotypically, nor established
its relationship with other species of the S. araneus
group. Therefore, six samples attributed to S. arunchi
(Lapini et al., 2001) were also analyzed. Six further
samples were included in the study: S. araneus
(N = 2) as a sibling species of S. antinorii (Brünner
et al., 2002), Sorex samniticus (N = 2) as a sister
species of the S. araneus group and endemic to the
Italian peninsula (Fumagalli et al., 1996), and Sorex
minutus (N = 2), which is more distantly related
(Fumagalli et al., 1999; Yannic et al., 2008a, 2010)
and used as the outgroup.

DNA extraction and amplification of cyt b
Genomic DNA was extracted using the QIAgen
DNeasy Blood and Tissue kit. Double-stranded DNA
amplifications of cyt b were performed with L14841/
H15915 (Kocher et al., 1989; Irwin, Kocher & Wilson,
1991) or with a combination of primers L14841/ cyt b-4
and cyt b-1/H15915 (Cyt b-1: 5′-TTA TTC GCA GTA
ATA GCC ACT GC-3′; Cyt b-4: 5′-AAC TGT TGC GCC
TCA AAA TGA TAT TTG TCC TCA-3′; modified from
Dubey et al., 2006b). Polymerase chain reactions
(PCRs) were performed in a PE9700 thermal cycler
(Applied Biosystems) with the cycling conditions:
initial denaturation at 95 °C for 5 min, followed by 35
cycles of 94 °C for 30 s, annealing at 60 °C for 1 min
and extension at 72 °C for 1 min 30 s, and a final
extension of 72 °C for 10 min. The PCR products were
checked on a 1.5% agarose gel and then purified using
the QIAquick PCR Purification Kit in accordance with
the manufacturer’s instructions. DNA sequencing was
performed in a total volume of 10 mL containing
approximately 100 ng of purified PCR product, 1 mL of
10 mM primers, and 4 mL of ABIPRISM Terminator 3.1
(Applied Biosystems). The sequence reaction consisted
of 35 cycles of 96 °C for 15 s, 50 °C for 15 s, and 60 °C
for 2 min. Purification of PCR products was conducted
with a commercial kit (Qiagen) and purified PCR
products were sequenced in both directions (Centre of
Integrative Genomic, University of Lausanne and
Cornell University Core Laboratories Center).

Phylogenetic methods
Nucleotide sequences of cyt b were edited in
SEQUENCHER, version 3.0 (Gene Codes Corp.),
aligned with CLUSTALX, version 2.0 (Thompson et al.,
1997) using default parameters, and then checked by
eye and collapsed into haplotypes using DNASP,
version 5.10.00 (Librado & Rozas, 2009). For Bayesian
phylogenies, the best model of DNA substitution was
determined using JMODELTEST, version 0.1.1
(Posada, 2008) under the Akaike information criterion.
Markov Chain Monte Carlo (MCMC) technique was
performed in MrBayes, 3.1.2, using a full partition
strategy (i.e. each codon position for each coding gene
was entered in a separate partition) (Huelsenbeck &
Ronquist, 2001; Ronquist & Huelsenbeck, 2003) to
characterize the probability distribution of phyloge-
netic trees given the data. Two independent runs were
performed, each consisting of four parallel MCMC

�
Figure 1. Map of the study area illustrating sampling localities of Sorex antinorii (white circles; 1 � N < 4) and major
geographical features. Black circles indicate sampling sites (N � 4) included in the landscape genetic analyses and
numbers correspond with the Pop ID listed in Table 1. Black diamonds indicate localities where Sorex arunchi specimens
were found. Broken black lines refer to geographical regions arbitrary defined for discussion (W, west; NW, north-west;
C, central; E, east).
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chains of ten million generations. Trees were sampled
every 1000 generations. To assess convergence among
MCMC runs, the trends and distributions of log-
likelihoods and parameter values were examined in
TRACER, version 1.4 (Rambaut & Drummond, 2007),
and the correlations of split frequencies among runs
were examined in AWTY (Nylander et al., 2008).
Samples showed patterns consistent with stationarity
and convergence after at most one million generations
for all runs and data sets; hence, the first 10% of
samples were discarded as burn-in for all analyses.
The remaining trees were used to construct a 50%
majority-consensus tree. Resulting phylograms and
posterior probabilities were visualized in FIGTREE,
version 1.3.1 (Rambaut, 2009). We follow a conserva-
tive approach considering only posterior probabilities
� 0.90 as significant. A parsimony phylogenetic
network of cyt b haplotypes was constructed using
NETWORK, version 4.5.1.0 (Fluxus Technology Ltd)
(Bandelt, Forster & Röhl, 1999) with a median-joining
algorithm and a greedy FHP (‘prior to further process-
ing’) genetic distance calculation method (Bandelt
et al., 1999). The median-joining algorithm identifies
groups of haplotypes and introduces hypothetical (non-
observed) haplotypes to construct the parsimony
network. Under the circumstances of closely-related
sequences, there are advantages in using a median-
joining network to depict relationships (Posada &
Crandall, 2001) and simulation studies have demon-
strated that this method provides reliable estimates of
the true genealogy (Cassens, Mardulyn & Milinko-
vitch, 2005; Woolley, Posada & Crandall, 2008).

Genetic and statistical analysis
Standard sequence polymorphism indices [number of
haplotypes (Nh), polymorphic sites and parsimony
informative sites] and molecular diversity indices [i.e.
gene diversity (h) and nucleotide diversity (p), which
are equivalent to heterozygosity at the haplotype and
nucleotide level, respectively] were estimated using
ARLEQUIN, version 3.5.1.2 (Excoffier & Lischer,
2010). Populations in refugial regions often show high
allelic diversity as a result of refugia persistence and
the accumulation of variation (Hewitt, 1996, 2001).
Diversity indices were therefore estimated for the
whole dataset and for the 21 sampling localities for
which data on at least four specimens were available
(Fig. 1, Table 1). The prediction is that a refugial
population spreading from its leading edge will expe-
rience a series of bottlenecks that will reduce diver-
sity. Thus, mtDNA diversity should decrease with
distance from a refugium. This prediction has been
modelled by computer simulations (Hewitt, 1996) and
observed empirically (Shafer, Côté & Coltman, 2011).

A mismatch distribution (distribution of the number
of differences between pairs of haplotypes) was esti-
mated to compare the demography of the populations
with the expectations of a sudden population expan-
sion model (Harpending et al., 1998). The raggedness
index (rg), which measures the smoothness of the
observed distribution, was computed and the statisti-
cal validity of the estimated expansion model was
tested using a parametric bootstrap approach as a sum
of square deviations (SSD) between the observed and
the expected mismatch (Schneider & Excoffier, 1999)
using ARLEQUIN, version 3.5.1.2 (10 000 replicates).
Fu’s (1997) Fs and Tajima’s (1989) D-tests for popula-
tion expansion were performed in ARLEQUIN using
coalescent simulations to test for statistical signifi-
cance (10 000 replicates).

SPECIES DISTRIBUTION MODELLING

We used records of S. antinorii throughout its range
either from our own fieldwork, from databases
(Centre Suisse de Cartographie de la Faune, Neuchâ-
tel; Maiorano, Falcucci & Boitani, 2008) or from
museum specimens obtained for our study (see
Acknowledgements; see also the Supporting informa-
tion, Fig. S1). Because the occurrences were highly
aggregated in some areas as a result of trapping
intensity, we randomly selected a subset of occur-
rences with a minimal distance of 10 km. Because
most modelling techniques require information about
both presence and absence to determine the suitable
conditions for a given species, we selected 10 000
pseudo-absences randomly over the study area cover-
ing the whole Italian peninsula, as well as the Alps;
these correspond to the raw boundaries of the range
occupied by the species. The modelling techniques
then discriminate between the conditions suitable for
presence and the background environment (Wisz &
Guisan, 2009). The resulting presences and pseudo-
absences were used in the subsequent SDM.

We ran species distribution models at a resolution
of 2.5 arc-minutes (5 km at the equator) using eight
climatic variables taken from Worldclim (Hijmans
et al., 2005), expected to have a biological meaning
for the distribution of S. antinorii: annual mean
temperature (bio1), temperature seasonality (bio4),
maximum temperature of the warmest month (bio5),
minimum temperature of the coldest month (bio6),
annual precipitation (bio12), precipitation of the
wettest month (bio13), precipitation of the driest
month (bio14), and precipitation seasonality (bio15).

We modelled the distribution of the species
using the BIOMOD package (Thuiller et al., 2009),
implemented for R software (R Development Core
Team, 2008). Ensemble forecasting approaches have
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been shown to significantly improve the accuracy of
species distribution models (Marmion et al., 2009).
Therefore, we used and combined the results of seven
different statistical techniques to model the distribu-
tion of the species: (1) generalized linear model
(GLM); (2) generalized additive model (GAM); (3)
classification tree analysis (CTA); (4) artificial neural
networks (ANN); (5) multivariate adaptive regression
splines (MARS); (6) generalized boosting model
(GBM); and (7) Random Forest (RF).

To evaluate the predictive performance of the
species distribution model, we used a random subset
of 70% of the data to calibrate every model, and
used the remaining 30% for the evaluation. Models
were evaluated using a relative operating character-
istic (ROC) curve and the area under the curve
(AUC) (Fielding & Bell, 1997). We repeated the split
50 times and recalculated the average AUC of the
repeated split-samples, which gave a more robust
estimate of the predictive performance of each
model.

Finally, each model was projected into the past
using two general circulation model (GCM) simu-
lations for the last glacial maximum (LGM:
21 000 ± 2000 years): the Worldclim data of the Com-
munity Climate System Model (CCSM; Collins et al.,
2004) and the Model for Interdisciplinary Research on
Climate (MIROC, version 3.2; Hasumi & Emori, 2004)
downscaled to a resolution of 2.5 (4 km) arc-minutes
resolution. To reflect the central tendency of these
distributions, accounting for variations among mod-
elling techniques, we applied a weighted average of
the seven modelling techniques based on the predic-
tive power (AUC; Araújo & New, 2007). Predictions of
species distributions were obtained by classifying the
probabilities into binary presence and absence data
according to a ROC-optimized threshold, which is
considered among the best-performing threshold-
based approaches (Liu et al., 2005).

LANDSCAPE DATA AND LANDSCAPE

RESISTANCE MODELS

Although mtDNA evolves too slowly to be useful for
inferring most recent and ongoing micro-evolutionary
processes, the variations in haplotype frequencies are
still informative for identifying landscape processes
shaping genetic structure through gene flow (Wang,
2010).

For this analysis, the dataset was reduced to the
sampling localities for which data on at least four
specimens were available, and we excluded the south-
ernmost population Gran Sasso, Abruzzo, because its
distance from the others exceeded computational limi-
tations. Therefore, the landscape analysis included
154 out of the 179 S. antinorii individuals and 89 out

of the 103 inferred mtDNA haplotypes from 20 differ-
ent sampling localities (Fig. 1, Table 1). The popula-
tion structure across the study area and between
sampling sites was assessed by calculating fST, using
ARLEQUIN. For the genetic model, we used the
Kimura two-parameter genetic distance (Kimura,
1980). Significance values for the two methods of
computation of population structure were obtained
after 10 000 permutations.

We used CIRCUITSCAPE, version 2.2 (McRae,
2006) to model the connectivity between populations
accounting for landscape features, which can
enhance or limit the dispersal of S. antinorii. The
algorithm in CIRCUITSCAPE evaluates landscape
resistance or conductance between the investigated
populations from multiple paths (McRae, 2006). For
this analysis, we first generated a raster of land-
scape resistance based on a ‘flat’ landscape (i.e. all
pixels with the same resistance value) at a resolu-
tion of 300 m for an area containing the 20 popu-
lations analyzed. Second, we generated a digital
elevation model (DEM) at a resolution of 300 m
from the raster DEM. Because it is expected to be
more costly for the species to climb to a higher
elevation to disperse, higher altitude can be seen
as a resistance to connectivity. Third, because the
species is known to use moist (i.e. riverside used
as corridor) habitat with a dense vegetation cover
(Lugon-Moulin, 2004), we created a raster of dis-
tances to rivers, assigning pixels far from rivers as
more resistant to dispersal (RIV). These two land-
scape rasters were rescaled to have values between
0 and 1. Finally, we extracted a raster of land cover
(LAC) from the ESA-GlobCover at a resolution of
300 m. We assigned conductance values from 0 to 1
to each land cover categories using our knowledge of
the ecology of the species (Lugon-Moulin et al., 1999;
Lugon-Moulin & Hausser, 2002; Lugon-Moulin,
2004; Yannic et al., 2008b) and expert knowledge
from the literature (Murray et al., 2009). All large
water bodies were given a conductance a priori of 0
in all rasters. We also generated input rasters for
CIRCUITSCAPE combining pairs of landscape fea-
tures corresponding to the sum of the rasters
previously calculated (McRae & Beier, 2007). We
generated a pairwise connectivity matrix based on
the four rasters above and their combination. To
evaluate the relative importance of the landscape
features in predicting levels of genetic structure
across the population studied, we conducted Mantel
(1967) tests examining correlations between pair-
wise genetic structure and models of pairwise con-
nectivity. All Mantel tests were conducted in the
R software package ECODIST (Goslee & Urban,
2007) with 10 000 matrix permutations to assess
significance.
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RESULTS
PHYLOGEOGRAPHICAL ANALYSIS AND

MOLECULAR DATING

A total of 103 haplotypes was identified among the
185 specimens and deposited in GenBank (accession
numbers: HQ901808–HQ901910). Of the 1011 bp
sequenced, 115 sites were variable and 57 parsimony-
informative. No insertions or deletions were observed.
The average transitions/transversion ratio (5.5) and
base composition (T: 29.2%; C: 28.2%; A: 28.8%; G:
13.8%) are similar to values reported in previous
studies of the cyt b gene of several small mammals
(Michaux et al., 2003; Deffontaine et al., 2005).

The overall observed gene diversity (h) was
0.972 ± 0.008 (mean ± SD) and the overall nucleotide
diversity (p) was 4.9 ¥ 10-3 ± 0.24 ¥ 10-3. Gene diver-
sity within sampling sites ranged from 0.0 to
1.0 (median = 0.89) and nucleotide diversity varied
from 0.0 to 6.0 ¥ 10-3 (median = 2.6 ¥ 10-3). Figure 2
revealed a higher nucleotide diversity in north-eastern
Italy, whereas gene diversity is rather homogeneous
among sampling sites. There was a significant and
negative correlation between the nucleotide diversity
and Euclidian distance to the most eastern population
(i.e. Archeton, Treviso: r = -0.44, P = 0.043), and this
effect is even stronger when the monomorphic popula-
tion (i.e. Medels im Rheinwald, Graubünden, Switzer-
land) was removed from the analysis (r = -0.60,
P = 0.005). There was no correlation between gene
diversity and Euclidean distance to the most eastern
population (r = 0.007, P = 0.98).

The mismatch distribution of the whole dataset
showed a unimodal distribution that fitted, visually,

almost perfectly over the expected values for a popu-
lation expansion model (data not shown). There was
an observed mean of 4.98 ± 2.43 pairwise differences
among haplotypes. The goodness-of-fit test showed
no significant differences between the observed and
expected values under a sudden expansion model
(SSD = 0.0001, pSSD > 0.05; rg = 0.0074, prg > 0.05).
Negative and significant Tajima’s D (-2.3509,
P < 0.001) and Fu’s Fs (-25.2442, P < 0.001) showed
departures from neutrality also consistent with a
sudden population expansion.

Bayesian phylogenetic analyses inferred with a
HKY+G+I model revealed limited support for phylo-
genetic structure within S. antinorii because they
are essentially polytomies (Fig. 3). Several statisti-
cally supported haplogroups emerged, essentially
composed of samples found at the margin of the
S. antinorii range (i.e. mostly located in eastern
Alps but also in western and north-western Alps or
in the Apennines). The six samples attributed to
S. arunchi fell into to the main lineage and did
not differ from those of S. antinorii (Fig. 3, black
stars).

The haplotype network displays a star-like pattern
with a central high-frequency haplotype (f = 0.15)
(Fig. 4). The central common haplotype was found in
Italian, Swiss, and French localities, although not in
the north-eastern Italian localities. Three clusters
emerged, which were also supported on the BI tree.
Interestingly, all these three divergent haplogroups
are located in central or eastern Alps. In agreement
with the BI analyses, three additional haplogroups,
less distant to the central haplotype, are also present.
They encompass samples found in western Alps, as
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Figure 2. Gene diversity and nucleotide diversity observed in 21 localities across the range of Sorex antinorii plotted
against longitude and latitude (Fig. 1, Table 1). The colour and size of circles are a function of the diversity index.
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well as in the Apennines. Again, the six samples
attributed to S. arunchi did not differ from those of
S. antinorii.

SPECIES DISTRIBUTION MODELLING

SDM proved useful for predicting the distribution
of S. antinorii (AUC: ANN = 0.776, CTA = 0.831,
GAM = 0.856, GBM = 0.846, GLM = 0.832, MARS =
0.828, RF = 0.84). The overall results show that the
potential distribution for S. antinorii (estimated
using recent species records and eight selected biocli-
matic variables) encompasses the known distribution
of the species in Europe (Fig. 5A). However, the model
also found suitable habitat for S. antinorii outside
its actual range or where the species has not yet
been recorded despite extensive sampling efforts (i.e.
west of the French Rhône Valley and in the Jura
Mountains).

The two GCMs predicted fragmented suitable
LGM climatic conditions for S. antinorii in the Italian
Peninsula, concordant with distinct refugia within a
refugium (Fig. 5B, C). The potential niche predicted
under the MIROC model (Fig. 5C) is generally more
fragmented and restricted than the CCSM predicted
distribution (Fig. 5B). Both GCMs, however, predicted
patchy suitable LGM climatic conditions in an
extended area, ranging from the Region of Piedmont
to the Apennines of the Region of Abruzzo, and also to
the Region of Calabria on the southern tip of the
peninsula. CCSM and MIROC also predicted more
restricted suitable habitats close to the edge of the ice
sheet present in north-eastern Italy during the LGM.
Nonetheless, suitable LGM climatic conditions were
also predicted outside the Italian Peninsula by the
two models: (1) east of Italy, in the Balkans, on the
eastern coast of the Adriatic Sea; (2) west of Italy,
in the French-Italian Alps in south-eastern France,
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extending as far north as the Vercors Massif; and (3)
north of the LGM ice sheet in the German Alps and
neighbouring north-eastern areas.

LANDSCAPE RESISTANCE MODELS

A hierarchical analysis of molecular variance showed
that most of the mtDNA variability (65%) was dis-
tributed within populations. The overall genetic dif-
ferentiation of populations was high and significant
(fST = 0.35, P < 0.001). Pairwise genetic distances
between sampling localities ranged from zero to 0.65.
We observed a significant pattern of isolation-by-
resistance (IBR) based on the ‘flat’ landscape at this
spatial scale (R2 = 0.20, P < 0.0001) (Table 1). By com-
parison, IBD based on Euclidean distances between
sites explained less variance (R2 = 0.17, P < 0.0001).
Landscape resistance values that incorporated alti-
tude (DEM) and, to a lesser extent, land cover (LAC)
as dispersal barriers resulted in a significant but

stronger relationship between landscape resistance
and genetic structure than those based on GEO dis-
tances or a ‘flat’ landscape (Table 2). Incorporating the
distance to rivers (RIV), the model suggested that
there was no significant relationship between genetic
structure and geographical features, after correction
for multiple tests. The incorporation of other land-
scape variables or combinations of other landscape
variables did not further improve the relationship
between genetic structure and geographical distance
(Table 2).

DISCUSSION
CLIMATIC SUITABILITY AT THE LGM

The concordance between the two species distribution
models suggests that we obtained robust results con-
cerning the LGM distribution of S. antinorii. The
two-hindcasted models showed some discontinuities
in the range of suitable climatic conditions for this

NW Alps

Central Apennines

E Alps

C Alps

W Alps

Po Valley 

Figure 4. Median-joining network of the different mitochondrial DNA haplotypes of Sorex antinorii. The size of the
symbols is proportional to the number of individuals sharing each haplotype and the lengths of the branches are
proportional to the number of mutational steps between haplotypes. Black stars indicate haplotypes putatively attributed
to Sorex arunchi. Geographical regions refer to the range definition of Fig. 1.
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species at the LGM (LGM: 21 000 ± 2000 years ago),
which could represent error during climatic recon-
structions. The predictions for the LGM identified two
main climatically suitable areas within the Italian
peninsula concordant with the ‘refugia within refugia’
concept (Gómez & Lunt, 2007). The larger of these
two areas was in the region of Piedmont and in the
Apennine mountain chain, from the northern Apen-
nines to Abruzzo. Interestingly, the second suitable
habitat, covering a smaller area, also appeared to be
present in northern Italy, at the border of the ice
sheet in the pre-Alps of Lombardy. The models used
predicted both present day and past suitable condi-
tions outside the reported distribution of the species:
to the west, from the Upper Arve Valley to the Vercors
Massif and in the Jura Mountains; in the eastern and
northern coasts of the Adriatic Sea; and to the north
of the ice sheet in the German Alps. We have no
evidence that confirms the presence of S. antinorii in
these regions during the LGM. This situation prob-
ably reflects the existence of competing forms (the
area concerned being currently occupied by the
sibling species S. araneus and S. coronatus) and past
dispersal barriers (extended glaciers). Therefore, at
the LGM, S. antinorii was apparently restricted to
the Italian Peninsula, which itself was subdivided
into multiple suitable areas, concordant with the
‘refugia within refugia’ concept (Gómez & Lunt, 2007).

PHYLOGEOGRAPHICAL APPROACH

The phylogeographical analysis revealed shallow
divergence among haplotypes and no clear substruc-
ture within S. antinorii. The comparison of the two
tests of neutrality and the starlike topology of the
median-joining network both indicated a sudden
population expansion from a single refugium, prob-
ably located in the Apennines (see also the map of
suitable available habitats during the LGM; Fig. 5).
Furthermore, additional haplogroups, statistically
supported, emerged on the Bayesian analyses and the
median-joining network also showed long branches.
These long branches notably lead to haplogroups
located in the north-eastern part of the Italian Pen-
insula, suggesting that at least another refugium may
have existed there. Populations in refugial regions
often show high genetic diversity due to refugial per-
sistence and accumulation of variation (Hewitt, 2001,
2004). In accordance with this prediction, we observed
higher nucleotide diversity (p) in populations from
eastern Alps. However, gene diversity (h) was not
higher in these populations. The higher p values
observed in north-eastern Italy might be explained by
an intrinsic characteristic of this parameter that
takes into account the divergence between haplotypes
and therefore it can be inflated if haplotypes from

Figure 5. Species distribution models depicting potential
distribution for Sorex antinorii during the present time
(A), and in the Last Glacial Maximum (LGM) (21 kya) for
the Community Climate System Model (CCSM) model (B)
and for the Model for Interdisciplinary Research on
Climate (MIROC) model (C). Dark areas indicate strong
distributional predictions and light areas indicate weak
predictions. The white dotted areas in (B) and (C) indicate
the general extent of the major ice sheets at the LGM.
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different refugia meet in a zone of contact. Thus,
large p values may be found in areas that have
received immigrants from more than one refugium.
Nowadays, there is no longer geographical segrega-
tion between the lineages, suggesting that the popu-
lations came into contact soon after a period of genetic
differentiation.

It is worth noting that a variety of other small
vertebrates, including amphibians (Canestrelli et al.,
2007; Canestrelli & Nascetti, 2008), reptiles (Ursen-
bacher et al., 2006), and mammals (Grill et al., 2009;
Vega et al., 2010) are also characterized by divergent
genetic lineages within the Italian Peninsula. These
previous studies also concur that the southern part of
the Italian Peninsula is a particularly important site
of genetic diversification, and repeatedly show phylo-
geographical discontinuities in the Calabrian Penin-
sula (Canestrelli, Cimmaruta & Nascetti, 2008; Vega
et al., 2010). Our data based on genetics and SDM
differ, however, from most previous studies (1) in the
level of genetic differentiation among clades and (2)
mainly in suggesting possible refugia located in the
northern Italian Peninsula, consistent for a cold-
tolerant species, such as S. antinorii. Such a pattern
has also been documented in Hyla intermedia, an
amphibian that forms three well-supported clades at
the mtDNA level; one clade being restricted to the
north of Italy (Dubey, Ursenbacher & Fumagalli,
2006a; Canestrelli et al., 2007; Stoeck et al., 2008). A
similar pattern was also observed in the wall lizard
(Podarcis muralis), where one clade is restricted to
the Alps and the western Padana Plain, and the other
two are located on the Tyrrhenian side of Italy, in the
central Apennines and southern Italy, respectively

(Giovannotti, Nisi-Cerioni & Caputo, 2010). Never-
theless, the ecology and geographical range of the
different lineages inferred for both species indicate
that it is unlikely that they had a similar diversifi-
cation history to S. antinorii. Instead, the border of
the southern European Alps is known to be a glacial
refugium for several alpine plant species (Schönswet-
ter et al., 2005), which suggests that there was also
suitable habitat for small mammals in the pre-Alps
region at the LGM. Unexpectedly, the genetic sub-
structure previously discovered within S. antinorii,
primarily on the basis of microsatellite analysis (i.e.
one group containing individuals sampled in the
northern part of the French Alps and western Swit-
zerland and the second group containing the individu-
als sampled in Italy, eastern Switzerland and the
southern French Alps) (Lugon-Moulin & Hausser,
2002; Basset et al., 2006; Yannic et al., 2008b), is not
geographically confirmed here at a broader geographi-
cal scale with cyt b. This substructure could therefore
be the result of a regional genetic isolation of popu-
lations rather than a more ancient phylogeographical
differentiation.

EFFECT OF THE LANDSCAPE

Current landscape features, especially across increas-
ingly fragmented habitats, can also deeply influence
the partitioning of the genetic diversity and gene flow
between populations (Keyghobadi, 2007; Storfer et al.,
2007; Holderegger & Wagner, 2008; Holderegger & Di
Giulio, 2010). Along its length, the Italian Peninsula
is highly fragmented by large urban and sub-
urban infrastructures, wide rivers, and mountainous

Table 2. Results of Mantel tests showing the association between pairwise genetic distance [fST/(1 - fST] and models of
geographical distance among Valais shrew populations

Geographical
variable r R2 95%CI P

GEO 0.408 0.166 0.360/0.456 < 0.0001*
FLAT 0.451 0.20 0.394/0.527 < 0.0001*
LAC 0.505 0.25 0.304/0.461 < 0.0001*
DEM -0.591 0.35 -0.655/-0.509 < 0.0001*
RIV -0.190 0.036 -0.278/-0.090 0.0129
LAC_RIV 0.368 0.13 0.304/0.461 < 0.0001*
DEM_RIV -0.372 0.14 -0.441/-0.280 < 0.0001*
DEM_LAC 0.225 0.050 0.168/0.310 0.0023*

R2, the proportion of the variance explained by the model; 95%CI, the 95% confidence limits of the Mantel r and P
two-tailed P-values (null hypothesis: r = 0).
Asterisks (*) indicate significant P-values, after adjustment for multiple tests, based on a sequential goodness of fit
metatest (SGoF; Carvajal-Rodriguez, de Una-Alvarez & Rolan-Alvarez, 2009).
DEM, elevation model; LAC, land cover; FLAT, ‘flat’ landscape; GEO, Euclidian distance; RIV, river (for details, see
Material and Methods).
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landscapes. Typically, these features are considered to
impede dispersal and reduce gene flow (Trombulak
& Frissell, 2000; Delaney, Riley & Fisher, 2010;
Frantz et al., 2010; Murphy et al., 2010). Our IBR
study also showed that some landscape features prob-
ably had an impact on the genetic differentiation
among populations of S. antinorii when we controlled
for distance between localities. In particular, we
showed that altitude and land cover had a strong
effect on population genetic differentiation. Although
current occurrences of S. antinorii are recorded up
to 2700 m a.s.l. (Yannic et al., 2008b) and previous
studies showed that alpine passes of up to 2500 m
a.s.l. did not represent strong barriers to gene flow for
S. antinorii (Lugon-Moulin & Hausser, 2002; Yannic
et al., 2008b), it is not so unexpected that glacier-
covered mountain ridges and predominately rocky
habitats strongly impact gene flow. Conversely, rivers
apparently had no significant impact on gene flow.
This result is consistent with previous studies
(Lugon-Moulin et al., 1999), although such a finding
may depend on the nature of the streams (mountain
streams and moraine may impeded gene flow).

Our LS approach showed that heterogeneous land-
scape (e.g. altitude and land cover) might affect
genetic differentiation among shrew populations. We
have also previously demonstrated that S. antinorii
appears to have occupied disconnected glacial refugia
in the Italian peninsula during the LGM. Based on
both approaches, it is however difficult to disentangle
the main factors (i.e. current landscape features
or past isolation during the LGM) explaining the
observed current genetic differentiation of shrew
populations. Two main reasons can be advocated.
First, the cyt b is not the most suitable marker to
infer current gene flow. Second, the populations used
for the LS analyses are mainly located in the north-
ern range of the species (i.e. where the putative
cryptic refugia were located and where the altitudes
are also the highest). Therefore, both effects may be
mingled.

SPECIFIC STATUS OF S. ARUNCHI,
LAPINI & TESTONE, 1998

Sorex antinorii belongs to the S. araneus group,
encompassing nine morphologically, genetically, and
chromosomally well-described species (Fumagalli
et al., 1996; Searle & Wójcik, 2000; Brünner et al.,
2002). Sorex antinorii and related species also
show impressive diversification involving chromo-
somal rearrangements. Such variability reaches its
maximum in S. araneus, a Palearctic species differ-
entiated in > 70 different karyotypic races (Searle &
Wójcik, 1998; Wójcik et al., 2003). Sorex arunchi has
been described on the basis of morphology and mor-

phometrics (Lapini & Testone, 1998; Lapini et al.,
2001). Describing new species from morphologically
homogeneous but species-rich groups such as S. ara-
neus is notoriously difficult. Analyses of standard
DNA markers are often useful for resolving such
taxonomic problems. Therefore, the present study
included six samples attributed to S. arunchi, which
were kindly provided by Luca Lapini (Museo Friulano
di Storia Naturale, Udine) and morphologically iden-
tified. However, despite the possibility of cryptic sub-
clades within S. antinorii as shown by our SDM
approach, the phylogenetic positions of these samples
did not allow the distinction of S. arunchi from S. an-
tinorii. Indeed, exactly the same haplotypes were
shared between the two taxa. Introgressive hybrid-
ization leading to massive transfer of mtDNA haplo-
types from a species to another is not an uncommon
phenomenon in mammals (Ruedi, Smith & Patton,
1997; Alves et al., 2006; Pidancier et al., 2006;
Gompert et al., 2008; Good et al., 2008) and has prob-
ably occurred among species of the S. araneus group
(Yannic et al., 2008a, 2010). Therefore, additional
samples from north-eastern Italy, where genetic dif-
ferentiation has most likely occurred (Figs 3, 4), as
well as alternative marker systems (autosomal and
Y-chromosome genes) and karyological data, are cer-
tainly required to accurately investigate S. arunchi
properly. For now, the lack of genetic differentiation
shown in the present study does not support the
specific status of S. arunchi.

CONCLUSIONS

Long periods of geographical isolation during the
Pleistocene glaciations are viewed as the main causes
of genetic differentiation and subsequent speciation of
current fauna. Our results with SDM confirmed the
possibility of multiple refugia in the Italian Peninsula
and the shallow divergence within S. antinorii may
result from both historical processes (as demon-
strated by phylogeographical approaches) and con-
temporary processes (as suggested by our IBR
approach). Contrasting genetic structure inferred
from mtDNA against markers with faster evolution-
ary rates (i.e. nuclear microsatellites) would, however,
be required to fully disentangle the intricate role of
historical vicariance and contemporary fragmentation
that influence the distribution and abundance of
genetic diversity in the Valais shrew.
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