Brain perfusion made easy: CT/MR?
Vienna ECR 2011

Techniques for CT and MR, post processing, radiation

Pr Reto Meuli,
Centre Hospitalier Universitaire vaudois et Université de Lausanne
Switzerland
Learning Objectives:

1. To understand and compare the different techniques for brain perfusion imaging.
2. To learn about the methods of acquisition and post-processing of brain perfusion by first pass of contrast agent for CT and MR.
3. To learn about non contrast MR methods (arterial spin labeling).
Plan of the presentation

- Essential of cerebral blood flow (CBF)
- Brain perfusion methods
- CT
 - Xenon-CT, First pass of Contrast
 - Radiation Protection
- MR
 - First pass of Contrast
 - Arterial Spin Labelling (ASL)
Essential of cerebral blood flow

- Brain is highly depend of blood flow
- CBF is 15% of the cardiac output at rest
- ~ 750 ml/min, ~ 50 ml/min/100g
- ~ 80 ml/min/100g in grey matter
- ~ 20 ml/min/100g in white matter
- Blood brain barrier (unique to the brain)
 - Can be altered by various conditions (stroke, tumours, inflammation,...)
Essential of cerebral blood flow

- Strong auto regulation
- CBF < 20, loss of neuronal function, penumbra
- CBF < 10, ischemic cascade, infarct
- CBF modulated by PaCO$_2$, PaO$_2$, metabolic needs, acetazolamid
- CBF reserve can by challenged by PaCO$_2$ or acetazolamid
Essential of cerebral blood flow

Infarct - penumbra
Brain perfusion methods

• Needs
 – Easy to perform ?
 – Quantitative and accurate or semi quantitative ?
 – Non invasive (contrast agent, radiation) ?
 – Repeatable (min, days,..) ?
 – High spatial resolution ?
Brain perfusion methods

• Classification by modalities:
 – CT, MRI, US, Nuc, Infra read,..

• Tracer
 – Stable Xe, Iodine, Gd, BOLD, small b DWI, endogenous, microbubble, microspheres, HMPAO, O15, Xe 133

• CBF Model
 – Extraction at first pass, equilibrium, maximal sloop, central volume principle.
Brain perfusion methods

- Xénon CT
- Xe133
- PET
- SPECT
- IRM et CT Perfusion
- IRM BOLD
- Optical NIRS

Spat. Résolution

Temp. Résolution
Stable Xe CT

1 min 2 min 3 min 4 min

5 min 6 min

Wash in
Wash out

ECR 2011
Stable Xe CT
Stable Xe CT

TEST DATE: 09-02-19

ECR 2011
Perfusion CT technique

Principle:

• Intravenous administration of iodinated contrast material (40-50cc at 4-5 cc/s)
• Acquisition of sequential images with the cine mode (20 to 50 images, 1 image every 1 or 3 seconds)
• Multi-detector arrays = 2-16 adjacent 10-5 mm sections
• 80 KVP, 200 mAs
• Stochastic dose = 3 mSv < standard cerebral CT (4 à 6 mSv)
• rCBF, rCBV, MTT calculation through the central volume principle model
Perfusion CT

2 slab, 2 injections
2 X 40cc at 4 cc/s
2X 8 5 mm sections every 2 s
Cine mode 400 images, 16 X 25, 50s acq
80 KVp, 120 mA, 1s rotation time, ISD 1s
CTDI vol 150 mGy DLP 1200 mGy-cm
~ 3 msV

Shuttle mode, 1 injection
40cc at 4 cc/s
16 5 mm sections every 2.8 s
Shuttle cine mode 288 images, 16 X 18, 50s acq
80 KVp, 240 mA, 0.4s rotation time, ISD 2s
Iterative reconstruction (ASIR 40%)
CTDIvol 100 mGy DLP 800 mGy-cm
~ 2 msV
Perfusion CT
Perfusion CT Central Volume Principle

MTT is obtained by a deconvolution:

\[\text{rCBF} = \frac{\text{rCBV}}{\text{MTT}} \]

Regional Cerebral Blood Volumes rCBV

rCBV in venous sinus = 100%
100 cc per 100 cc
100 cc per 100 g

rCBV in parenchyma = 5%
5 cc per 100 cc
5 cc per 100 g
Optimal perfusion CT coverage?

CONCLUSIONS:

Seventy-five millimeters is the minimal PCT coverage required to use PCT as a tool to select patients with acute stroke for reperfusion therapy by using a mismatch of 0.5. A z-axis coverage of 50 mm was sufficient for a mismatch of 0.2; and 55 mm, for the size of PCT infarct relative to MCA territory (one-third or more).

80 mm also needed is dementia, epilepsy, trauma, vasospasm post SAH, ...
Witch artery should be used for the arterial input function?

1. Partial volume effect dose not affect the result of the deconvolution process
2. Central volume principle require to take the arterial input function as close as possible to the volume of interest, but in practice MCA or ACA are adequate for AIF measurement

CONCLUSION: In acute stroke patients, the selection of the AIF has no statistically significant impact of the PCT results; standardization of the PCT postprocessing using the ACA as the default AIF is adequate.
Witch vein should be used for the reference venous output function?

\[r_{CBF} = \frac{r_{CBV}}{MTT} \]

1. CBV values are affected by the choice of the reference vein.
2. Quantification is strongly dependent on partial volume effect in the reference venous pixel.
3. Sagittal sinus in its vertical lower part should be preferred when ever possible.
What is the optimal temporal resolution and contrast volume?

RESULTS: Increasing temporal sampling intervals lead to significant overestimation of rCBV, rCBF, and TTP and significant underestimation of MTT compared with values for an interval of 1 second. Maximal allowable intervals to avoid these effects were 2, 3, 3, and 4 seconds for 30, 40, 50, and 60-mL boluses, respectively. Venous exit of contrast material occurred in 97.5% of patients after 36, 42, 42, and 48 seconds, respectively, for the four volumes. SNRs did not differ with volume.

CONCLUSION: Temporal sampling intervals greater than 1 second can be used without altering the quantitative accuracy of PCT. Increased sampling intervals reduce the radiation dose and may allow for increased spatial coverage.
Is perfusionCT really quantitative?
Which kVp and mA should be used?

Perfusion CT, radiation protection

REVIEW ARTICLE

Computed Tomography — An Increasing Source of Radiation Exposure

Is Computed Tomography Safe?

Rebecca Smith-Bindman, M.D.
Perfusion CT, radiation protection

Computed Tomography — An Increasing Source of Radiation Exposure

ECR 2011
Perfusion CT, radiation protection

The Radiation Boom

After Stroke Scans, Patients Face Serious Health Risks

By Walt Riesman

Published: July 31, 2010

But an examination by The New York Times has found that radiation overdoses were larger and more widespread than previously known, that patients have reported symptoms considerably more serious than losing their hair, and that experts say they may face long-term risks of cancer and brain damage.

Officials there said they intentionally used high levels of radiation to get clearer images, according to an inquiry by the company that supplied the scanners.

Experts say that is unjustified and potentially dangerous.

Perfusion CT, radiation protection

Shuttle mode, 1 injection
40cc at 4 cc/s
16 5 mm sections every 2.8 s
Shuttle cine mode 288 images, 16 X 18, 50s acq
80 KVp, 240 mA, 0.4s rotation time, ISD 2s
Iterative reconstruction (ASIR 40%)
CTDIvol 100 mGy, DLP 800 mGy-cm
~ 2 msV

2 slab, 2 injections
2 X 40cc at 4 cc/s
2X 8 5 mm sections every 2 s
Cine mode 400 images, 16 X 25, 50s acq
80 KVp, 120 mA, 1s rotation time, ISD 1s
CTDIvol 150 mGy, DLP 1200 mGy-cm
~ 3 msV

1 slab, 1 injections
40cc at 4 cc/s
8 5 mm sections every 2 s
Cine mode 240 images, 8 X 30, 60s acq
140 KVp, 300 mAs, 1s rotation time, ISD 1s
CTDIvol 2500 mGy, DLP 10000 mGy-cm
~ 25 msV

TRANSIENT HAIR LOSS WITH A CUMULATIVE EXPOSURE > 3 Gy

ECR 2011
Perfusion CT, radiation protection

80 KVp, 120 mA, 15 rot, ISD 1s
CTDI vol 150 mGy, DLP 1200 mGy-cm
~ 3 msV

80 KVp, 240 mA, 0.4s rot, ISD 2s
Iterative reconstruction (ASIR 40%)
CTDI vol 100 mGy, DLP 800 mGy-cm
~ 2 msV

140 KVp, 300 mAs, 1s rot, ISD 1s
CTDI vol 2500 mGy, DLP 10000 mGy-cm
~ 25 msV
Perfusion CT, radiation protection

Shuttle mode, 1 injection
40cc at 4 cc/s
16 5 mm sections every 2.8 s
Shuttle cine mode 288 images, 16 X 18, 50s acq
80 KVp, 240 mA, 0.4s rotation time, ISD 2s
Iterative reconstruction (ASIR 40%)
CTD\textsubscript{vol} 100 mGy, DLP 800 mGy-cm
~ 2 msV

GE web proposal

Figure 1: Demonstrating Volume Perfusion acquisition over 8ms coverage on scout views.
Protocol for all patients

Technical parameters

- Scan Type: Volume Shuttle
- Rotation time: 0.4 secs
- Prospective Slice thickness: 5mm 81 - (Retro Recon 2.5mm, 1.25mm & 0.625mm)
- Coverage: 8 cms total (40mm x 2 - shuttle mode)
- FOV: Head
- KVp: 80
- mA: 600 (200mAs)
- Prep Delay: 5 secs
- Shuttle: 19 x 8 cms passes
- Total scan duration: 52.2 secs

Injection parameters for - Dual Headed Injector

- Contrast + Saline Injection Rate: 4.0 ml/second
- Total Contrast Amount: 220 ml (500 ml Sodium Ioxonam 300mg/ml + 50 ml Saline chase)
- Saline: 50 ml Saline chase

Perfusion CT, radiation protection

Shuttle mode, 1 injection
- 40cc at 4 cc/s
- 16 5 mm sections every 2.8 s
- Shuttle cine mode 288 images, 16 X 18, 50s acq
- 80 KVp, 240 mA, 0.4s rotation time, ISD 2s
- Iterative reconstruction (ASIR 40%)
- CTDIvol 100 mGy, DLP 800 mGy-cm
- ~ 2 msV

MGH proposal
- 35 cc at 4 cc/s
- 16 5 mm sections every 2.8 s
- Shuttle cine mode 512 images, 16 X 32, 90s acq
- 80 KVp, 375 mA, 0.4s rotation time, ISD 2s
- CTDIvol 280 mGy, DLP 2250 mGy-cm
- ~ 5 msV

GE web proposal
- 40cc at 4 cc/s
- 16 5 mm sections every 2.8 s
- Shuttle cine mode 304 images, 16X 19, 52s acq
- 80 KVp, 500 mA, 0.4s rotation time, ISD 2s
- CTDIvol 220 mGy, DLP 1760 mGy-cm
- ~ 4 msV

TRANSIENT HAIR LOSS WITH A CUMULATIVE EXPOSURE > 3 Gy

Perfusion MR technique

Principle:

• Intravenous administration of Gd contrast (10-20cc at 4-5 cc/s)
• Multislice, gradient echo echoplanar (16X40 5 mm, every 2 or 3 s)
• rCBF, rCBV, MTT calculation through the central volume principle model
• rCBF, rCBV, estimated by the maximal sloop and negative enhancement integral.
rCBF ~ maximal sloop of decrease
rCBV ~ negative enhancement
Arterial Spin Labelling (ASL)

1. Arterial spin labelling
2. Labelled image acquisition.
3. Reference image acquisition