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Abstract Despite the success of genome-wide association studies (GWASs) in identifying genetic 
variants associated with complex traits, understanding the mechanisms behind these statistical associ-
ations remains challenging. Several methods that integrate methylation, gene expression, and protein 
quantitative trait loci (QTLs) with GWAS data to determine their causal role in the path from genotype to 
phenotype have been proposed. Here, we developed and applied a multi-omics Mendelian randomization 
(MR) framework to study how metabolites mediate the effect of gene expression on complex traits. We 
identified 216 transcript-metabolite-trait causal triplets involving 26 medically relevant phenotypes. Among 
these associations, 58% were missed by classical transcriptome-wide MR, which only uses gene expression 
and GWAS data. This allowed the identification of biologically relevant pathways, such as between ANKH 
and calcium levels mediated by citrate levels and SLC6A12 and serum creatinine through modulation of 
the levels of the renal osmolyte betaine. We show that the signals missed by transcriptome-wide MR are 
found, thanks to the increase in power conferred by integrating multiple omics layer. Simulation analyses 
show that with larger molecular QTL studies and in case of mediated effects, our multi-omics MR frame-
work outperforms classical MR approaches designed to detect causal relationships between single molec-
ular traits and complex phenotypes.

Editor's evaluation
The reviewers found that your article brings important new methods and insight for how to analyze 
large, complex, multi-omic datasets in order to highlight specific molecular hypotheses for follow-up 
validation. As realistic/affordable sample sizes for population studies with omics data have recently 
exploded in size, this has raised the clear need for new or adapted statistical methods for best 
exploiting the increased statistical power. This work is compelling and we believe it should be of 
general interest to biologists and biostatisticians, and of particular interest to those working on (or 
those who could work on) large cohorts.

Introduction
Genome-wide association studies (GWASs) have identified thousands of single nucleotide polymor-
phisms (SNPs) associated with a wide range of complex traits (MacArthur et  al., 2017; Visscher 
et al., 2017). However, the path from GWAS to biology is not straightforward as most SNPs impli-
cated by GWASs reside in non-coding regions of the genome (MacArthur et al., 2017) and do not 
directly inform on the functional mechanism through which variants exert their effect on phenotypes.
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GWASs have been performed on gene expression (Võsa et  al., 2021), DNA methylation (Min 
et al., 2021), protein (Sun et al., 2018), and metabolite (Shin et al., 2014; Lotta et al., 2021) levels, 
identifying genetic variants influencing molecular traits, commonly referred to as molecular quantita-
tive trait loci (molQTLs). The large overlap between complex and molecular trait-associated variants 
suggests that integrating these data can help interpreting GWAS loci (Vandiedonck, 2018; Taylor 
et al., 2019; Ongen et al., 2017). Advances in the field of transcriptomics make gene expression the 
best studied molecular phenotype, thanks to the presence of large expression QTL (eQTL) studies 
(e.g., eQTLGen Consortium [Võsa et  al., 2021] N>30,000). Availability of these datasets fostered 
the development of summary statistic-based statistical approaches aiming at identifying associations 
between transcripts and complex traits (Zhu et al., 2016; Porcu et al., 2019; Hormozdiari et al., 
2014; Gusev et al., 2016), prioritizing genes from known GWAS loci for functional follow-up, and 
inferring the directionality of these relations (Porcu et al., 2019; Porcu et al., 2021b). However, the 
cascade of events that mediates the effect of genetic variants on complex traits involves more than 
one molecular trait. Although approaches used for gene expression can be extended to other molec-
ular data, investigating whether these molecular traits reside along the same causal pathway remains 
under-explored and only recently have studies applied colocalization and Mendelian randomization 
(MR) to methylation, gene expression, and protein levels data (Giambartolomei et al., 2018; Wu 
et al., 2018; Gleason et al., 2020; Sadler et al., 2022) and to a lesser extent to metabolic QTLs 
(mQTL) (Yin et al., 2022).

Metabolites are often the final products of cellular regulatory processes and the most proximal 
omic layer to complex phenotypes. Their levels could thus represent the ultimate response of biolog-
ical systems to genetic and environmental changes. For instance, the metabolic status of organisms 
reflects disease progression, as metabolic disturbances can often be observed several years prior to 
the symptomatic phase (Shah et al., 2010; Wang et al., 2011; Sabatine et al., 2005). Therefore, 

Figure 1. Workflow overview. (A) Estimation of the causal transcript-to-metabolite and metabolite-to-phenotype 
effects through univariable Mendelian randomization (MR). (B) Estimation of the causal transcript-to-phenotype 
effects through univariable transcriptome-wide MR (TWMR). (C) Estimation of the direct (i.e., not mediated by the 
metabolites) and mediated effect of transcripts on phenotypes through multivariable MR (MVMR) by accounting 
for mediation through the metabolome.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Number of instrumental variables (IVs) used for causal effect estimation through Mendelian 
randomization (MR).

Figure supplement 1—source data 1. Number of instrumental variables (IVs) used for causal effect estimation 
through Mendelian randomization (MR).

https://doi.org/10.7554/eLife.81097
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using metabolomics to identify early-stage biomarkers of complex phenotypes, such as prediabetes 
and COVID-19 susceptibility, has gained increased interest (Wang-Sattler et  al., 2012; Julkunen 
et al., 2021). While two-sample MR approaches using metabolites as single exposure have revealed 
biomarkers for several diseases (Qian et al., 2021; Lord et al., 2021; Porcu et al., 2021a), these 
analyses focused on the prediction of disease risk rather than on deciphering the mechanisms of 
discovered associations.

Integrating transcriptomics with metabolomics data can provide insights into how metabolites are 
regulated, elucidating targetable functional mechanisms. Here, we develop a framework based on 
established MR methodology that hypothesizes a mediating role of the metabolome in the transcript-
to-phenotype axis, with the primary exposure being defined as an upstream omic layer, namely gene 
expression. Specifically, our integrative MR analysis combines summary-level multi-omics (i.e., GWAS, 
eQTL, and mQTL) data to compute the indirect effect of gene expression on complex traits mediated 
by metabolites in three steps (Figure  1). First, we map the transcriptome to the metabolome by 
identifying causal associations between transcripts and metabolites. Next, we screen metabolites for 
downstream causal effects on 28 complex phenotypes, resulting in the identification of gene expres-
sion → metabolite → phenotype cascades (Figure 1A). In parallel, we prioritize trait-associated genes 
by testing the association of transcripts with phenotypes (Figure 1B). Third, for transcripts found to 
causally influence either a metabolite (A) or a complex phenotype (B), we test whether the identi-
fied target genes exert their effect on the phenotype through the metabolite using multivariable 
MR (MVMR; Figure 1C). Finally, we carried out extensive power analyses to determine under which 
conditions the mediation analysis (Figure 1C) outperforms the conventional exposure-outcome MR 
framework (Figure 1B).

Results
Mapping the transcriptome onto the metabolome
We applied univariable MR to identify metabolites whose levels are causally influenced by transcript 
levels in whole blood (Figure 1A). Summary statistics for cis-eQTLs stem from the eQTLGen Consor-
tium meta-analysis of 19,942 transcripts in 31,684 individuals (Võsa et  al., 2021), while summary 
statistics for mQTLs originate from a meta-analysis of 453 metabolites in 7824 individuals from two 
independent European cohorts: TwinsUK (N = 6056) and KORA (N = 1768) (Shin et al., 2014). After 
selecting SNPs included in both the eQTL and mQTL studies, our analysis was restricted to 7884 tran-
scripts with ≥3 instrumental variables (IVs) (see Methods, Figure 1—figure supplement 1A) and 242 
metabolites with an identifier in the Human Metabolome Database (HMDB) (Wishart et al., 2022) (see 
Methods, Supplementary file 1a). By testing each gene for association with the 242 metabolites, we 
detected 96 genes whose transcript levels causally impacted 75 metabolites, resulting in 133 unique 
transcript-metabolite associations (FDR 5% considering all 1,907,690 instrumentable gene-metabolite 
pairs; Supplementary file 1b). Most involved genes (86%; 83/96) were causally influencing the level 
of a single metabolite, with some notable exceptions acting as mQTL hubs, such as TMEM258 and 
FADS2 both affecting the same 11 metabolites, followed by FADS1 affecting a subset of six metab-
olites. While only 5 (3.8%) of the 133 associations were reported in HMDB, an automated literature 
review (see Methods) identified a match for 22 (16.5%) of the identified transcript-metabolite pairs 
(Supplementary file 1b).

Mapping the metabolome onto complex phenotypes
Univariable metabolome-wide MR (MWMR; Figure  1A) was used to identify causal relationships 
between 48 metabolites with  ≥3  IVs (Figure  1—figure supplement 1B) and 28 complex pheno-
types. The latter include a wide range of anthropometric traits, cardiovascular assessments, and 
blood biomarkers, whose summary statistics originate from the UK Biobank (UKB) (Bycroft et al., 
2018;Supplementary file 1c). Overall, 34 metabolites were associated with at least one phenotype 
(FDR 5% considering all 1344 metabolite-phenotype pairs), resulting in 132 unique metabolite-
phenotype associations (Supplementary file 1d).

Mapping the transcriptome onto complex phenotypes
We applied univariable transcriptome-wide MR (TWMR [Porcu et al., 2019] Figure 1B) to identify asso-
ciations between expression levels of 10,435 transcripts from the eQTLGen Consortium with ≥3 IVs 

https://doi.org/10.7554/eLife.81097
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(Figure 1—figure supplement 1C) measured in both exposure and outcome datasets and the same 
28 UKB phenotypes described in the previous section (Supplementary file 1c). In total, 5140 tran-
scripts associated with at least one phenotype (FDR 5% considering all 292,170 gene-phenotype 
pairs) resulting in 13,141 unique transcript-phenotype associations (Supplementary file 1e).

Mapping metabolome-mediated effects of the transcriptome onto 
complex phenotypes
The mapping of putative causal effects performed in the previous steps provides the opportunity to 
infer the mediating role of the metabolome in biological processes leading to transcript-phenotype 
associations. We combined the 133 transcript-metabolite (FDR ≤5%) and 132 metabolite-trait (FDR 
≤5%) associations to pinpoint 216 transcript-metabolite-phenotype causal triplets (FDR = 1–0.952 = 
9.75%) (Supplementary file 1f). Among the 37 triplets for which the transcript and metabolite had 
previously been linked through automated literature review, none remained after incorporating a third 
term for the phenotype in the search and manually removing abstracts for which the search terms 
were used in an erroneous context. Relaxing the search criteria by omitting the metabolite term, 
13/37 (35%) triplets returned at least one match for the gene-trait association.

Figure 2. Direct and mediated effects. (A) Graphical representation of the multivariable Mendelian randomization 
(MVMR) framework for mediation analysis: DNA represents genetic instrumental variables (IVs) chosen to be 
directly associated with either the exposure (transcript; ‍βeQTL‍) or the mediator (metabolite; ‍βmQTL‍) through 
summary statistics. The effect of these IVs on the outcome (phenotype; ‍βGWAS‍) originates from genome-wide 
association studies (GWASs) summary statistics. Total effects ‍αTP‍ of transcripts on phenotypes are estimated 
by transcriptome-wide Mendelian randomization (TWMR), while direct effects ‍αd ‍ are estimated by MVMR. Total 
effects ‍αTP‍ are assumed to equal the sum of the direct ‍αd ‍ and indirect ‍αi‍ (i.e., mediated) effects, the two former 
being depicted in B. (B) Direct (‍αd ‍ ; y-axis) and total (‍αTP‍ ; x-axis) effects for the 216 transcript-metabolite-trait 
causal triplets. The dashed line represents the identity, while the purple line represents the regression line with a 
shaded 95% confidence interval. Data related to Figure 2 panel B are available in Figure 2—source data 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Direct and mediated effects.

https://doi.org/10.7554/eLife.81097
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For each of these 216 putative mechanisms, an MVMR approach to compute the direct effect of 
gene expression on the phenotype was applied (see Methods; Figure 1C; Supplementary file 1f). 
Regressing direct effects (‍αd‍) on total effects (‍αTP‍) and accounting for regression dilution bias (see 
Methods; Figure 2A), it was estimated that 77% [95% CI: 70–85%] of the transcript effect on the 
phenotype was direct and thus not mediated by the metabolites (Figure 2B).

Molecular mechanisms of genotype-to-phenotype associations
Dissecting causal triplets allows gaining mechanistc insights into biological pathways linking genes 
to phenotypes. For instance, expression of TMEM258 [MIM: 617615], FADS1 [MIM: 606148], and 
FADS2 [MIM: 606149], all mapping to a region on chromosome 11 (Figure 3A), were found to influ-
ence a total of 17 complex phenotypes through modulation of 1-arachidonoylglycerophosphochol
ine (LPC(20:4); HMDB0010395; ‍αTMEM258→LPC

(
20:4

) = −1.02‍; P = 8.0×10–81; ‍αFADS1→LPC
(

20:4
) = −0.39‍; 

P = 4.6×10-15; ‍αFADS2→LPC
(

20:4
) = −0.63‍; P = 5.1×10–62), 1-arachidonoylglycerophosphoethanolamine 

(LPE(20:4);HMDB0011517; ‍αTMEM258→LPE
(

20:4
) = −0.68‍; P = 1.1×10–37; ‍αFADS1→LPE

(
20:4

) = −0.30‍; 
P = 1.4×10–07; ‍αFADS2→LPE

(
20:4

) = −0.37‍; P = 1.2×10–18), and 1-arachidonoylglycerophosphoinositol 
(LPI(20:4); HMDB0061690; ‍αTMEM258→LPI

(
20:4

) = −0.51‍; P = 8.2×10–18; ‍αFADS2→LPI
(

20:4
) = −0.28‍; P = 

6.3×10–16) levels (Figure 3B–C). These results align with the known pleiotropy of the region (i.e., >6000 
associations reported in the GWAS Catalog as of May 2022). Interestingly, involved metabolites are 
complex lipids synthesized from arachidonic acid, a product of the rate-limiting enzymes encoded by 
FADS1 and FADS2 (Figure 3B). Recently, polymorphisms affecting the expression of these genes were 
shown to associate with the levels of over 50 complex lipids, including the ones identified by our study 

Figure 3. Molecular pleiotropy at the FADS locus. (A) Genome browser (GRCh37/hg19) view of the genomic region on chromosome 11 encompassing 
TMEM258, FADS1, and FADS2 (red). (B) Diagram of the mediation signals detected for TMEM258, FADS1, and FADS2. Two of the implicated genes 
encode enzymes involved in arachidonic synthesis (purple). Involved genes impact 17 phenotypes (pink) through alteration of the levels of three 
metabolites, 1-arachidonoylglycerophosphocholine (LPC(20:4)), 1-arachidonoylglycerophosphoethanolamine (LPE(20:4)), and 1-arachidonoylglyceropho
sphoinositol (LPI(20:4)) whose structure is depicted (orange). (C) Network of the 65 transcript-metabolite-trait causal triplets involving TMEM258, FADS1, 
and FADS2. Nodes represent genes (purple), metabolites (orange), or phenotypes (pink). Edges indicate the direction of the effects estimated through 
univariable Mendelian randomization. Width of edges is proportional to effect size and color indicates if the effect is positive (red) or negative (blue).

https://doi.org/10.7554/eLife.81097
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(Reynolds et al., 2020). Overall, this example illustrates how our method can capture meaningful 
biological associations and shed light on underlying molecular pathways of pleiotropy.

Power analysis
Importantly, only 42% (90/216) of the causal triplets showed a significant total transcript-to-phenotype 
effect (i.e., estimated by TWMR), suggesting that the method lacks power under current settings. 
To characterize the parameter regime where the power to detect indirect effects is larger than it is 
for total effects, we performed simulations using different settings for the mediated effect. In each 
scenario we evaluated 500 transcripts and 80 metabolites and varied two parameters characterizing 
the mediation:

1.	 The proportion (‍ρ‍) of direct (‍αd‍) to total (‍αTP‍) effect (i.e., effect not mediated by the metabolite) 
from –2 to 2 to cover the cases where direct and mediated effect have opposite directions (51 
values).

2.	 The ratio (‍σ‍) between the transcript-to-metabolite (‍αTM‍) and the metabolite-to-phenotype 
(‍αMP‍) effects, exploring the range from 0.1 to 10 (51 values).

Transcripts were simulated with 6% heritability (i.e., median ‍h2‍ in the eQTLGen data) and a causal 
effect of 0.035 (i.e., ~65% of power in TWMR at α=0.05) on a phenotype. Each scenario was simulated 
10 times and results were averaged to assess the mean difference in power (see Methods).

Simulations show that with current sample sizes (i.e., ‍NGWAS = 300, 000‍, ‍NeQTL = 32, 000‍, and 

‍NmQTL = 8000‍), when ‍αMP > αTM‍ (i.e., ‍σ < 1‍), TWMR has increased power to detect significant 
transcript-to-phenotype associations, especially when ‍ρ > 0‍ (i.e., direct and total effect have the 
same direction (Figure 4A)). However, for all 216 causal triplets, we observed ‍σ > 1‍ (Figure 4—figure 
supplement 1). Under this condition, and assuming that the total effect of the transcript on the 
phenotype is dominated by the effect mediated by the metabolite (i.e., ‍ρ < 0.5‍ and ‍ρ > 1.5‍), TWMR 
had less power than the approach identifying mediators (Figure 4A), confirming that significant asso-
ciations were missed by TWMR due to power issues related to the proportion of mediated effect.

Repeating the simulations with an mQTL sample size of 90,000, nearing state-of-the-art sample 
sizes (Lotta et al., 2021), leads to a strong shift in the above-described trends (Figure 4B). Specifi-
cally, when the effect of the transcript on the phenotype is dominated by the effect mediated by the 
metabolite (‍ρ < 0.3‍ and ‍ρ > 1.7‍), mediation analysis has more power than TWMR when ‍σ > 0.2‍. For 
larger proportions of direct effect, TWMR has increased power the more ‍σ‍ differs from 1. In line with 
the increased power of mediation analysis with larger mQTL datasets, the gain in power of mediation 
analysis over TWMR decreases with decreasing mQTL dataset sample sizes (ranging between N = 
1000 and N = 4000; Figure 4—figure supplement 2), indicating that our approach is dependent on 
large sample sizes to reach its full potential.

Identifying new genotype-to-phenotype associations
The 126 triplets that were not identified through TWMR due to power issues represent putative new 
causal relations. This is well illustrated by a proof-of concept example involving ANKH [MIM: 605145] 
and calcium levels, for which 48 publications were identified through automated literature review 
(Supplementary file 1f). While the TWMR effect of ANKH expression on calcium levels was not signifi-
cant (‍αANKH→calcium = −0.02‍; P=0.03), ANKH expression decreased citrate levels (‍αANKH→citrate = −0.30‍; 
P=2.2×10–06), which itself increased serum calcium levels (‍αcitrate→calcium = 0.07‍; P=6.5×10–0). Muta-
tions in ANKH have been associated with several rare mineralization disorders [MIM: 123000, 118600] 
(Williams, 2016) due to the gene encoding a transmembrane protein that channels inorganic pyro-
phosphate to the extracellular matrix, where at low concentrations it inhibits mineralization (Ho 
et al., 2000). Recently, a study proposed that ANKH instead exports ATP to the extracellular space 
(where it is then rapidly converted to inorganic pyrophosphate), along with citrate (Szeri et al., 2020). 
Citrate has a high binding affinity for calcium and influences its bioavailability by complexing calcium-
phosphate during extracellular matrix mineralization and releasing calcium during bone resorption 
(Granchi et al., 2019). Together, our data support the role of ANKH in calcium homeostasis through 
regulation of citrate levels, connecting previously established independent links into a causal triad.

In another example, SLC6A12 [MIM: 603080], which encodes the betaine/GABA transporter-1, 
involved in betaine and GABA uptake (Borden et al., 1995), was identified as a negative regulator 
of betaine (‍αSLC6A12→betaine = −0.37‍; P = 8.2×10–08). While blood betaine levels negatively impacted 

https://doi.org/10.7554/eLife.81097
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serum creatinine levels (‍αbetaine→creatinine = −0.06‍; P = 1.7×10–07), the effect of SLC6A12 expression 
on creatinine was not significant (‍αSLC6A12→creatinine = 0.02‍; P = 1.5×10–03). This observation is partic-
ularly interesting given that betaine acts as a protective renal osmolyte whose plasma and kidney 
tissue concentration were found to be downregulated in renal ischemia/reperfusion injury (Jouret 
et  al., 2016; Wei et  al., 2014) and whose urine levels have been proposed as a biomarker for 
chronic kidney disease progression (Gil et al., 2018). As both renal conditions are commonly moni-
tored through serum creatinine levels, our data support the critical role of osmolyte homeostasis in 
renal health.
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Figure 4. Power comparison between transcriptome-wide Mendelian randomization (TWMR) and multivariable Mendelian randomization (MVMR). 
Heatmap showing the difference in statistical power between TWMR and mediation analysis through MVMR at current (A; ‍N = 8000‍) and realistic future 
(B; ‍N = 90, 000‍) metabolic quantitative trait loci (mQTL) dataset sample sizes. The x-axis shows the proportion (‍ρ‍) of direct (‍αd ‍) to total (‍αTP‍) effect 
(i.e., effect not mediated by the metabolite) ranging from –2 to 2, arrows indicating increasing proportion of direct effect. The y-axis shows the ratio (‍σ‍) 
between the transcript-to-metabolite (‍αTM ‍) and the metabolite-to-phenotype (‍αMP‍) effects, ranging from 0.1 to 10. Red vs. gray indicates higher power 
for TWMR vs. mediation analysis, respectively, while white represents equal power between the two approaches. Data related to Figure 4 panels A and 
B are available in Figure 4—source data 1 and Figure 4—source data 2, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Difference in statistical power between transcriptome-wide Mendelian randomization (TWMR) and mediation analysis at N = 
8000 metabolic quantitative trait locus (mQTL) dataset sample size.

Source data 2. Difference in statistical power between transcriptome-wide Mendelian randomization (TWMR) and mediation analysis at N = 
90,000 metabolic quantitative trait locus (mQTL) dataset sample size.

Figure supplement 1. Distribution of empirical causal triplets along tested regime parameters.

Figure supplement 1—source data 1. Distribution of empirical causal triplets along tested regime parameters.

Figure supplement 2. Power comparison between transcriptome-wide Mendelian randomization (TWMR) and multivariable Mendelian randomization 
(MVMR) at smaller sample sizes.

Figure supplement 2—source data 1. Difference in statistical power between transcriptome-wide Mendelian randomization (TWMR) and mediation 
analysis at N = 1000 metabolic quantitative trait locus (mQTL) dataset sample size.

Figure supplement 2—source data 2. Difference in statistical power between transcriptome-wide Mendelian randomization (TWMR) and mediation 
analysis at N = 2000 metabolic quantitative trait locus (mQTL) dataset sample size.

Figure supplement 2—source data 3. Difference in statistical power between transcriptome-wide Mendelian randomization (TWMR) and mediation 
analysis at N = 4000 metabolic quantitative trait locus (mQTL) dataset sample size.

https://doi.org/10.7554/eLife.81097
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Discussion
In this study, we combined MR approaches integrating eQTL, mQTL, and GWAS summary statistics to 
explore the role of the metabolome in mediating the effect of the transcriptome on complex pheno-
types. Applied to 28 medically relevant traits, our approach revealed 216 causal transcript-metabolite-
phenotype triplets. Our automated literature review indicates that while some detected associations 
were previously reported, a large fraction, especially among the triplets, appears to be novel. It should 
be noted that the number of previously reported associations is likely underestimated as our approach 
does not account for all synonyms of a given feature and requires the terms to appear in the title or 
abstract of the publication. This makes it more likely for hypothesis-driven studies, inherently biased 
toward well-studied genes and metabolites, to be identified. Conversely, high-throughput, hypothesis-
free studies that report the given association in a supplemental table are likely to be missed. Further-
more, due to its automated nature, our search is context-blind, so that some of the identified studies 
might report negative results, associations only under specific conditions (e.g., different organisms, 
experimental settings), or usage of the search term with a different meaning. To attenuate the latter, 
we also performed manual review of the retained abstracts for transcript-to-phenotype searches. 
While flawed, this rough estimate of the amount of existing evidence supporting our findings can be 
interpreted in combination with other lines of evidence. For instance, among the 90 signals that were 
also identified through TWMR, 93% showed a directionally concordant effect between the transcript-
to-phenotype, transcript-to-metabolite, and metabolite-to-phenotype estimates (i.e., sign of product 
of the transcript-to-metabolite and metabolite-to-phenotype effects agrees with the sign of the 
transcript-to-phenotype effect). In these situations, dissection of causal effects provides clues as to the 
molecular mechanism through which involved genes modify complex phenotypes. This information is 
particularly valuable to identify key molecular mediators of highly pleiotropic genetic regions, such as 
the TMEM258/FADS1/FADS2 locus (Figure 3). While transcript levels of these genes affected eleven 
metabolites, three complex lipids were highlighted as strong molecular mediators of the transcript-
to-phenotype effects.

Strikingly, 58% of the 216 causal transcript-metabolite-phenotype triplets were missed by TWMR 
– an approach that only considers gene expression and GWAS data. We highlight two novel but 
biologically plausible mechanisms linking ANKH to calcium levels through modulation of citrate and 
SLC6A12 to serum creatinine levels through regulation of the renal osmolyte betaine. Simulation 
analyses showed that these signals were likely missed by TWMR due to lack of power, as mediation 
analysis is better suited to detect associations with a low direct to total effect proportion and stronger 
transcript-to-metabolite than metabolite-to-phenotype effect. Promisingly, our simulations showed 
that mediation analysis becomes increasingly powerful over a wider range of parameter settings 
as the sample size of the mediator QTL study increases, highlighting the importance of generating 
large and publicly available molQTL datasets that can help to unravel functional gene-to-phenotype 
mechanisms.

As illustrated through the selected examples, a large fraction of detected mediations involves 
genes encoding metabolic enzymes or transporters/channels, with an enrichment for ‘secondary 
active transmembrane transporter activity’, for example (GO:0015291; FDR=0.021; background: 7884 
genes with ≥3 IVs assessed through TWMR; STRING database). Matching the finding that the most 
likely effector genes of mQTLs are enriched for pathway-relevant enzymes and transporters (Smith 
et al., 2022), these results are not surprising given that the proteins encoded by these genes directly 
interact with metabolites, making it more likely that the effect of changes in their expression is medi-
ated by metabolites. While our method is well suited to detect such effects, interpretation of discov-
ered mediations is limited by the lack of spatial resolution of the mQTL data. Access to metabolite 
concentrations in different cellular compartments (e.g., extracellular space, cytosol, mitochondrial 
matrix, etc.) would generate more fine-tuned mechanistic hypotheses that consider the directionality 
of metabolite fluxes.

The observation that 77% of the transcript’s effect on the phenotype is not mediated by metabolites 
suggests that either true direct effects are frequent or that other unassessed metabolites or molecular 
layers (e.g., proteins, post-translational modifications, etc.) play a crucial role in mediation. It is to note 
that in the presence of unmeasured mediators or measured mediators without genetic instruments, 
our mediation estimates are lower bounds of the total existing mediation. In addition, unmeasured 
mediators sharing genetic instruments with the measured ones can modify result interpretation as 

https://doi.org/10.7554/eLife.81097
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some of the observed mediators may simply be correlates of the true underlying mediators. While 
this is a limitation of all MR methods, metabolic networks may harbor particularly large number of 
genetically correlated metabolite species. Similarly, owing to linkage disequilibrium and regulatory 
variants affecting multiple genes, transcripts from adjacent genes might appear to be involved in 
the same signals, as exemplified with the TMEM258/FADS1/FADS2 locus (Figure 3). While literature 
supports the role of the FADS genes, one cannot exclude a role for TMEM258, nor disentangle the 
specific function of FADS1 and FADS2. Thanks to the flexibility of the proposed framework, we expect 
that in the future and upon availability of ever larger and more diverse datasets, our method could be 
applied to estimate the relative contribution of currently unassessed mediators in translating geno-
typic cascades.

Another consideration is that complex phenotypes can have a stronger impact on gene expres-
sion than the opposite (Porcu et al., 2021b). Due to the lack of genome-wide trans-eQTL associa-
tion summary statistics, our method does not investigate reverse causality on metabolites and gene 
expression, nor the role of metabolites as regulators of gene expression. Metabolites might also 
integrate the effect of several transcripts (i.e., multiple transcripts causally impact the levels of the 
same metabolite) before affecting complex phenotypes (Supplementary file 1g) or multiple metab-
olites may jointly mediate the impact of a single transcript. Modelling the latter phenomenon, which 
is beyond the scope of our current work, requires the development of structural equation models 
accounting for such effects and will eventually lead to a more comprehensive modelling of causal 
relations in complex biological networks, nuancing the interpretation of the molecular mechanisms 
shaping complex traits.

In conclusion, we developed a modular MR framework that has increased power over classical 
MR approaches to detect causal transcript-to-phenotype relationships when these are mediated by 
alteration of metabolite levels and is likely to become increasingly powerful upon release of larger 
molQTL datasets.

Methods
Univariable MR analyses
TWMR and MWMR (Porcu et al., 2019) were used to estimate the causal effects of transcript and 
metabolite levels (exposure) on various outcomes. For each transcript/metabolite, using inverse-
variance weighted (IVW) method for summary statistics (Burgess et al., 2013), the causal effect of the 
molecular traits on the outcome was defined as

	﻿‍
α̂ =

(
β

′
C−1β

)−1 (
β

′
C−1γ

)
‍�

(1)

Here, ‍β‍ is a vector of length n containing the standardized effect size of n independent SNPs on 
the gene/metabolite, derived from eQTL/mQTL studies, with ‍β

′

‍ being the transpose of ‍β‍. ‍γ‍ is a vector 
of length n containing the standardized effect size of each SNP on the outcome. C is the pairwise LD 
matrix between the n SNPs. The standardized effect sizes for molecular and outcome GWASs were 
obtained from Z-score of summary statistics standardized by the square root of the sample size to be 
on the same standard deviation scale.

IVs were selected as autosomal, non-strand ambiguous, independent (r2 <0.01), and significant 
(‍PeQTL < 1.8 × 10−05

‍ / ‍PmQTL < 1.0 × 10−07
‍) eQTL/mQTLs available in the UK10K reference panel 

(Huang et al., 2015) using PLINK (v1.9) (Chang et al., 2015). As retained SNPs are independent, we 
used the identity matrix to approximate C. SNPs with larger effects on the outcome than on the expo-
sure were removed, as these potentially indicate violation of the MR assumptions (i.e., likely reverse 
causality and/or confounding).

The variance of α can be calculated approximately by the Delta method

	﻿‍
var

(
α̂
)

=
(
∂α̂
∂β

)2
∗ var

(
β̂
)

+
(
∂α̂
∂γ

)2
∗ var

(
γ̂
)

+
(
∂α̂
∂β

)
∗
(
∂α̂
∂γ

)
∗ cov

(
β̂, γ̂

)
‍�

(2)

where cov(‍β‍,‍γ‍) is 0 if ‍β‍ and ‍γ‍ are estimated from independent samples. The causal effect Z-statistic 
for transcript/metabolite i was defined as 

‍
�αi

SE
(�αi

)
‍
, where 

‍
SE

(�αi
)

=
√

var
(�α)i,i ‍

 .
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The IVW method provides an unbiased estimate under the assumption that all genetic variants are 
valid IVs, that is, all three MR assumption hold. However, the third assumption (no pleiotropy) is easily 
violated, leading to inaccurate estimates when horizontal pleiotropy occurs (Verbanck et al., 2018). 
To test for the presence of pleiotropy, we used Cochran’s Q test (Bowden et al., 2015; Burgess et al., 
2017) to assess whether there were significant differences between the MR effects of an instrument 
(i.e., ‍αβi‍) and the estimated effect of that instrument on phenotype/metabolite levels (‍γi‍). We defined

	﻿‍ di = γi − αβi‍� (3)

and its variance as

	﻿‍ var
(
di
)

= var
(
γi
)

+
(
βi
)2 ∗ var

(
α
)

+ var
(
γi
)
∗
(
α
)2 + var

(
βi
)
∗ var

(
α
)
‍� (4)

Next, the deviation of each SNP was tested using the test statistic

	﻿‍
Ti = d2

i
var

(
di
) ∼ χ2

1‍�
(5)

When p<0.05, the SNP with largest | ‍di‍ | was removed and the test was repeated.

Mediation analysis through MVMR analyses
An MVMR approach was used to dissect the total causal effect of transcript levels on phenotypes 
(‍αTP‍) into a direct (‍αd‍) and indirect (‍αi‍) effect measured through a metabolite. Through inclusion of 
a metabolite and its associated genetic variants (r2 <0.01, pmQTL<1 × 10–07), the direct effect of gene 
expression on a phenotype can be estimated using a multivariable regression model (Burgess et al., 
2013) as the first element of

	﻿‍
α̂ =

(
B

′
C−1B

)−1 (
B

′
C−1γ

)
‍�

(6)

 

where ‍B‍ is a matrix with two columns containing the standardized effect sizes of n IVs on transcript 
levels in the first column and on the metabolite levels in the second column, ‍γ‍ is a vector of length n 
containing the standardized effect size of each SNP on the phenotype, and C is the pairwise LD matrix 
between the n SNPs.

The proportion of direct effect ‍
(
ρ
)
‍ is calculated by regressing direct effects (‍αd‍) on total effects 

(‍αTP‍) and then correcting for regression dilution bias:

	﻿‍

ρcorrected = ρ√
1−

∑(
SE

(
αTP

))2
∑

α2
TP ‍�

(7)

Omics and traits summary statistics
Expression QTL data originated from the eQTLGen Consortium (Võsa et  al., 2021) (N = 31,684), 
which includes cis-eQTLs (<1 Mb from gene center, two-cohort filter) for 19,250 transcripts (16,934 
with at least one significant cis-eQTL at FDR <0.05 corresponding to p<1.8 × 10–05). mQTL data orig-
inate from Shin et al., 2014, which used ultra-high performance liquid chromatography-tandem mass 
spectrometry to measure 486 whole blood metabolites in 7824 European individuals. Association 
analyses were carried out on ~2.1 million SNPs and are available for 453 metabolites at the Metabolo-
mics GWAS Server (http://metabolomics.helmholtz-muenchen.de/gwas/). Among these metabolites, 
242 were manually annotated with the HMDB identifiers (Supplementary file 1a) and used in this 
study. GWAS summary statistics for 28 outcome traits measured in the UKB originate from the Neale 
Lab (http://www.nealelab.is/uk-biobank/). Protein interactions with metabolites were downloaded 
from HMDB v5.0 (https://hmdb.ca/downloads/) and were used to annotate transcript-metabolites 
associations.

https://doi.org/10.7554/eLife.81097
http://metabolomics.helmholtz-muenchen.de/gwas/
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https://hmdb.ca/downloads/
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Automated literature review
An automated literature review of all transcript-metabolite associations (Supplementary file 1b) was 
conducted in PubMed (September 20, 2022) following the scheme:

	﻿‍
(
Gene

[
Title/Abstract

])
AND

((
MetHMDB

[
Title/Abstract

])
OR

(
MetShin

[
Title/Abstract

]))
‍� (8)

With ‍Gene‍ being the name of the gene whose transcript is involved in the association, ‍MetHMDB‍ 
the involved metabolite’s common name on HMDB, and ‍MetShin‍ the involved metabolite’s name as 
reported in Shin et al., 2014. Returned PubMed identifiers were retrieved (Supplementary file 1b).

For transcript-metabolite associations involved in a causal triplet and for which the transcript-
metabolites returned at least one publication (Supplementary file 1f), the search was extend by (i) 
adding an additional search term for the trait (i.e., ‍AND

(
trait

[
Title/Abstract

])
‍) and (ii) substituting the 

metabolite term for the trait term. Returned PubMed identifiers were retrieved and corresponding 
abstracts were manually curated to exclude abstracts in which the search terms were used in a meaning 
other than the intended one (Supplementary file 1f).

Simulation analyses
Simulation analyses were conducted to assess the gain in power upon inclusion of metabolomics data 
in the MR framework. In the simulated scenario, a transcript has an effect on a phenotype mediated 
by a metabolite. Two parameters were allowed to vary: the proportion (‍ρ‍) of direct effect (i.e., effect 
not mediated by the metabolite) and the ratio (‍σ‍) between the effect of the transcript on the metab-
olite (‍αTM‍) and of the metabolite on the phenotype (‍αMP‍). Other parameters were fixed, including 
the heritability of the transcript at ‍h

2
T = 0.06‍ (corresponding to the median ‍h2‍ in the eQTLGen data), 

the number of IVs ‍NIVs‍ at 6 (corresponding to the median number of IVs used in TWMR analyses). 

Effect sizes ‍βeQTL‍ are from a normal distribution 
‍
βeQTL ∼ N

(
0, h2

T
NIVs

)
‍
. The causal effect of the tran-

script on the phenotype (‍αTP‍) was fixed to 0.035, which results in ∼65% power to detect a significant 
effect with TWMR. These quantities allowed to define ‍βGWAS‍ as ‍βGWAS = αTP ∗ βeQTL + εP‍ , where 

‍
εP ∼ N

(
0, 1

NGWAS

)
‍
 with ‍NGWAS = 300, 000‍ to reflect the sample size of UKB GWASs. The same vector 

of ‍βeQTL‍ was used to define ‍βmQTL‍ and estimate the causal effect of the transcript on the metabo-

lite. ‍βmQTL‍ was defined as ‍βmQTL = αTM ∗ βeQTL + εM‍ , where 
‍
εM ∼ N

(
0, 1

NmQTL

)
‍
 and ‍NmQTL = 8000‍ to 

reflect the sample size of the mQTL study used in this work. Simulations were also performed at 

‍NmQTL = 90, 000,‍ to reflect sample size of potential future studies and ‍NmQTL = 1000‍, ‍NmQTL = 2000‍ and 

‍NmQTL = 4000‍, to compare the two approaches’ power were the developed framework to be applied 
on existing smaller mQTL datasets. The total effect ‍αTP‍ can be expressed as ‍αTP = αTM ∗ αMP + αdirect‍ 
, where ‍αdirect‍ represents the direct effect of the transcript on the phenotype and ‍αTM ∗ αMP‍ is the 
indirect effect mediated by the metabolite. Equivalently, ‍αTM ∗ αMP = αTP ∗

(
1 − ρ

)
‍ where ‍ρ = αdirect

αTP
.‍ 

To assess the ratio between the effect of the transcript on the metabolite and the effect of the 
metabolite on the phenotype (i.e., ‍σ = αTM/αMP‍), ‍αTM‍ can be expressed as ‍αTM =

√
αTP ∗ (1 − ρ) ∗ σ ‍ 

. Similarly, to estimate the effect of the metabolite on the phenotype, a metabolite with heritability 

‍h
2
M = 0.04‍ (corresponding to the median of ‍h2‍ in the KORA +TwinsUK mQTL data) and ‍NIVs = 5‍ (corre-

sponding to the median number of IVs used in MWMR analyses) is considered. Effect size ‍βmQTL‍ 

are from a normal distribution 
‍
βmQTL ∼ N

(
0, h2

M
NIVs

)
‍
. These quantities allowed to define ‍βGWAS‍ as 

‍
βGWAS =

√
αTP ∗

(
1 − ρ

)
/σ ∗ βmQTL + εP‍

 , where ‍εP ∼ N
(

0, 1
NGWAS

)
‍. Ranging ‍ρ‍ and ‍σ‍ from –2 to 2 and 

from 0.1 and 10, respectively, we run each simulation for 500 transcripts measuring 80 metabolites at 
each run and performed TWMR and MWMR starting from above-described ‍βeQTL‍ , ‍βmQTL‍, and ‍βGWAS.‍ 
For each MR analysis the power to detect a significant association as well as the difference in power 
between TWMR and the mediation analyses (i.e., ‍powerTP − powerTM ∗ powerMP‍) was calculated. Each 
specific scenario was repeated 10 times and the average difference in power across simulation was 
plotted as a heatmap.

Data and code availability
All data used in this study are publicly available. GWAS summary statistics for outcome traits 
measured in the UKB originate from the Neale Lab (http://www.nealelab.is/uk-biobank/). eQTL data 
originated from the eQTLGen Consortium (https://www.eqtlgen.org) and was published in Võsa 

https://doi.org/10.7554/eLife.81097
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https://www.eqtlgen.org


 Short report﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Auwerx et al. eLife 2023;12:e81097. DOI: https://doi.org/10.7554/eLife.81097 � 12 of 16

et al., 2021. mQTL data originate from Shin et al., 2014, and are available at the Metabolomics 
GWAS Server (http://metabolomics.helmholtz-muenchen.de/gwas/). The HMDB was used to anno-
tate metabolites and the v5.0 release from November 9, 2021, of the ‘All proteins’ file was down-
loaded to extract transcript-metabolite interactions (https://hmdb.ca/downloads). PubMed was used 
for the automated literature review (https://pubmed.ncbi.nlm.nih.gov). The UCSC Genome Browser 
(https://genome.ucsc.edu/) was used to visualize the FADS locus, while the GWAS Catalog was 
used to assess the number of reported GWAS signals in the region (https://www.ebi.ac.uk/gwas/). 
The STRING database was used for the enrichment analysis (https://string-db.org/). Produced data 
is available as Supplementary file 1 and Source Data. Code used to perform analyses is freely 
available at https://github.com/eleporcu/Gene_Metab_Pheno; (Porcu, 2022 copy archived at 
swh:1:rev:c6bff8d094e369ff0d399751fc85fcd5ea250134).
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effects (ORIGINAL) and those after excluding outliers (N_outlier) are reported. The FDR column 
reports the adjusted p-value used to select significant associations (FDR ≤0.05). The HMDB and 
PubMed columns indicate the PMID of publications reporting a link between the tested transcript 
and metabolite, as identified per automated literature review, with ‘1*’ indicating associations 
reported without referencing a specific publication. c. List of the 28 medically relevant phenotypes 
assessed in this study. d. Significant metabolite-to-phenotype causal effects (FDR 5%) identified 
through univariable metabolome-wide Mendelian randomization (MWMR). Both original effects 
(ORIGINAL) and those after excluding outliers (N_outlier) are reported. The FDR column reports 
the adjusted p-value used to select significant associations (FDR ≤0.05). e. Significant transcript-to-
phenotype causal effects (FDR 5%) identified through univariable transcriptome-wide Mendelian 
randomization (TWMR). Both original effects (ORIGINAL) and those after excluding outliers 
(N_outlier) are reported. The FDR column reports the adjusted p-value used to select significant 
associations (FDR ≤0.05). f. Identified causal transcript-metabolite-phenotype triplets. Effect size 
and p-value for the transcript-to-metabolite, metabolite-to-phenotype, and transcript-to-phenotype 
relations among the 216 identified causal triplets, along with estimated direct and indirect effects. 
Rows colored in beige were identified by our automated literature review of transcript-to-metabolite 
pairs and were subjected to an automated literature review of the transcript-phenotype relation. 
The PubMed column reports the PMID of publications identified per automated literature review 
for the involved gene and phenotype (using the synonyms in PubMed_PHENO) after manual 
curation of abstracts to exclude findings in which search terms were used in an erroneous context. 
g. Metabolites integrating the effect of multiple transcripts. Twelve metabolites integrate the effect 
of multiple transcripts to in turn influence one or several phenotypes. Transcripts in bold in the same 
color are encoded by genes in close genomic proximity.

Data availability
All data used in this study are publicly available. GWAS summary statistics for outcome traits measured 
in the UK Biobank originate from the Neale Lab (http://www.nealelab.is/uk-biobank/). eQTL data 
originated from the eQTLGen Consortium (https://www.eqtlgen.org) and was published in Vosa et 
al., 2021 [3]. mQTL data originate from Shin et al. 2014 [6], and are available at the Metabolomics 
GWAS Server (http://metabolomics.helmholtz-muenchen.de/gwas/). The Human Metabolome Data-
base (HMDB) was used to annotate metabolites and the v5.0 release from 2021-11-09 of the "All 
proteins" file was downloaded to extract transcript-metabolite interactions (https://hmdb.ca/down-
loads). PubMed was used for the automated literature review (https://pubmed.ncbi.nlm.nih.gov). The 
UCSC Genome Browser (https://genome.ucsc.edu/) was used to visualize the FADS locus, while the 
GWAS Catalog was used to assess the number of reported GWAS signals in the region (https://
www.ebi.ac.uk/gwas/). The STRING database was used for the enrichment analysis (https://string-db.​
org/). Produced data is available as Supplementary File 1 and Source Data. Code used to perform 
analyses is freely available at https://github.com/eleporcu/Gene_Metab_Pheno; (copy archived at 
swh:1:rev:c6bff8d094e369ff0d399751fc85fcd5ea250134).
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