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Abstract

Background: Cloud computing is becoming the preferred solution for efficiently dealing with the increasing
amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data,
comes with important concerns related to privacy and security. This calls for new sophisticated techniques that
ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information.

Methods: We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data
files to a public cloud and enabling researchers to efficiently search for variants of interest. In order to protect data and
query confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and
combines it with homomorphic encryption and private information retrieval. Our proposed algorithm is implemented
in C++ and was evaluated on real data as part of the 2016 iDash Genome Privacy-Protection Challenge.

Results: Results show that our solution outperforms the state-of-the-art solutions and enables researchers to search
over millions of encrypted variants in a few seconds.

Conclusions: As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical for
real operational settings, our solution demonstrates that, in the case of genomic data, PETs are very efficient enablers.
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Background
Due to the impressive advances in high-throughput tech-
nologies, we have witnessed a significant deluge, in the
last few years, of digitalized genomes. This increasing
availability of genomic information has triggered mas-
sive research in the so-called “data-driven medicine”, thus
paving the way to the new era of personalized health.
Yet, even if the promise of personalized diagnoses and
treatments seems just around the corner, the required
storage and processing capacities necessary to run anal-
yses on these data are becoming increasingly prohibitive
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and often beyond the capabilities of single institutions. For
this reason, manymedical research centers and healthcare
providers are beginning to look into cloud computing [1]
as a flexible and cost-effective solution to outsource the
expensive storage and processing of genomic data.
Pushing genomic data to a cloud, however, is not an

easy task. One of the main difficulties stems from the
important privacy and security concerns caused by out-
sourcing these sensitive and personal data to an untrusted
third party. Indeed, unlike other types of medical data,
genomes cannot be anonymized [2, 3]. Many recent
attacks based on either side-channel information [4], phe-
notype/genotype correlations [5], or genealogical trian-
gulation [6] have shown that standard anonymization
techniques are ineffective with genomic data and, as
a consequence, de-identified genomes can be easily
re-identified. Furthermore, although the recent NIH
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(National Institutes of Health) Genomic Data Sharing
Policy [7] permits NIH-funded studies to use public cloud
infrastructures to facilitate large-scale data analyses, it
also states that the data owner (i.e., a researcher or an
institution), instead of the cloud provider, is responsible
for data security and privacy. In other words, if a data
breach occurs, the accountable party is the one that stores
and processes the genomic data on the cloud and not the
cloud service-provider. The leakage of genomic informa-
tion can open the door to all sorts of abuse and threats,
not only for the individual but also for his relatives. Hence,
effective protection mechanisms have to be put in place to
protect genomic data when their storage and processing
are outsourced to an untrusted cloud environment.
In response to these concerns, over the last few years,

the privacy and security community has proposed sev-
eral techniques for securely outsourcing the storage and
processing of genomic data to cloud environments. The
most popular ones are those based on homomorphic
encryption (HE), the state-of-the-art cryptographic tech-
nique that enables a party to perform certain computa-
tions directly on the encrypted data and decrypt only
the final result, thus preserving the confidentiality of the
raw genomic sequences from an honest-but-curious cloud
provider. For example, McLaren et al. [8] propose a tech-
nique, based on additive HE, for securely performing
pharmacogenetic tests on encrypted genomes. Similarly,
Lauter et al. [9] show how several statistical algorithms
can be carried out on encrypted genomes by using some-
what HE (SHE). Naehrig et al. [10] also show how cer-
tain approximated machine-learning algorithms can be
securely run in the cloud by using HE. Finally, Wang
et al. [11] make use of HE to securely compute exact
logistic regression.
However, most of these solutions have had limited adop-

tion because of either (i) their lack of flexibility (i.e., some
privacy-preserving solutions can be used only for spe-
cific tasks on specific types of data such as SNPs) or (ii)
their cost (HE introduces a significant storage and com-
putational overhead that substantially impairs scaling to
real-size genomic datasets).
In this paper, we address this problem by proposing a

novel and very efficient solution for securely outsourcing
genomic-data storage and processing that outperforms
the state of the art. Our solution is based on HE and pri-
vate information retrieval (PIR) [12] and enables a user to
securely store millions of genomic variants of all types for
one or multiple individuals on the cloud and to efficiently
search for specific genomic variants without revealing
anything to the cloud provider.
Due to its efficiency, the proposed solution was selected

among the finalists at the 2016 iDash competition [13],
which was held in Chicago, Illinois, USA on November
11, 2016. The iDash competition is a community-wide

open competition whose goal is to bridge the gap between
the biomedical informatics, data privacy, and security
communities by benchmarking new secure solutions for
known genomic-security problems. The intention is to
address these issues and further advance the current
state of the art in the genome privacy and security
research field.
We summarize the key contributions of this paper:

• A new secure and efficient solution to storing and
searching genomic data in a public cloud that
provides data and query confidentiality and hides
access patterns from the cloud.

• The first application of private information retrieval
for genomic data.

• A thorough performance evaluation on real genomic
data.

• A detailed study of the security/privacy vs.
performance trade-offs.

Methods
Our main objective in this paper is to propose an effi-
cient solution for securely storing and searching genomic
variants in a public cloud. The cloud must not find out
any information associated with the data kept within its
premises but must still enable the data owner the abil-
ity to query it. These genomic data are kept in variant
call format (VCF) files, one for each individual, under the
following structure:

CHROMOSOME‖POSITION‖VARIANT ID‖REFERENCE‖
ALTERNATE‖ . . .

The reference and alternate alleles represent, respectively,
the alleles or set of nucleotides that normally are present,
and their substitutes. All other fields are self-explanatory.
It is important to mention that the variant id is sometimes
absent. Figure 1 provides an example of one of these files
and some of their content. To correctly query for a specific
variant, we need to specify only four parameters: chro-
mosome, position (in the chromosome), reference and
alternate. The first two parameters provide the location
of the variant in the genome, and the other two represent
the associated allele mutation that can be different from
individual to individual.
For the remainder of this paper, we assume symmetric

non-homomorphic encryption under a key K (e.g., AES)
to be represented as EK (·) and homomorphic encryption
as HEK (·). Hashing is symbolically represented as h(·).

Background
Our solution draws inspiration from a popular privacy
technique known as private information retrieval. This
protocol is of particular interest in a scenario when
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Fig. 1 Variant Call Format (VCF) file. This is a text file that stores
genomic information, in particular, genetic variations, for example,
single-nucleotide polymorphisms (SNPs). Each VCF file is divided into
a header section, which provides some meta-data describing the
remaining content of the file, and the body, which contains all the
different variants

one of the participating parties (e.g., a server) owns a
database and another party wants to perform one or more
queries without leaking any information, such as access
patterns. Conceptually speaking, we want to achieve the
same level of privacy as we have when downloading the
entire database from the server and performing the search
locally. There are many variations of this protocol, but the
current model for our solution uses cPIR [14] (Compu-
tationally Private Information Retrieval) with HE, which
safeguards against a polynomially-bounded querier. The
way this protocol works, in practice, is to make each query
indistinguishable and to ensure that the server processes
all of its database entries. In this way, it cannot obtain any
information, either by looking at the query or by looking
at the computations performed on the database.

Systemmodel
Our system comprises a data owner/client who possesses
the genomic information in multiple VCF files. This infor-
mation is sent to a cloud server to be stored in a database,
as depicted in Fig. 2. The client can then query the server
to find out if one or more variants are present in the data
bank. This information can be used for multiple purposes
and is particularly important for genome-wide association
studies (GWAS) that statistically assess the correlation
between genetic variants and disease status. Our solu-
tion is able to hide data, query and access patterns from
the cloud.
We envision simple scenarios such as a doctor who

possesses the genomic data of his patients and wants
to consult this information, or a patient who stores his
genomic information on an external cloud service to free
some space in his device.

Fig. 2 Doctor-Server setting: (1) an honest doctor securely stores his
patients’ genomic data in a cloud service; (2) he performs search
queries on that data without compromising any of his patients’
confidentiality and privacy

Threat model
Our system is concerned mainly with the confidentiality
of data, such as genetic variants and with side-information
such as access patterns.We assume an honest-but-curious
cloud server that follows the defined protocol but might
try to infer, during its execution, sensitive information
from the owner’s data. This model is useful in cloud
computing, because a cloud’s malicious behavior, such as
tampering with the computation results, can be caught
with a periodic system audit, e.g., where the owner down-
loads a random small subset of the data and verifies
previous computation results [15]. The server can be
instantiated with well-known cloud service providers (e.g.,
Google, Amazon, Microsoft) that have business incentives
to behave honestly and are prudent to avoid malicious
behaviors. We do not consider any malicious adversaries
on the communication channel, as it is authenticated,
confidential, and integrity-protected with state-of-the-art
security techniques (e.g., TLS 1.2 [16]). The client, who is
the data owner and is always authenticated, is assumed to
be honest.

Proposed solution
With the previous system model in mind, we devised a
hash-based solution using homomorphic encryption and
PIR. We made some changes to the standard PIR pro-
tocol in order for it to have access to a given variant
using its identification parameters (chromosome, posi-
tion, reference allele, alternate allele), rather than its rel-
ative position in the VCF file. Furthermore, we protected
the genomic data at the server side by means of symmetric
encryption.
We decided to split our solution into initialization

(encoding and encryption) and querying phases, in order
to separate between one-time offline operations (e.g.,
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hashing, encrypting and uploading data) and online inter-
active operations that need to be executed each time a
request is performed (e.g., generating query, obtaining the
response).

Initialization phase
The initialization phase (Fig. 3) comprises the following
steps:

(1) The client (e.g., doctor) generates a symmetric key, S,
to later protect the sensitive data by using symmetric
encryption. He also generates another key, U , to
compute hashes and a pair of public, private keys,
(R, r), for the homomorphic encryption scheme.

(2) The client possesses multiple VCF files in his
machine that list the genomic variants {1 . . . I},
where I is the total number of variants. For example,
in case of a medical doctor, each VCF would contain
the variants pertaining to a specific patient. He
computes for each variant i a hash, h(i), using U and
keeps the first data_hash_size bits, h(i)bits.
Hence, data_hash_size quantifies the size of the hash
representation that is going to be stored in the server.
A smaller data_hash_size would greatly improve
performance, but would increase the probability of
collisions, or in other words that two variants are
represented by the same hash.

(3) From h(i)bits he extracts x bits that will map to an
index. The hash, h(i)bits, is then stored in another file
(encoded VCF) in this new position. A larger x
means that the server’s database will have more
entries (2x) since the number of possible mapped
indexes is bigger. A smaller x reduces the number of
possible indexes and, as a consequence, increases the
number of collisions in the new encoded VCF file. If
a collision occurs, the variant is concatenated to
pre-existent ones.

(4) All rows in the encoded VCF file, even if empty, are
padded so that they have the same length.

(5) Finally, each element in a row is symmetrically
encrypted. The combination of padding and
symmetric encryption ensures that all entries have
the same size and are indistinguishable.

Querying phase
The querying phase (Fig. 4) is mostly the same as stan-
dard PIR, repeated for each variant and/or VCF file
queried:

(1) The client specifies the query and calculates the hash
for the variant j being searched using the same key,
U , as before, h(j)bits. He then maps it to its respective
index, pos, using the first x bits of that hash.

(2) The client issues a PIR query for that position. In
other words, the client sends an array, arr, with the
same length as the queried VCF file in the database,
composed of homomorphic encrypted 0s and a 1 on
the position of the desired element

→ ∀l ∈ arr :
{
HER(1) if l = pos
HER(0) otherwise

Note that the encryption scheme is probabilistic
(there are many encryptions of 0 and of a single 1)
and that the encryptions of 0 and 1 are
indistinguishable for an attacker.

(3) The server generates a PIR reply. To do that the
server multiplies each value in the array by its
respective element in the queried VCF file and adds
up everything. When there is a 1, that entry is
homomorphically absorbed (i.e.,HE(1)×y = HE(y)),
otherwise it is erased. As encryptions of 0 and 1 are
indistinguishable, the server cannot know which
entry is absorbed and which ones are erased. If the
variant exists it will correspond to one of the
elements/variants in the response vector.

(4) Finally, the response is sent to the client, who
decrypts it, using r and S, and checks for the
presence of the variant.

Fig. 3 Initialization phase. The owner of the data first encodes the data (variants 1. . .I) into a new VCF file, which is then symmetrically encrypted
and sent to the cloud server
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Fig. 4 Querying phase. The owner of the data first maps the queried variant into a database index and then runs a generic homomorphic version of
the PIR protocol

In this solution, the client queries a single row where he
thinks a specific variant is. However, as each row contains
multiple elements, he will have access to extra informa-
tion, aside from the variant that he is looking for. Most of
the time, these additional data do not raise any security
or privacy concerns as they belong to the client himself.
However, if we consider an honest-but-curious querier
(e.g., an outside entity, such as a medical researcher,
who is authorised to query the database), retrieving more
information than intended can pose privacy problems.
Therefore, we propose an extension to our querying phase
to be performed after the PIR reply-generation denoted
subtraction step, depicted in Fig. 5:

(3a) In addition to the PIR query, the client sends a
“subtract query”, sub, which contains the
symmetrically encrypted hash of the variant being
searched, ES(h(j)bits), replicated multiple times so
that it has the same length as a row in the queried file.

(3b) The server then subtracts its PIR reply with sub. If
the variant is present in the reply vector some of the
polynomial coordinates will be 0.

(3c) Finally, the server multiplies each element of the
reply vector by a multiplicative mask. This way, it
randomizes every element in the response by using
an uniformly random multiplier (one-time pad),
except the zero coordinates that exist only if the
reply contains the variant. Hence, the client only has
to search for consecutive zero polynomial
coordinates after decrypting the result to check
whether the variant is in the file or not. Yet he cannot
obtain any other information as non-zero entries
have been randomized.

Implementation
In our solution, we make use of a very recently improved
private information retrieval implementation, XPIR [17],

Fig. 5 Subtraction step. The server subtracts the encrypted hash of the variant with its PIR reply and then randomises the result, thus hiding all other
variants except for the one being queried
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combined with AES_CTR256 for symmetric encryption
and HMAC_SHA256 for hashing. The XPIR library has
been modified to include an optimized Fan and Ver-
cauteren (FV) [18] homomorphic encryption scheme.
There are a number of reasons for choosing these par-

ticular techniques. First, for the protection of data at rest,
we opted for AES_CTR256 because it is considered safe
for today’s systems, but it also dramatically reduces the
storage cost at the server side. In fact, the size of each
ciphertext is the same as the corresponding plaintext value
and the data owner can simply store locally the 64-bit
nonce needed to generate the initialization vectors (IVs).
Each IV corresponds to this random nonce, different for
each encoded VCF file, concatenated with each variant’s
position (64 bits). Second, for hashing, HMAC_SHA256
provides a collision-resistant function proven to still be
secure. Finally, for homomorphic encryption, we use FV-
NFLlib [19] that is an implementation of FV based on
NFLlib developed for the HEAT [20] project. NFLlib is
an efficient library dedicated to ideal lattice cryptography
and is currently employed by the XPIR application due
to its security guarantees (i.e., uses secure Gaussian noise
generators).
For padding, various schemes could be applied in order

to distinguish dummy elements from real ones. We refer
to the PKCS #7 padding scheme [21], where the value of
each dummy element is equal to the number of dummy
elements. For example, if we have to pad 3 dummy ele-
ments, the padding will be “3 ‖ 3 ‖ 3”.

Parametrization
For the keys of HMAC and AES, we chose sizes that
are considered to be standard and secure. The remain-
ing parameters had to be empirically fine-tuned. Table 1
contains the different parameters of our system.
We first analyze the data_hash_size parameter. For this

particular variable, more bits will reduce the chance of
having false positives (one variant with the exact same
hash as another one), but will also increase the overall
database size. For example, storing 48 bits of each vari-
ants’ hash in a five million VCF file would lead to a false
positive probability of roughly 5, 000, 000/248 ≈ 1

225
. We

consider this to be acceptable, as the error rate in DNA
sequencing is well above this probability [22]. Neverthe-
less, we could increase the stored hashes to 96 bits so as to
have a cryptographically low probability of false positives,
thus doubling the database size, as well as the subtract
query size, and multiplying the response time by slightly
less than two (as the PIR query size is unchanged).
Varying the number of bits for mapping x affects mul-

tiple dimensions of our solution. The entries of each
encoded VCF are indexed by the x first bits of the hash
of each variant. Hence, each entry is a list of encrypted

Table 1 List of parameters

Parameters Description

DATA_HASH_SIZE Length in bits of a variant’s hash to be stored.

BITS FOR MAPPING = x Number of bits extracted from the hash that
maps to a specific index.

NUM_ENTRIES Number of entries in the encoded VCF (= 2x ).

ROW_SIZE Number of elements per row of
data_hash_size bits. Indirectly defines the
number of dummy elements (padding) to be
added.

ENCRYPTION MODE Cryptographic parameters for the FV scheme:
FV:A:B:C:D. FV is to be used with A secu-
rity bits, polynomials of degree B, polynomial
coefficients of C bits and capable of absorbing
a maximum of D bits per coefficient.

AGGREGATION Number of aggregated rows. Ensures that
multiple rows are concatenated resulting in
a database with a lesser amount of rows
(NUM_ENTRIES/AGGREGATION), which are in
turn longer (ROW_SIZE × AGGREGATION).

DIMENSIONALITY Level of recursion.

variants that map to the same index i.e., the first bits of
their hash are the same. Choosing a small x significantly
increases the average number of collisions and reduces the
number of entries, num_entries. Subsequently, the num-
ber of collisions defines the amount of padding needed, or
in other words the row_size. For example, if the maximum
number of collisions in one single index, among the differ-
ent VCF files, is 100, then we can set our row_size to the
same number and, with that, homogenize the size of each
VCF file in the database.
On the contrary, a higher x means a lengthier encoded

VCF file, as more bits are extracted during our mapping
phase. This reduces the number of collisions but signif-
icantly increases the amount of dummy data needed to
hide every entry.
In practice, if we have x = 13, then we have

num_entries = 213 elements in each encoded VCF file.
As a result of the law of large numbers [23], the aver-
age maximum number of collisions would be around
710 for a five million variants’ file. As such, the padded
VCF size will be reduced by a factor between 4 and 6,
compared with another VCF file with 222 elements with
an average of 1 collision, but with the maximum num-
ber close to 5–6. Such an improvement will reduce pre-
processing by the same factor, as well as, by roughly
a factor 2, query-generation/query-sending and reply-
generation times. Nevertheless, there is a limit to how
compact each file can be, as the increasing number of
collisions greatly expands the size of the reply.
Both aggregation and dimensionality are associated with

the PIR scheme. The first parameter enables the packing
of data, that is, enables multiple rows to be concatenated
into a single row. Thus, during the PIR protocol, we can
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reduce the number of rows of a file in the database, as well
as the size of PIR query, in exchange for a bigger PIR reply.
The second parameter, dimensionality, enables the

recursive execution of multiple PIR queries simultane-
ously (Fig. 6), thus reducing query transmission time.
However, the reply size grows exponentially in the number
of dimensions, hence we must keep the dimension small
(<4). Both dimensionality and aggregation can be chosen
in a way that ensures maximum performance.

Security analysis
Our solution uses multiple techniques, in particular, two
encryption mechanisms, a hash and a padding scheme
that, when combined, provide data and query confiden-
tiality and hide the access patterns from the cloud server.
The first encryption scheme, AES-CTR256, outputs

a uniformly random distributed ciphertext for each
encrypted variant. Therefore, the data sent to the cloud
cannot be directly used by an attacker to obtain confiden-
tial information.
The second encryption scheme, FV, is a somewhat

homomorphic encryption (SHE) scheme that ensures
indistinguishably against chosen plaintext attacks and is
limited to an amount of operations (e.g., some additions
and/or multiplications). Beyond this limit, an operation

Fig. 6 Dimensionality/Recursion. With dimensionality = 2 the size of
the PIR query is smaller but the server needs to perform more
iterations to generate the correspondent reply. In the example above,
we reduce the size of the PIR query from 9 to 6 elements

on the ciphertext creates too much noise for the decryp-
tion to be correct, as the noise overflows the data. FV
is based on the ring-learning-with-errors (RLWE) prob-
lem; and to estimate the security of its parameters we
use Martin Albrecht’s work [24] that provides a script
to generate this information based on existing attacks.
The script returns the security of the most recent attacks
against LWE-based cryptosystems, and we assume the
results hold for RLWE. This is the standard approach to
estimating RLWE security nowadays.
Hashing, SHA256, ensures that we can represent any

kind of variant (SNPs, insertions, deletions, etc.) in a com-
pact way and still provide indistinguishability, after we
symmetrically encrypt the data. By padding, we ensure
that each row in each of the files in the server is the same
size, hence the line length does not leak any information.
Finally, the subtraction step changes the solution so that

the querier can learn only about the requested variants
and nothing else.
By combining all of these techniques, we ensure data

confidentiality and privacy throughout the twomain steps
of our solution. For the first step, the initialization phase,
symmetrically encrypting the hash of the variants using
the client’s private key, ensures that no one besides the
client can decrypt this information. As for the second
step, the querying phase, as the query has the same length
as the length of the queried file and all its elements are
homomorphically encrypted, the server cannot obtain any
information about the rows that the client wants to access.
In addition, the server cannot distinguish between two
different queries, as the encryption scheme used to gen-
erate them provides ciphertext indistinguishability based
on a standard cryptographic assumption. The operations
performed at the server side (to obtain the PIR reply) are
always done between homomorphic-encrypted data and
symmetric-encrypted data, therefore the stored variants
and the query are protected at all times. The server per-
forms the same homomorphic multiplication for every
single row of the VCF file thus does not know which one
is being retrieved.
The extension to our solution simply reduces the

amount of extra data that the client has access to. Data are
still encrypted before, during, and after the subtraction
step, hence there is no leakage of information.

Results
In this section, we assess, in different settings, the perfor-
mance of our system and offer a comprehensive view on
how to achieve better results. We split our results in two
categories: a generic performance evaluation and a spe-
cific evaluation focused on the tests conducted during the
iDash Challenge.
We ran both client and server, implemented in C++,

on a Ubuntu (64-bit) virtual machine with 4 GB RAM
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and 250 GB hard disk, on top of a MacBook Pro with a
3.1 GHz Intel Dual-Core i7 processor. We enforced a 10
Mbps link for both downloading and uploading data. Each
measurement was averaged over 10 independent runs and
we displayed the standard deviation for the round-trip
time (RTT).

Generic performance evaluation
Table 2 lists five different settings, and Table 3 showcases
the results. All different setups will run a single variant
search on a specific VCF file with five million variants.
We generated this test file by using the two datasets pro-
vided during the iDASH genome privacy challenge. For
more information on each of the parameters, please refer
to subsection - Parametrization.
We evaluate four setups, of which Setup default uses

the default settings for our strategy. We fine-tuned these
parameters to offer the best possible performance.
For storage, we decided to represent each variant with

48 bits of its hash, ensuring a small file size and a negli-
gible probability of error. Furthermore, we also decided in
favor of a compact database that enables us to reduce stor-
age complexity and improve PIR query-generation/query-
sending time. We ended with 8192 entries per file
(x = 13), as further aggregating the database would make
the PIR reply-generation/reply-sending too cumbersome.
For the encryption mode and complementary parame-
ters, we chose those provided by the XPIR optimizer -
FV:80:1024:62:14 with aggregation 3 and dimension 2. To

Table 2 System settings for the generic performance evaluation

Setup Default Sparse no_info

DATA_HASH_SIZE 48 48 48

BITS FOR MAPPING 13 16 13

NUM_ENTRIES 8192 65536 8192

ROW_SIZE 716 130 716

ENCRYPTION MODE 80:1024:62:14 - -

AGGREGATION 3 15 3

DIMENSIONALITY 2 (53×52) 2 (67×66) 2 (53×52)

Setup Security

DATA_HASH_SIZE 48

BITS FOR MAPPING 13

NUM_ENTRIES 8192

ROW_SIZE 716

ENCRYPTION MODE 172:2048:62:14

AGGREGATION 3

DIMENSIONALITY 2 (53x52)

Each setup pertains to a single scenario → default: optimized setup; sparse: sparser
database (more entries); no_info: no extra variants retrieved; security: stronger
security guarantees. ’-’ means the same value has the previous setting

Table 3 Quantitative results for the generic performance
evaluation

Setup Default Sparse no_info

Data preparation (s) 19.2 21 19.6

Size of VCF file (Mbytes) 35 51 35

Importation (s) 0.6 1.08 0.71

PIR query generation (s) 0.013 0.017 0.011

Sending query (s) 1.37 1.74 1.49

PIR reply generation (s) 0.38 0.55 0.46

Sending reply (s) 1.03 1.04 1.26

Reply extraction (s) 0.4 0.58 0.49

Round-trip-time (s) 2.4± .006 2.8 ± .002 2.7 ± .001

Setup Security

Data preparation (s) 21.3

Size of VCF file (Mbytes) 35

Importation (s) 0.8

PIR query generation (s) 0.025

Sending query (s) 2.88

PIR reply generation (s) 0.56

Sending reply (s) 1.39

Reply extraction (s) 0.34

Round-trip-time (RTT) (s) 4.3 ± .02

The table is divided into three sections: initialization phase, querying phase and
overall querying performance. The results are for one single variant search on a
specific VCF file with five million variants. The data in boldface represents the round
trip time, which provides an overall measure of the efficiency of our solution in the
different setups

obtain these values, the XPIR optimizer empirically tests,
for a specific file, different combinations of parameters
and chooses those that provide the better overall PIR per-
formance and guarantee at least 80-bits security.We opted
to include a pipeline execution and pre-importation. Con-
sequently, both query and reply are sent as they are
created, and some data are stored in RAM to enable
a much faster computation of all PIR operations. It is
worth mentioning that the pre-importation is not viable
if the number of patients is too high, roughly 100 for this
machine, as there is not enough space in the RAM. Finally,
to provide data confidentiality and privacy, we selected a
256-bit key for AES encryption, a secure standard, and a
row_size of 716. This is sufficient for hiding the average
maximum amount of collisions on any given VCF file up
to five million variants, without having too much storage
and time overhead and still keeping the size of each entry
at the minimum possible.
The three remaining setups enable us to compare the

default strategy (compact database) with an alternative
one (sparse database), to evaluate the performance of our
subtraction step and to assess the security scalability of
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our solution. For Setup sparse, we decided on a length-
ier database, an alternative solution, with fewer collisions
and a higher recursion to mitigate the effect of having
more entries. Setup no_info removes the extra informa-
tion retrieved for each query by adding our subtraction
step. Finally, Setup security is similar to the previous one
but, this time, the ciphertext size chosen is larger to
provide much stronger security (>128 bits).
We evaluate each setup based on three performance

parameters (Table 3) in decreasing order of impor-
tance: performance, storage complexity and communica-
tion cost. The first metric is assessed by looking at the
round-trip time (RTT), the PIR query and reply genera-
tion, as well as the reply extraction. Both data preparation
and importation have a low impact in the overall com-
plexity, as they are executed only once. The size of the
VCF file measures the performance in terms of stor-
age, and send-query and send-reply measures the per-
formance in terms of communication cost. Although not
indicated in Table 3, sending the VCF file takes approxi-
mately size_of_vcf_file(MBytes)/1.25 s with a 10 Mbps of
bandwidth.
The first setup, Setup default, shows the overall best per-

formance of our basic solution under optimized settings.
On average, a client can query the system in less than
2.5 s, while protecting the data at rest, the query, and
the response from the cloud server. It is very important
to mention again that we are using a five million VCF
file, currently considered to be an upper-bound to the the
maximumnumber of variants a human can have in his/her
genome [25]. For smaller files, the results are exactly the
same, except for the amount of time it takes to prepare
the data during the initialization phase. Hence, as long as
the VCF has less than five million variants, this solution
is file independent due to the padding scheme. In other
words, querying a VCF file with one variant takes the
same amount of time as querying a file with five million
variants.
In the second setup, Setup sparse, we notice a slight

increase in the overall RTT time, mostly due to the fact
that we have a higher number of entries, thus causing
the PIR query to be larger and more cumbersome. Aggre-
gation can help, up to a certain point, to mitigate this
problem, by having multiple entries in one single poly-
nomial/ciphertext. Without it, our PIR query becomes
slightly larger; and the time it takes to generate and send
it becomes rapidly impractical.
In the third setup, Setup no_info, we introduce the sub-

traction step and, as expected, the RTT increases with
respect to our default setting. A part of the overhead is
caused by generating and sending the extra polynomial
and by performing the corresponding homomorphic sub-
traction and multiplication. The remaining overhead is
caused by having to reduce the number of bits that hold

the data (the rest is noise) for each coefficient. Only then
can we perform the multiplication without having the
noise bits overlap the data bits and still provide enough
randomness to prevent the client from inferring the extra
information.
Finally, Setup security simply proves that scaling secu-

rity is easily achieved by using our secure searching
method.

The iDash Challenge
In the iDash Challenge [13] there were a number of
requirements to consider. Accepted solutions had to (1)
hide the data, query and access patterns from the cloud
server, (2) employ homomorphic encryption, and (3)
retrieve/reveal fewer than 20 variants to the data owner
during each single variant search. However, for this com-
petition it was not mandatory to hide the number of
variants in each VCF file. Therefore, we decided to slightly
change the padding scheme and significantly reduce query
runtime. In this case, we add only dummy data to homog-
enize all rows inside a specific VCF. This padding is
weaker than our previous one because the server can still
distinguish different files by looking at their sizes. There-
fore, the cloud knows if a VCF has more or less variants
than another one in the database and can consequently
infer an approximation of the total number of variants.
Note that in the iDash Challenge only SNPs needed to
be considered. However, in our solution, we can test for
the presence of any mutation (e.g., an insertion of 1000
nucleotides) due to our hash-based representation. Other
approaches not using hash-based representations would
incur a much higher complexity to enable handling multi-
nucleotide mutations with respect to handling SNPs.
Table 4 lists the different settings, and Table 5 showcases

the results for the three queries performed by the chal-
lenge organisers: (1) query 4 variants in one single VCF
file with 10,000 variants; (2) query 4 variants in one sin-
gle VCF file with 100,000 variants; and (3) query the same
variant in 50 different VCF files with 100,000 variants. We
opted for two different scenarios, a. and b.: they map to
two different querying methods: scenario a. uses the sim-
pler version of our protocol and was the one we submitted
to the competition, and scenario b. includes our extension,
the subtraction step, to eliminate any extra information
obtained by the querier.
For query number 1, in scenario a., we opted for a set-

ting with a sparser file and almost no aggregation in order
to ensure that we did not retrieve more than 20 variants
at a time. For the row_size we chose 6, which is enough
to homogenize the size of each entry. Conversely, for sce-
nario b., we chose a very compact file structure with a
high number of collisions in each entry, row_size = 672.
In this case, we no longer need to worry about obtain-
ing extra information, as the subtraction step ensures
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Table 4 System settings for the iDash Challenge

Query 1a 2a 3a

DATA_HASH_SIZE 48 48 48

BITS FOR MAPPING 13 17 17

NUM_ENTRIES 8192 131072 -

ROW_SIZE 6 6 6

ENCRYPTION MODE 80:1024:62:14 - -

AGGREGATION 4 4 4

DIMENSIONALITY 2 (46*45) 3 (32*32*32) -

Query 1b 2b 3b

DATA_HASH_SIZE 48 48 48

BITS FOR MAPPING 4 9 9

NUM_ENTRIES 16 512 512

ROW_SIZE 672 256 256

ENCRYPTION MODE 80:1024:62:14 - -

AGGREGATION 2 2 2

DIMENSIONALITY 1 (8) 2 (16×16) 2 (16×16)

Each setup pertains to a single query scenario → 1: “query 4 variants in one single
VCF file with 10,000 variants”; 2: “query 4 variants in one single VCF file with 100,000
variants”; 3: “query the same variant in 50 different VCF files with 100,000 variants”

that the querier obtains only access to the variants he
queried.
Following an analogous reasoning, for query number 2,

we decided on 131,072 entries and a row_size of 6 for sce-
nario a., and on 512 entries and a row_size of 256 for
scenario b.
Finally, query number 3 has the exact same settings as

the previous query, because the number of variants in
each of the 50 VCF files is the same.
To evaluate the results, we focus on the same three key

elements as before: response time, storage complexity and
communication cost, see Table 5.
For the first two queries, our solution provides a short

execution time, no matter which scenario. We are able
to query 4 variants in a VCF file with 10,000 entries in
respectively 5.5 or 1.07 s, which means 1.4 or 0.3 s per
variant; and 4 variants in a VCF file with 100,000 entries
in, respectively, 13.3 or 2.9 s, which means 3.3 or 0.7 s per
variant. The difference between the two searching meth-
ods is due to the fact that, by hiding the unnecessary
variants in b., we have the freedom to fully optimize the
system parameters, thus obtaining a better RTT.
The last query shows that response time increases

linearly with the number of variants or files queried. In
fact, for each variant search in a specific VCF, we have to
execute an independent PIR request each time.

Discussion
In this section, we analyze the results reported in Tables 3
and 5 and discuss the pros and cons of our solution.

Table 5 Quantitative results for the three queries performed
during the iDash competition

Query 1a 2a 3a

Data preparation (s) 0.04 0.4 20.2

Size of VCF file (Mbytes) 0.3 4.72 235.9

Importation (s) 0.12 1.89 94.5

PIR query generation (s) 0.04 0.05 0.67

Sending query (s) 4.77 5.03 62.9

PIR reply generation (s) 0.29 4.27 53.4

Sending reply (s) 0.53 5.19 64.9

Reply extraction (s) 0.34 4.41 55.1

Round-trip-time (s) 5.5 ± .02 13.3 ± .1 128.1 ± .1

Query 1b 2b 3b

Data preparation (s) 0.037 0.36 19.2

Size of VCF file (Mbytes) 0.06 0.79 39.5

Importation (s) 0.002 0.03 1.4

PIR query generation (s) 0.008 0.016 0.2

Sending query (s) 0.736 1.78 22.3

PIR reply generation (s) 0.008 0.1 1.27

Sending reply (s) 0.31 1.15 14.5

Reply extraction (s) 0.05 0.16 2.05

Round-trip-time (s) 1.07 ± .01 2.95 ± .004 37 ± .5

The data in boldface represents the round trip time, which provides an overall
measure of the efficiency of our solution in the different setups

We also unveil some alternative strategies for potentially
addressing some of the limitations that our system can
incur.
From the results of the previous section, we are confi-

dent that our solution enables the execution of a query in
a short amount of time and is scalable no matter what the
number of elements in the file are. Furthermore, under the
right parameters, e.g, Setup default, and under the same
encoding strategy, our solution is faster than download-
ing the entire database (approximately 3.5 seconds with a
five million VCF file) and provides stronger security and
privacy.

Trade-offs
As previously mentioned in the Parametrization subsec-
tion, two of the most prominent and distinctive factors
that affect our solution are the size of the hash for each
variant, data_hash_size, and the number of entries in the
encoded VCF file, correlated with the bits for mapping=x.
Both of these parameters greatly influence the perfor-
mance of our algorithm by reducing/increasing the trans-
mission time of the VCF and of the PIR query/reply. For
instance, as seen in Table 3, having a small data_hash_size
and a compact file structure, with fewer entries and more
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collisions, reduces transmission time for the VCF file and
the PIR query and decreases the amount of homomor-
phic operations performed on the server side. But, it also
expands the PIR reply. Without the subtraction step, in
addition to the answer to a query, other data are also
retrieved.
Some other variables influence performance in

exchange for a stronger or weaker security and privacy.
The first one worth noting is the row_size. Recall that
this parameter enforces a minimum number of elements
per entry, regardless of the number of variants of a given
individual. We could remove this restriction or place it
below the minimum of ceil(5,000,000/num_entries), like
we did for the iDash Challenge. But this would mean
that the size of each entry and of the overall file would
depend on the number of collisions. This would greatly
improve the performance of our protocol, as seen in
Table 5. But in exchange, the server could much more
easily infer the actual number of variants a client has
by looking at other VCF files, thus severely degrading
privacy.
Therefore, if we want to achieve maximum privacy,

we must ensure that all files are sufficiently large and
homogeneous to hide the average maximum amount of
collisions that could occur, for example, with five million
variants.
We can also mention the encryption techniques and

size of the symmetric key as variables that are engaged
in this trade-off. Having symmetric encyption, AES-CTR,
slightly decreases performance but ensures data confiden-
tiality. Finally, opting for a larger or smaller polynomial for
HE dictates the security level, the amount of aggregation
we can do, as well as the size of the PIR query and reply
(see Setup security in Table 3).

Features
Our strategy features the following properties:

• Optimal privacy: By hashing and padding each file
with dummy data, we ensure that no matter how
many variants, with a maximum of five million, all
files are indistinguishable. Therefore, we can hide the
length of each file and the length of its elements.
Using PIR hides access patterns and provides
inalienability when querying the same variant twice.
We can weaken the privacy level and in exchange
achieve better performance.

• Confidentiality: We symmetrically encrypt the data
using AES-CTR256.

• Good security scalability: As we rely on
lattice-based cryptography to perform PIR, we are

able to increase security without much performance
overhead, e.g., increasing security by a factor of two
only decreases performance by a factor of two.

• Low storage-complexity: By using hashing, we
significantly reduce the size of the VCF files. Hence, if
for example we store 48 bits (6 bytes) of the hash,
every VCF file will be around 30 Mbytes
(5, 000, 000× 6). To maintain privacy, we need to pad
enough dummy data, thus hiding the number of
variants.

• Low querying-time: This solution yields a fast
querying time and is extremely scalable. Under the
stronger padding scheme, querying a file with 1
variant takes the same time as querying a file with five
million variants.

• Minimization of delivered data: We propose a way
to reveal only the queried variants to the client. This is
accomplished by means of the additional subtraction
step executed after revealing the PIR reply.

• Generality: We consider all known variants, not only
single-nucleotide polymorphisms (SNPs).
Furthermore, our solution can easily store a different
encoding instead of its hash, possibly enabling other
kinds of operations on the genomic data.

Limitations
There are a few limitations that we can identify in our
strategy. The first is the error rate associated with our
hashing scheme. In the next section, we propose a way to
mitigate this problem, and we still provide a fast query-
ing time. Second, if the number of VCF files in the
database is relatively large, then we can no longer store
pre-imported data into RAM. This can be solved by stor-
ing pre-imported data into a disk, but will result in a
slow down. As reply generation is more rapid than send-
ing the reply, the overhead due to the disk reading will
not affect RTT, except for very slow disks. Finally, our
default strategy still suffers from some scalability issues,
especially if multiple variants or files are queried - O(n)
complexity, with n being the number of variants or files
queried.

Other possible strategies
We now list a couple of other alternative strategies and
mechanisms for addressing some of the previously listed
shortcomings of our protocol. These ideas have both pros
and cons, some of which we detail in the following para-
graphs.
The first idea is to store the encoding of a variant instead

of part of its hash. This would remove the risk of having
false positives and enable the possible execution of other
operations on the data.
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Encoding exaple uses information on variant type [op-
2bits] (insertion, deletion, single polymorphism, substi-
tution), chromosome [chr-5bits] , position [pos-28bits],
reference [ref-2bits/base] and alternate [alt-2bits/base]
alleles.

INSERTION/SNP :
op(01)‖chr‖pos‖alt

DELETION :
op(11)‖chr‖pos‖reflength

SUBSTITUTION :
op(11)‖chr‖pos‖ref length‖alt

EXAMPLE :
chr : 1; position : 160999478; reference : A; alternate : G

010000110011001100010101000001101100110

However, in addition to the normal padding, we would
also need to hide each variant’s length bymeans of another
padding. With this particular encoding, variant size varies
from a SNP (37 bits, see example above) to an inser-
tion/deletion (variable, e.g., 81 bits). Thus, padding each
element to the maximum encoding length in the database
would increase the database size by a factor of 2 with the
proposed example. Larger databases significantly degrade
performance (see Table 6) because they increase importa-
tion time and PIR reply-generation/reply-sending.
The second idea, which we briefly discussed in the pre-

vious subsection, is to have a much lengthier database
with no collisions, thus removing the need to perform
the subtraction step. This would also enable a much
faster AND operation by means of a point-value poly-
nomial representation. This way, we could batch several
queried elements into one single PIR query; instead of
one query per variant, and then search, in the reply, for
the value corresponding to the addition of the variants.
This approach, however, would require a huge database

Table 6 Quantitative results relative to our alternative encoding
strategy. We use the same settings as Setup default but with
data_hash_size = 81

Setup Encoded

Data preparation (s) 22.3

Size of VCF file (Mbytes) 58.6

Importation (s) 1.02

PIR query generation (s) 0.03

Sending query (s) 1.37

PIR reply generation (s) 0.62

Sending reply (s) 1.68

Reply extraction (s) 0.66

Round-trip-time (RTT) (s) 3.06 ± .004

The data in boldface represents the round trip time, which provides an overall
measure of the efficiency of our solution in the different setups

and much dummy data, thus severely degrading the per-
formance of the PIR protocol. One naive way to avoid
collisions could be to separate each variant into a collec-
tion of SNPs to be encoded (37 bits) and directly place
them in a database with 237 entries. Cuckoo hashing [26]
offers a smarter alternative, by replicating the database
and using two hashes/positions for each single element.
However, for our algorithm to work, we require one of
the two positions to remain empty, something that can-
not be efficiently done with the standard greedy insertion
algorithm.
Finally, the third alternative would be to not use PIR and

instead employ a fully-homomorphic encryption (FHE)
scheme. For this protocol, the database would contain
encrypted multi-nucleotide variants unordered. To per-
form a query, we would use FHE to test the equality of
each database element to, for example, a 48-bit homomor-
phically encrypted hash as shown in Fig. 7. We would do
this by sending 48 queries that correspond to the 48 bits
of the encrypted variant’s hash we want to verify. Then,
because the noise increases significantly with multiplica-
tive depth, we would apply a binary tree on each entry of
the database.

Notation: ai is the ith bit we send; bi is the ith bit of an
element in the database; ti represents the equality test of
the bits i. We can do this by working modulo 2 with: 1 +
(ai + bi).
We list some of the pros and cons for the FHE-only

alternative strategy.

Pros:

• Small database size (small-sized padding);
• The size of the reply does not depend on the variants’

representation and is a simple binary response: 0 or 1;
• Easy AND operations.

Cons:

• Too much time to generate the response.

Fig. 7 FHE-only scheme. The response is 1 if an element matches, 0 if
not. Unfortunately this kind of multiplication is very time consuming
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Conclusion
We have described a new efficient strategy that uses pri-
vate information retrieval to search genomic variants on a
cloud database. This schememakes use of a new enhanced
PIR protocol that we adapt to fit our purpose. All the
security and privacy requirements were met by intro-
ducing certain modifications in the PIR protocol, such
as the need to homogenize each client’s VCF file and
the symmetric encryption of the data to guarantee con-
fidentiality and privacy. We have also listed some other
alternative mechanisms that can be useful, depending
on the setting, e.g., sparse database and cuckoo hash-
ing to reduce AND complexity, or encoding to enable
other operations. Finally, results show that, although not
as effective as a simple search through an unencrypted
database, this strategy exhibits a good performance and
could be realistically deployed, for example, in clinics or
hospitals. Future work includes finding a way to make
AND operations scalable, probably by means of cuckoo
hashing.
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