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Abstract
Introduction  Obesity is a condition that generally limits work capacity and predisposes to a number of comorbidities and 
related diseases, the last being COVID-19 and its complications and sequelae. Physical exercise, together with diet, is a mile-
stone in its management and rehabilitation, although there is still a debate on intensity and duration of training. Anaerobic 
threshold (AT) is a broad term often used either as ventilatory threshold or as lactate threshold, respectively, detected by 
respiratory ventilation and/or respiratory gases (VCO2 and VO2), and by blood lactic acid.
Aims and methodology  This review outlines the role of AT and of the different variations of growth hormone and cat-
echolamine, in subjects with obesity vs normal weight individuals below and beyond AT, during a progressive increase in 
exercise training. We present a re-evaluation of the effects of physical activity on body mass and metabolism of individuals 
with obesity in light of potential benefits and pitfalls during COVID-19 pandemic. Comparison of a training program at 
moderate-intensity exercise (< AT) with training performed at moderate intensity (< AT) plus a final bout of high-intensity 
(> AT) exercise at the end of the aerobic session will be discussed.
Results  Based on our data and considerations, a tailored strategy for individuals with obesity concerning the most appropri-
ate intensity of training in the context of rehabilitation is proposed, with special regard to potential benefits of work program 
above AT.
Conclusion  Adding bouts of exercise above AT may improve lactic acid and H+ disposal and improve growth hormone. 
Long-term aerobic exercise may improve leptin reduction. In this way, the propensity of subjects with obesity to encounter 
a serious prognosis of COVID-19 may be counteracted and the systemic and cardiorespiratory sequelae that may ensue 
after COVID-19, can be overcome. Individuals with serious comorbidities associated with obesity should avoid excessive 
exercise intensity.
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1. Introduction

Obesity, exercise, and COVID‑19

In humans, both physiological and neuroendocrine fac-
tors act to control the amount of biological activity of 
white adipose tissue. In subjects with obesity, a reduced 
metabolic response to sympathetic nervous system (SNS) 
activity is known [1, 2] , with a blunted lipolytic action 
on visceral adiposity [3, 4]. Several hormones including 
corticosteroids, growth hormone (GH), androgens and 
estrogens are less responsive to exercise in subjects with 
obesity [5, 6]. All the above contribute to regulating lipid 
metabolism in response to exercise training. Yet, regular 
exercise is an important step, together with diet, in the 
management and rehabilitation strategies of individuals 
with obesity, due to its ability to modulate both com-
ponents of the energy balance equation, namely energy 
intake and energy output [6]. Furthermore, we recently 
reported on the positive immunomodulatory effects of 
physical exercise protecting against COVID-19 [7]. Since 
obesity is at the same time a risk factor for the contagion 
by SARS-CoV2 and predisposes infected individuals to 
a worse prognosis [8], herein we present several consid-
erations on the binomial obesity-exercise intensity and 
COVID-19.

In general, subjects with obesity have a decreased work 
capacity when compared to lean subjects, mostly due to an 
increased cardiac left ventricular mass and wall thickness 
with abnormalities in diastolic filling [9]. Moreover, they 
must overcome a decreased compliance in respiratory sys-
tem [10]. Maximal sustainable work outputs in young sub-
jects with obesity are similar to those of lean age-matched 
controls, but they attain the anaerobic threshold (AT) at 
significant lower outputs [11]. This means that endurance 
time at maximal effort is shorter, and therefore, that work 
capacity is lower [12]. Older subjects with obesity show a 
significant reduction in maximal sustainable work capacity 
and reach earlier AT, reflecting a more severe reduction in 
physical performance as compared to controls [13].

Furthermore, individuals with obesity have an altered 
dynamic of pulmonary ventilation, which is a potential 
cause of the worse clinical picture of COVID-19 [8]. Dur-
ing a progressive exercise, the delta increment of oxygen 
consumption is the same in subjects with obesity and in 
normal weight subjects. Nevertheless, obesity implies a 
constant significant greater absolute amount of oxygen 
at each correspondent external work output. This sug-
gests that gross mechanical efficiency (Watts/VO2) is 
lower in individuals with obesity despite similarities in 
net mechanical efficiency (Watts/VO2—VO2 freewheel-
ing) when compared to controls [11]. The underlying 

mechanism involves a higher peripheral oxygen uptake in 
individuals with obesity than in controls. This is partly 
due to a different pattern in circulating endothelin-1/NO 
concentrations, with a decrease in the former and a higher 
level of the latter in subjects with obesity [13]. Exercis-
ing above AT increases the capacity of both lean subjects 
and individuals with obesity, to remove lactic acid from 
the circulation. Hyperlactatemia and lactic acidosis are 
among the precipitating factors of multi-organ failure, the 
most dreadful complication of COVID-19 [8]. Therefore, 
upregulating lactic acid disposal capacity constitutes a 
defense against multi-organ failure mainly for subject with 
a low AT as individuals with obesity [8]. Furthermore, in a 
diagram representing AT plotted against body mass index 
(BMI) (or percent of ideal weight), a linear increase can 
be observed in normal subjects, while a linear decrease 
can be documented in subjects with obesity [14], suggest-
ing that in individuals with obesity the decrease in AT is 
proportional to the increase in body mass.

Anaerobic threshold, lactic acid, respiratory 
exchange ratio (RER)

The intensity of physical work plays a role in the utilization 
of metabolic substrates. At low-intensity exercise (< 30% 
of VO2max), lipids deriving from adipose tissue store are 
used predominantly; at moderate-intensity exercise (40–65% 
VO2max) significant amounts of fats from both adipose tis-
sue and intramuscular stores are used; at high-intensity 
exercise (> 70% VO2max), small amounts of fats are used, 
while glucose and glycogen become the predominant energy 
substrates [15].

AT indicates the VO2 level at which starts the anaero-
bic supplementation of the aerobic energy production. Both 
arterial lactate and lactate/pyruvate ratio increase for a given 
subject depending on his fitness and form of exercise [16]. 
It may be a useful index for evaluating daily life activity and 
in prescribing exercise regimen [17].

Methods using lactatemia and/or ventilation are reference 
methods to fix working intensities. They allow the detec-
tion of two lactic thresholds and two ventilator thresholds. 
The former threshold (lactic or ventilatory) is mainly useful 
for training programs in ill subjects, while the latter (lac-
tic or ventilatory) is useful for training programs in healthy 
subjects and athletes [18]. Ventilatory threshold is used as 
an effort-independent physiological marker of the ability to 
perform submaximal, prolonged physical activity [19].

The aerobic energy system (below AT) produces the 
energy source adenosine triphosphate (ATP) by oxidative 
pathways, being configured for long-term steady work. The 
anaerobic alactic and lactic acid systems are less efficient 
than the aerobic system, producing quickly energy by non-
oxidative pathways [20]. Their activation is short lasting, 
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depending on the limited glycogen stores in human body and 
consequent to the accumulation of fatigue-related metabo-
lites [e. g. H+ Pi and extracellular K+ [21]].

The most feared event complicating COVID-19 is multi-
organ failure, which entails a failure of mitochondrial ATP 
production in many vital organs such as lungs but also heart, 
kidneys, gut and brain. COVID-19 in patients with obesity 
involves a higher mortality due to several factors among 
which the cellular respiratory chain failure predominates 
[22]. During multi-organ failure, lactic acid along with 
fatigue and stress-related metabolites (mainly H+) increases 
due to a switch toward anaerobic metabolism. To note 
that the switch takes place earlier in subjects with obesity 
(namely at lower workloads) and even at very low workloads 
(e.g., simply walking) in individuals with stage III obesity.

The Respiratory Exchange Ratio (RER) is the ratio 
between CO2 output and O2 uptake. Usually, it is considered 
during physical stress, providing information about AT and 
predominant fuel utilization (with the acknowledged limi-
tation of not considering protein utilization). The classical 
criteria for detecting AT are the following:1) analysis of the 
straight-line relations of VCO2 vs VO2 (V-slope method) 
[23]; 2) inflection point on the minute ventilation (VE) vs 
oxygen consumption (VO2) diagram; 3) point of increase 
in end-tidal VO2 (PETO2); 4) point of increase in the ven-
tilatory equivalent of O2 (VE/VO2) without a concomitant 
increase in the ventilatory equivalent of CO2 (VE/VCO2) 
[23].

Human muscles contain both slow twitch fibers (type 1) 
more fat burning, and fast twitch fibers (type 2) with a pref-
erence for carbohydrate. Lower exercise intensity recruits 
more type 1 fibers while highest intensities recruit an higher 
percentage of type 2 fibers, which are added to those of type 
1 [20].

This review stems from exercise testing in subjects with 
obesity and emphasizes the relevance of AT as a drift point 
in the behavior of specific hormones and mediators. Build-
ing on that physiological evidence, it will summarize the 
research conducted up to date on the effects of physical 
training on metabolism and body composition of individ-
uals with obesity at work outputs below and beyond AT. 
Finally, we will propose a combination of Aerobic Training 
along with Aerobic plus Anaerobic Training as appropriate 
exercise prescription in subjects with obesity undergoing 
rehabilitation.

The rationale of combining Aerobic and Anaerobic train-
ing (which entails “playing around the anaerobic threshold”) 
is particularly relevant in the COVID prevention and in the 
post-COVID rehabilitation of subjects with obesity. This is 
because training our muscles to dispose more quickly of 
lactic acid will increase the aerobic power of the mitochon-
dria, and specific training programs tailored for individuals 
with obesity may improve their immunomodulatory capacity 

[7]. Moreover, sedentariness caused by lockdown periods 
has a deconditioning effect also in unaffected individuals, 
although it determines a striking burden in individuals with 
obesity or diabetes [24]. Recently, high-intensity interval 
training (HIIT) (brief bursts of vigorous intensity inter-
spersed with periods of rest or low-intensity exercise) has 
been tested in subjects with obesity, showing positive effects 
on aerobic fitness and cardiovascular protection [25].

Literature search

We searched the PubMed database for relevant literature. 
The search on obesity and AT was performed focusing in 
parallel on: 1) behavior of hormones and mediators during 
exercise testing; 2) effects of training at different intensities 
(that is below AT vs below and beyond AT); 3) effects of 
bouts of high-intensity exercise in relation to COVID-19.

We used the following keywords for the first search 
topic: (obesity AND adults AND exercise AND anaerobic 
threshold) AND plasma catecholamine OR epinephrine OR 
norepinephrine OR lactic acid OR potassium OR growth 
hormone OR GH OR leptin. Subsequently, a second search 
topic with the following keywords was performed: (obesity 
AND adults AND exercise AND anaerobic threshold AND 
physical training) AND growth hormone OR GH OR non-
esterified fatty acids OR NEFA OR insulin resistance OR 
lactic acid OR leptin OR body composition. Finally, as last 
topic, a search using as keywords (Obesity AND COVID-19 
AND High Intensity Exercise) was performed.

Only peer-reviewed articles written in English were 
included in the list of retrieved scientific studies. The final 
screening was based on the relevance of the identified 
items. Twelve articles were considered in the first search 
topic (McMurray RG et al. 2005, Connolly DAJ et al. 2012, 
Wasserman K 1984, Salvadori A et al. 1992, Salvadori A 
et al. 1991, Cahill BR et al. 1997, Salvadori A et al. 2003, 
Salvadori A et al. 2008, Hamilton MT et al. 2000, Salvadori 
et al. 2004, Felsing NE et al. 1992, Koppo K et al. 2010), ten 
articles were considered in the second search topic (Tamai 
M et al. 1993, Weltman A et al. 2008, Sideman L et al. 2002, 
Salvadori A et al. 2010, De Glisezinski I et al. 2003, Den-
gel DR et al. 1996, Salvadori et al. 2014, Salvadori A et al. 
2015, Jelleyman C et al. 2015, Lanzi S et al. 2015) and five 
articles were considered in the third search topic (Rahmati-
Ahmadabad S et al., 2020, Yang S, 2020, Wang M, 2020, 
Baena Morales S 2021, Kemmler W, 2021).

Considering these retrieved papers and the experience 
of our multidisciplinary team, we report on the following 
observations linking physical activity to anaerobic threshold 
in subjects with obesity, before and during COVID-19 pan-
demic, speculating on a potential protection from COVID-19 
of above AT or of mixed aerobic and anaerobic training.
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Anaerobic threshold in subjects with obesity 
and normal subjects

During a progressive exercise testing, AT (former thresh-
old) represents a “drift point” for many indexes (catecho-
lamine, lactic acid, potassium and growth hormone).

Plasma catecholamine pattern during exercise 
in obesity: its potential ominous role in COVID‑19

Physical stress causes activation of the SNS. This elic-
its an increase in plasma catecholamine, which in turn 
contributes to increasing the heart rate, arterial pressure, 
and myocardial contractility [26]. In addition, due to 
SNS innervation of adipose tissue, physical stress pro-
motes lipolysis and release of glycerol and free fatty acids 
(NEFA) into the circulation [27].

Exercise intensity is a key determinant of the catecho-
laminergic response. Power outputs exceeding the AT are 
associated with an exaggerated catecholamine activation 
[28] with an exponential rising of epinephrine (E) and nor-
epinephrine (NE) concentrations [29]. Factors like degree 
of fitness, muscle conditioning, and degree of involve-
ment of the muscular mass can influence catecholamine 
response [26–29].

In contrast to the lean subjects, individuals with obesity 
show a trend toward higher catecholamine response for 
lower work outputs before AT, while a lower catechola-
mine response for higher work outputs beyond AT [30].

During a progressive cycle-ergometer test in untrained 
young normal subjects, plasma epinephrine levels have 
been shown to increase by 180% from rest to AT, and by 
950% from rest to maximal sustainable peak activity. In 
contrast, in subjects with obesity, the increments in epi-
nephrine levels were 205% from rest to AT and 335% from 
rest to maximal sustainable peak activity.

Norepinephrine concentration increased, respectively, 
215% and 550% in subjects with obesity while 162% and 
920% in lean age-matched controls [30]. These data partly 
confirm those of Gustafson et al. [31] and may suggest 
that obesity can elicit different catecholamine responses 
depending on the intensity of the physical stress.

The altered catecholamine kinetics present in individu-
als with obesity at low workloads (with a more pronounced 
increment of both epinephrine and norepinephrine) may 
predispose to cardiac complications during COVID-19. In 
fact, firstly an altered catecholamine physiology was dem-
onstrated during SARS-CoV2 infection [32]. Secondly, 
the high prevalence of Takotsubo syndrome in COVID-
19 patients was documented. Takotsubo syndrome, which 
is often fatal, is characterized by ECG alterations (ST 

elevations, precordial T wave inversion), normal or near-
normal troponin and high level of catecholamine. This 
syndrome may lead to acute cardiac failure with low 
cardiac output [33]. Thirdly, the psychological distress 
undermining our lives in COVID-19 era may increase the 
incidence of Takotsubo syndrome, mainly in individuals 
with obesity with a higher catecholamine response than 
lean subjects at low workloads [34]. In other words, indi-
viduals with obesity usually show higher catecholamine 
levels that lean counterparts during everyday life activities 
and this pattern may expose them to higher risk of cardio-
vascular complications during COVID, such as Takotsubo 
syndrome.

Plasma lactic acid and plasma potassium 
during exercise in subjects with obesity: 
the potential role on prognosis of COVID‑19

As stated above, plasma lactic acid increases when metabo-
lism has shifted toward nonoxidative pathway, beyond the 
“lactate threshold,” to increase ATP production.

Lactic acid increases during a progressive exercise. In 
subjects with obesity, exercise beyond AT increases lactic 
acid production less than in controls at similar maximal 
power outputs [35]. This blunted response is due to the well-
known insulin resistance, typical of subjects with obesity. 
Noticeably, increases in lactate anions play an important role 
in changing hydrogen ion concentrations in plasma and mus-
cles [36] and, in turn, this could be relevant for the control 
of ventilatory function like ventilation during exercise. In 
the basal state, individuals with obesity produce more lactic 
acid than lean subjects do, mainly from chronically hypoxic 
adipocytes [37]. The high lactic acid outflow contributes to 
the development of blood acidosis and constitutes a predis-
posing factor to multi-organ failure in patients with obesity 
affected by COVID-19 [8].

Physical stress elicits a release of potassium ions (K+) 
from contracting muscles, which is proportional to the entity 
of work [38]. Potassium release depends on a mismatch 
between the potential charge of sarcolemma during muscle 
contraction and the ability of the Na+- K+ pump to keep pace 
with the rate of K+ loss and/or to a simultaneous acid–base 
change due to reduction in nondiffusible intracellular anions 
linked to phosphocreatine hydrolysis [39]. K+ reuptake by 
the Na+- K+ pump in contracting and noncontracting mus-
cles, as well as kidneys, is able to counterbalance K+ release 
[40]. It is associated with the activity of α and β-adrenergic 
receptors, which, respectively, reduce and increase the Na+- 
K+ pump activity [40]. Through β-adrenergic stimulation, 
this catecholamine-driven K+ ions reuptake promotes and 
protects against hyperkalemia [40].

Static muscular contractions increase heart rate and 
arterial pressure [41] by means of a reflex initiated by the 
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stimulation of Group III and IV afferents whose terminals 
are located in the interstitium of the working muscle [42]. 
The accumulation of K+ in the interstitium of the muscle 
is considered a possible important mechanism by which 
contractions activate Group III and IV afferents [43]. Both 
in normal weight subjects and individuals with obesity, a 
progressive physical exercise causes significant increases in 
plasma K+, although increases are lower in subjects with 
obesity [30] (Fig. 1).

Structural modifications in peripheral organs may con-
tribute to the regulation of cardiovascular and respiratory 
parameters variables [44, 45]. In fact, quadriceps muscu-
lar biopsies in subjects with obesity are characterized by 
fiber hypertrophy and intracellular accumulation of neutral 
lipids [46–48]. Fiber hypertrophy has been associated with a 
higher density of the Na+- K+ pump sites [49]. This finding 
possibly explains the lower increase in plasma K+ in subjects 
with obesity seen during progressive exercise. Moreover, 
subjects with obesity show lower increases in plasma K+ 
at work outputs below AT with respect to controls, while 
higher increases than controls are seen in individuals with 
obesity beyond AT [30] (Fig. 1). This apparently divergent 
behavior could be explained by the greater muscular mass 
of subjects with obesity involved in the physical exercise. 
Higher muscle mass intensifies E and NE release at the 
lower outputs, and a lower increase in plasma K+ observed 
before AT could be due to enhanced muscular K+ reuptake 
by β receptors. Beyond AT, the lower increase in plasma E 
and NE is coupled with a greater increase in plasma K+. The 
opposite seems to occur in controls [30].

The altered K+ kinetics of individuals with obesity may 
concur in worsening the hypopotassemia present in COVID-
19 [50]. In fact, the occupancy of ACE2 receptors by SARS-
CoV2 binding via the viral S protein causes an imbalance in 
the Renin-Angiotensin-System determining a prevalence of 
ACE1 (which increases RAS activity) [50]. The increase in 

RAS activity leads to an increase in aldosterone and conse-
quent increase in renal excretion of Na+, water and K+, end-
ing up in hypopotassemia, which may last much longer after 
remission of COVID-19 [51]. An imbalance of the RAS 
system may also cause a pro-thrombotic state contributing 
to the multi-organ failure based on metabolic acidosis [52].

Plasma K+ is also involved in the incremental ventila-
tory response during physical activity [53, 54]. In subjects 
with obesity undergoing a progressive incremental exercise, 
the ventilatory response is less robust than in controls. The 
difference is maximal when ventilation has adjusted for the 
fat-free mass [35].

To summarize the role of lactate and K+, they are 
involved in the regulation of VE with a peculiar pattern 
linked to the morphology of muscle fibers (hypertrophy) 
and insulin resistance (basal increase in lactate and reduced 
increase in lactic acid at maximal work outputs) [35, 53, 
54]. The alterations of both K+ and potassium kinetics may 
play specific roles to worsen the prognosis of COVID-19 in 
subjects with obesity.

Growth hormone (GH) during exercise in subjects 
with obesity: its potential role in COVID‑19 
prognosis

GH is one of the key regulators of body fat and lean tissue. 
A variety of conditions affect GH secretion like, gender, 
pubertal stage, age, sleep, nutritional status, body composi-
tion, body temperature, fitness, gonadal steroids, insulin and 
IGF-1 [55–57].

Physical activity stimulates GH secretion [58]. The mag-
nitude of GH response to exercise depends on its duration 
and intensity, as well gender, fitness and age [59]. An open 
question regards the hypothesis that GH response implies a 
threshold of exercise intensity, or a linearly increase along 
with increasing intensity of work [60–62].

Fig. 1   COVID-19 shifts 
metabolism toward anaerobic 
glycolysis eventually inducing 
metabolic acidosis and hypo-
potassemia. Bouts of physical 
exercise above AT cause a posi-
tive modulation of hormones 
and metabolites like, growth 
hormone, lactic acid, H+, K+

AT

Lac�c Acid 
H+
K+
Growth Hormone

Glucose

Above Threshold

Below Threshold

Pyruvate

Pyruvate

AcetateAmino Acids

Non Esterified Fa�y Acids

Acetyl-CoA
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Obesity blunts the GH response to exercise [55]. Similarly, 
abdominal visceral fat has been identified as a responsible for 
the reduction both in spontaneous and stimulated GH secre-
tion [55, 56]. In lean subjects, during a progressive exercise, 
a significant GH increase is detectable from rest to AT, and a 
further significant increase vs rest and vs AT up to maximal 
activity. In subjects with obesity no significant GH increase 
occurs from rest to AT, while a slight but significant GH 
increase is seen from AT to peak activity when expressed as 
area under the curve (AUCs). Compared to lean controls, GH 
response to exercise is null before AT, and significantly lower 
beyond AT in subjects with obesity [63].

The blunted GH response may partially explain the greater 
severity of COVID-19 illness of individuals with obesity, 
mainly if they are elderly and of male sex [64]. The proposed 
underlying mechanism is a defective immunomodulatory effect 
in GH deficient individuals [64]. In fact, growth hormone plays 
a fundamental role in immune modulation. Therefore, exercis-
ing above the AT may increase GH response in subjects with 
obesity, and it is conceivable that the higher GH response may 
induce a positive immunomodulatory effect [64].

Leptin during exercise in subjects with obesity: 
relationship with COVID‑19

Leptin is a hormone involved in the regulation of body weight 
and satiety [65], mainly secreted by adipocytes [66, 67]. It 
decreases when energy intake is restricted, and increases as 
body fat accumulates [67]. It is well known that obesity is 
associated with an increase in circulatory leptin levels and 
prompts a condition of leptin resistance [67]. Both acute 
physical exercise and prolonged physical training promote a 
decrease in plasma leptin [68–70]. Growth hormone is a factor 
able to contrast the extent of leptin reduction due to physical 
stress [71], as well as the increase in intracellular products 
from glucose metabolism from bouts of work beyond AT, in 
absence of improvement in insulin sensitivity for glucose [72].

The higher leptin levels present in individuals with obesity 
may play a role in the severity of COVID-19 [73]. In fact, 
besides regulating appetite and metabolism, leptin also sig-
nals via the Jak/STAT and Akt pathways and modulates T 
cell function. Recent studies demonstrated that leptin upreg-
ulates expression of inflammatory cytokines in monocytes, 
and potentially contributes to ensuing the so-called cytokine 
storm, which often preludes to a negative outcome of COVID-
19 [74].

Fatmax and high‑intensity interval training 
(HIIT) in subjects with obesity: its potential 
role in COVID‑19 prevention

Herein, we have considered AT as a corner stone because 
it implicates modifications in hormones and mediators 
responses during a progressive exercise. Some authors 
have focused on exercise modalities utilizing other train-
ing models, like continuous work at Fatmax (exercise train-
ing at intensity eliciting maximal fat oxidation) and high-
intensity interval training (HIIT).

Fatmax exercise training is performed at 60–70% of max-
imal heart rate. This, particularly in subjects with obesity, 
could be an exercise threshold already across, if not clearly 
beyond, the achievement of AT [75].

About HIIT, repeated bouts of maximal exercise have 
shown a decreasing activity of glycolysis, with a shift 
toward oxidative phosphorylation [76]. Thus, HIIT is 
already considered as a modality of aerobic training [76].

In subjects with obesity, adaptation to moderate and 
high-intensity interval exercise can differ interindividu-
ally and high-intensity exercise training sessions are not 
feasible for all patients with obesity undergoing a training 
program, especially in subjects with class III obesity [77].

We previously showed that in subjects with second 
and third class of obesity, eight cycling sessions (spread 
over 2 weeks) of a moderate-intensity continuous training 
were both effective in improving aerobic fitness and fat 
oxidation rates during exercise [78]. In this study, HIIT 
had tendency toward promoting a more marked increase 
in VO2max compared to Fatmax training (+ 8% and + 4%, 
respectively). This improvement is likely related to exer-
cise intensity [79] and highlights the following: 1) HIIT 
is a feasible and time-efficient training in class II and III 
subjects with obesity, as previously shown in overweight 
and class I subjects with obesity [80]; 2) in those obesity 
categories, HIIT improves aerobic fitness [81–83]; 3) pro-
moting HIIT early after initiation of training programs can 
help to reverse the low aerobic fitness in individuals with 
obesity [84]. While HIIT seems preferable at Fatmax when 
compared to moderate-intensity training, only the latter 
induced a significant reduction in fasting insulin and insu-
lin resistance [85], suggesting the importance of exercise 
duration for improving insulin sensitivity in subjects with 
obesity. The insulin-sensitizing effect of Fatmax could be 
related to decreased levels of plasma non-esterified acids 
(NEFA) [86, 87]. Finally, considering the need of increas-
ing training variety and adherence in the real world setting 
[88], HIIT and moderate-intensity continuous training may 
be two complementary training tools.

In relation to COVID-19, both Fatmax and HIIT seem 
appropriate trainings modalities in subjects with obesity. 
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The former, with a work intensity at 60–70% of maximal 
heart rate reach the AT in individuals with obesity, and all 
the benefits illustrated in the previous chapter. The latter 
(HIIT) being a modality of aerobic training reduces the 
leptin level in subjects with obesity, ameliorating the nega-
tive effect of leptin on immune modulation [73, 74]. In 
particular, in a social condition of lockdown and distanc-
ing with gyms and sites for aggregation unavailable, HIIT, 
namely a training model requiring less time to obtain the 
metabolic and immunomodulatory effects, seems the most 
appropriate way of exercising.

Playing around the anaerobic threshold: 
a tool against Sars‑cov2 infection 
and complications

Regular physical exercise associated with diet is funda-
mental strategy in the management and rehabilitation 
of subjects with obesity. The American College of Sport 
Medicine recommends the addition of resistance exercise 
to a regular program of aerobic training [89]. Mild, aerobic 
exercise increases lipolysis by means of increased plasma 
catecholamine and lowers plasma concentrations of insulin 
an antilipolytic hormone, while plasma NEFA concentra-
tions drop after exercise [90–93].

To our knowledge, only few studies analyzed the effects 
of low- or high-intensity training in individuals with obe-
sity. To investigate the effects of moderate-intensity training 
below and beyond AT on body weight, body composition 
and metabolism in adult subjects with obesity, this protocol 
has been used to better clarify the isolate impact of physi-
cal activity on weight loss and biochemical modifications 
at different work outputs. It could be also adopted for the 
rehabilitation of post-COVID-19 patients with obesity, based 
on all considerations previously discussed.

Two experimental training conditions have been tested: 
(a) moderate-intensity training below AT and (b) moderate-
intensity training with a single bout of high-intensity exer-
cise, beyond AT. The study protocol was conducted during a 
4-week hospital stage (two cycle-ergometer sessions/day of 
1/2 h, for 6 days/week) with one group training at constant 
work-output attaining 70% AT heart rate, while the other 
underwent 25 min training at 70% AT and a final exercise 
bout of 5 min at 85% of maximal heart rate. Noticeably, 
there was no significant difference in the total amount of per-
formed work when referred to fat-free mass between group 
(a) and group (b) after the period of training [94].

After the 4-wk reconditioning program, both types of 
exercise determined an increase in AT, of the maximal peak 
of activity, of the VO2 max, associated with a decrease in 
body weight. In particular, the decrease in fat mass was sig-
nificantly higher following moderate-intensity training plus 

single bout of high-intensity exercise (b) compared to exer-
cise performed only at moderate intensity (a) [93].

5.1 Growth hormone (GH) after training 
in individuals with obesity

As reported before, subjects with obesity achieve a null GH 
response exercising below AT, and a clearly lower response 
when they exercise beyond AT when compared to lean sub-
jects. This confirms that AT appears as a point-break for the 
modification in the GH response to exercise in subjects with 
obesity [63].

After four weeks of training, the GH response to exer-
cise of moderate-intensity training plus single bout of high-
intensity exercise (b) was higher than GH response following 
only moderate intensity (a) in individuals with obesity. In 
fact, adding single bouts of strenuous work at the end of 
each regular session of moderate intensity is able to evoke 
a significantly higher GH secretion in response to exercise 
intensity exceeding AT as shown in Fig. 2 [63]. The restora-
tion of GH secretion will improve the immunomodulatory 
capacity in individuals with obesity.

Non‑esterified fatty acids (NEFA), insulin resistance, 
lactic acid after training in subjects with obesity.

Aerobic training reduces circulating NEFA [90–93] both in 
resting condition and during physical activity (Fig. 3). An 
increasing amount of lipids oxidized during exercise may 
cause a negative balance between a slow mobilization of 
fatty acids from adipose tissue and their rapidly increased 
extraction by the skeletal muscle in activity [95]. Moreover, 
aerobic training reduces insulin resistance (HOMA 2-B) 
and increases lactic acid during exercise beyond AT [93]. In 
accordance with other studies [96, 97], these results suggest 

Fig. 2   K+ modification during exercise testing before and after anaer-
obic threshold
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that both mitochondrial oxidative capacity and glucose utili-
zation have improved following moderate aerobic exercise.

In contrast to moderate-intensity training (a), a period 
of moderate training with brief periods of work beyond 
AT (b) seems to promote different modifications, like an 
increase in circulating NEFA (Fig. 3), a significantly higher 
fat mass loss, no change in HOMA 2-B, a total lower level 
in lactic acid during exercise [93]. Lactate is a major energy 
source, and its lower levels during exercise after aerobic and 
anaerobic training may even be due to a higher clearance, 
as observed in trained athletes [98]. Training the subjects 
with obesity to better dispose lactic acid and potassium is 
a protective mechanism in case of SARS-CoV2 infection 
[7, 8, 30].

Overall, a moderate-intensity training constantly below 
AT (a) seems to promote an improvement in NEFA utiliza-
tion and, at the same time, an improvement in insulin sen-
sitivity, with a poor fat mass reduction [93]. A moderate-
intensity training with bouts of high intensity (b) (that is 
beyond AT) seems to yield no clear improvement in meta-
bolic profile, while fat mass reduction becomes more effi-
cient [93]. It is conceivable that the physical stress due to 
physical exercise beyond AT does not improve insulin sen-
sitivity, while the increased spillover of lipolytic mediators 
like catecholamines and GH promotes a lipid mobilization 
which exceeds their dynamic utilization [93].

5.3 Leptin after training in subjects with obesity

After a period of training, serum leptin decreases in obesity 
together with fat mass. Aerobic exercise (a) promotes a sig-
nificant decrease in leptin and a slight fat mass loss, while 
aerobic and anaerobic activity and (b) promotes a slight 
reduction in leptin with a higher fat mass loss [94].

In the absence of dietary restrictions, physical train-
ing decreases leptin hypersecretion and fat mass. Leptin 
decrease seems to be related only to the intensity of per-
formed work, but dissociated from fat mass loss after train-
ing, although the relationship between physical exercise, 
leptin and fat mass is very complex [99, 100].

The robust reduction in leptin after moderate exercise 
training alone (a) linearly correlates with the total amount of 
performed work. The higher the amount of work, the higher 
the reduction in leptin [94].

The slight reduction of leptin after moderate plus high-
intensity training (b) implies an opposite trend: the higher 
the amount of work, the lower the leptin reduction [94].

This consideration may agree with the notion that fac-
tors like GH as well as an increase in intracellular products 
of glucose metabolism (e.g., high lactic acid due to work 
beyond AT) contrast the reduction in leptin caused by physi-
cal stress.

Can physical exercise around the anaerobic 
threshold prevent COVID‑19 infection 
and serious?

Since AT is a point-break leading to the release of metabo-
lites and hormones affecting the immunomodulatory capac-
ity of individuals with obesity, it is mandatory to exceed 
the AT level performing specific training programs. We 
speculate that adding short bouts of exercise above AT to 
medium-intensity continuous exercise below AT (50% of 
VO2 max) may permanently reduce lactic acid and H+ [93] 
and increase growth hormone secretion (Fig. 4) [63]. Those 
hormone and metabolite changes will improve the host 
defenses against viral infections and reduce the likelihood 

Fig. 3   Serum GH concentration during exercise testing before and after aerobic training (left panel), before and after aerobic plus anaerobic 
training (right panel) in subjects with obesity vs normal subjects
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of metabolic acidosis following SARS-CoV-2 contagion. In 
contrast, the impact of a lower reduction of leptin levels on 
the immunomodulatory capacity of individuals with obesity, 
obtained adding bouts of exercise above the AT, is hard to 
explain at present.

Physical exercise and recovery 
from cardiopulmonary sequelae of COVID 
‑19 in patients with obesity

Based on the above considerations, the opportunity of 
training programs including bouts of exercises above the 
AT applies also after a COVID-19 illness in individuals 
with obesity. In fact, firstly, cardiopulmonary sequelae are 
frequent in the post-COVID period, and frail individuals, 
like subjects with obesity, necessitate of muscular and car-
diopulmonary rehabilitation. Secondly, a prolongation of 
symptoms like asthenia, muscle aches, intermittent low-
grade fever, shortness of breath and cognitive dysfunc-
tion may persist up to 4–6 months after the negativization 
of SARS-CoV2 throat swab, identifying the newly called 
“Long-COVID” syndrome [101]. Thirdly, the possibility of 
re-infection with a new viral variant [102]. All those factors 
make useful the implementation of physical exercise pro-
grams both to prevent re-infection and to rehabilitate post- 
COVID individuals with obesity.

Conclusions

In all vertebrates, the start of any movement is an anaerobic 
process, being the anaerobic energy system the source of 
emergency-response energy. During evolution of species, 
the anaerobic power and capacity of vertebrate’s genera has 
been an essential component of survival [103] pinpointing 
on the importance of the anaerobic threshold regulation.

However, current understanding of role of AT is generally 
limited as the knowledge of the underlying complex inter-
play of biochemical reactions and responses [104]. Never-
theless, in physical rehabilitation AT can be easily monitored 
via heart rate and its changes during training and testing and 
provides relevant information on relative and absolute inten-
sity of work, including efficiency and safety [104]. Herein, 
we showed that AT can be considered not only a switch 
for respiratory gases and for lactic acid, but, presumably, it 
also represents a trigger for the activity of various hormones 
and biochemical mediators. The occurrence of COVID-19 
pandemic prompted the present work, and the suggestion 
of adding bouts of exercise above AT is strictly enforced in 
subjects with obesity both to prevent SARS-CoV2 infection 
and to combat COVID-19 sequelae and re-infection during 
rehabilitation periods.

In accordance with recent reports, scientific evidence 
emphasizes the effectiveness of physical training in the 
treatment of obesity, particularly during global pandemics 
[105]. This review reports on the differential response of 
lean subjects and individuals with obesity during different 
modalities and intensities of physical exercise as the pattern 
and modifications of mediators, hormones and metabolites 
are concerned. We aimed to describe the different biologic 
responses to physical stress when exercising “up and down” 
the anaerobic threshold and to suggest a prescription of 
physical activity tailored for rehabilitation of individuals 
with obesity.

The distillation of our review in a practical suggestion 
entails the opportunity to prescribe a period of moderate 
(below AT) plus high-intensity (beyond AT) training as first 
approach in subjects with obesity without major comor-
bidities. The rationale behind this approach is to search 
for a maximal stimulation of lipolysis. Subsequently, it is 
conceivable to stimulate metabolic rate with a prolonged 
moderate-intensity training alone, to further improve fat loss 
and ameliorate insulin and leptin resistance. This approach 
would be particularly valuable for individuals with obesity 

Fig. 4   Plasma NEFA concentration during exercise testing before and after aerobic training (left panel), before and after aerobic plus anaerobic 
training (right panel) in subjects with obesity
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during the COVID-19 pandemic as concerns both prevention 
and follow-up. Interestingly, the considerations concerning 
COVID-19 might be extended to other viral pandemics, e.g., 
the influenza virus’s pandemics [8]. This is because adding 
bouts of high-intensity exercise (above AT) will induce posi-
tive immunomodulatory changes.

Several recent reports are along the line of the proposed 
training program for the prevention of COVID-19 [106]. In 
particular, older individuals may benefit of appropriate HIIT 
programs during COVID-19 pandemic [107]. In a multina-
tional study, Wang et al. propose HIIT along with moderate 
aerobic training (Fatmax) as an approach that reduces infec-
tion rates, underlying pathologies and chance of mortality 
associated with COVID-19 [108], while Baena-Morales 
identifies several training modalities for different target 
groups [109]. Finally, Yang et al. clearly showed the dra-
matic impact on body weight of forced sedentariness during 
lockdown periods [110].

Clearly, there are also some limitations and contraindica-
tions to the suggested training program: firstly, individuals 
with obesity may have several comorbidities like hyperten-
sion or ischemic heart disease; secondly, subjects with grade 
II and III obesity may have biomechanical impediments to 
perform high-intensity physical activity; thirdly, the psy-
chological reluctance of subjects with obesity to perform 
physical activity.

In conclusion, moderate- and high-intensity exercise 
training may be two complementary tools, to optimize the 
management of individuals with obesity, in the outpatient or 
in the rehabilitation ward settings, particularly useful during 
COVID-19 pandemic.
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