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Abstract
Purpose Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-
aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived
parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity
for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time
in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice.
Methods A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities.
Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The
combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the
assumption of pseudo-Gaussian polarimetric acquisition noise.
Results The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased
human brain samples in different conditions. Accuracy and image quality indices showed significant (p < 0.05) improvements
on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The
computational time is reported for the end-to-end processing.
Conclusion: The end-to-end image processing achieved real-time performance for a localised field of view (≈ 6.5 mm2).
The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference
polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances
pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.
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Introduction

Many characteristics of biological tissues are reflected in
their optical properties. Differences in birefringence, i.e. the
speed of light through that medium depending on polarisa-
tion, may change in healthy and diseased tissues. Mueller
polarimetric imaging (MPI) non-invasively measures these
optical properties, providing micro-structural features of a
sample without contrast media [1–3]. Intensity images of the
superficial layer are acquired by shining light at different
polarisation states. The back-scattered light is then captured
by an optical sensor operating in reflection [4] configura-
tion. As per the polarimetric Stokes–Mueller formalism [5],
the tissue-specific Mueller coefficients are derived from the
acquired intensities by solving a linear system. Polarimet-
ric parameters, including retardance (which characterises the
anisotropy of the refractive index of a sample), diattenuation
and depolarisation, are determined via different decompo-
sitions of the Mueller matrix [6–8]. In diagnostic clinical
applications, MPI identified disease progression by reveal-
ing morphological tissue changes ex vivo [9, 10]. In [11,
12], polarised light first estimated the neuronal fibre bundle
orientation in histological sections of formalin-fixed human
brain, towards a tractographic reconstruction of the white
matter as in diffusion weighted MRI. In [13], a wide-field
MPI system showed white matter fibre tracts on fresh and
formalin-fixed samples of different specimens, paving the
way towards label-free neurooncological visualisations. In
the aforementioned studies, real-time performance was not
initially sought, since high image quality was prioritised to
accurately characterise the samples’ properties. The accu-
rate estimation of the azimuth of the optical axis, indicative
of the orientation of fibre bundleswithin the imaging plane, is
key for neurosurgery [14]. Under the assumption that lesions
alter the organised arrangement of neuronal fibres, direc-
tional cues in axonal pathways may guide the resections
of neoplastic tissue in white matter. Neurosurgeons would
be informed on tumour boundaries and surrounding healthy
tissues, irrespective of tissue ablation and displacement,
beyond available navigation systems based on preoperative
image planning. High accuracy is also key to discriminate
among different tissues, such as neoplastic types and grades
showing different degrees of infiltration [1], and to perform
tissue classification tasks leveraging artificial intelligence
(AI) techniques [15]. With this view, MPI acquisition noise
and latency represent two main bottlenecks for the accurate
image processing, quantitative analysis, and ultimate neuro-
surgical feedback. The enhancement of polarimetric image
contrast traditionally requires long-time,multi-shots, averag-
ing techniques to reduce the acquisition noise of the optical
system and sensor camera [16]. Furthermore, computational
noise propagates from unfiltered acquisitions throughout
the derivation of polarimetric parameters in the cascade of

numeric Mueller decompositions [8, 17]. An optimal MPI
enhancement embedded in a performance-optimised image
processing pipeline is a key-enabling technology for revolu-
tionising computer-aided neurosurgery, and currently stand
as an open translational challenge.

Contribution and outline

Aiming to tackle the aforementioned challenges, in this feasi-
bility study, we introduce an AI-based framework integrated
with performance-optimised polarimetric image process-
ing tools, to simultaneously denoise low-quality single-shot
polarimetric acquisitions and to boost the performance and
the estimation of relevant parameters in an end-to-end
pipeline. A denoising diffusion network tailored for polari-
metric intensity data is introduced in section ‘Polarimetric
denoising diffusion network’, and performance-optimised
polarimetric image processing tools are described in section
‘Efficient calculation of polarimetric biomarkers’. Experi-
ments validate the proposed framework for real polarimetric
images of human brain tissues in different conditions in
section ‘Experiments and results’. Observations on neu-
rosurgical MPI are discussed in section ‘Discussion and
conclusions’.

Polarimetric denoising diffusion network

The denoising of a short-time, low-quality, single-shot
polarimetric acquisition is performed with a deep-learning
implementation of a diffusion probabilistic model [18, 20].
Diffusion probabilistic models can generate images as the
composition of many small denoising steps. Our polari-
metric denoising diffusion network (PDDN) is a tailored
adaptation of this framework, leveraged to literally reduce
the acquisition noise from polarisation state intensities with
high performance. In a probabilistic diffusion process, an
input image x0 is gradually corrupted with additional Gaus-
sian noise over a series of T time-points. Such degradation
process, i.e. forward diffusion, determines for each T − 1
adjacent time-step a pair of images: a degraded instance
and less-degraded one. In the reverse diffusion, the ill-posed
recovery of clean data from noisy instances is achieved for
each time-step by reversing the degradation process with
a neural network for conditional inference. Here, the noise
level of short-time, single-shot polarimetric scans is assumed
comparable to the degradation at specific time-points in a for-
ward diffusion, so that the image restoration is parametrised
with a progressively small recovery, as in the reverse diffu-
sion. As in [18], the diffusion is modelled with a Markov
chain of T time-points, where the image state at each time-
point t only depends on the image state at t − 1. For a clean
input image x0 at t = 0, the full degrading trajectory to xT in
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Fig. 1 is formulated as the sequential product of the posterior
probability q(xt |xt−1) = N (xt ;μt = √

1 − βtxt−1,�t =
βtJ) for each degrading time-step, with μt and �t the ten-
sorial mean and variance of the Gaussian noise with scalar
time-dependent variance βt , and J the identity matrix. To
efficiently sample any degradation state xt from x0, a closed
form is obtained by re-parametrising the scalar variance
βt leveraging a canonical Gaussian noise ε ∼ N (0, J),
as in [18]. In the reverse diffusion, the estimation of the
distribution q(xt−1|xt ) as in Fig. 1 is approximated assum-
ing an underlying Markov chain of T → ∞ time-points,
and additional Gaussian noise with a small scalar variance
βt at each time-point. The parametric formulation of the
reverse trajectory therefore approximates the distribution as
pθ (xt−1|xt ) = N (xt ;μθ (xt , t),�θ (xt , t)), where a learning
paradigm regresses the tensorial meanμθ (xt , t) and variance
�θ (xt , t) frompairs of image states, for each time-point, opti-
mising a loss derived from the evidence lower bound, in the
form of a negative log-likelihood. As in [18], a simplified for-
mulation of the loss accounts for the re-parametrisation of the
additional noise variance, assumed identical in each tenso-
rial dimension, with further conditioning on the input image.
The joint distribution of the reverse diffusion is translated
into an encoder–decoder coupling as in a U-Net [21], where
denoising kernels are learned in a self-supervised fashion.
As in Fig. 1, the PDDN is trained on unpaired high-quality
intensities obtained from long-time averaged acquisitions.
At convergence, the model denoises short-time, low-quality,
single-shot polarimetric images for few terminal steps, at
inference.

Network implementation details The PDDN implements
a time-point recursive U-Net [21], as in [19]. Four deep
layers of wide ResNet blocks, group normalisation and
self-attention blocks are employed, with pooling and upsam-
pling scheme of (1, 2, 4, 8), each with 3 × 3 convolutional
kernels, unitary stride and sigmoid linear units (SiLU) acti-
vation function, alternated by skip connections between the
encoder–decoder branches. A total of T = 1000 time-points
were considered. The training used an L1-loss with an Adam
optimiser, learning rate lr = 1e − 4 and 100k epochs, with
batches of 32 sampled and augmented patches of data. Full
model memory footprint: 250 MB. Polarimetric intensities
were arranged in tensor patches of size 128 × 128 × 16,
with the first two dimensions encompassing spatial extent
and the third the fixed polarimetric measurement states. Data
augmentation included random rotation, flip and cropping
withmirroring padding. Supra-threshold intensity reflections
were masked to avoid spurious artefacts and hallucinations.
Intensities were linearly re-scaled within [−1, 1].

Efficient calculation of polarimetric
biomarkers

Divide-and-conquer approaches are employed together with
linear algebra vectorisation and parallel computing to boost
the performance of Mueller matrix decomposition and the
extraction of accurate polarimetric parameters. In the devel-
oped performance-optimised image processing tools, polari-
metric derivations, as in Fig. 2, are formulated as a system
of linear equations [5]. For a MPI system in reflection con-
figuration, the Mueller matrix is derived from a 16-channel
tensor of 2D intensities of size H ×W pixels, for all (4× 4)
polarisation states as

M = A−1 I G−1, (1)

where M is the unknown full 4 × 4 Mueller matrix of
each pixel, G and A are the pixel-wise 4 × 4 matrices of
the polarisation state generator and analyser, respectively,
determined at calibration, and I is the 4 × 4 tensor of
real-valued intensities measured by the camera for the con-
sidered pixel, where each component accounts for a different
combination of the elicited polarisation states. The linear
system in Eq. (1) can be solved in closed form for each
Mueller coefficient as sum of scalar products and repre-
sents an explicit vectorisation of the solution for tensors
of arbitrary dimensions. Such formulation pixel-wise solves
for the Mueller matrix coefficients, where parallel com-
puting enables high-dimensional vectorised data processing
with arbitrary hardware capacity. Following [7], the Mueller
matrix is decomposed as thematricial product of three optical
components, i.e. the diattenuator, the retarder and the depo-
lariser, as M = M� MR MD . Scalar maps of polarimetric
parameters are pixel-wise derived from decomposed polari-
metric tensors, accounting for total diattenuation (D), total
depolarisation (�), scalar retardance (R), and the azimuth of
optical axis (ϕ) as

D =
√
M2

D12
+ M2

D13
+ M2

D14
and � = 1 − 1

3
|tr(M�)|,

R = cos−1
(√

(MR22 + MR33)
2 + (MR32 − MR23)

2 − 1

)

and ϕ = 1

2
tan−1

(
MR24

MR43

)
. (2)

All vectorisations are implemented with compiled rou-
tines, and all derivations are wrapped in scripting languages
for high-level development of AI designs [22].
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Fig. 1 Denoising diffusion model. a Forward and reverse diffusion as
in [18]. Degraded states xt of the forward diffusion (black arrow) in
the modelled Markov chain of T time-points. Inferential sampling of
the reverse diffusion (blue arrow) over the parametrised distribution

pθ (xt−1|xt ). b Schematic diagram of the AI-based denoising polari-
metric framework. PDDN builds on a time-point recursive U-Net for
the reverse diffusion, as in [19]

Fig. 2 Wide-fieldMPI system in reflection configuration. a Schematic:
light source, polarisation state generator G, biological sample, polari-
sation state analyser A, and detecting camera. b Our instrumentation. c
Acquired polarisation states intensity image I. d Derived full Mueller

matrixM. e Lu-Chipman decomposition:M�,MR , andMD matrices.
f Derived scalar parameters: D, �, R, and ϕ. Enhanced contrast of M
with a sigmoid mapping

Experiments and results

Data Polarimetric data I were acquired with a wide-field
imaging Mueller polarimeter as in [16] Fig. 2, at 550 nm
wavelength, with a CCD camera (Stingray F080B, Allied
Vision, Germany) 512×384 pixels (20×24mmFoV, result-
ing in≈ 50µm resolution).MatricesG andA in Eq. (1) were
determined at calibration.

Training PDDN was trained on 200 high-quality (HQ)
images from multi-shots averaged (n = 8) acquisitions of

fresh human brain tissues from neurosurgical resections and
post-mortemexaminations. Portions of grey andwhitematter
were resected from cortical regions involving eloquent areas
of the brain. These included tumour-free and neoplastic sam-
ples (≈ 50% ratio) of different types (gliomas,meningiomas,
metastases), at varying degrees of severity and infiltration.

Validating 50 HQ images of mixed fresh and formalin-fixed
brain tissues from healthy human and animal specimens
exhibited similar contrast andminor biological heterogeneity
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(cortical and deep-brain structures) for the model optimisa-
tion.

Testing A different set of 200 rigidly co-registered paired
images of mixed fresh and formalin-fixed human brain sam-
ples including tumour-free and neoplastic tissues (≈ 50%
ratio) was acquired at low quality (LQ), i.e. short time, noisy,
single shot (n = 1), and at HQ, respectively. Representa-
tive annotated data were acquired also at super high-quality
(SHQ) multi-shot (n = 16) averaged acquisitions, for a case
study.

Evaluation The accuracy and the performance of the denois-
ing framework were compared to traditional approaches,
alternative methods and the state-of-the-art. The evaluated
polarimetric instances comprised denoised I and derivedM,
as well as the scalar maps D, �, R, and ϕ. Image qual-
ity scores including the root-mean-squared error (RMSE),
the normalised peak signal-to-noise ratio (nPSNR) and the
structural similarity index (SSIM)were pixel-wise computed
for the paired test data, as in [23]. Values and deviations
of angular data (R and ϕ ∈ [0, π ]), were computed with
circular statistics and reported in degrees. Scores were eval-
uated within a region of interest (ROI) separating tissues
from background. Reflection artefacts were excluded from
the analysis. Significant differences were assessed with a
pairwise Wilcoxon rank sum test [24].

Denoising polarimetric intensities of human brain
tissues

Low-quality intensity images of polarimetric states of the
testing set were denoised with a single-pass (t = 1) PDDN
filtering step and with a set of traditional and AI-based meth-
ods. Traditional averaging schemes yielded HQ images as
reference ground-truth. State-of-the-art polarimetric convo-
lutional denoising networks (PCNN) [23, 25] were trained
on paired intensity instances of the training set. Also, deter-
ministic denoising algorithms were considered as baseline:
the median filter (MEDF: 3-kernel) [26], the Gaussian blur
(GBLR: 5-kernel) [27], and the gradient anisotropic dif-
fusion (GRAD: 5 steps, 1 conductance) [28]. Qualitative
results are shown in Figs. 3, 4 for representative tumour-free
and neoplastic cases. In general, minor and subtle changes
are observed in the processed intensities of polarisation
states and derivedMueller matrices. Conversely, the effect of
denoising was predominant on derived polarimetric parame-
ters of clinical relevance. Successful denoising is obtained
for PDDN, PCNN, and GBLR with improved rejection
of acquisition noise compared to LQ acquisitions. Limited
denoising is found for MEDF and GRAD, where noisy pat-
terns remained visible, and the physical characterisation of
the underlying sample remained unclear or partially altered.
Overall, polarimetric parameters showed high sensitivity to

acquisition noise, to the computational error propagation,
and to the denoising method of choice, where D, R, and
ϕ exhibited major deviations between noisy and processed
instances. Image quality scores in Eq. (1) supported the qual-
itative analysis, where the proposed PDDN reported best
values in all cases for all indices, followed by PCNN and
GBLR. This suggests the early and optimal rejection of sub-
tle acquisition noise with PDDN is effective to reduce further
error propagation in the computational cascade of polari-
metric parameters. Major deviations were found against LQ
instances, where oriented patterns of white matter fibres in ϕ

can only be clearly observed after denoising. The significant
improvements obtained with PDDN in Eq. (1) suggest the
learned filtering kernels in the proposed polarimetric denois-
ing diffusion network are suitable for enhancing the image
quality with minimal deviations compared to reference HQ
data using a fast, single-pass, filtering step (Table 1).

Fibre orientation and Azimuth variation

Assuming lesions alter the directional arrangement of fibres
in white matter, we focus on PDDN and evaluate the effect of
denoising on the derived ϕ as a sanity check in tumour-free
brain tissue and in a glioma lesion. The directional variability
is evaluated with the azimuth circular standard deviation, i.e.
csd(ϕ) in a 5x5 image pixel neighbourhood. Low csd(ϕ) indi-
cates homogeneous directional patterns,whereas high csd(ϕ)
corresponds to degrees of directional disruption. A histolog-
ical section was annotated by a neuropathologist, delineating
the tumour centre and the infiltration area, aswell as, grey and
white matter in the tumour-free sample. In Fig. 5, the csd(ϕ)
in a fast and single-pass denoising with PDDN is compared
against the LQ, HQ and SHQ instances as reference. The
denoising reduces the csd(ϕ) in both tumour-free and dis-
eased samples similarly to HQ and SHQ data. LQ instances
show a high level of angular variability due to the intrinsic
polarimetric acquisition noise and computational error prop-
agation. More homogeneous directional patterns are found
in tumour-free white matter, with lower csd(ϕ) compared to
grey matter, suggesting more organised fibre tracts, while
crossing fibres increase the angular deviation. The denoised
lesion shows a clear difference between tumour centre and
infiltration area, similarly to HQ and SHQ data. A substan-
tially higher csd(ϕ) is found for the tumour centre compared
to the infiltration area, where higher variability suggests a
higher degree of disruption of axonal fibres. Conversely, the
LQ instance showed limited separation of the tumour core
from the background and the neighbouring structures. The
qualitative observations are reflected in the box-plot distri-
butions, in line with the underlying tissue classes, even for
higher polarimetric image quality standards.
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Fig. 3 Denoising polarimetric intensities of human brain tissues:
gallery of polarimetric instances. (top) Tumour-free sample of the test-
ing set. I11 component shownwith the evaluation ROI contour. (bottom)

Details of polarimetric parameters in a centre-cropped area. Images in
each row have the same range of values as in the colour-bar. R and ϕ

reported in degrees
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Fig. 4 Denoising polarimetric intensities of human brain tissues:
gallery of polarimetric instances. (top) Neoplastic lesion of the testing
set. I11 component shown with the evaluation ROI contour. (bottom)

Details of polarimetric parameters in a centre-cropped area. Images in
each row have the same range of values as in the colour-bar. R and ϕ

reported in degrees
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Table 1 Image quality scores: human brain tissues

Modality I M D � R ϕ

RMSE ↓ LQ 0.9/1.1/1.5 0.8/0.9∗/1.1 1.4/1.6∗/1.9 2.4/2.8∗/3.4 5.4/9.1∗/15.5 31.0/35.7∗/41.7
MEDF 0.9/1.1/1.5 0.7/0.8∗/0.9 0.9/1.2∗/1.3 1.8/2.1∗/2.7 3.8/5.7∗/8.7 25.7/31.4∗/37.6
GBLR 0.9/1.2∗/1.6 0.6/0.7∗/0.8 0.8/0.9∗/1.1 1.5/1.9∗/2.4 3.1/4.4/6.7 22.4/28.5∗/35.3
GRAD 0.9/1.1/1.5 0.8/0.9∗/1.0 1.2/1.4∗/1.7 2.1/2.5∗/3.0 4.8/8.3∗/12.3 27.3/32.7∗/38.3
PCNN 1.6/1.9∗/2.5 0.7/0.8∗/0.9 0.8/1.0∗/1.1 1.7/2.1∗/2.7 2.9/4.5/6.7 23.3/28.9∗/35.1
PDDN 0.7/1.00/1.4 0.5/0.6/0.7 0.7/0.8/0.9 1.4/1.7/2.1 2.5/4.0/6.3 18.9/25.4/32.5

nPSNR ↑ LQ 28.2/32.1∗/34.1 27.5/32.2/35.2 6.7/7.6∗/8.6 26.7/29.6∗/31.2 −2.1/0.5∗/4.2 9.4/10.9∗/12.4
MEDF 27.7/32.1/34.5 26.9/31.6/34.4 9.6/10.5∗/11.6 28.9/32.1∗/33.7 2.3/4.3∗/7.3 10.2/12.1∗/13.9
GBLR 27.1/31.0∗/33.6 26.3/30.5∗/33.4 11.4/12.4∗/13.5 30.1/32.9/35.4 4.4/6.3/8.8 10.6/12.8∗/15.1
GRAD 28.2/32.3/34.3 27.5/31.8/34.9 7.9/8.9∗/10.0 27.9/30.8∗/32.3 −0.36/2.00∗/5.5 9.9/11.7∗/13.5
PCNN 22.9/26.5∗/28.7 22.2/26.3∗/28.4 10.8/11.8∗/12.9 28.7/32.1∗/34.2 3.9/6.4∗/8.8 10.6/12.8∗/14.8
PDDN 28.7/33.2/35.7 27.5/32.3/35.3 12.5/13.4/14.4 30.8/33.9/36.1 4.9/7.3/10.0 11.3/13.9/16.5

SSIM ↑ LQ 99.5/99.8/99.9 99.3/99.5∗/99.6 49.2/57.5∗/65.1 91.8/94.2∗/96.2 20.5/34.3∗/61.5 17.9/33.3∗/47.2
MEDF 99.6/99.8/99.9 99.5/99.7∗/99.8 64.8/71.5∗/77.8 94.9/96.6∗/97.7 37.2/57.2∗/73.1 26.9/44.7∗/58.8
GBLR 99.5/99.8∗/99.9 99.6/99.8∗/99.8 73.3/79.4∗/84.5 95.9/97.5∗/98.3 48.5/68.0/82.5 30.5/50.1/67.7

GRAD 99.5/99.8/99.9 99.4/99.5∗/99.7 55.4/63.2∗/70.4 93.7/95.5∗/97.1 23.2/42.0∗/66.7 25.1/41.1∗/53.9
PCNN 98.9/99.5∗/99.7 99.3/99.6∗/99.7 72.3/78.5∗/83.4 94.9/96.9∗/97.9 48.6/69.5/82.1 28.6/45.7∗/61.8
PDDN 99.6/99.8/99.9 99.7/99.8/99.8 77.4/83.5/87.5 96.7/98.0/98.7 50.5/71.9/85.9 34.7/55.1/73.1

Denoising I and evaluating derived parameters. Quartiles: q1/median/q3. Comparison of denoising modalities; multi-shot averaging HQ images as
reference. Scores: nPSNR [dB] and SSIM [%]. RMSE scores of I,M, D and � are multiplied by 1e-2. Best values in bold. Significant differences
from PDDN: ∗ = p-value < 0.05, pairwise Wilcoxon rank sum test

Fig. 5 Azimuth ϕ variations and distributions: intensity and circular
standard deviation csd(ϕ) in degrees. Low values of csd(ϕ) for homo-
geneous directional patterns, whereas high values for high disruption of
fibres orientation or change of directional patterns. (top) Tumour-free
sample: variability of fibres orientations, csd distributions in annotated
white (WM) and grey (GM) matter. (bottom) Neoplastic lesion: vari-

ability of fibres orientations in diseased white matter, csd distributions
in annotated tumour centre (TC) and infiltration (TI). High rejection of
background noise, and visually comparable directional patterns of the
fibres after denoising, similarly to high-quality image standards. Box-
plots: consistent csd drop in PDDN as in HQ and SHQ. Better PDDN
separation in tumour areas

End-to-end computational performance

The end-to-end polarimetric processing pipeline accounts for
single-shot denoising and parameters derivation. Traditional
multi-shot averaging techniques and derivation algorithms
in [16] are considered as reference for HQ MPI. The perfor-
mance is reported in Eq. (2) for a local patch and a full-scale
image. The comparison showed a substantial reduction in
total processing time. Our end-to-end pipeline achieved

real-time performance (< 40 ms) for a tensor patch (size:
128×128×16) of polarimetric intensities. This suggests that
translation to in vivo, real-time MPI can already be achieved
by focusing on a smaller field of view, with further optimisa-
tion necessary for full-frame images. All computations were
performed on a Linux Ubuntu 20.04 laptop, 16× CPU at 2.6
GHz, 64 GB RAM, NVIDIA RTX A5000 GPU (Table 2).
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Table 2 End-to-end Computational Performance: pipeline processing time on same hardware

Patch (128 × 128 × 16) Full-scale image (512 × 384 × 16)

Denoising Derivation Total Denoising Derivation Total

[16] 3.2 ± 0.53 s 1.36 ± 0.42 s 4.37 ± 0.94 s 30.2 ± 5.47 s 15.3 ± 4.79 s 45.5 ± 10.3 s

Ours 15.4 ± 0.17 ms 23.4 ± 4.5 ms 38.8 ± 4.67 ms 0.55 ± 0.08 s 0.26 ± 0.05 s 0.81 ± 0.06 s

Time reported mean ± sd comparing our approach to reference. Best performance in bold. Reference: CPU-based implementation (MATLAB
R2021a). Ours: GPU (denoising) + CPUs (derivation) at full operational capacity. Multi-fold reduction of processing time, towards feasible real-
time (≤ 40 ms) neurosurgical translations

Fig. 6 Denoised polarimetric tractography: tumour-free brain sample.
LQ and denoised azimuth with recursive PDDN+. MPI PTF: parame-
tersmapped into an ellipsoidal model for tractography. Colours code for

trace of ellipsoids eigenvalues. Fibres in seeding regions as in neurosur-
gical probing

Discussion and conclusions

In this feasibility study, we introduced a novel polarimetric
denoising framework, with the goal of enabling high qual-
ity, high-performance MPI for neurosurgery. Developments
combined our PDDN, for accurately enhancing images from
short-time low-quality acquisitions, with a performance-
optimised toolkit to efficiently derive parameters of clinical
relevance. The validation reported significantly improved
image quality and achieved real-time performance for a local
field of view. The denoising accuracy was tested on multiple
and diverse instances of human brain samples for differ-
ent image restoration methods. Our self-supervised PDDN
yielded best rejection of the acquisition noise and limited
the error propagation in the computational cascade, with
comparable values to reference HQ data. While multi-shots
averaging [16, 29] produces reference MPI, it is incompat-
ible with in vivo neurosurgery, where real-time feedback
is needed. Bypassing time-consuming MPI with enhanced
image processing was first proposed in [23, 25], where
U-Net-like architectures (PCNN) denoised Mueller matri-
ces derived from noisy, short-time acquisitions. In [23],
Mueller coefficients were denoised after training on large,
paired, histological data, with inferential performance not yet
compatible with real-time applications. In our experiments,
PDDN over-performed PCNN and traditional denoising
methods. This is likely due to a combination of factors: the
different nature of input polarimetric data, the type of noise,
and the underlying probabilistic model. While our model is
specific to the considered human brain samples, and for the

specific polarimetric acquisition conditions, differently from
[23, 25], the PDDN denoises source intensities corrupted by
acquisition noise, with the Mueller coefficients being subse-
quently derived. The rationale behind adopting PDDNbuilds
on empirical similarities between measured MPI acquisition
noise, i.e. pseudo-Gaussian: symmetric, zero-mean, bell-
shaped, with cumulative slightly deviating from the Normal
reference, and the additive noise in the probabilistic formu-
lation. As denoising diffusion networks can generalise for
complex distributions [18], we aimed to reduceMPI acquisi-
tion noise bygeneralising for contrast variability in biological
structures with few filtering steps. The initial calibration mit-
igated systematic errors in the polarisation states; however,
different wavelengths and varying exposure time may intro-
duce a nonlinear intensity bias together with other specific
human brain tissue structures (e.g. cortical regions in elo-
quent areas vs. deep-brain structures of corpus callosum, or
other structures of the cerebellum), which may potentially
alter the image contrast, structural patterns, values and noise
distributions propagated in the Mueller derivations. In this
case, our specific model was able to generalise for the con-
sidered polarisation states, for the intensity bias, for fresh
and formalin-fixed samples, and for tumour-free and neo-
plastic tissues, by preserving the underlying micro-structure
after denoising. Clear cortical white matter fibres orienta-
tions and comparable azimuth deviationswere observed after
denoising with respect to HQ and SHQ data for a repre-
sentative tumour-free sample and a glioma lesion in Fig. 5.
Angular deviations were visible after denoising, in keep-
ing with underlying tissue: the consistent drop in azimuth
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variability showed higher compression and reduced over-
lap among pathological regions, better than HQ and SHQ
data. Interestingly, PDDN was only trained on HQ images,
yet azimuth deviations were similar to SHQ data, suggesting
high MPI quality is achievable with AI beyond conventional
acquisition paradigms. Prospectively, advanced configura-
tions (PDDN+) may enable neurosurgical fibre tracking with
polarimetric tensor fields (PTF) in Fig. 6. Future analyses
will test multi-spectral denoising in vivo, accounting for
motion and bleeding artefacts. MPI instrumentation optimi-
sations and image processing developments will be tailored
on edge-computing solutions, for real-time wide-field MPI
video streams.

Supplementary materials Representative polarimetric
brain data employed in the validating dataset are available
at: https://osf.io/9ynmf/.
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