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ABSTRACT

Motivation: Regulatory gene networks contain generic modules

such as feedback loops that are essential for the regulation of many

biological functions. The study of the stochastic mechanisms of

gene regulation is instrumental for the understanding of how cells

maintain their expression at levels commensurate with their

biological role, as well as to engineer gene expression switches of

appropriate behavior. The lack of precise knowledge on the steady-

state distribution of gene expression requires the use of Gillespie

algorithms and Monte-Carlo approximations.

Methodology: In this study, we provide new exact formulas and

efficient numerical algorithms for computing/modeling the steady-

state of a class of self-regulated genes, and we use it to model/

compute the stochastic expression of a gene of interest in an

engineered network introduced in mammalian cells. The behavior of

the genetic network is then analyzed experimentally in living cells.

Results: Stochastic models often reveal counter-intuitive experi-

mental behaviors, and we find that this genetic architecture displays

a unimodal behavior in mammalian cells, which was unexpected

given its known bimodal response in unicellular organisms. We

provide a molecular rationale for this behavior, and we implement it

in the mathematical picture to explain the experimental results

obtained from this network.

Contact: christian.mazza@unifr.ch, nicolas.mermod@unil.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The regulation of gene expression is at the center of many
central biological processes comprising embryo development

and cell differentiation, while improper regulation can result in
diseases such as cancer. Genomic studies have revealed that

genes form part of complex regulatory networks, whereby the
protein determined by one gene may control the transcription
of numerous other genes, which in turn may regulate the

synthesis of further proteins. However, how cells usually
maintain the expression of their genes at levels commensurate

with their biological role and own survival is still poorly
understood. Recently, a growing number of evidence was given
for stochastic or probabilistic mechanisms of gene regulation,

whereby a population of cells seemingly identical genetically

and submitted to the same environment may not express their

genes at the same level. Rather, gene expression was often

found to oscillate around an average value. This fluctuation,

or noise, has been attributed to rare regulatory events, a

consequence of the small number of regulatory molecules

controlling a given gene, or to global stochastic variations of

the cell physiology (Paulsson, 2004 or 2005; Raser and O’Shea,

2004). In addition, gene expression may oscillate between

various semi-stable states mediated by positive or negative

feedback loops within regulatory networks. The promoters of

the genes switch randomly between active states (on), during

which transcription occurs at some rate, and inactive states

(off), inducing molecular intrinsic noise. In this context, noisy

signals may be instrumental in mediating cells or virus

switching between distinct semi-stable gene expression and

biological status (McAdams and Arkin, 1997; Weinberger

et al., 2005). Finally, particular gene network architectures may

themselves contribute to amplify the fluctuations caused by

noisy upstream signals. Experimental and theoretical studies

show that positive feedback coupled to molecular noise

generates stochastic gene expression, and induces variable

phenotypes (Arkin et al., 1998; Austin et al., 2005; Becskei

et al., 2001; Blake and Collins, 2005; Guido et al., 2006; Isaacs

et al., 2003; Raser and O’Shea, 2004; Weinberger et al., 2005).

Such self-regulated networks are currently developed in

engineered modular systems. To comprehensively understand

gene regulation, as well as to be able to genetically engineer

gene expression switches of appropriate properties, it would be

useful to describe the kinetics and steady-states of gene

networks using mathematical models that would account for

their noisy behavior (Guido et al., 2006).

The usual approach considers a time continuous Markov

chain, the Gillespie algorithm, which models the various

chemical reactions involved in the system (Adalsteinsson

et al., 2004; Gillespie, 1977, 2001). Such systems contain

reactions evolving at different time scales. The system can be

divided in two parts, the fast and the slow components; one

then focus on the slow reactions by assuming a quasi-

equilibrium where fast reactions equilibriate instantaneously

(Burrage et al., 2004; Cao et al., 2005b; Goutsias, 2005; Kepler

and Elston, 2001). Typically, reactions that involve the

synthesis of a protein from a gene are slow, of the order of

40min in eukaryotes, while the association of proteins in*To whom correspondence should be addressed.
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multimeric forms such as dimers takes place within seconds.
Here, we approach such systems by modeling auto-regulation

within the context of self-regulated genes and for a network
regulating the expression of therapeutic proteins.

The Gillespie algorithm simulates the time-evolution of

the number of molecules of each species, and it is described by a
chemical master equation (see e.g. 2). For large gene networks,

the computation time can be overwhelming. Therefore, alter-
natives to the Gillespie algorithm have been designed to accele-

rate simulations, such as the tau-leaping algorithm (Gillespie,
2001), or diffusions approximations at quasi-equilibrium (Kepler

and Elston, 2001). There are also a variety of fast, often multi-
scale, algorithms approximating the time-evolution of gene

networks (El Samad et al., 2005), while multi-scale acceleration
algorithms can be used to simulate large gene networks (Burrage

et al., 2004; Cao et al., 2005a; Chatterjee et al., 2007). For smaller
gene networks, particular simulation algorithms have been

developed according to the specificity of the setting (Kepler
and Elston, 2001; Salis and Kaznessis, 2005; Salis et al., 2006;

Shibata, 2003a, b, see also Erban et al., 2006 for a coarse-
graining approach). However, most of these dynamics do not

simulate the biological process described by the chemical master
equation, but rather propose approximations.

In what follows, we first consider a fundamental module
consisting in a self-regulated gene, which is a building block of

many gene networks. Usually, the related steady-state distribu-
tion is obtained through Monte-Carlo simulations of many

random trajectories. We present a novel strategy to determine
analytically the steady-state. This avoids stochastic simulations,

as it provides exact values for the steady-state mean and
variance, which might be useful for reverse engineering

problems. We next model a regulatory network of interest in
gene therapy, using a semi-stochastic model involving coupled

self-regulated genes. The analytical results on the self-regulated
gene are then used to study the regulatory network in

comparison with experimental measurements.

2 MODELING OF SELF-REGULATED GENE

The system is composed of a promoter and a gene that can

oscillate between a transcribed (active) and a silent state, as
schematized in Figure 1. As stated above, one source of

molecular noise is the random nature of the states taken by the
promoter (on/off). The stochastic or noisy behavior of

transcription is well documented both in prokaryotes and in
eukaryotes, including mammalian cells (Blake et al. 2003; Raj

et al., 2006). From the mathematical point of view, stochastic
models are more general and extend naturally deterministic

ones, as the latter describe in most cases the average behavior of
random models. Furthermore, stochastic models provide

information on the variance and coefficient of variation of
the related gene product, which cannot be obtained from

deterministic models. Figure 1 shows polypeptides produced
during the transcription and translation processes. Protein

monomers react quickly to form dimers: we assume a quasi-
equilibrium where fast reactions equilibrate instantaneously.

For a global amount of n polypeptides, the proportion of
dimers at quasi-equilibrium is a well-defined function of n, see,

e.g. the Supporting Information. Dimers can bind to specific

DNA sequences near the promoter, and thereby enhance

transcription, corresponding to a positive feedback loop. These

binding events can be assumed to be fast with respect to events

like protein formation. They are however included in some

chain of events leading to the assembly of a multiprotein

complex that ends with a state where the RNA polymerase

initiates transcription. This will correspond to the on state O1.

When these conditions are not satisfied, the promoter is off O0.

The rates of transitions between these two states are functions

of the proportion of dimers of the activator protein, and

therefore are functions of n when the cell contains n

polypeptides. These random events are usually modeled by

Expressed gene

Silenced gene

Slow reactions:

(transcription and RNA

processing, mRNA

transport, translation)

Fast reactions:

(protein transport, dimerization,

DNA binding, promoter activation)

Fig. 1. Modeling of a self-regulated gene with a feed-back loop.

Regulatory proteins are shown by ellipses while DNA elements are

shown by rectangular boxes, i.e. wide boxes for protein-coding sequences

and thin boxes for regulatory sequences. The gene can oscillate between

an expressed ON state where all components of the transcription

machinery are bound to the promoter and where RNA polymerase can

initiate transcription, and a silent or OFF state. Expression leads to the

formation of monomeric proteins in a series of slow processes, as

indicated. A series of fast transitions lead to the binding of the activator

protein to the promoter of its own gene, increasing the probability of

observing the ON state. RNA polymerase and other proteins mediating

transcription or translation are omitted for clarity.
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Fig. 2. Plot of the steady-state distribution related to a bistable self-

regulated gene, for the off (light bars) and on (dark bars) regimes. The

distribution is bimodal in both regimes, and has been computed using

the formula (4). The curves are obtained from simulations based on the

Gillespie algorithm.
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supposing that the probability that the promoter switches from
the off to on state in a small time interval of length h� 0 is of
order g(n)h for n polypeptides, where the function g can be
chosen according to the specificity of the setting. We shall

consider in the next paragraph, a gene network where g is
obtained by modeling noise sources. To be as general as
possible, and to eventually allow negative feedback loops, we

also assume that the probability of transition of the reverse
reaction is given by some function �(n). Basal activity is
introduced by supposing that g(0) is positive, so that a

transcription event can occur without protein dimers. The
remaining involved chemical reactions are essentially protein
monomers production and degradation, which are summarized

in Figure 1. Transcription is stopped when the promoter is off,
so that we assume that the probability �0h that a protein is
created during a small time interval of length h vanishes after
some delay, with �0� 0. When the promoter is on, transcrip-

tion is possible, and the probability that a transcription event
occurs is of order �h. Degradation of protein dimers is
summarized by the rate �(n), for some function �, which is

usually linear as a function of n. The time evolution of the state
of this self-regulated gene is described by a pair of time
continuous stochastic process N(t) and Y(t), where N(t) gives

the number of proteins present in the cell at time t and where
Y(t) takes the values 0 and 1 corresponding to the off and on
states of the promoter.

The reaction scheme is written as

O0

gðnÞ

�ðnÞ
 !O1; M

�
�!;; ;

�l
�!M; l ¼ 0; 1; ð1Þ

whereM denotes protein monomers, and where �l gives the pro-

duction rate in the off state (l¼ 0) and in the on state (l¼ 1). Let
p0nðtÞ ¼ PðNðtÞ ¼ n;YðtÞ ¼ 0Þ and p1nðtÞ ¼ PðNðtÞ ¼ n;YðtÞ ¼ 1Þ
give the probability of having n proteins at time t when the

states of the promoter are O0 and O1, respectively. We assume
here that 0� n�� for some integer �. The related Gillespie
algorithm is given as a time-continuous Markov chain

�(t)¼ (N(t),Y(t)) (Cao et al., 2005b or Gillespie, 2001), where
N(t)2 {0, 1, . . . , �} and Y(t)2 {0, 1}, with transition rates
given by

Pððn; yÞ; ðnþ 1; yÞÞ ¼ �y; Pððn; yÞ; ðn� 1; yÞÞ ¼ �ðnÞ;

Pððn; yÞ; ðn; 1� yÞÞ ¼ �ðnÞ when y ¼ 1; and,

Pððn; yÞ; ðn; 1� yÞÞ ¼ gðnÞ when y ¼ 0:

The chemical master equation associated to the reaction scheme
(1) is then given by

dpsnðtÞ

dt
¼ �sðp

s
n�1ðtÞ � psnðtÞÞ þ �ðnþ 1Þpsnþ1ðtÞ � �ðnÞpsnðtÞ

þ ð�1Þsð�ðnÞp1nðtÞ � gðnÞp0nðtÞÞ; ð2Þ

where s2 {0, 1} (Kepler and Elston, 2001; Shibata, 2003a or b).

Even for this fundamental reaction scheme, the master
Equation (2) cannot be solved explicitely.

The steady-state distribution � associated with (2) is
obtained by letting t!1: � is defined as

�nð0Þ ¼ lim
t!1

p0nðtÞ and �nð1Þ ¼ lim
t!1

p1nðtÞ;

and solves the linear system obtained from (2) by imposing
dpsn=dt ¼ 0:

0 ¼ �sð�n�1ðsÞ � �nðsÞÞ þ �ðnþ 1Þ�nþ1ðsÞ � �ðnÞ�nðsÞÞ

þ ð�1Þsð�ðnÞ�nð1Þ � gðnÞ�nð0ÞÞ; s ¼ 0; 1:

The probability of observing n proteins at equilibrium is

just �n(0)þ�n(1). The steady-state distribution has been
approached using generating functions in Hornos et al. (2005)
for self-regulated genes with g constant and �(n) linear; in this

case, the limiting marginal probability of finding n proteins at
steady-state is provided, and is expressed using hypergeometric
functions. However, there is a lack of analytical results in the

general case. Again, one can use Monte-Carlo methods based
on approximating Markov chains to perform stochastic
simulations. Our topic consists in providing the exact formula
for � for the single gene described by (1) and (2). This will play

a crucial rôle when considering the regulatory gene network of
the next sections. In what follows, we give the exact formula for
the steady-state, in the general case. The invariant measure �n(i)

of the Gillespie algorithm is related to the steady-state
distribution ~�nðiÞ of the associated discrete time jump chain:
~�nðiÞ is proportional to �n(i) qn,i, where qn,i is the sum of the

transition rates from state (n,i). For 05n5�, consider the
matrices

Qnþ1 ¼

�ðnþ1Þ
dnþ1

0

0 �ðnþ1Þ
cnþ1

 !
; Rn ¼

0 gðnÞ
dn

�ðnÞ
cn

0

 !
;

and

Pn�1 ¼

�0

dn�1
0

0 �1

cn�1

� �
;

where cn¼ �(n)þ�1þ �(n), n5�, c�¼ �(�)þ �(�),
and dn¼ �(n)þ�0þ g(n) for n5�, d�¼ �(�)þ g(�). The

invariance of ~� gives the relation ~�n ¼ ~�nþ1Qnþ1 þ ~�nRnþ

~�n�1Pn�1. The idea is to look for matrices �n such that
~�n ¼ ~�nþ1�n. Plugging this relation in the above gives
~�n ¼ ~�nþ1Qnþ1�n�1, where the matrices �n are defined by
�n� 1¼ (id�Rn� �n� 1Pn� 1)

�1. One can then find the matrices
�n iteratively by considering the matrix valued continued
fraction

�n ¼ Qnþ1ðid� Rn � �n�1Pn�1Þ
�1: ð3Þ

This provides an algorithm for computing exactly the steady-
state distribution in the general case. Set w�9 (�(�)/c�,1).
Then ~�n ¼ ð ~�nð0Þ; ~�nð1ÞÞ is given by

~�n ¼ w����1���2 � � ��n= ~Z�;

~�� ¼ w�= ~Z�;

where ~Z� is the normalization constant

~Z� ¼ w�ð
X��1
j¼0

���1 � � ��jÞ1þ w�1; and 1 ¼ ð1; 1Þ0:

Steady-state expression
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The steady-state �n¼ (�n(0), �n(1)) of the Gillespie algorithm is

given by

�n ¼

� ~�nð0Þ

dnZ�
;
~�nð1Þ

cnZ�

�
; ð4Þ

where Z� is the normalization constant

Z� ¼
X�
n¼0

� ~�nð0Þ

dn
þ

~�nð1Þ

cn

�
:

The complete proof of (4) is provided in the Appendix. When

�0¼ 0 and �1¼�, it turns out that one can solve explicitely (3).

The solution is given by (see the Appendix)

�n ¼
�ðnþ 1Þ

�

�ðnÞþ�
dnþ1

cn
dnþ1

�ðnÞ
cnþ1

cn
cnþ1

0
@

1
A

Formula (4) must be used with care numerically since, when �

is large, both the numerator and denominator rapidly diverge.

It can be improved with the following normalisation algorithm.

Let IwI9 |w1|þ |w2|.

Normalization algorithm

(STEP 1): Define ~�n for n¼�� 1 to 0 as

~�� :¼
w�

kw�k
; and ~�n :¼

~�nþ1�n
k~�nþ1�nk

:

(STEP 2): Given the ~�n, define �0 ¼ ~�0 and, for n¼ 1 to

�, set

�n :¼
~�n

k ~�n�n�1k � k ~�n�1�n�2k � � � k ~�1�0k
:

Finally the steady-state is obtained as

~�n ¼
�n
V�

; where V� :¼
X�
i¼0

vi � 1:

3 A REGULATORY NETWORK FOR EFFICIENT
CONTROL OF TRANSGENE EXPRESSION

A more elaborate gene network consists of three genes. A first

gene encodes a transcriptional repressor. Because this gene is

expressed from an unregulated promoter, it mediates a stable

number of repressor. This repressor binds to and inhibits the

promoters of the two other genes, coding for a transactivator

protein and for a quantifiable or a therapeutic protein,

respectively (Fig. 3A). The activity of the repressor is inhibited

by doxycycline, a small antibiotic molecule that acts as a ligand

of the repressor and thereby controls its activity. Addition of

the antibiotic will inhibit the repressor and relieve repression,

allowing low levels of expression of the regulated genes and

synthesis of some transactivator protein. This, in turn, allows

further activation of the two regulated genes, in a positive

feedback loop (Fig. 3B). When introduced in mammalian cells,

this behaves as a signal amplifier and as a potent genetic switch,

where the expression of a therapeutic gene can be controlled to

vary from almost undetectable to very high levels in response to

the addition of the antibiotic to the cells (Imhof et al., 2000).

Our formula is used to compute the steady-state mean and

variance of transactivator proteins, as provided in Figure 4, as

function of the number [Dox] of doxycycline molecules. One

sees clearly the peak of variances observed previously in

experimental data (Pedraza and van Oudenaarden, 2005).

3.1 A semi-stochastic model: inclusion of delays

The modelization of the time-evolution of the network is more

involved. We propose a semi-stochastic model with time delays,

TetR-derived

Repressor
Doxycycline +

Positive feedback loop

5 x Gal4 7 x tet Gal4DBD Activator

Promoters are activated: on state

Reporter

B

Activator

5 x Gal4 7 x tet

TetR-derived

repressor

Gal4DBD Activator

Promoters are repressed: off state

Reporter

A

Fig. 3. Schematic representation of the regulatory network. Elements

are as described in the legend to Figure 1, and activating and repressing

elements are shaded with forward and backward stripes, respectively.

The doxycycline inducer is represented by a filled circle, while the GFP

or therapeutic protein is represented by a star. In the OFF-state,

constitutively produced repressors, consisting of a fusion of the bacterial

tetracycline repressor (TetR) to a eukaryotic repressor protein, bind to

seven operator elements and thereby repress the promoters of both the

reporter gene and of the activator. In the ON-state, doxycycline prevents

the repressor from binding to DNA. Consequently, the activator, a

fusion of the GAL4 DNA binding domain (GAL4DBD) with the VP16

activator is produced at low levels and it binds in its own promoter as

well as that of the transgene. The autoregulatory positive feedback loop

eventually leads to the build up of the activator concentration and to

maximal activation of the reporter gene.
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Fig. 4. These plots represent the mean and variance related to a self-

regulated gene, here the transactivator contained in the network, and

are obtained using (4).
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generalizing models considered recently in this setting by

Goutsias and Kim (2006) and Bratsun et al. (2005), which

allow the study of complex gene networks. We extend the

models proposed in Goutsias and Kim (2006) by including

stochastic signals related to promoters. We illustrate first these

methods in the context of a self-regulated gene with some

positive feedback rate g(n) and no negative feedback, i.e. we

assume that �(n)¼ � is constant. The idea developed in

Goutsias and Kim (2006) consists in replacing the feedback

rate g(N(t)) by c(t)¼ g(E(N(t� �))), where � is a biologically

meaningful time delay, and where E denotes statistical average.

In mammalian cells, proteins diffuse through random non-

homogeneous environments like the nuclear and cytoplasmic

spaces. Here, e.g. transactivator proteins diffuse and move

eventually to the promoters associated with the activator and

therapeutic genes: � models then the average diffusion time

needed to reach these promoters.

As explained in the next paragraph, our experimental

results suggest that the complex structure of mammalian

chromatin might act as a noise-filtering device that allows

graded response from stochastic events; considering E(N(t� �))
instead of N(t) for feedback involving regulatory protein thus

models this filtering process. The models proposed in Goutsias

and Kim (2006) however do not involve the state of the

promoter Y(t)2 {0,1}, but focus onN(t), with transition rates of

the form P(n, nþ 1)¼ �g(E(N(t� �)))/(g(E(N(t� �)))þ �) and

P(n, n� 1)¼ �(n), that is assume a quasi-equilibrium with fast

assembly of the initiation complex. Assuming convergence of

E(N(t)) as t!1, setting g1¼ g(E(N(1))), the limiting process

is a birth and death process with birth rate �g1/(g1þ �) and
death rate �(n). When �(n)¼ �n, the related steady-state is then

Poisson of parameter 	 ¼ �
v g1=ðg1 þ �Þ. This model is however

not completely satisfactory since experimental data often exhibit

peak of variances typical for bistable systems or for genetic

switches (see, e.g. the data given in Pedraza and van

Oudenaarden, 2005), while the mean is increasing as a function

of the number of inducer molecules. This kind of behavior

cannot be obtained with Poisson distributions. We therefore

extend a mean field model proposed in Bratsun et al. (2005),

which preserves the stochasticity of promoter fluctuations, and

call this newmodel semi-stochastic. In fact, the dynamics related

to these transition rates are different in nature of the preceding:

the promoter is located near the upstream part of the gene, and

the fact that the promoter is on just enhances the attachment of

RNA polymerase. The related functions c(t) satisfies a time-

delayed differential equation, which can be obtained from the

chemical master equation (see the Supplementary Material).

The semi-stochastic transition rates corresponding to the related

time non-homogeneous Markov chain are then given by

Pððn; yÞ; ðnþ 1; yÞÞ ¼ �y; Pððn; yÞ; ðn� 1; yÞÞ ¼ �ðnÞ;

Pððn; yÞ; ðn; 1� yÞÞ ¼ � when y ¼ 1;

Pððn; yÞ; ðn; 1� yÞÞ ¼ cðtÞ when y ¼ 0:

Under some assumptions, the limiting distribution of the

pair (N(t),Y(t)) is given by the steady-state distribution �c(1) of

a self-regulated gene with the above transition rates where c(t)

is replaced by c(1). The related steady-state distribution can

then be computed using (4). In this limiting case, there is no

feedback since the feedback rate g(n) is given by c(1); the
results of Kepler and Elston (2001) imply then that the related

stochastic dynamics is monostable, i.e. the steady-state

distribution is unimodal, at least in the large steady-state

gene-product level.
The time-evolution of the network is modeled here using a

semi-stochastic model. The various molecular interactions

between, e.g. the repressor, its doxycycline ligands, etc. as
well as the mathematical properties of the networks are given in

the Supplementary Material. The process of interest is

�ðtÞ ¼ ðNðtÞ;YðtÞ;XðtÞ;ZðtÞÞ;

where N(t) and X(t) denote the number of activator and

therapeutical proteins present in the cell at time t, and where
Y(t), Z(t)¼ 0, 1 denote the state of the associated promoters.

The therapeutic network contains one positive feedback loop,

and transactivator proteins enhance the transcription of the

therapeutic gene, see Figure 3; these two reactions are here

considered using two functions c(t) and ĉ(t), which satisfy
time-delayed differential equations, see the Supplementary

Material. As t!1, assuming convergence, the limiting

steady-state distribution is a product measure �c(1)
��ĉ(1),

that is the probability of observing the network in state (n, y, x,
z) after a long time is given by �cð1Þ

n ðyÞ�ĉð1Þ
x ðzÞ. Here again both

�c(1) and �ĉ(1) are computed using (4). Notice that the

interactions between the two genes i.e. between the two

processes (N(t),Y(t)) and (X(t),Z(t)) are contained implicitly

in the differential system related to c(t) and ĉ(t). Again, these
steady-state distributions are related to self-regulated genes

with no feedback, so that the related stochastic dynamics are

monostable in the large steady-state gene-product level (Kepler

and Elston, 2001).

4 EXPERIMENTAL RESULTS

The behavior of the genetic network was analyzed experimen-
tally in living cells. Three plasmids were used, one encoding the

constitutively expressed doxycycline-regulated transcriptional

repressor, while the other two plasmids encode the condition-

ally expressed transcriptional activator or the reporter protein

as shown in Figure 3 (Imhof et al., 2000). The enhanced green
fluorescent protein (EGFP) was chosen as a reporter because it

can be easily detected by flow cytometry, which allows the

analysis of its distribution in many individual cells within large

populations.
The three plasmids were introduced in CHO cells by stable

transfection together with a fourth plasmid encoding a protein

conferring resistance to an antibiotic. After transfection, the
cells were cultured in the presence of the antibiotic for 2 weeks,

allowing the selection of cells having incorporated the plasmids

stably in their own genome. Flow cytometric analysis and cell

sorting was performed on the polyclonal populations to isolate
cells displaying regulated expression of EGFP in response to

the addition of doxycycline in the growth medium. A cell clone

displaying regulated EGFP expression was selected for further

characterization.
In each experiment, the level of EGFP fluorescence was

quantified in 50 000 individual cells as a response to the

addition of doxycycline in the growth medium, and steady-state
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conditions were insured by prior time course experiments which
indicated that equilibrium was reached 24 h after the addition

of doxycycline (data not shown). In the absence of the
doxycycline inducer, where the repressor is most active, average
fluorescence was low as expected, and cannot be distinguished

from that of a population of cells that do not contain the EGFP
gene (Figs 6A and C, and data not shown). Thus, this profile
corresponds to the low levels of natural background fluores-

cence of CHO cells. Gene expression followed a sharp sigmoid
dose-response typical of strongly cooperative systems and
reached a maximum value at 100 ng/ml of dox (Fig. 6A and H).

Sigmoid induction curves resulting from cooperative

genetic systems have been either associated with a bimodal
response (also referred to as bistable, see Fig. 2) or with gradual
or unimodal transcriptional activation (Figs 5 and 6). Upon

addition of increasing amounts of the inducer, a gradual
increase of fluorescence was observed, leading to a mostly
unimodal transition mode (Fig. 6C–H), in agreement with

the probabilistic modeling of the behavior of this genetic
network. Mathematically, one can obtain bistable behaviors
(see, e.g. Fig. 2), but our simulations indicate that the semi-
stochastic model yield generically unimodal steady-state

distributions, in accordance with the experimental results.

5 DISCUSSION

Gene expression noise has been associated to stochastic
fluctuations of transcription or translation in various cellular
systems. For instance, the gene expression noise strength has
been found to remain essentially unaffected upon transcrip-

tional induction in bacterial cells (Guido et al., 2006; Ozbudak
et al., 2002) while it shows a bell-curve behavior in yeast cells
(Blake and Collins 2005). This has led to the proposal that

noise may be intrinsically different in prokaryotes and

eukaryotes, and that a noisy behavior may result from the

multiple rounds of transcriptional initiation in eukaryotic

cells (Blake et al., 2003; Blake and Collins, 2005 or Raj et al.,

2006). However, in many cases the molecular causes of the

observed stochastic behavior remain poorly understood. In the

case of mammalian cells, this may be a consequence of

chromatin structure and/or promoter switching, leading to

stochastic transcription (Chubb et al., 2006; Raj et al.,2006;

Sato et al., 2004; Weinberger et al., 2005). However, other

processes may also behave in a random fashion, including

alternative splicing, mRNA transport or translation. Here, we

develop a model where only the first probabilistic step is taken

into consideration. This stems from the fact that the regulatory

network studied here is controlled by doxycycline, which acts

to regulate promoter switching rates and to mediate the

synthesis of an activator of limiting concentration, which is a

known cause of stochastic transcription in mammalian cells

(Weinberger et al., 2005). The good correlation between

experimental and computational results provides support to

the validity of our model and of these assumptions.

Sotiropoulos and Kaznessis (2007) have considered other

types of networks architectures involving the stochastic

transcription of tetracycline-regulated genes. Their work

focused on the time evolution of the amount of gene product

using stochastic simulations, while the semi-stochastic model

developed here provides analytical expressions for the mean

and variances of the number of transactivator and therapeutical

proteins at steady-state. These and other approaches may form

the basis of unified stochastic models towards the exact

descriptions of the kinetic and steady-state properties of

regulatory gene networks.
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Here, we find that the noise shows a peak or plateau at low
[Dox] concentration followed by a decrease upon addition of
the inducer when represented as the CV of the fluorescence of

individual cells in a monoclonal population (Fig. 6B), which is
reminiscent of Figure 5. This behavior of mammalian cells thus
contrasts that of unicellular eukaryotes (Blake et al., 2006).

Because yeast and mammalian cells share multiple rounds of
initiation and pulsatile transcription (Raj et al., 2006), our
results indicate that other differences must contribute to

distinct noise propagation in these cell types.
A notable difference between the yeast and mammalian

cell systems is that a small proportion of the mammalian cells
never induce transgene expression, even after prolonged

treatment with the inducer, which is suggestive of a bimodal
distribution at the steady-state (Fig. 6G and H and data not
shown). This behavior of the mammalian cells may be

attributed to the silencing of transgenes integrated at a
chromosomal locus that adopts a non-permissive chromatin
structure (Sato et al., 2004). Indeed, coordinate silencing of

numerous transgene copies integrated at one chromosomal
locus has been implicated in a noisy gene expression pattern in
cultured mammalian cells (Raj et al., 2006), and mutations that

inhibit chromatin remodeling result in increased noise and in
heterogeneous expression in yeast (Raser and O’Shea, 2004).

Work performed in bacteria or yeast have revealed that

stable bimodal distribution of individual cells can be attributed
either to the noisy expression of the regulatory proteins that
bind the promoter under study (Blake and Collins, 2005; Blake

et al., 2006), to slow stochastic transitions rates of the promoter
between the inactive and active states (Raser and O’Shea, 2004),
or to positive feed-back loops in genetic networks (Kaern et al.,

2005). Thus, the network studied here displays several of the
properties shown to provoke a bimodal distribution of the
reporter protein concentration in yeast or bacterial cells (Becskei

et al., 2001; Isaacs et al., 2003). In yeast, an autoactivated gene
behaves as a bistable system where cells can only oscillate
between an expressing and a non-expressing states and where

the inducer acts to change the distributions of the cells in the two
subpopulations (Becskei et al., 2001). Thus, a bistable behavior
may be intuitively expected for the genetic network studied here

in mammalian cells. However, we find that this architecture
displays an essentially unimodal and gradual increase in
expression in response to varying doses of the inducer

(Fig. 6C–H), in agreement with the probabilistic modeling.
Yeast and mammalian cells share many transcription

factors and chromatin constituents. Thus, differences in the

behavior of genetic systems must result from the fine-tuning
and interplay of these elements, such as the relative importance
of chromatin remodeling versus promoter binding by activators

or repressors, and the regulation of initiation complex
assembly. The essentially unimodal distribution observed here
may be linked to the complex structure of mammalian chro-

matin, and to its prominent role in the silencing of chromo-
somal genes in mammalian cells. The many steps and relatively
slow transitions between the non-permissive and the permissive

states of chromatin in mammalian cells may dampen the
noise that stems from the stochastic binding of a low number
of activator proteins to the promoter and from noise amplifi-

cation resulting from the gene auto-activation feedback.

In this context, chromatin may act as a noise-filtering

device that allows graded response from stochastic events.

A semi-stochastic model where the feedback rates g(N(t)) are

replaced by g(E(N(t� �)) as used here is well adapted to this

setting. Overall, our results indicate that a noisy behavior and a

strong autocatalytic feedback do not necessarily lead to a

bistable behavior and to stochastic transitions between the two

stable states (Fig. 2), but they rather suggest the conclusion that

propagation of noise differs between different cell types and

genetic systems.
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APPENDIX: PROOF OF FORMULA (4)

Notice that qn,0¼ dn and qn,1¼ cn. The proof of (2.4) is based on
methods presented in Bolthausen and Goldsheid (2000), but

here we solve explicitely the matrix valued continued fractions
(3). We shall also need the following matrices, defined similarly
at the boundaries n¼ 0 and n¼�:

R̂0 ¼
0 1
�ð0Þ

�ð0Þþ� 0

 !
; Q1 ¼

�ð1Þ
d1

0

0 �ð1Þ
c1

 !
;

P0 ¼
0 0

0 �
c0

 !
; R̂� ¼

0 gð�Þ
�ð�Þþgð�Þ

�ð�Þ
�ð�Þþ�ð�Þ 0

0
@

1
A;

Q̂� ¼

�ð�Þ
�ð�Þþgð�Þ 0

0 �ð�Þ
�ð�Þþ�ð�Þ

0
@

1
A:

Notice that the matrices R̂0 þ P0 and R̂� þ Q̂� are stochastic.
Let ~� ¼ ð ~�nÞ0�n�� be the steady-state, where we recall that ~�n is
the row vector ~�n ¼ ð ~�nð0Þ; ~�nð1ÞÞ.
Of course, this definition is inductive, and the inverse of

id�Rn��n� 1Pn� 1 is not necessarily defined. We shall see in
the sequel that these matrices are well defined; this implies
that �n¼Qnþ 1�n� 1. To start the induction, one needs to define

�0: this is obtained by using the invariance of ~� at the left
boundary n¼ 0. This yields ~�0 ¼ ~�0R̂0 þ ~�1Q1, that is to
~�0 ¼ ~�1Q1ðid� R̂0Þ

�1. One gets thus the natural candidate

�0 :¼ Q1ðid� R̂0Þ
�1.

Lemma: Suppose that the matrices �n and �n are well

defined. Then the matrices �nþ 1¼ �nPnþ 1, 0� n5��1, are
stochastic.

Proof. The proof proceeds by induction. When n¼ 0, we first
check that �1¼ �0 P1 is stochastic, with ��10 ¼ id� R1 � �0P0.
Then �1 1¼ 1 is equivalent to (P1þR1)1¼ 1��0 P0 1, and

therefore to 0 ¼ Q11� �0P01 ¼ Q1ð1� ðid� R̂0Þ
�1P01Þ, where

we use the fact that P1þQ1þR1 is stochastic. But Q1 is
diagonal, and the last statement is equivalent to

(ðid� R̂0Þ1 ¼ P01, which holds true since R̂0 þ P0 is stochastic.
The induction step is obtained in the same way.
Suppose that we have already obtained the sequence �k,

k¼ 0, . . . , n� 1. Then we can obtain �n by setting

�n¼Qnþ 1�n� 1. The above Lemma gives that �n� 1 Pn is
stochastic. But, taking into account the specific form of the
involved matrices, one can write

�n�1Pn ¼
0 �

cn
�n�1ð1; 2Þ

0 �
cn
�n�1ð2; 2Þ

� �
;

where �n� 1(i, j) denotes the (i, j) entry of the matrix �n� 1.
Thus �n�1ð1; 2Þ ¼ �n�1ð2; 2Þ ¼

cn
�. Finally, �n¼Qnþ 1 �n� 1

shows that �nð1; 2Þ ¼
�ðnþ1Þcn
dnþ1�

, and �nð2; 2Þ ¼
�ðnþ1Þcn
�cnþ1

. Let

An�1 ¼ ��1n�1, with

An�1 ¼
1 �

gðnÞ
dn
�

��n�1ð1;2Þ
cn�1

�
�ðnÞ
cn

1� ��n�1ð2;2Þ
cn�1

 !
;

of determinant |An� 1| given by jAn�1j ¼
�
cn
. It follows that

�n ¼
cn
�

�ðnþ1Þ
dnþ1

0

0 �ðnþ1Þ
cnþ1

0
@

1
A �ðnÞþ�

cn
1

�ðnÞ
cn

1

 !

¼
cn
�

ð�ðnÞþ�Þ�ðnþ1Þ
cndnþ1

�ðnþ1Þ
dnþ1

�ðnÞ�ðnþ1Þ
cncnþ1

�ðnþ1Þ
cnþ1

0
@

1
A;

as required.
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