
 

  

 

 
 

 

Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript
Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Published in final edited form as:

Title: Standardized EEG interpretation in patients after cardiac arrest:

Correlation with other prognostic predictors.

Authors: Beuchat I, Solari D, Novy J, Oddo M, Rossetti AO

Journal: Resuscitation

Year: 2018 May

Issue: 126

Pages: 143-146

DOI: 10.1016/j.resuscitation.2018.03.012

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains
an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

http://dx.doi.org/10.1016/j.resuscitation.2018.03.012


Beuchat et al. 1 
 

Standardized EEG interpretation in patients after cardiac arrest: correlation with 
other prognostic predictors 
 
Isabelle Beuchat, MD1, Daria Solari, MD2, Jan Novy1 MD PhD, Mauro Oddo2 MD, Andrea O. 
Rossetti1 MD FAES 
 
1 Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois 
(CHUV), Lausanne University Hospital, Lausanne, Switzerland 
2 Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois 
(CHUV), Lausanne University Hospital, Lausanne, Switzerland 
 
Contents: 
Title: 110 characters 
Abstract: 245 words 
Main text: 1500 words 
Tables: 3; Supplementary Tables: 2, Supplementary figure: 1 
References: 20 
 
Corresponding author 
Pr Andrea Rossetti 
Service de Neurologie; CHUV-BH07 
CH-1011 Lausanne, Switzerland 
Email andrea.rossetti@chuv.ch 
Phone: + 41 21 314 12 20  
Fax: +41 21 314 12 90 
  

mailto:andrea.rossetti@chuv.ch


Beuchat et al. 2 
 

Abstract  
 
Introduction 

Standardized EEG patterns according to the American Clinical Neurophysiology Society 

(ACNS) (“highly malignant”, “malignant” and “benign”) demonstrated good correlation 

with outcome after cardiac arrest (CA). However, this approach relates to EEGs after 

target temperature management (TTM), and correlation to other recognized outcome 

predictors remains unknown. 

Objectives  

To investigate the relationship between categorized EEG and other outcome predictors, 

during and after TTM, at different temperatures.  

Methods 

In a prospective adult CA registry between 01.2014 and 06.2017, EEG at day one and 

two after CA were reclassified into pre-defined categories. Correlations between EEG and 

clinical, biochemical, neurophysiological outcome predictors, and prognosis (CPC at 

three months; good: 1-2), were assessed.  

Results 

Of 203 CA episodes, 31.5% were managed targeting 33°C, 60.6% targeting 36°C, and 

7.9% with spontaneous temperature. “Highly malignant” EEG was found in 36.7% of 

patients at day one (predicting poor prognosis with 91% specificity -95%CI: 83%-97%-, 

and 63% sensitivity -95% CI 53%-72%), and 27.1% at day two. “Benign” EEG occurred 

in 19.2% at day one (sensitivity to good prognosis: 35% -95%CI: 26%-46%, positive 

predictive value: 89% -95% CI: 75%-97%), and in 33.2% at day two. Categorized EEG 

showed robust correlations with all prognostic predictors. Results were similar between 

EEGs recorded at day one or two, and, especially for poor prognosis, across TTM targets.  

Discussion 

Standardized EEG categorization after CA shows strong correlation with other outcome 

predictors, without marked variation across EEG recording time or TTM targets, 

underscoring its prognostic role in a multimodal approach. 
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Introduction 
 
Cardiac arrest (CA) has a yearly incidence of 38-84/100’000 and survival of 10% in 

Europe (1-3); withdrawal of life-sustaining treatment (WSLT) is the leading cause of death 

(4). A multimodal approach combining clinical and neurophysiological examinations, 

blood biomarkers, and brain imaging is recommended for early outcome prediction (5, 6). 

EEG is one of the most commonly used tool either to assess prognostication or to detect 

epileptiform activity (6, 7).  

 

Three predefined EEG categories based on the recent American Clinical 

Neurophysiology Society (ACNS) standardized critical care terminology (8) (“highly 

malignant”, “malignant”, “benign”) show good correlation with poor and good outcome (9-

12). However, to the best of our knowledge, the relationship between these patterns and 

other commonly used outcome predictors is unknown. Furthermore, this standardized 

approach was originally described in patients receiving EEG after target temperature 

management (TTM), and occurrence of self-fulfilling prophecy could not be formally 

excluded.  

 

Our aim was to investigate the relationship of pre-defined standardized EEG categories 

with other outcome predictors in patients during and after TTM, with different temperature 

targets. 

 

Methods 
 
Subjects were retrospectively identified from our prospective CA registry including 

consecutive comatose adults admitted between January 2014 and June 2017. Details on 

patient’s management are published (9, 13). Following variables were extracted: 

demographics; TTM (hypothermia; 33°C, normothermia: 36°C, or none); CA etiology 

(cardiac versus other); time to return of spontaneous circulation; neurological examination 

off sedation at 72 hours (corneal and pupillary reflexes, any myoclonus, motor reaction 

better than extension posturing) (5); cortical somatosensory evoked potentials (SSEP); 
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serum neuron-specific enolase (NSE) peak value within 72 hours; quantitative 

pupillometry (PLR, as in (14)), and functional outcome at 3 months according to a semi-

structured phone interview using Glasgow-Pittsburg Cerebral Performance Categories 

(CPC: 1-2 good; 3-5: poor) (15). PLR, SSEP and routine EEG were recorded at day one 

(during) and two (after TTM). 

 

EEGs were specifically reviewed and reclassified into pre-defined categories (9-12), 

mutually exclusive and exhaustive:  

1-“Highly malignant”: suppressed background with or without continuous periodic 

discharges; burst-suppression. 

2-Malignant”: abundant periodic discharges, or rhythmic epileptiform transients; 

electrographic seizure; discontinuous or low-voltage background; reversed anterior–

posterior gradient; unreactive EEG to stimuli. 

3-“Benign” EEG (absence of all malignant features stated above) 

 

WLST decisions occurred using a previously described multimodal approach (9, 13, 16), 

after more than 72h after CA, in normothermia, off sedation, in the presence of at least 

two variables related to poor prognosis. Neither EEG during TTM nor PLR were 

considered.  

 

We analyzed correlations between “highly malignant” or “benign” EEG patterns, and other 

commonly used outcome predictors: clinical (corneal, clinical and PLR pupillary reflexes, 

early myoclonus), biochemical (peak NSE), neurophysiological (SSEP), and functional 

prognosis, using the Excel software, with Student t, Wilcoxon, Chi-square or Fisher exact 

tests as needed. Bonferroni correction was applied to correct for multiple comparisons, 

targeting a global alpha error of 0.05. Predictive performances were estimated using 

exact binomial distributions. 

 
Results 
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Of 208 CA episodes, 5 patients did not have any EEG: we studied 203 episodes 

corresponding to 202 patients (Table 1). At three months, 88 had died; one was 

vegetative (CPC 4), 16 had severe disability (CPC 3), 30 were moderately disabled (CPC 

2), and 68 reported complete recovery (CPC 1). 

 

EEG at day one was performed 20.1 ± 7.1 hours, and at day two 39.4 ± 14.9 hours after 

CA. It was recorded only on day one in 13 patients, and only on day two in five: these 

were thus considered only in the corresponding groups. Missing data were distributed as 

follows: SSEP (18), NSE in (24), PLR (103), clinical examination off sedation within 72 

hours (2), brainstem reflexes (1, ocular melanoma). “Highly malignant” EEG was found in 

36.7% of patients at day one, and in 21.7% at day two; “malignant EEG” in 43.9% at day 

one, and 45.2% at day two; 19.2% patients presented a “benign” pattern at day one, and 

33.2% at day two.  

 

Tables 2a and 3a summarize analyses of “highly malignant” vs. “benign” or “malignant” 

EEG. “Highly malignant” EEG, on day one, showed 91% (95%CI: 83%-97%) specificity 

and 63% sensitivity (95% CI: 53%-72%) to poor prognosis. On day two, “specificity was 

98% (95%CI: 92%-100%), sensitivity was 40% (95%CI: 31%-51%).There was a strong 

correlation with other predictors of unfavorable prognosis.  

Tables 2b and 3b show assessments of “benign” vs. “malignant” or “highly malignant” 

EEG On day one, sensitivity towards good outcome was 35 % (25%CI 26%-46%), with 

positive predictive value of 89% (75%-97%), and specificity of 96% (95% 90%-99%). At 

day two, sensitivity was 57% (95% CI: 47%-68%), with 84% (95% CI: 72%-92%) positive 

predictive value, and 57% (95% CI: 47%-68%) specificity. “Benign” EEG was also 

robustly associated with other predictors of favorable outcome, especially at day two.  

 

Stratification after TTM target temperatures did not alter the prognostic performance of 

“highly malignant” EEG patterns, nor their correlation with other predictors of poor 

outcome (apart from PLR at both temperatures and early myoclonus at 33°C)  

(supplementary Tables 1 and 2). The correlation of “benign” EEG patterns with other 

predictors was however lost (except from corneal reflexes and SSEP in normothermia, 
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and motor reaction at both temperatures), while correlation with prognosis remained 

significant (supplementary Tables 3 and 4).  
 
Discussion 
 
This study shows that predefined “highly malignant” and “benign” EEG patterns according 

to the ACNS nomenclature strongly correlate with other recognized prognostic predictors, 

especially regarding poor prognosis, and underscores EEG ability to predict poor or 

favorable prognosis after CA, during and after TTM. 

 

Current guidelines propose multimodal prognostic approaches, in order to minimize risks 

of false positive prediction of poor outcome (5, 6, 17); however, clinical examination is not 

quantitative, biomarkers are limited by the lack of clear cutoffs (5, 18), and lack of 

standardization of clinical EEG may impair reliability (10-12). The remarkable correlation 

with other recognized prognostic predictors strengthens the concept that all variables 

should tend towards the same direction, in order to offer robust prognostication. Of note, 

PLR recently appeared to be predictive of poor outcome, but showed lower accuracy for 

favorable prognosis (14): this might explain the limited correlation between”benign” EEG 

and PLR on day one. 

 

In the TTM trial, associations between EEG patterns and outcome were studied only after 

rewarming. Like a previous multicenter study, with 102 patients overlapping with the 

present one (9) , we included patients in whom EEG were recorded both during and after 

TTM. Our findings suggest that the specificity of “highly malignant” EEG is not significantly 

altered by TTM. Furthermore, robust correlation with other predictors of unfavorable 

prognosis was maintained across TTM targets, except for early myoclonus and PLR, 

which might be influenced by analog-sedation and hypothermia. There was conversely a 

loose correlation of “benign” features with other predictors across temperatures; this may 

reflect better EEG performances in predicting poor prognosis, but is also probably due to 

relatively low numbers of patients, and the fact that the vast majority of available 

predictors identify subjects with poor prognosis. Finally, “malignant” EEG, as described 
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earlier, can occur during the early post CA period, TTM and sedation in patients with good 

outcome (12, 16, 19); moreover, lack of specificity and considerable variability between 

interpreters exist (11, 12); therefore, “malignant” features were not considered in our 

study. 

 

According to assessments on the TTM study cohort, “highly malignant” EEG predicted 

poor outcome with a sensitivity of 50%, no false positives, and substantial intra- and 

interrater agreement (11, 12). We confirm the reliability of these EEG patterns to predict 

unfavorable outcome, with even higher sensitivity but also some false positives on day 

one, while on day two, sensitivity was somewhat lower (10-12). Only 1% of poor outcome 

were described in patients with “benign” EEG (12); we confirm strong correlations 

between “benign” EEG and favorable outcome. Sedation could account for the few false 

positive “highly malignant” patterns, and the lower sensitivity of “benign” EEG on day one, 

reinforcing recommendation of prognostication after day 3-5, rewarming and sedation 

withdrawal (6). EEG prediction within 24h is still debated: some authors advocating it for 

poor and good outcome prediction (9, 20), whereas other reporting false-positive 

malignant EEG patterns (21).  Discrepancies across studies may be accounted for by 

patient heterogeneity, timing of EEG and different EEG criteria: furthermore, in a previous 

study (12) and in the present analysis “malignant” EEG could not be reliably applied for 

prognostication.   

This study has limitations. We did not consider the amount of sedation during EEG 

recordings; while this may affect EEG activity (22), predictive ability of benign and 

malignant patterns seem more robust (9, 12). EEG reports and clinical data were 

available to caregivers, and EEG assessment for this study was not formally blinded to 

outcome: this could have led to self-fulfilling prophecy. However, the excellent correlation 

between EEG patterns and other outcome predictors should temperate this possibility. 

Importantly, we never use EEG on its own to decide upon discontinuation of life 

supporting measures (16).   

 

In conclusion, standardized EEG interpretation presents strong correlations with other 

validated outcome predictors, with some few exceptions. EEG being a broadly available, 
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non-invasive tool, pre-defined “highly malignant” and “benign” features could be routinely 

incorporated in the multimodal approach for decision on WLST.  
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Table 1: Clinical characteristics of the studied population of 203 episodes of post-
cardiac arrest coma (202 patients)  

Age  64.99 ± 14.5 
Women, n (%) 59 (29.1%) 
Cardiac etiology,  n (%) 145 (71.4%) 
ROSC (minutes ± SD) 22.2 ± 17.4 
TTM n (%)   

 Hypothermia (target: 33°C)  64 (31.5%) 
Normothermia (target: 36°C)  123 (60.6%) 

Spontaneous temperature 16 (7.9%) 
Results are expressed as mean +/- SD unless otherwise specified.  

ROSC, time to return of spontaneous circulation; TTM, targeted temperature management 
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Table 2a: Distribution of EEG scored after (9–11) on day 1 after cardiac arrest, according to 
“highly malignant” patterns. 

  Highly 
malignant 

Not Highly 
malignant p test 

Total patients 73 125     
Absent corneal reflex.* 39 (54.2%) 18 (14.6%) <0.001** Chi2 
Pupillary reflex *         

-  absent on clinical observation  29 (40.3%) 9 (7.3 %) <0.001** Chi2 
- pupillometry (% reaction), mean+/- SD 16.6 ± 10.4 23.1 ± 13.0  <0.001** t-test 

Presence of early myoclonus* 25 (34.2%) 7 (5.7%) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 75 (31.9-151) 23.5 (16.9-31.7) <0.001** Wilcoxon 
Absent N20 on SSEP * 38 (55.9%) 9 (7.9 %) <0.001** Chi2 
CPC at 3 months, median (IQR) 5 (5-5) 2 (1-3) <0.001** Wilcoxon 
Table 2b: Distribution of EEG scored after (9–11) on day 1 after cardiac arrest, according 
to “benign” patterns. 
  Benign  Not Benign p Test 
Total patients 38 160     
Present corneal reflex.* 33 (91.7%) 105 (66%) 0.004** Chi2 
Pupillary reflex *         

-  present on clinical observation  35 (97.2%) 122 (76.7%) 0.005** Chi2 
- pupillometry (% reaction), mean+/- SD 26.6 ± 14.2  19.6 ± 11.8  0.023 t-test 

Motor reaction (better than flexion) * 31 (86.1 %) 84 (53.8 %) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 23.7 (13.1-15.1) 31.6 (19.5-76.1) 0.002** Wilcoxon 
Present N20 on SSEP * 30 (100%) 104 (68.9%) <0.001** Chi2 
CPC at 3 months, median (IQR) 1 (1-2) 5 (1.25-5) <0.001** Wilcoxon 

*SSEP were not assessed in 17 cases, NSE in 22, pupillometry in 98 and 2 patients did not have a 
clinical examination off sedation after 72 hours. Corneal and pupillary reflexes were not reliable in 1 
patient due to ocular melanoma. Motor reaction was not assessed in 6 patients. 

** Significant after Bonferroni correction (p value <0.007).        
Data are expressed as n (%) unless otherwise specified.  
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Table 3a: Distribution of EEG scored after (9–11) on day 2 after cardiac arrest, according 
to “highly malignant” patterns. 

  Highly 
malignant 

Not Highly 
malignant p Test 

Total patients 41 149     
Absent corneal reflex.* 23 (57.5 %) 32 (21.8 %) <0.001** Chi2 
Pupillary reflex *         

-  absent on clinical observation  19 (47.5 %) 16 (19.9 %) <0.001** Chi2 
- pupillometry (% reaction), mean+/- SD 12.8 ± 7.8 22.1 ± 12.6  <0.001** t-test 

Presence of early myoclonus* 13 (31.7%) 16 (10.8%) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 81.9 (40-184.5) 24.5 (17.1-36.9) <0.001** Wilcoxon 
Absent N20 on SSEP * 28 (71.8 %) 17 (12.5%) <0.001** Chi2 
CPC at 3 months, median (IQR) 5 (5-5) 2 (1-5) <0.001** Wilcoxon 
Table 3b: Distribution of EEG scored after (9–11) on day 2 after cardiac arrest, according 
to “benign” patterns. 
  Benign  Not Benign p Test 
Total patients 63 127     
Present corneal reflex.* 56 (91.8%) 76 (88.4%) <0.001** Chi2 
Pupillary reflex *         

-  present on clinical observation  59 (96.7 %) 93 (73.8%) <0.001** Fisher 
- pupillometry (% reaction), mean+/- SD 25.2 ± 14.2 17.7 ± 10.4 <0.001** t-test 

Motor reaction (better than extension) * 47 (78.3 %) 43 (29.9 %) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 23.7 (16.4-31.1) 38.3 (21.3-97.4) <0.001** Wilcoxon 
Present N20 on SSEP * 55 (100%) 75 (91.5%) <0.001** Chi2 
CPC at 3 months, median (IQR) 1 (1-2) 5 (2-5) <0.001** Wilcoxon 

*SSEP  were not assessed in 15 cases, NSE in 19, pupillometry in 95 and 2 patients did not have a 
clinical examination off sedation after 72 hours. Corneal and pupillary reflexes were not reliable in 1 
patient due to ocular melanoma. Motor reaction was not assessed in 5 patients. 

** Significant also after Bonferroni correction (p value <0.007). 
Data are expressed as n (%) unless otherwise specified. 
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Supplementary table 1 : Distribution of EEG scored after (9–11) on day 1 after cardiac 
arrest, according to “highly malignant” patterns in patients treated with TTM 33°C. 

  Highly 
malignant 

Not Highly 
malignant p test 

Total patients 21 39     
Absent corneal reflex.* 9 (42.9%) 4 (10.3 %) 0.006** Fisher 
Pupillary reflex *         

-  absent on clinical observation  6 (28.6 %) 0 (0%) 0.001** Fisher 
- pupillometry (% reaction), mean+/- SD 16.9 ± 8.7 21.5 ± 7.9 0.113 t-test 
Presence of early myoclonus* 5 (23.8%) 3 (7.8%) 0.114 Fisher 
Peak NSE (ug/l), median (IQR)* 77.3 (27.2-110.6) 22.6 (16.4-30.2) <0.001** Wilcoxon 
Absent N20 on SSEP * 9 (42.9%) 1 (2.6%) <0.001** Fisher 
CPC at 3 months, median (IQR) 5 (4-5) 1 (1-2) <0.001** Wilcoxon 
*SSEP were not assessed in 1 case and pupillometry in 22 patients. 
** Significant after Bonferroni correction (p value <0.007).  
Data are expressed as n (%) unless otherwise specified.       
Supplementary table 2 : Distribution of EEG scored after (9–11) on day 1 after cardiac 
arrest, according to “highly malignant” patterns in patients treated with TTM 36°C. 

  Highly 
malignant 

Not Highly 
malignant p test 

Total patients 44 78     
Absent corneal reflex.* 26 (60.5%) 12 (12.2 %) <0.001** Chi2 
Pupillary reflex *         

-  absent on clinical observation  17 (39.5 %) 8 (8.2 %) <0.001** Chi2 
- pupillometry (% reaction), mean+/- 

 
17.2 ± 9.8 24.5 ± 8.3 0.007 t-test 

Presence of early myoclonus* 18 (40.9%) 4 (5%) <0.001** Fisher 
Peak NSE (ug/l), median (IQR)* 63.2 (31.3-186.1) 23.9 (16.9-32.9) <0.001** Wilcoxon 
Absent N20 on SSEP * 22 (55%) 8 (11.9 %) <0.001** Chi2 
CPC at 3 months, median (IQR) 5 (5-5) 2 (1-5) <0.001** Wilcoxon 
*SSEP were not assessed in 15 cases, NSE in 18, pupillometry in 67 and 2 patients did not have a 
clinical examination off sedation after 72 hours. Corneal and pupillary reflexes were not reliable in 1 
patient due to ocular melanoma. 
** Significant after Bonferroni correction (p value <0.007).        
Data are expressed as n (%) unless otherwise specified. 
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Supplementary table 3 : Distribution of EEG scored after (9–11) on day 1 after cardiac 
arrest, according to “benign” patterns in patients treated with TTM 33°C. 

  Benign Not Benign p test 

Total patients 13 47     
Corneal reflex (present)* 13(100%) 34(72.3%) 0.032 Chi2 
Pupillary reflex *         

- clinical observation (present)  13(100%) 41(87.2%) 0.17 Chi2 
- pupillometry (% reaction), mean (SD) 27.6 ± 6.8 18.7 ± 8.1 0.03 t-test 

Motor reaction (better than flexion)  * 11 (84.6%) 15 (31.9 %) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 23.8 (16.4-29.1) 30.2 (19.2-77.2) 0.013 Wilcoxon 
SSEP (present)* 12 (100% 37 (78.2%) 0.09 Chi2 
CPC at 3 months, median (IQR) 1 (1-1) 3 (1-5) <0.001** Wilcoxon 
*SSEP were not assessed in 1 case and pupillometry in 22 patients. 
** Significant after Bonferroni correction (p value <0.007).  
Data are expressed as n (%) unless otherwise specified.       

Supplementary table 4 : Distribution of EEG scored after (9–11) on day 1 after cardiac 
arrest, according to “benign” patterns in patients treated with TTM 36°C. 

  Benign Not benign p test 

Total patients 23 99     
Corneal reflex (present)* 20 (95.2%) 61 (62.2%) 0.003 ** Chi2 
Pupillary reflex *         

- clinical observation (present) 21 (100%) 73 (74.5%) 0.009 Chi2 
- pupillometry (% reaction), mean (SD) 26.2 ± 9.8 20.7 ± 9.8 0.097 t-test 

Motor reaction (better than flexion) * 19 (90.5 %) 45 (47.4%) <0.001** Chi2 
Peak NSE (ug/l), median (IQR)* 22.6 (12.8-33.4) 31.3(19.7-67.2) 0.123 Wilcoxon 
SSEP (present)* 16 (100%) 61 (67%) 0.006** Chi2 
CPC at 3 months, median (IQR) 1 (1-2) 5 (1-5) <0.001** Wilcoxon 

*SSEP were not assessed in 15 cases, NSE in 18, pupillometry in 67 and 2 patients did not have a 
clinical examination off sedation after 72 hours. Corneal and pupillary reflexes were not reliable in 1 
patient due to ocular melanoma. Motor reaction was not assessed in 6 patients. 

** Significant after Bonferroni correction (p value <0.007).    
Data are expressed as n (%) unless otherwise specified.     

 

  



Beuchat et al. 16 
 

Supplementary Figure 1 legend 

EEGs example with “highly” malignant patterns. Please note that calibration in given on 
top of each trace; all arranged as longitudinal bipolar montage using 21 electrodes 
arranged after the international 10-20 system. 

a) Suppressed background (amplitude <10 µV, 100% of the recording) intermixed by 
electrographic seizures, unreactive to nociceptive stimulus (black marker). 

b) Suppressed background (amplitude <10 µV, 100% of the recording) without 
epileptiform discharges, unreactive to nociceptive stimulus (black marker). 

c) Burst-suppression (periods of suppression with amplitude <10 µV, >50% of the 
recording) with superimposed epileptiform discharges associated with myoclonic eye 
blinking (black marker). 

d) Suppressed background with superimposed generalized periodic discharges, 
unreactive to nociceptive stimulus (black marker). 

 


