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Abstract

A fuzzy partition assigns to each among n objects a distribution over a categories.
Elementary linear algebraic methods permit to introduce and investigate concepts and
properties such as a) variance and inertia decomposition; b) coarse- and fine-graining
(nestedness); c) iteration of fuzzy partitions; d) stability of a group in regard to another
partition; e) (euclidean embeddable) dissimilarities between objects; f) (euclidean em-
beddable) dissimilarities between partitions. Unweighted (R) or weighted (T , P ) object
similarities are further investigated, and found to be related to the chi-square as well
as to the indices of Gini, variety and Mirkin-Cherny-Rand. Weighted versions T and P
differ for fuzzy partitions, allowing various non-equivalent constructions characterizing
differing aspects of fuzzy partitions and possessing no formal analog at the crisp level1.

1 Introduction and notations

Partitioning (deterministically) n objects consists in assigning each object i to a group j,
among a possible groups; see e.g. Saporta pp. 210-224 (1990) or Mirkin pp. 229-246 (1996)
for a classical, formal approach. A fuzzy partition consists of a probabilistic assignment of
object i to group j, specified with zij = “probability that object i belongs to group j”,
obeying zij ≥ 0,

∑a
j=1 zij = 1 and

∑n
i=1 zij > 0 (absence of empty groups); see e.g. Bezdek

(1981) for a presentation of the fuzzy context.
Elementary algebra allows characterizing the combination, iteration or nesting of fuzzy

partitions; associated operators, whose projective or Markov-like properties are exploited,
possess simple interpretations in terms of dissimilarities between objects, yielding in turn
euclidean embeddable dissimilarities between objects and even between partitions them-
selves.

The present general framework suggests a certain view of the multivariate analysis of
fuzzy partitions (=fuzzy categorical variables), that is of multiple fuzzy correspondence
analysis.

2 Membership matrices

Definition 1 A (fuzzy) partition A of a set of n objects in a groups is defined by a (n×a)
1The work has benefited from stimulating discussions with M.Rajman in the framework of the joint

UNIL-EPFL “Clavis” project (2001).
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(fuzzy) membership or indicator matrix such that zAij ≥ 0,
∑a

j=1 zAij = 1 for all i = 1, . . . , n

and nAj :=
∑n

i=1 zAij > 0 for all j = 1, . . . , a.

Definition 2 a) A deterministic or crisp partition obtains when zij = 1 or zij = 0 for
all i, j, or equivalently z2

ij = zij . In the case of a crisp partition, j(i) will denote the
group to which i belongs.

b) A partition is said to be full if Rank(Z) = a, and defective if Rank(Z) < a.

Crisp partitions are full (since nj > 0). The uniform partition in a groups U(a) is defined
by the (n× a) matrix z

U(a)
ij = 1

a for all i and j = 1, . . . , a. Uniform partitions are defective
for a ≥ 2; the full case a = 1 defines the one-group partition O = U(1), with associated
(n × 1) membership matrix zOi1 = 1. The n-groups partition N is defined by the (n × n)
identity matrix zNij = δij (or a permutation of it).

2.1 Variance decomposition

Let X be a numerical variable with scores xi, i = 1, . . . , n. Define the (fuzzy) average for
the j-th group as x̄j :=

∑n
i=1

zij

nj
xi, and the total average as x̄ =

∑a
j=1 fj x̄j = 1

n

∑n
i=1 xi,

where fj := nj

n . Define the total, within- and between-groups variances as

var(x) :=
1
n

n∑
i=1

(xi−x̄)2 varW (x) :=
1
n

a∑
j=1

n∑
i=1

zij(xi−x̄j)2 varB(x) :=
a∑

j=1

fj(x̄j−x̄)2

(1)
Then the (fuzzy) variance decomposition formula var(x) = varW (x) + varB(x) holds. In
particular, for fixed values {xi}, varW (x) is maximum for A = U(a) (for any a), and
minimum for A = O.

2.2 Connected components

Define the (a× a) matrices B = (bjj′) and N = (njj′) as

B := Z ′Z i.e. bjj′ :=
∑

i

zijzij′ N := diag(1′Z) i.e. njj′ := δjj′ nj (2)

where 1 is the (n×1) unit vector. Note that Z 1 = 1 and Z ′1 = N1 , where 1 is the (m×1)
unit vector. Also, B−1 exists iff A is full.

bjj′ ≥ 0 constitutes an index of overlapping between groups j and j′ and measures their
common sharing of objects. Distinct groups j and j′ with bjj′ > 0 are said to be adjacent.
Distinct groups j and j′ related by a path bjk1 bk1k2 . . . bklj′ > 0 of adjacent groups are
connected. A set of connected groups constitutes an (irreducible) component, indexed by
J = 1, . . . , c(A), where c(A) ≤ m is the number of irreducible components of the partition
A, or, equivalently, the number of irreducible blocks of Z. One has:
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c(A) = m ⇔ A is crisp ⇔ B = N
Rank(Z) = m ⇔ A is full ⇔ B−1 exists

2.3 Iterated partitions

In view of the previous section, the matrix G := N−1B is the identity iff is A crisp. In
general, G generates iterated partitions:

Definition 3 The r-th iterated membership Z(r) defining partition A(r) obtains as

Z(r) := Z Gr−1 G := N−1B = (gjj′) gjj′ =
1
nj

n∑
i=1

zij zij′ (3)

Indeed, identity G 1 = 1 ensures the normalization Z(r) 1 = 1 : that is, Z(r) is the mem-
bership matrix associated to some (fuzzy) partition denoted A(r).

G 1 = 1 with gjj′ ≥ 0 also shows G to be the (a × a) transition matrix of a Markov
chain among groups j = 1, . . . , a: gjj′ is the probability that, starting from group j in which
one selects an individual i, one precisely gets group j′ when further selecting a group from
individual i. Identity 1′ZN−1Z ′Z = 1′Z ensures n

(r)
j :=

∑
i z

(r)
ij = nj : the group sizes are

thus unchanged by iteration.

G is doubly stochastic, and made up of J = 1, . . . , c(A) irreducible doubly stochastic
matrices G(J), each with stationary distribution f

(J)
j = nj/nJ where nJ :=

∑
j∈J nj . It-

erating partitions mixes the objects i among the various classes j of the same connected
component J ; for instance, z

(2)
ij =

∑
i′j′ zij′ zi′j′ zi′j/nj′ . In the limit r →∞, objects inside

the same component J possess the same group membership:

g
(∞)
jj′ =

nj′ I(j′ ∈ J(j))
nJ(j)

implying z
(∞)
ij =

nj I(i ∈ J(j))
nJ(j)

(4)

where I(E) denotes the characteristic function for event E, and J(j) denotes the component
to which group j belongs. Partition A(∞) thus obtains by

1. first assigning individuals i to their component J(i); we denote this partition as A(0),
with (n× c(A)) associated membership matrix z

(0)
iJ = I(i ∈ J)

2. then choosing group j ∈ J(i) with probability nj/nJ(i) = fj/fJ(i); the (c(A) × a)
membership matrix associated to this component-group partition is z

cg
Jj = nj

nJ
I(j ∈ J).

By construction

Z(∞) = Z(0) Zcg Z(0) = Z Zgc where z
gc
iJ := I(j ∈ J) (5)

Partition A(∞) is defective iff A is fuzzy (since Rank(Z(∞)) = c(A) < a), and full iff A is
crisp. Crisp partitions are characterized by gjj′ = g

(r)
jj′ = δjj′ and zij = z

(r)
ij = I(i ∈ j).
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Example 1 Consider the fuzzy partition A of n = 5 objects in a = 4 classes with

ZA =


1 0 0 0

0.2 0.8 0 0
0 1 0 0
0 0 0.6 0.4
0 0 0.2 0.8

 N =


1.2 0 0 0

0 1.8 0 0
0 0 0.8 0
0 0 0 1.2

 B =


1.04 0.16 0 0
0.16 1.64 0 0

0 0 0.4 0.4
0 0 0.4 0.8



G =


13
15

2
15 0 0

4
45

41
45 0 0

0 0 1
2

1
2

0 0 1
3

2
3

 G(∞) =


0.4 0.6 0 0
0.4 0.6 0 0

0 0 0.4 0.6
0 0 0.4 0.6

 Z(∞) =


0.4 0.6 0 0
0.4 0.6 0 0
0.4 0.6 0 0

0 0 0.4 0.6
0 0 0.4 0.6


3 Object comparisons

3.1 Object similarities

Let S = (sii′) denote a general (n× n) similarity matrix between objects, obeying sii′ ≥ 0,
sii′ = si′i and sii′ ≤

√
sii si′i′ . Three natural candidates for S are provided by the (n × n)

matrices R := ZZ ′, T := ZN−1Z ′ and (assuming the partition to be full, that is B−1 exists)
P := ZB−1Z ′, namely2

rii′ :=
a∑

j=1

zij zi′j tii′ :=
a∑

j=1

zij zi′j

nj
pii′ :=

a∑
j,j′=1

zij b
(−1)
jj′ zi′j′ (6)

• R = (rii′) (the relation similarity matrix) yields, for a crisp classification, the indicator
matrix of the relation “objects i and i′ belong to the same group”.

• T = (tii′) (the transition similarity matrix) satisfies
∑

i′ tii′ = 1: it is thus the transi-
tion matrix among objects of a doubly stochastic Markov chain; tii′ is the probability
to jump from object i to object i′ when first selecting class j with probability zij and
then selecting object i′ inside class j with probability zi′j/nj .

• P = (pii′)(the projection similarity matrix) is a projection matrix (see theorem (1)).
Also, P = T iff A is crisp; in other words, similarity matrices can be made simulta-
neously markovian and projective for crisp partitions only. Note that pii′ ≥ 0 can be
violated (since B−1 possesses negative components); however, |pii′ | ≤

√
pii pi′i′ holds.

Theorem 1 a) T is a Markov transition matrix, with stationary uniform distribution
πi = 1/n; its iterate obeys T 2 = T iff A is crisp (that iff T = P as well).

2Equations (2) and (6) are somewhat reminiscent of the “Burt-Condorcet” duality in multiple correspon-
dence analysis (see e.g. Marcotorchino (2000)). Recall however the latter to refer to p ≥ 2 crisp partitions,
rather than one fuzzy partition as in the present case.
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b) In general, however, 1 ≤ Tr(T 2) ≤ Tr(T ) ≤ a, with Tr(T ) = 1 iff A is the uniform
partition U(a) (for any a), and Tr(T ) = a iff A is crisp, in which case T = P .

c) P exists iff A is full, in which case P 2 = P and Tr(P ) = a.

Proof of theorem 1 a) obtains from c) below; recall T = P in the crisp case.

b) by definition, Tr(T ) =
∑

ij

z2
ij

nj
. Tr(T ) = a holds as a consequence of z2

ij ≤ zij

with equality iff A is crisp. Tr(T ) = 1 obtains from Jensen’s inequality 1
n

∑
i z

2
ij ≥

{ 1
n

∑
i zij}2 with equality iff A is the uniform partition.

Inequality (zij − zi′j)2zij′zi′j′ ≥ 0 holds in general, while (zij − zi′j)2zij′zi′j′ = 0 for all
i, i′, j, j′ iff A is crisp. Summing the latter yields

Tr(T 2) =
∑
ii′jj′

zijzi′jzij′zi′j′

nj nj′
≤

∑
ii′jj′

z2
ijzij′zi′j′

nj nj′
=

∑
ij

z2
ij

nj
= Tr(T )

which demonstrates that T 2 6= T if A is not crisp. On the other hand, T = P if A is
crisp, and thus T 2 = T .

c) P 2 = ZB−1Z ′ZB−1Z ′ = ZB−1BB−1Z ′ = ZB−1Z ′ = P ; also, Tr(P ) = Tr(ZB−1Z ′) =
Tr(B−1Z ′Z) = Tr(B−1B) = Tr I = a.

3.2 Iterated object similarities

Higher order similarities can be constructed as R(r) := Z(r)(Z(r))′, T (r) := Z(r)(N (r))−1(Z(r))′

and (for a full partition) P (r) := Z(r) (B(r))−1 (Z(r))′, where Z(r) := Z Gr−1, B(r) :=
(Z(r))′ Z(r) and N (r) := diag(1′Z(r)).

Theorem 2 For r ≥ 0, T (r) = T 2r−1 and (for a full partition) P (r) = P .

Proof of theorem 2

P (r+1) = Z(r+1) (B(r+1))−1 (Z(r+1))′ = Z(r)N−1B[BN−1B(r)N−1B]−1BN−1(Z(r))′ =
= Z(r)N−1BB−1N(B(r))−1NB−1BN−1(Z(r))′ = Z(r) (B(r))−1 (Z(r))′ = P (r)

Using N (r) = N , identity T (r) = T 2r−1 is proved similarly.

3.3 Object distances

Matrices R, T and P are three instances of positive-definite similarity matrices S = (sii′)
between objects i and i′, from which a squared euclidean distance can be constructed as
DS

ii′ := (dS
jj′)

2 = sii + si′i′ − 2sii′ (Schoenberg 1935; Gower 1982). Explicitly

DR
ii′ =

∑
j

(zij − zi′j)2 DT
ii′ =

∑
j

(zij − zi′j)2

nj
DP

ii′ =
∑
jj′

(zij − zi′j)b
(−1)
jj′ (zij′ − zi′j′)

(7)
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Theorem 3 : for a crisp partition:

rii′ = 1 tii′ = pii′ =
1
nj

DR
ii′ = DT

ii′ = DP
ii′ = 0 for i, i′ ∈ j

rii′ = tii′ = pii′ = 0 DR
ii′ = 2 DT

ii′ = DP
ii′ = 1

nj
+ 1

nj′
for i ∈ j, i′ ∈ j′ with j 6= j′

In particular, rNii′ = tNii′ = pNii′ = δii′ ; rOii′ = 1 and tOii′ = pOii′ = 1
n .

Proof of theorem 3 : straightforward.

Let aj ≥ 0 with
∑

j aj = 1 be the membership profile of some object a; for instance,
gj = 1

n

∑
i zij = nj

n represents the membership profile of the gravity center g. Then squared
distances DS

ia can be defined by the substitution zi′j → aj in (7). Define

IS
2 =:

1
2n2

∑
i,i′

DS
ii′ (pair inertia) IS

1 (a) =:
1
n

∑
i

DS
ia (central inertia with center a)

(8)
Then, for S = R, T or P ,

IS
1 (a) = IS

1 (g)+DS
ag (strong Huygens principle) IS

2 = IS
1 (g) (weak Huygens principle)

(9)
(see e.g. Bavaud (2002)). The pair inertia IS

2 = IS
1 (g) constitutes an index of classificatory

diversity; for crisp partitions A, one gets IR
2 =

∑a
j=1 fj(1 − fj) (Gini diversity index) and

IT
2 = IP

2 = (a− 1)/n.

As it it well known (classical MDS), coordinates xS
iα realizing an euclidean representation

of the objects i = 1, . . . , n in dimensions α = 1, . . . , a−1 (that is satisfying DS
ii′ =

∑
α(xS

iα−
xS

i′α)2) can be obtained as xS
iα :=

√
λS

α uS
iα, where the λS

α are the eigenvalues and the uS
iα

the eigenvectors occurring in the spectral decomposition S = USΛS(US)′.

Example 1, continued: the (5× 5) corresponding similarity matrices are

R =


1 .2 0 0 0
.2 .68 .8 0 0
0 .8 1 0 0
0 0 0 .52 .44
0 0 0 .44 .68

 T =


.83 .17 0 0 0
.17 .39 .44 0 0

0 .44 .56 0 0
0 0 0 .58 .42
0 0 0 .42 .58

 P =


.98 .12 −.10 0 0
.12 .40 .48 0 0

−.10 .48 .62 0 0
0 0 0 1 0
0 0 0 0 1


with associated squared distances between objects

DR =


0 1.28 2 1.52 1.68

1.28 0 .08 1.2 1.36
2 .08 0 1.52 1.68

1.52 1.2 1.52 0 .32
1.68 1.36 1.68 .32 0

 DT =


0 .89 1.39 1.42 1.42

.89 0 .06 .97 .97
1.39 .06 0 1.14 1.14
1.42 .97 1.14 0 .33
1.42 .97 1.14 .33 0

 DP =


0 1.14 1.79 1.98 1.98

1.14 0 .07 1.40 1.40
1.79 .07 0 1.62 1.62
1.98 1.40 1.62 0 2
1.98 1.40 1.62 2 0


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Spectral decomposition of S yields the corresponding (5× 4) coordinates XS = (xS
iα):

XR =


.24 .97 0 0
.82 0 0 0
.97 −.24 0 0

0 0 .66 −.30
0 0 .79 .25

 XT =


.58 −.71 0 0
.58 .24 0 0
.58 .47 0 0

0 0 −.71 .29
0 0 −.71 −.29

 XP =


−.12 .98 0 0

.61 .19 0 0

.79 −.24 0 0
0 0 1 0
0 0 0 1


4 Nested partitions: coarser and finer

Definition 4 Partition B (defined by the (n × b) membership matrix ZB) is coarser than
partition A (defined by the (n × a) membership matrix ZA), or, equivalently, A is finer
than B, noted B ≤ A, if ZB = ZA WAB where WAB = (wABjk ) is a (a× b) class membership
matrix such that wABjk ≥ 0 and

∑b
k=1 wABjk = 1.

Theorem 4 a) The relation “B ≤ A” is a partial order

b) its minimal element is the one-group partition O

c) its maximal element is the n-groups partition N

d) if B ≤ A (with A and B both full) then PAPB = PBPA = PB.

Proof of theorem 4 a) By definition, A ≤ A (with wAAjk = δjk). Also, B ≤ A and
C ≤ B entail C ≤ A (with WAC = WAB WBC).

b) for any A, ZO = ZA WAO with wAOj = 1 for all j = 1, . . . , a.

c) for any B, ZB = ZN WNB with wNBij = zBij .

d) ZAWAB = ZB and BA = (ZA)′ZA yield

PAPB = ZA(BA)−1(ZA)′ZB(BB)−1(ZB)′ =
= ZA (BA)−1(ZA)′ZA︸ ︷︷ ︸

I

WAB(BB)−1(ZB)′ = ZB(BB)−1(ZB)′ = PB

Identity PBPA = PB is demonstrated analogously.

Theorem 5 For r ≥ 1, the sequence of partitions A(r) associated with the iterated mem-
berships Z(r) (definition 3) is decreasing (that is A(r+1) ≤ A(r)). Its limit A(∞) is given by
the membership matrix Z(∞) defined in (4). Also, A(∞) ≤ A(0) ≤ A.

Proof of theorem 5 The first two assertions follow from Z(r+1) = Z(r) G (equation (3)),
where G is a (a × a) non-negative matrix obeying

∑a
j′=1 gjj′ = 1 together with properties

listed in section (2.3). The last assertion is a direct consequence of (5).
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5 Comparison and representation of partitions

5.1 The general case: euclidean visualization

Definition 5 Let SA = (sAii′), respectively SB = (sBii′), be the (n × n) similarity matrix
associated to partition A, respectively partition B. The corresponding (squared) distance
DS
A,B between two partitions A and B is defined as

DS
A,B :=

∑
ii′

(sAii′ − sBii′)
2 = Tr(SA − SB)2 = Tr((SA)2) + Tr((SB)2)− 2Tr(SA SB) (10)

The distance DS
A,B possesses all the properties of a squared euclidean distance, in par-

ticular the embeddability property. Then classical MDS applied on matrix DS yields a
low-dimensional euclidean visualization of the distances between partitions, each partition
being represented by a point (see figure 1).

Example 2 Consider n = 5 objects. Define

• A as the fuzzy partition of example 1

• B as the partition A(0) in connected components (namely (123; 45))

• C as the crisp partition (12; 345)

• D ≡ N as the n-groups partition (1; 2; 3; 4; 5)

• E ≡ O as the one-group partition (12345)

• F ≡ A(∞) as the limiting iterated partition:

ZA =


1 0 0 0

0.2 0.8 0 0
0 1 0 0
0 0 0.6 0.4
0 0 0.2 0.8

 ZB =


1 0
1 0
1 0
0 1
0 1

 ZC =


1 0
1 0
0 1
0 1
0 1



ZD =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ZE =


1
1
1
1
1

 ZF =


0.4 0.6 0 0
0.4 0.6 0 0
0.4 0.6 0 0

0 0 0.4 0.6
0 0 0.4 0.6


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The corresponding dissimilarities (10) DS between partitions (listed in alphabetical order)
are3

DR =



0 4.42 7.62 2.18 16.42 1.43
4.42 0 8 8 12 3.00
7.62 8 0 8 12 7.16
2.18 8 8 0 20 3.32

16.42 12 12 20 0 15.00
1.43 3.00 7.16 3.32 15.00 0



DT =



0 0.63 1.37 1.74 1.74 0.63
0.63 0 1.11 3 3 0
1.37 1.11 0 3 3 1.11
1.74 3 3 0 0 3
1.74 3 3 0 0 3
0.63 0 1.11 3 3 0

 DP =


0 2 2.63 1 1
2 0 1.11 3 3

2.63 1.11 0 3 3
1 3 3 0 0
1 3 3 0 0



5.2 The full case for S = P

When A and B are both full, PA and PB are well defined and theorem (1) yields DP
A,B =

Tr(PA + PB − 2 PA PB). If B ≤ A in addition, the distance further expresses (theorem
(4)) as DP

A,B = Tr(PA)− Tr(PB) = a− b: the distance between two nested, full partitions
is measured by the difference of their number of groups. In particular

• DP
A,C = DP

A,B + DP
B,C if C ≤ B ≤ A or A ≤ B ≤ C

• for A full, DP
O,A = a− 1 and DP

N ,A = n− a

• for A full, DP
A(0),A = a− c(A)

5.3 The crisp case: chi-square and Mirkin-Cherny-Rand indices

Let A and B be two crisp partitions possessing respectively a and b non-empty classes. Let
nAj :=

∑
i z
A
ij be the number of objects in class j of A, nBk :=

∑
i z
B
ik be the number of

objects in class k of B, and define nA,B
jk :=

∑
i z
A
ij zBik as the number of objects both in class

j of A and k of B.

Definition 6 : NA,B :=
∑

ii′
∑

jj′ z
A
ij zAi′j zBij′ zBi′j′ =

∑
ii′ r

A
ii′ rBii′ =

∑
jk(n

A,B
jk )2 denotes the

number of pairs (distinct or not) which are simultaneously classified in the same group j of
A and k of B.

3as F is defective, PF is not defined.
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Figure 1: Euclidean visualization (classical MDS) of the distances between partitions DS
A,B,

for S = R (top left), S = T (top right) and S = P (down). Coordinates for D and E are
identical in the T− and P−representation; also, coordinates for B and F are identical in
the T−representation. Recall that F is defective and hence not P−representable.
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nA,B
jk ≤ nA,A

jj = (nAj )2, and thus NA,B ≤ NA,A =
∑

j(n
A
j )2 (and NA,B ≤ NB,B =

∑
k(n

B
k )2),

with equality iff the two (crisp) partitions A and B are identical.

Theorem 6

DR
A,B = NA,A + NB,B − 2NA,B DT

A,B = DP
A,B = (a− 1) + (b− 1)− 2

n
χ2
A,B (11)

where χ2
A,B :=

∑a
j=1

∑b
k=1

(njk−
nj•n•k

n
)2

nj•n•k
n

is the chi-square associated to the contingency

table njk = nA,B
jk .

The quantity 1
n2 DR

A,B is called “relative symmetric-difference distance” by Mirkin and
Cherny (1970). Its complement to unity4 is known as the “Rand similarity index” (Rand
1971).

Proof of theorem 6 : the first identity follows from

DR
A,B =

∑
ii′

(rAii′ − rBii′)
2 =

∑
ii′

(
∑

j

zAijz
A
i′j −

∑
k

zBikz
B
i′k)

2 =

=
∑
ii′

[
∑
jj′

zAijz
A
i′jz

A
ij′z

A
i′j′ +

∑
j′k′

zBikz
B
i′kz

B
ik′z

B
i′k′ − 2

∑
jk

zAijz
A
i′jz

B
ikz

B
i′k] =

=
∑
jj′

δjj′ nAj δjj′ nAj +
∑
kk′

δkk′ nBk δkk′ nBk − 2
∑
jk

(nABjk )2 =
∑

j

(nAj )2 +
∑

k

(nBk )2 − 2
∑
jk

(nABjk )
2

and the second from DP
A,B = Tr(PA) + Tr(PB)− 2Tr(PAPB) = a + b− 2 Tr(PASB) and

Tr(PAPB) =
∑
ii′

∑
jk

zAijz
A
i′j

nAj

zAi′kz
A
ik

nBk
=

∑
jk

(nA,B
jk )2

nAj nBk
= 1 +

1
n

χ2
A,B

5.4 The crisp case: instability of a group relatively to another partition

Let A and B be two crisp partitions whose non-empty groups are respectively indexed by
j = 1, . . . , a and k = 1, . . . , b; let nj := nAj > 0 denote the number of objects i ∈ j.

Theorem 7

DR
A,B =

a∑
j=1

ρBj ρBj := n2
j − 2αBj + βBj αBj :=

∑
i,i′∈j

rBii′ βBj :=
∑
i∈j;i′

rBii′ (12)

DT
A,B = DP

A,B =
a∑

j=1

τBj τBj := 1− 2γBj + δBj γBj :=
1
nj

∑
i,i′∈j

pBii′ δBj :=
∑
i∈j

pBii (13)

4at least in the variant restricted to the contribution of distinct pairs only.

11



ρBj and τBj constitute measures of the instability of group j (of partition A) relatively to
partition B; by construction, their sum over the groups j = 1, . . . , a yields the (squared)
distance between partitions A and B. Note that:

• n2
j is the number of (distinct or not) pairs of objects in j

• αBj is the number of pairs in j which are also classified in the same group k of B

• βBj is the number of pairs classified in the same group k of B, such that the first object
of the pair belongs to j.

As n2
j ≥ αBj and βBj ≥ αBj , one has ρBj ≥ 0 with equality iff n2

j = αBj (all pairs in j are pairs
for B) and βBj = αBj (all pairs (i, i′) for B such that i ∈ j satisfy i′ ∈ j). Also:

• γBj is a measure of the pair cohesion in B “as seen from j”

• δBj is a measure of the fineness of groups of B “as seen from j”.

Properties pBii′ ≤ pBii and
∑

i′ p
A
ii′ = 1 entail γBj ≤ δBj and γBj ≤ 1, and thus τBj ≥ 0.

Proof of theorem 7

DR
A,B =

∑
ii′

(rAii′ − rBii′)
2 =

∑
j

∑
i∈j

∑
i′

[rAii′ − 2rAii′r
B
ii′ + rBii′ ] =

∑
j

[n2
j − 2

∑
i,i′∈j

rBii′ +
∑
i∈j;i′

rBii′ ]

DT
A,B =

∑
ii′

(pAii′ − pBii′)
2 =

∑
j

[
∑
i∈j

pAii − 2
∑
i∈j

pAii′p
B
ii′ +

∑
i∈j

pBii] =
∑

j

[1− 2
nj

∑
i,i′∈j

pBii′ +
∑
i∈j

pBii]

where (rAii′)
2 = rAii′ and

∑
i′(p

A
ii′)

2 = pAii = 1/nj(i) have been used.

Example 3 : the instability of class j with regard to the n-groups partition B = N is:

• ρNj = nj (nj − 1) (large groups are unstable)

• τNj = nj − 1 (large groups are unstable)

Its instability with regard to the one-group partition B = O is:

• ρOj = (n− nj) nj (medium groups are unstable)

• τOj = n−nj

n = 1− fj (small groups are unstable).
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