Pathway	Target	References		
	Ku70/Ku80	Walker et al., 2001		
NHEJ	DNA-PKcs	Allen et al., 2002; Dobbs et al., 2010; Sipley et al., 1995		
	LigIV	Critchlow et al., 1997		
	Xrcc4	Critchlow et al., 1997; Li et al., 1995		
	53BP1	Xie et al., 2007		
	MDC1	Stucki et al. 2005; Zhang et al. 2005; Lou et al. 2006; Xie et al. 2007		
	Rad51	Benson et al. 1994; Baumann and West 1998; Vispé et al. 1998; Arnaudeau et al. 1999		
	Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3	Cartwright et al. 1998; Pittman et al. 1998; Masson et al. 2001; Takata et al. 2001; Lio et al. 2004; Liu et al. 2004; Suwaki et al. 2011		
	Rad52	Van Dyck et al. 1998; Van Dyck et al. 1999; Feng et al. 2011		
HR	Rad54	Essers et al. 2002; Heyer et al. 2006		
	Brca1	Yoshida and Miki 2004; Cousineau et al. 2005		
	Bard1	Wu et al. 1996		
	Brca2	Davies et al. 2001; Moynahan et al. 2001; Yoshida and Miki 2004; Liu et al. 2010; Feng et al. 2011		
	MRN (MRX in yeast)	Stracker and Petrini 2011		
	CtIP	Yu and Chen 2004; Sartori et al. 2007; You et al. 2009		
	Cyclin D1	Li et al. 2010; Jirawatnotai et al. 2011		

Supplementary Table S1. List of HR and NHEJ targets for siRNA knock-down.

Supplementary Table S2. List of MMEJ targets for siRNA knock-down.

Target	References		
MRN (MRX in yeast)	Ma et al. 2003; Zhang and Paull 2005; Lee and Lee 2007; Dinkelmann et al. 2009; Della-Maria et al. 2011		
CtIP	Yun and Hiom 2009; Wang et al. 2012		
PARP1	Audebert et al. 2004		
Ercc1/Xpf (Rad1/Rad10 in yeast)	Ma et al. 2003; Lee and Lee 2007		
Ligase I	Liang et al. 2008; Crespan et al. 2012; Paul et al. 2013; Oh et al. 2014		
Ligase III (absent in yeast)	Audebert et al. 2004; Liang et al. 2008; Della-Maria et al. 2011; Paul et al. 2013; Oh et al. 2014		
Xrcc1 (absent in yeast)	Della-Maria et al. 2011		
DNA Polymerase delta subunit 3 (POLD3) (POL32 in yeast)	Lee and Lee 2007; Costantino et al. 2014		
DNA Polymerase theta (POLQ) (absent in yeast)	Yu and McVey 2010; Koole et al. 2014; Kent et al. 2015		

Supplementary Table S3. siRNA sequences.

Target gene	Name and sequence of the oligo sense strand			
	Neg 1 AGGUAGUGUAAUCGCCUUG			
Negative control	Neg_2 GACGACUCACAUACGUAAA			
	Neg_3 GAAUAUAUCGCGAAAUGUA			
	Ku70_1 GGUGCCCUUUACUGAGAAA			
Ku70	Ku70_2 AAAGCCCAAGGUAGAGUUA			
	Ku70_3 ACAUUUCCAAGACACAAUU			
	Ku80_1 GAAACUGUCUAUUGCUUAA			
Ku80	Ku80_2 CCAUAGGGAAGAAGUUUGA			
	Ku80_3 GGAUUCCUAUGAGUGUUUA			
	DNA-PKcs_1 GGAUCGAGCUGUUCAGAAA			
DNA-PKcs	DNA-PKcs_2 AGAUGAUGUUCACUCUAAA			
	DNA-PKcs_3 AUCCAUCGGUAUCUUUAAA			
	LigIV_1 AGAGCCUCCUUCAGUUAAU			
DNA Ligase IV	LigIV_2 CUAUACAGCAGGUAAAUGA			
	LigIV_3 AGAGGUAUGAUAUCCUUAA			
	Xrcc4_1 AUAUGCUGAUGAAUUGAGA			
Xrcc4	Xrcc4_2 CUGAAAGAUGUCUCAUUUA			
	Xrcc4_3 AUGAGCACCUGCAGAAAGA			
	53BP1_1 UCAGAAUGAUGACAAAGUA			
53BP1	53BP1 2 GAGCAAGGAGACAAUAAUA			
	53BP1_3 CAAAGACAUCCCUGUUACA			
	CycD1_1 UGGAACUCCUUCUGGUGAA			
Cyclin D1	CycD1_2 CGCACUUUCUUUCCAGAGU			
	CycD1_3 UGCCAGAGGCGGAUGAGAA			
	MDC1_1 ACAGCAUGCAGUAAUUGAA			
MDC1	MDC1_2 GGAAGAAGAUCCUGAGGAA			
	MDC1_3 CACGGAAAUGGGUGAAGAA			
	Rad51_1 GUGCCAAUGAUGUGAAGAA			
Rad51	Rad51_2 GGGAAUUAGUGAAGCCAAA			
	Rad51_3 GGCGUUCAGAAAUCAUACA			
	Rad51b_1 ACAGCCUAUGAUAUAAAGA			
Rad51B	Rad51b_2 CAAGUUCUUGGCCAAACAA			
	Rad51b_3 GUACCUGGCUGAGGAAUUU			
	Rad51c_1 UGAUCAGCCUGGCAAAUAA			
Rad51C	Rad51c_2 AGAGGAAGCUUUAGAAACU			
	Rad51c_3 GGAUGAAGAACACCAGAAA			
	Rad51d_1 ACGGAGCAGACCUAUAUGA			
Rad51D	Rad51d_2 CCCAAGAUGAGGAGAAACA			
	Rad51d_3 GCCUGGACAAACUACUUGA			
	Xrcc2 1 GAAGUGUUCUCAGCUCCUA			
Xrcc2	Xrcc2_2 CAACACAAAGUCUAAUGCA			
	Xrcc2_3 AUCAGAGGGUGGACUGCAA			

Supplementary Table S3. siRNA sequences (continued).

	Rad52_1 UGAGAUGUUUGGUUACAAU
Rad52	Rad52_2 ACUGCAUUCUGGACAAAGA
	Rad52_3 CCCUGAAGACAACCUUGAA
	Rad54_1 AGAAGACCUGCUAUAUUUA
Rad54	Rad54_2 CAUCAGAUAUCCUCUCUAA
	Rad54_3 GAAGCUAUGUAACCAUCCA
	Brca1_1 CCACGUAACUGAAAUUAUA
Brca1	Brca1_2 AAGGCUGAGUUCUAUAAUA
	Brca1_3 AGAGCCAAAUGAACAAAGA
	Bard1 1 GAACGGCCAUGUGGAUAUA
Bard1	Bard1_2 ACAGACAAUUGGACAACAU
	Bard1_3 GCAGCAGAAGAAAUCUUUA
	Mre11 1 AGAUGCAGUUCGAGGAAAU
Mre11	Mre11 2 AAACAGGUGAAGAGAUCAA
	Mre11_3 UUACUCAGAGACUAUUGAA
	Nbs1 1 GAAACAGCCUCCAGAAAUU
Nbs1	Nbs1 2 CAAUUGAUUUGGCUAUAGA
	Nbs1 3 AAACUGUGCCAUUCUGAUA
	Rad50 1 UAAUGAGACUUGACAAUGA
Rad50	Rad50 2 ACACUCUUGGGUACAAUAA
	Rad50 3 ACAGAACUCCUCACUAAGA
	CtIP 1 GUGCAAGGUUUACAAAUAA
CtIP	CtIP 2 CAAAGUCCCUGCCAAACAA
	CtIP_3 AGAAUACUCUCCAGGAAGA
	PARP1 1 AGGAGUUGCUUAUCUUCAA
PARP1	PARP1_2 UAUCCUACCUCAAGAAAUU
	PARP1_3 UGACACCUGCCUACUAUAU
	Poltheta_1 UCAGUGAAAUUCCCUUAAA
DNA polymerase θ	Poltheta_2 GUUCAGGGCUACUUAUAAA
	Poltheta_3 CGAAAGGCCUAAAUUAACA
	POLD3_1 AACAGAUGCUCUAUGAAUA
Pold3	POLD3_2 CCAAAGCAGAGGCUAAAGA
	POLD3_3 ACGAAAGCGUGUACUGAAA
	Xlf1_1 GUAGAAUACUUGUGGUUGA
Xpf1	Xlf1_2 GAACCCUACUGCAGUAUCU
	Xlf1_3 GAAGUGUGGGUGAAUCUUA
	Ercc1_1 ACGGGAGCGAAAUCCAAUA
Ercc1	Ercc1_2 GUUUGUGAUCCCACUGGAA
	Ercc1_3 GCCCUUAUUCAGAUCCUCA
	Xrcc1_1 GCGCUGGGACCGUGUUAAA
Xrcc1	Xrcc1_2 ACUGGACUUGAAUCUAGAA
	Xrcc1_3 GCUUAUCCGAUACGUUACA
	Ligase 1_1 UUACAAUCCUUCCAAGAGA
DNA Ligase I	Ligase 1_2 AGACAUGGUUGGAAGAACA
	Ligase 1_3 AAGGAAGAAGGAAGAAGAA
	LigIII_1 UCACUGGCCUGUCAUAAGA
DNA Ligase III	LigIII_2 GCACAAAGACUGUCUACUA
	LigIII_3 AAUCCUAGCUACAAUACAA

Clone	Integration site #	Junction side	Sequence ¹		Mechanism ²	Integration in/near a gene ³ expressed (yes/no)	Deletion in the genome (size)	Templated insert ⁴ (size)
BS01	1	Left	junction	GCGAGCAGAACGGAGACTGAAGGGGTGGGGCCGCGGGCCGACAATGGGCGGGGGGGG	<u>SD-MMEJ (5 nt)</u>			
			genome	CTATTGTCCTTGCTC(206bp)TGGGGCCGCGGCCGATCGG	(IR and DR)			ves (66hn)
			vector frgm 1	TTATTGACGT <u>CAAT</u> GGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATG	MMEJ (3 nt)			3c3 (000p)
			vector frgm 2	CCT <u>GAATGGCGAATGG</u> CAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAA		Ssh3 (exon),	no	
		Right	junction	AAAATACAAAAATTAGCCAGGTGTGTCGAATGGACAACCCGAGAATAACTATAAGACGACGCCACCCGTCCTTGATAGCGACGGTTCCTTTTTTTT	<u>SD-MMEJ (4 nt)</u>	yes (RPKM=3)	10	
			vector frgm 1	ACCC <u>TGTC</u> TC(24bp)GGTG <u>TG</u> GTGG	(DR)			ves (100hn)
			vector frgm 2	AGACATTGCGGTAGAGTGGGAGTCGAATGGACAACCCGAGAATAACTATAAGACGACGCCACCCGTCCTTGATAGCGACGGTTCCTTTTTTTT	MMEJ (3 nt)			yes (1000p)
			genome	GGCCGATCGGTGCGAGCTCTGTGGGGCCCGGACTGGGCACCAGTCGGGCCCCTTTAAGGGCCGCTCCCGA				
	2	Left	junction	AAAATCCCCGCCCTTTGCTGGCGGCTCGGCGG <u>TCGATGATGC</u> CTCTTCGCTATTACGCCAGCCCAAGCTACCATGATAAG	<u>SD-MMEJ (10 nt)</u>			
			genome	ATCCCCGCCCTTTGCTGGCGGCTCGGCGG <u>TCGAT</u> CG				yes (3bp)
			vector	ATCGGTGCGG <u>GC</u> CTCTTCGCTATTA(1103bp)CTTGGTTGACGGCAATT <u>TCGATGATGC</u> AGC		Dph1 (exon),	no	
		Right	junction	TTAAGG <u>TAATC</u> TTAAGTAGAAGAGATAGAGTTTAGAATTTTT <u>TAATC</u> GTGCTGCCTGGGTTCTCCGCGTTCCTCCAGCGC	<u>SD-MMEJ (5 nt)</u>	yes (RPKM=18)		
			vector	AGG <u>TAATC</u> TTAAGTAGAAGAGATAGAGTTTAGAATTTTT <u>TAA</u> ATTTATCTCT	(DR)			no
		genomeCGATCGTGCTGCCTGGGTTCTCCGCGTTCCTCCAGCGCTGCCTTTTGGTC						
	3	Left	junction	AAATTATACTGAGTAAGGTAACTCTGGACCAGAAATGAGAATCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTC	<u>MMEJ</u> (2nt)			
			genome	TTATACTGAGTAAGGTAACTCTGGACCAGAAATGAGA <u>AT</u> GACCTGTGTT	SD-MMEJ (4 nt)	nearest gene)	n.a. ⁵	no
			vector	CAGCAGCATAGGGATCCGTCG <u>ATCG</u> AC <u>CGAT</u> GCCCTTGAG(25bp)CGGTGGGCGCGGGGCATGACT <u>ATCG</u> TCG	(IR or DR)			
	4	Left	junction		<u>SD-MMEJ (4 nt)</u>	10.9kb from lin-54		
			genome		(IR or DR)	homolog,	n.a.	no
			vector	ACGGGAGGTACTTGGAGCGGCCCTGCATCTCAATTAGTCAGCAAC(68bp)ATCGCTGACTAATTTTTTT		yes (RPKM=4)		
	5	Right	junction		<u>SD-MMEJ (6 nt)</u>		n.a.	
			vector	TGGGCGGAGTTAGG <u>GGCGGG</u> ACTATGGT(103bp)ACC <u>G</u> ATCGCCCTT	(DR)	Ankzf1 (exon) , yes (RPKM=2)		yes (2bp)
			genome	TTTTCAAAAATGCCCA <u>GGG</u> CCAATTTCTTTATGCATATCGCTGTGTCCTAGGCCCTCGACAGGCA				
	6	Right	junction	ACATTCGACGATTATGCGATGCATTGGGTTCGTCAGATGAGGCTCTACAAGGTGAAATGTCTTCTTGCAGAGCCTCTCTA MMEJ (4 nt)				
		vectorTTCGACGATTATGCGATGCATTGGGTTCGTCAGGCGCCTGGGAAGGGTC		<u>SD-MMEJ (6 nt)</u>	16.5kb from Amigo1, no (RPKM=0)	n.a.	no	
			genome	TACTCTTTCGAGGGCTCAGTCCTATCAGATGAGGCTCTACAAGGTGAAATGTC(76bp)CTC <u>TCTGAC</u> ACGACTACCTCTTTCTC	(IR)			

Supplementary Table S4. Sequences of the DNA junctions of Immunoglobulin expression vector genomic integration sites (part 1).

Clone	Integration site #	Junction side		Sequence ¹		Integration in/near a gene ³ expressed (yes/no)	Deletion in the genome (size)	Templated insert ⁴ (size)
BS03	1	Left	junction	nction TAATGCGTCCTTGCTCTGAGCGCTTCTTGTCTCGAACAGGGGGGGG				no
			genome	TGCGTCCTTGCTTTGCTCTGAGCGCTTCTTGTCTCGATCGA	(IR)			
			vector	GGAGTCCAGCACAGGGGGGGGGGGGGGGTGGTCTTGTAGT <u>TGTTC</u> TCGGGCTGTCCGTTGGACTCCCATTC		17.9kb from Bahcc1,	ves (~913 hn)	
		Right	junction		<u>MMEJ</u> (5nt)	yes (RPKM=5)	yes (515 bp)	no
			vector		SD-MMEJ (5 nt)			
			genome	CGATCGGCCC <u>GCAGG</u> GGGTGGGGAGCCAAGCCGCGGGGAGAGCGCAAAGCCCGCG	(DR)			
	2	Right	junction		<u>SD-MMEJ (5 nt)</u>			n.a.
			vector	GAAGGGGCTCCTTAAGCGCAAGG <u>CCTCG</u> AACTCTC <u>C</u> ACCCACTTCC	(DR)	1kb from C17orf70, ves (RPKM=6)	n.a.⁵	
			genome	TGGGGCACGA <u>TCG</u> CTTGAGTGCGGGGTCAGCTCAGGAAACCCTGTCTCTTAAAAACCTTAAGC				
Cp33/64	1	Left	junction	GCTTTTCTAACTTAAATTATCTGGTTTCTCTTTAACTACAATGCTGCTGGTTTACAGACCACATGTAGAGTGGCAATGTG	<u>MMEJ</u> (2nt)			
			genome	TTTCTAACTTAAATTATCTGGTTTCTCTTTAACTACAATTTGCCTCT	<u>SD-MMEJ (6 nt)</u>			no
			vectorGGGCATCGGTCGATCGACGGATCCCTATGCTGCTGGTTTACAG(147bp)TTTAGCAAGACAGTGATAATGCTAATATG		(DR)	Cblb (intron), yes (RPKM=2)	yes (320 bp)	
		Right	light junction TGCCATCCAGCACATTGCCACTCTACATGTGGTCTGTAAACCAGCAGCA <u>TACA</u> GCATAAACAAATGTAACACAACTTAAA		SD-MMEJ (5 nt)			
			vector	TGAAATTACAATACAAATGATGAT(100bp)TGTAAACCAGCAGCATAGGGATCCGTCGAT	(DR)			no
			genome	CAAATGTTCC <u>ACA</u> GCATAAACAAATGTAACACAAACTTAAACTAATATTTCACA				
	2	Left	junction		<u>SD-MMEJ (5 nt)</u>			
			genome	CTGCCACTTTGAACATACTTTCTTGT <u>TTACT</u> TA <u>TTA</u> TGTTTATCCC	(DR)			yes (1nt)
			vector	GAACAATTTT <u>T</u> ATTTTCCTTTTATATGTTTAAATCATCATTTGTATTGTA		intergenic (118.4kb from	20	
		Right	junction	ACCTCCCGTACCTTAATATTACTTACTTATCATGGTAG <u>CTTG</u> TTTATCCCTTAGTCTTCCCACTCCTGACTTGAATGCTT	MMEJ (2nt)	nearest gene)	110	
			vector	TCCCGTACCTTAATATTACTTACTTATCATGGTAGCTTGGGCTGGCG	<u>SD-MMEJ (4 nt)</u>			no
			genome	TTACTTATTATGTTTATCCCTTAGTCTTCCCACTCCTGACTTGAATGCTTACTCTTTGAGGAG	(DR)			

Supplementary Table S4. Sequences of the DNA junctions of Immunoglobulin expression vector genomic integration sites (part 2).

¹ Sequenced plasmid integration junctions are represented by blue (CHO genome) and green (vector sequence) letters, as predicted from whole genome sequencing of Illumina genomic and mate-pair libraries, and as validated experimentally by PCR amplification and direct sequencing of the junctions.

² This lists the most probable mechanisms accounting for the junction, consisting of the Microhomology-mediated end-joining (MMEJ) and/or synthesis-dependent MMEJ (SD-MMEJ). The length of the microhomology is indicated in parenthesis. IR and DR indicate the use of inverted or direct repeat as a template for SD-MMEJ, respectively.

³Genomic integration site locus. The gene nearest to the integration site is listed in bold. Gene expression was assessed by total RNA sequencing of the parental CHO cells. Reads per kilobase of transcript per million reads mapped (RPKM) are used as a measure of the mRNA level.

⁴Insertion of nucleotides templated from another part of the vector or genome. ⁵n.a., not annotated

Supplementary Table S5. Analysis of plasmid integration sites in cells transfected with vectors containing or not the MAR element.

Sample ¹	Integration within genes ² genes ³		Expressed genes ⁴	
Polyclonal population without MAR	7/14 (*) ⁵	8/14	8/8	
Polyclonal population with MAR	6/14	10/14 (*)	5/10	
High expressing clones with MAR	6/10 (**)	8/10	7/8	

¹ Polyclonal populations of CHO cells transfected with GFP or MAR-GFP plasmids were sequenced by high-throughput sequencing (Pacific Biosciences) and plasmid-to-genome junctions were predicted using bioinformatics tools. Integration sites in high expressing CHO clones transfected with MARcontaining plasmids were PCR-amplified and sequenced using Sanger sequencing.

² integration locus inside or within 5kb from an open reading frame (ORF) ³ integration locus in a gene or within 35kb from a gene

⁴ number of expressed genes in the neighborhood (within 35kb) of the integration locus

⁵ Statistical significance calculated between each sample set and the corresponding control set using an exact binomial test. Significance levels $p \le 0.05$ (*), $p \le 0.01$ (**).

Supplementary References to Tables S1 and S2

- 1. Walker, J.R., Corpina, R.A. and Goldberg, J. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. *Nature*, **412**, 607–14.
- Allen, C., Kurimasa, A., Brenneman, M.A., Chen, D.J. and Nickoloff, J.A. (2002) DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. *Proc. Natl. Acad. Sci. U. S. A.*, 99, 3758–63.
- 3. Dobbs, T.A., Tainer, J.A. and Lees-Miller, S.P. (2010) A structural model for regulation of NHEJ by DNA-PKcs autophosphorylation. *DNA Repair (Amst).*, **9**, 1307–1314.
- 4. Sipley, J.D., Menninger, J.C., Hartley, K.O., Ward, D.C., Jackson, S.P. and Anderson, C.W. (1995) Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. *Proc. Natl. Acad. Sci. U. S. A.*, **92**, 7515–9.
- 5. Critchlow, S.E., Bowater, R.P. and Jackson, S.P. (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. *Curr. Biol.*, 7, 588–598.
- 6. Li,Z., Otevrel,T., Gao,Y., Cheng,H.-L., Seed,B., Stamato,T.D., Taccioli,G.E. and Alt,F.W. (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. *Cell*, 83, 1079–1089.
- Xie,A., Hartlerode,A., Stucki,M., Odate,S., Puget,N., Kwok,A., Nagaraju,G., Yan,C., Alt,F.W., Chen,J., *et al.* (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. *Mol. Cell*, 28, 1045–57.
- 8. Lou,Z., Minter-Dykhouse,K., Franco,S., Gostissa,M., Rivera,M.A., Celeste,A., Manis,J.P., van Deursen,J., Nussenzweig,A., Paull,T.T., *et al.* (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. *Mol. Cell*, **21**, 187–200.
- Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M.B., Smerdon, S.J. and Jackson, S.P. (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. *Cell*, **123**, 1213–26.
- 10. Zhang, J., Ma, Z., Treszezamsky, A. and Powell, S.N. (2005) MDC1 interacts with Rad51 and facilitates homologous recombination. *Nat. Struct. Mol. Biol.*, **12**, 902–9.
- 11. Arnaudeau, C., Helleday, T. and Jenssen, D. (1999) The RAD51 protein supports homologous recombination by an exchange mechanism in mammalian cells. *J. Mol. Biol.*, **289**, 1231–8.
- 12. Baumann, P. and West, S.C. (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. *Trends Biochem. Sci.*, **23**, 247–51.
- 13. Benson, F.E., Stasiak, A. and West, S.C. (1994) Purification and characterization of the human Rad51 protein, an analogue of E.coli RecA. *EMBO J.*, **13**, 5764–5771.
- Vispé,S., Cazaux,C., Lesca,C. and Defais,M. (1998) Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. *Nucleic Acids Res.*, 26, 2859–64.
- 15. Cartwright, R., Dunn, A.M., Simpson, P.J., Tambini, C.E. and Thacker, J. (1998) Isolation of novel human and mouse genes of the recA/RAD51 recombination-repair gene family. *Nucleic Acids Res.*, **26**, 1653–9.
- Lio, Y.-C., Schild, D., Brenneman, M.A., Redpath, J.L. and Chen, D.J. (2004) Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J. Biol. Chem., 279, 42313–20.
- 17. Liu, Y., Masson, J.-Y., Shah, R., O'Regan, P. and West, S.C. (2004) RAD51C is required for Holliday junction processing in mammalian cells. *Science*, **303**, 243–6.
- Masson,J.Y., Tarsounas,M.C., Stasiak,A.Z., Stasiak,A., Shah,R., McIlwraith,M.J., Benson,F.E. and West,S.C. (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. *Genes Dev.*, 15, 3296–307.
- 19. Pittman,D.L., Weinberg,L.R. and Schimenti,J.C. (1998) Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. *Genomics*, **49**, 103–11.
- 20. Suwaki, N., Klare, K. and Tarsounas, M. (2011) RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. *Semin. Cell Dev. Biol.*, **22**, 898–905.
- 21. Takata,M., Sasaki,M., Tachiiri,S., Fukushima,T., Sonoda,E., Schild,D., Thompson,L.H. and Takeda,S. (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. *Mol. Cell. Biol.*, **21**, 2858–2866.
- 22. Van Dyck, E., Hajibagheri, N.M., Stasiak, A. and West, S.C. (1998) Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J. Mol. Biol., **284**, 1027–38.
- 23. Van Dyck, E., Stasiak, A.Z., Stasiak, A. and West, S.C. (1999) Binding of double-strand breaks in DNA by human Rad52 protein. *Nature*, **398**, 728–731.
- 24. Feng,Z., Scott,S.P., Bussen,W., Sharma,G.G., Guo,G., Pandita,T.K. and Powell,S.N. (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. *Proc. Natl. Acad. Sci. U. S. A.*, **108**, 686–91.

- 25. Essers, J., Hendriks, R.W., Wesoly, J., Beerens, C.E.M.T., Smit, B., Hoeijmakers, J.H.J., Wyman, C., Dronkert, M.L.G. and Kanaar, R. (2002) Analysis of mouse Rad54 expression and its implications for homologous recombination. *DNA Repair (Amst).*, **1**, 779–93.
- 26. Heyer, W.-D., Li, X., Rolfsmeier, M. and Zhang, X.-P. (2006) Rad54: the Swiss Army knife of homologous recombination? *Nucleic Acids Res.*, **34**, 4115–25.
- 27. Cousineau,I., Abaji,C. and Belmaaza,A. (2005) BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis. *Cancer Res.*, **65**, 11384–91.
- 28. Yoshida,K. and Miki,Y. (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. *Cancer Sci.*, **95**, 866–71.
- 29. Wu,L.C., Wang,Z.W., Tsan,J.T., Spillman,M.A., Phung,A., Xu,X.L., Yang,M.-C.W., Hwang,L.-Y., Bowcock,A.M. and Baer,R. (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. *Nat. Genet.*, **14**, 430–40.
- Davies, A.A., Masson, J.Y., McIlwraith, M.J., Stasiak, A.Z., Stasiak, A., Venkitaraman, A.R. and West, S.C. (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. *Mol. Cell*, 7, 273–82.
- 31. Liu, J., Doty, T., Gibson, B. and Heyer, W.-D. (2010) Human BRCA2 protein promotes RAD51 filament formation on RPA-covered ssDNA. *Nat. Struct. Mol. Biol.*, **17**, 1260–1262.
- 32. Moynahan, M.E., Pierce, A.J. and Jasin, M. (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. *Mol. Cell*, **7**, 263–72.
- 33. Stracker, T.H. and Petrini, J.H.J. (2011) The MRE11 complex: starting from the ends. *Nat. Rev. Mol. Cell Biol.*, **12**, 90–103.
- 34. Sartori,A.A., Lukas,C., Coates,J., Mistrik,M., Fu,S., Bartek,J., Baer,R., Lukas,J. and Jackson,S.P. (2007) Human CtIP promotes DNA end resection. *Nature*, **450**, 509–14.
- 35. You,Z., Shi,L.Z., Zhu,Q., Wu,P., Zhang,Y.-W., Basilio,A., Tonnu,N., Verma,I.M., Berns,M.W. and Hunter,T. (2009) CtIP links DNA double-strand break sensing to resection. *Mol. Cell*, **36**, 954–69.
- Yu,X. and Chen,J. (2004) DNA Damage-Induced Cell Cycle Checkpoint Control Requires CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1 C-Terminal Domains. *Mol. Cell. Biol.*, 24, 9478–9486.
- 37. Jirawatnotai,S., Hu,Y., Michowski,W., Elias,J.E., Becks,L., Bienvenu,F., Zagozdzon,A., Goswami,T., Wang,Y.E., Clark,A.B., *et al.* (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. *Nature*, **474**, 230–4.
- 38. Li,Z., Jiao,X., Wang,C., Shirley,L.A., Elsaleh,H., Dahl,O., Wang,M., Soutoglou,E., Knudsen,E.S. and Pestell,R.G. (2010) Alternative cyclin D1 splice forms differentially regulate the DNA damage response. *Cancer Res.*, **70**, 8802–11.
- Della-Maria, J., Zhou, Y., Tsai, M.-S., Kuhnlein, J., Carney, J.P., Paull, T.T. and Tomkinson, A.E. (2011) Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem., 286, 33845– 53.
- Dinkelmann,M., Spehalski,E., Stoneham,T., Buis,J., Wu,Y., Sekiguchi,J.M. and Ferguson,D.O. (2009) Multiple functions of MRN in end-joining pathways during isotype class switching. *Nat. Struct. Mol. Biol.*, 16, 808–813.
- 41. Lee,K. and Lee,S.E. (2007) Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. *Genetics*, **176**, 2003–14.
- 42. Ma,J.-L., Kim,E.M., Haber,J.E. and Lee,S.E. (2003) Yeast Mre11 and Rad1 Proteins Define a Ku-Independent Mechanism To Repair Double-Strand Breaks Lacking Overlapping End Sequences. *Mol. Cell. Biol.*, **23**, 8820–8828.
- 43. Zhang,X. and Paull,T.T. (2005) The Mre11/Rad50/Xrs2 complex and non-homologous endjoining of incompatible ends in S. cerevisiae. *DNA Repair (Amst).*, **4**, 1281–94.
- 44. Wang,H., Shao,Z., Shi,L.Z., Hwang,P.Y.-H., Truong,L.N., Berns,M.W., Chen,D.J. and Wu,X. (2012) CtIP protein dimerization is critical for its recruitment to chromosomal DNA doublestranded breaks. J. Biol. Chem., 287, 21471–80.
- 45. Yun,M.H. and Hiom,K. (2009) CtIP-BRCA1 modulates the choice of DNA double-strand break repair pathway throughout the cell cycle. *Nature*, **459**, 460–463.
- 46. Audebert, M., Salles, B. and Calsou, P. (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. *J. Biol. Chem.*, **279**, 55117–26.
- 47. Crespan, E., Czabany, T., Maga, G. and Hübscher, U. (2012) Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences. *Nucleic Acids Res.*, **40**, 5577–90.
- 48. Liang, L., Deng, L., Nguyen, S.C., Zhao, X., Maulion, C.D., Shao, C. and Tischfield, J.A. (2008)

Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. *Nucleic Acids Res.*, **36**, 3297–310.

- 49. Oh,S., Harvey,A., Zimbric,J., Wang,Y., Nguyen,T., Jackson,P.J. and Hendrickson,E.A. (2014) DNA ligase III and DNA ligase IV carry out genetically distinct forms of end joining in human somatic cells. *DNA Repair (Amst).*, **21**, 97–110.
- 50. Paul,K., Wang,M., Mladenov,E., Bencsik-Theilen,A., Bednar,T., Wu,W., Arakawa,H. and Iliakis,G. (2013) DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. *PLoS One*, **8**, e59505.
- 51. Costantino,L., Sotiriou,S.K., Rantala,J.K., Magin,S., Mladenov,E., Helleday,T., Haber,J.E., Iliakis,G., Kallioniemi,O.P. and Halazonetis,T.D. (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. *Science*, **343**, 88–91.
- 52. Koole, W., van Schendel, R., Karambelas, A.E., van Heteren, J.T., Okihara, K.L. and Tijsterman, M. (2014) A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. *Nat. Commun.*, **5**, 3216.
- 53. Yu,A.M. and McVey,M. (2010) Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. *Nucleic Acids Res.*, **38**, 5706–17.
- 54. Kent,T., Chandramouly,G., Mcdevitt,S.M., Ozdemir,A.Y. and Pomerantz,R.T. (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. *Nat. Struct. Mol. Biol.*, **Feb 2**, doi: 10.1038/nsmb.2961.