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Source imaging of high-density 
visual evoked potentials with 
multi-scale brain parcellations  
and connectomes
David Pascucci   1,2,6 ✉, Sebastien Tourbier3,6 ✉, Joan Rué-Queralt1,3, Margherita Carboni4,5, 
Patric Hagmann3 & Gijs Plomp   1 ✉

We describe the multimodal neuroimaging dataset VEPCON (OpenNeuro Dataset ds003505). It includes 
raw data and derivatives of high-density EEG, structural MRI, diffusion weighted images (DWI) and 
single-trial behavior (accuracy, reaction time). Visual evoked potentials (VEPs) were recorded while 
participants (n = 20) discriminated briefly presented faces from scrambled faces, or coherently moving 
stimuli from incoherent ones. EEG and MRI were recorded separately from the same participants. 
The dataset contains raw EEG and behavioral data, pre-processed EEG of single trials in each condition, 
structural MRIs, individual brain parcellations at 5 spatial resolutions (83 to 1015 regions), and the 
corresponding structural connectomes computed from fiber count, fiber density, average fractional 
anisotropy and mean diffusivity maps. For source imaging, VEPCON provides EEG inverse solutions 
based on individual anatomy, with Python and Matlab scripts to derive activity time-series in each brain 
region, for each parcellation level. The BIDS-compatible dataset can contribute to multimodal methods 
development, studying structure-function relations, and to unimodal optimization of source imaging 
and graph analyses, among many other possibilities.

Background & Summary
Visual evoked potentials (VEPs) have a long record of shedding light on the spatial and temporal dynamics 
of large-scale neural processing in the brain1,2. EEG potentials registered at scalp electrodes result from syn-
chronous activity in large populations of neurons that are distributed across cortical and subcortical areas3,4. 
Visual stimulation gives rise to a fast sequence of well-known EEG components that reflect initial processing 
at latencies before ~100 ms5,6, subsequent object and recurrent processes7–9, and later components that reflect 
target detection, integration and decisions10–12. The VEP provides a millisecond by millisecond recording of 
whole-brain activity dynamics, and has a rich distribution of temporal frequencies that provides further insight 
into the functionality of brain processes13,14.

From VEPs recorded across the scalp, the underlying distributed patterns of brain activity can be estimated 
using an inverse solution based on anatomical constraints15–18. The anatomical constraints determine what elec-
trical fields from a neural activity source would look like at the recording electrodes on the scalp, given the 
conductivities of various tissues and fluids lie in between. An inverse solution translates the recorded electrical 
potential field back to a pattern of distributed source activity in the brain. Source localizations from EEG are 
necessarily coarse, as compared to fMRI, and improving them further is an active field of research and helps 
understand the activity dynamics within areas, and their inter-relatedness19–22.
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Activity in each area can influence activity throughout the brain in a few steps, due to the dense connectivity 
of cortico-cortical and cortico-subcortical fibers23–26. This structural connectivity can be inferred with diffusion 
weighted imaging (DWI)27,28. The resulting connectome constitutes a road map of sorts over which activity can 
propagate between areas, and in an important sense constrains how activity within an area can evolve through 
the influences it receives from others29,30.

The VEPCON dataset31 combines raw EEG data, T1-weighted (T1w) MRI, and DWI for 20 human partici
pants, with as derivatives, VEPs, inverse solution matrices, brain parcellations and connectomes at 5 different 
spatial scales (Fig. 1). These data were recorded to study the dynamics of functionally specialized processes 
that support face and motion perception. High-density EEG was recorded in two active paradigms where par-
ticipants categorically discriminated face images from scrambled counterparts, or coherent from incoherent 
motion in random dot kinematograms. VEP sources for face stimuli are known to include inferior temporal and 
lateral occipital cortex and for motion stimuli they include dorsal area MT8,9. Part of these data were previously 
used for improving and validating EEG source imaging methods32 and time-varying functional connectivity 
methods33,34, for using connectomes to inform inverse solutions35,36, as well as for developing the multi-modal 
image processing pipeline software Connectome Mapper 3 (CMP3)37.

The dataset is publicly available on OpenNeuro31, and raw data are structured following the MRI and EEG 
Brain Imaging Data Structure standards (BIDS38,39). We expect the data to be useful for the development and 
benchmarking of multimodal analysis methods that combine functional and structural information, for explor-
ing structure-function relations, and for controlling whether and how the level of parcellation affects results. 
We also expect unimodal reuse value for development and benchmarking of EEG source-imaging approaches 
and functional connectivity analyses. Beyond this, the availability within the same participant of single-trial 
behavior, EEG data, inverse solutions, anatomical and diffusion MRI, and connectomes based on four different 
indices allows for many types of analyses that can generate new hypotheses about dynamic brain function in 
human visual processing and behavior.

Methods
Participants.  Twenty participants (3 males, mean age = 23 ± 3.5) took part, recruited from the local student 
population (University of Fribourg, Switzerland). Participants had normal or corrected-to-normal vision. Before 
the experiment visual acuity was tested with the Freiburg Acuity test, and a value of 1 had to be reached with both 
eyes open40. Nineteen participants were right-handed, one was left-handed. All participants provided written 
informed consent before the experiment. The experimental procedures complied with the Declaration of Helsinki 
and were approved by the regional ethics board (CER-VD, Protocol Nr. 2016–00060).

Stimuli, display and procedures.  EEG data were recorded while participants performed a face detection 
and a motion discrimination task (see Fig. 1). The order of the two tasks was counterbalanced across participants.

Face stimuli were female and male faces (4° by 4° of visual angle) taken from online repositories and cropped 
with a Gaussian kernel to smooth the borders. Scrambled images were obtained by fully randomizing the 
phase spectra of the original images41. In the face detection task, each trial lasted 1.2 s and started with a blank 
screen (500 ms). After the blank screen, one image (either a face or a scramble image of a face) was presented 
at the center of the screen for 200 ms and participants had the remaining 1000 ms to respond. The task was to 
report whether they saw a face or not (yes/no task) by pressing one of two buttons in a response box with their 

Fig. 1  Schematic overview of the study design and data. (a) Stimuli and temporal structure of trials in the 
Motion and Face task. (b) Illustrates 128-channel EEG recording and a grand-average visual evoked potential 
at the scalp level, with corresponding source activity time-series from three areas at parcellation Level 3. (c) 
Sample defaced T1w images and illustration of brain parcellations and corresponding connectomes based on 
fiber density at three spatial scales.
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right hand. After the response and a random interval (from 600 to 900 ms), a new trial began. The experiment 
consisted of four blocks of 150 trials each, for a total of 600 trials, i.e., 300 with faces and 300 with scrambled 
faces. Faces and scrambled faces were randomly interleaved across trials.

In the motion discrimination task, motion stimuli were dot kinematograms presented on a circular frame 
at the center of the screen (dot field size = 8°; dot size = 12 pixels; lifetime = 10 frames; average number of dots 
inside the field = 75; dot speed in displacements per frame = 0.01°; mean dot luminance = 50%). For coherent 
motion, 80% of the dots were moving toward either the left or right, with the remaining 20% moving in random 
directions. For incoherent motion stimuli, all dots moved randomly. Each trial started with a blank interval 
of 500 ms followed by a centrally presented stimulus for 300 ms (Fig. 1). Participants discriminated whether 
the presented motion was coherent or incoherent by pressing one of two buttons of a response box. After the 
response there was a random interval (from 600 to 900 ms) before the next trial began. There were four blocks 
of 150 trials each, for a total of 600 trials (300 with coherent motion). The two conditions were randomly 
intermixed within each block.

Stimuli were generated using Psychopy42,43 and presented on a VIEWPixx/3D display system  
(1920 × 1080 pixels, refresh rate of 100 Hz). Responses were collected using a ResponsePixx response box  
(VPixx technologies).

EEG recording and preprocessing.  EEG data were recorded at a sampling rate of 2048 Hz with a 
128-channel Biosemi Active Two EEG system (Biosemi, Amsterdam, The Netherlands) in a dimly lit and elec-
trically shielded room. Signal quality was ensured by monitoring and maintaining the offset between the active 
electrodes and the Common Mode Sense - Driven Right Leg (CMS-DRL) feedback loop under a standard value 
of ± 20 mV. After each recording session, individual 3D electrode positions were digitized using an ultrasound 
motion capture system (Zebris Medical GmbH).

Offline, data were preprocessed using EEGLAB 14.1.144. EEG data were downsampled to 250 Hz and 
detrended (antialiasing filter: cut-off = 112.5 Hz, bandwidth = 50 Hz, detrending at <1 Hz). Line noise (50 Hz) 
was removed via spectrum interpolation45. Data were then segmented into epochs and time locked from −1500 
to 1000 ms from the stimulus onset in both tasks. Data from participant 05 (Face and Motion tasks) and 15 
(Motion task) was not further processed and discarded due to excessive noise. Bad channels and epochs were 
identified and removed before preprocessing. Remaining physiological artifacts were isolated using an inde-
pendent component analysis (ICA) decomposition (FastIca). Bad components were labelled by crossing the 
results of a machine-learning algorithm (MARA, Multiple Artifact Rejection Algorithm in EEGLAB) with  
the criterion of >90% of total variance explained and removed manually. Bad channels were then interpolated 
using the nearest-neighbor spline method and data were re-referenced to the average reference.

EEG source imaging.  EEG source imaging was performed using Cartool (v3.80)46 and custom-made scripts 
(see Matlab and Python examples in the code/ directory). Source reconstruction was based on Cartool-segmented 
individual MRI T1w data, co-registered individual electrode positions, and the LORETA47 and LAURA15 algo-
rithms (regularization = 6; spherical model with anatomical constraints, LSMAC). Leadfields were calculated for 
each of the around 5000 freely oriented dipoles while limiting the solution space to voxels within the gray matter 
mask46 provided by CMP3.

MRI recording and processing.  MR data from the same 20 subjects was acquired on a General Electrics 
Discovery MR750 3 T MRI clinical scanner at the cantonal hospital in Fribourg, Switzerland, using a 32-channel 
head coil. The acquisition included anatomical T1-weighted images and DTI. T1-weighted images were acquired 
as rapid-gradient echo (MPRAGE) volumes using a COR FSPGR BRAVO pulse sequence (flip angle  =  9°; echo 
time = 2.8 ms; repetition time = 7300 ms; inversion time  =  0.9 s, FOV = 220 mm, matrix size = 256 × 256, 
number of slices = 276, slice thickness  =  1 mm, in-plane resolution = 0.9 × 0.9 mm2). DTI data were acquired 
with a spin echo single shot EPI pulse sequence and a diffusion sensitizing gradient set of 30 different direc-
tions and 5 diffusion-free B0 scans (echo time = 87 ms; repetition time = 8000 ms; interleaved slice order; 
b-weighting of 1000, FOV = 260 mm, matrix size = 128 × 128, number of slices = 60; slice thickness = 2.0 mm; 
slice spacing = 0.2 mm, in-plane resolution = 2.0 × 2.0 mm2).

Processing of all T1w and DTI data was performed using the Connectome Mapper v3.0.0-beta-RC1 pipe-
lines37. All T1w scans were resampled to 1mm3 isotropic resolution from which gray and white matter were 
segmented using Freesurfer 6.0.148, and parcellated into 83 cortical and subcortical areas49. The parcels were then 
further subdivided following the method proposed by50 into 129, 234, 463 and 1015 approximately equally-sized 
parcels according to the Lausanne anatomical atlas. DTI data were corrected from motion and eddy current dis-
tortions using mcflirt and eddy_correct provided by FSL 5.0.9 and resampled to 1mm3 resolution using mrcon-
vert from MRtrix 3.0.0-RC1. Diffusion directions per voxel were then reconstructed using the algorithm of 
constrained spherical deconvolution implemented in MRtrix 3.0.0-RC151 with a maximal order of 4, enabling 
the estimation of multiple directions per voxel.

For sharing purposes, all raw T1w and DTI data were anonymized during BIDS conversion and all 
anatomical T1w data were de-identified by removing facial features using Quickshear52.

Structural connectomes.  For each participant, structural connectivity matrices were estimated from the 
reconstructed fiber orientation distribution (FOD) image using the SD_stream deterministic streamline tracto
graphy algorithm implemented in MRtrix 3.0.0-RC151. Fiber streamline reconstruction started from seeds in 
the white-matter that were spatially random and the whole process completed when a number of 1 M fiber 
streamlines were reconstructed. At each streamline step of 0.5 mm, the local FOD was sampled, and from the 
current streamline tangent orientation, the orientation of the nearest FOD amplitude peak was estimated via a 
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Newton optimization on the sphere. Fibers were stopped if a change in direction was greater than 45 degrees. 
Fibers with a length not in the 5 mm to 200 mm range were discarded. The streamline reconstruction process 
was complete when both ends of the fiber left the white matter mask. Then, for each scale, the parcellation was 
projected to the native DTI space after symmetric diffeomorphic co-registration between the T1w scan and the 
diffusion-free B0 using the Advanced Normalization Tools (ANTs) 2.2.0. Finally, connectivity matrices at 5 dif-
ferent spatial scales were built by considering all fiber streamlines connecting parcels according to the following 
connectivity measures: number of fibers, fiber density, average and median Fractional Anisotropy (FA), and Mean  
Diffusivity (MD).

Data Records
The VEPCON dataset is available via the Open Neuro repository31, and is fully BIDS compatible (v1.4.1). Below, 
we describe all data records following the directory structure.

The main directory contains descriptor files detailing the dataset, and the age and sex of each participant. 
Subfolders (sub- <label>/) hold the raw EEG data (eeg/) in .bdf format, as well as the MRI T1w images (anat/) and  
diffusion weighted images (DWI) (dwi/) in the compressed Nifti format, with acquisition parameters stored in 
their associated sidecar .JSON file. With respect to raw EEG data, description of timing and other event proper-
ties are stored in *_task- <label>_events.tsv files and the corresponding column descriptor (*_task- <label> _
events.json), for each task (task-faces and task-motion). The events file contains a table listing for each single 
trial the stimulus onset relative to recording onset (sec), condition specifiers, response made, response evalua-
tion, reaction time and whether the trial was discarded or not in preprocessing. Trials with behavioral errors or 
reaction times slower than 200 ms were marked as outliers. For each electrode the digitized electrode positions 
(x, y, z; mm) are listed in the *_electrodes.tsv file, and status information (good/bad) is listed in the *_channels.
tsv file.

The derivatives/ directory includes a dataset_description.json file for each derivatives dataset (mriqc, cmp, 
cartool, eeglab) at the root level. Any subject-specific datatype-specific derivatives are housed within each sub-
ject/datatype’s directory (sub- <label>/<datatype>) where <datatype> can be “anat”, “dwi”, “eeg”, “xfm” or 
“connectivity”. The output reports generated by MRIQC, and CMP3 derivatives of anatomical and diffusion MRI 
are in the mriqc- <version> cmp- <version>) folders, where the version of each software used is encoded by 
the <version> label (e.g., cmp-v3.0.0-beta-RC1). EEG derivatives obtained with EEGLAB (eeglab- <version>) 
and Cartool (cartool- <version>) are contained in their respective folders and organized to comply with BIDS 
to the fullest possible extent (specifications for some of these files are currently under development).

In the eeglab/ directory, each eeg/ participant’s folder contains the preprocessed single trial epochs (.fdt, .set). 
The task-faces files contain epochs for face stimuli and control stimuli, the task-motion files contain epochs for 
coherent and incoherent motion stimuli. The directory holds summaries of preprocessing and data cleaning  
for the motion and face task in two separate .tsv files. These files list for each participant the proportion of 
channels, epochs and ICA components removed during preprocessing.

In the cartool/ directory, each eeg/ participant’s folder holds a text file (.xyz) with individual electrode posi-
tions in mm, co-registered to the participant’s head (x, y, z, Biosemi electrode name). The .spi file is a similar text 
file listing x, y, z coordinates and a text label for each sourcepoint for which an inverse solution was calculated. 
The inverse solution matrices for LAURA and LORETA15,47 are in the respective .is files; they map observed 
patterns of EEG potentials to a distribution of 3D dipoles across source points. The rois/ folder lists files that 
indicate which source points belong to what area (region of interest, ROI), according to each parcellation level, 
with a Cartool readable (.rois) and a Python readable version (.pickle.rois).

The cmp/ directory contains anatomical, diffusion and structural connectivity data for each participant.  
All T1w-derived data are placed in the anat/ folder, which includes the brain segmentations and parcellations in the 
native T1w space and in the native DTI space (_space-DWI_). All DTI-derived data are placed in the dwi/ folder.  
It includes the preprocessed DTI, the FOD image and the final tractogram used to build the connectivity matri-
ces. The connectivity/ folder holds connectomes at each parcellation level, with a Matlab readable (.mat) and 
Python readable (.gpickle) version. Each connectome file contains the following metrics: number_of_fibers, 
fiber_density, mean_FA and median_FA, mean_MD and median_MD. The transformations from the native 
T1w space to the native DTI space applied to the parcellations are stored in the xfm/ folder. The generated .pdf 
in the group/ folder visualizes each individual’s connectome using the number of fibers metric, for parcellation 
scale 1.

The code/ directory provides code for preprocessing and derivation steps for MRI and DWI data, as well 
as sample scripts to derive time-series of activity per ROI from the preprocessed EEG data in Python and 
Matlab. Each code folder has its own README file with afor more specific user guide and documentation 
to get started. The MRIQC-Docker/ folder holds the code to run MRIQC on all participants. All outputs 
generated by MRIQC to support quality assessment of T1w data can be found in the same directory53. Code to 
run Connectome Mapper 3 on all participants that can be found in the ConnectomeMapper-Docker/ folder. 
The code to deface anatomical MRIs52 is provided in the Deface-Python/ folder, together with the generated 
log file and a report in pdf format. In Source-Reconstruction-Python/, the main.py script performs all steps for 
source reconstruction, with comments that explain each step. The utils.py contains all necessary functions to 
run main.py. The Source-Reconstruction-Matlab/ folder provides the equivalent in Matlab code, with the ESI_
RECONSTRUCTION.m script performing all steps of source reconstruction, and dependencies and utilities as 
separate files.
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Technical Validation
Behavioral analysis.  Analysis of proportion correct and reaction times showed that participants behaved 
according to task instruction. In the face detection task, the average accuracy was 97 ± 2% of correct responses, 
with mean reaction times of 501 ± 60 ms. Trials with behavioral errors or reaction times slower than 200 ms were 
marked as outliers (mean proportion of outliers 0.03 ± 0.02).

In the motion discrimination task, the average accuracy was 90 ± 14% and mean reaction times were 
680 ± 90 ms. The mean proportion of outliers was 0.10 ± 0.14. One participant (number 16) inverted 
the response keys for several trials in the motion task, leading to an outlier accuracy value (36% of correct 
responses).

VEPs.  EEG data were visually inspected and noisy trials and channels were excluded from further analysis  
(see EEG recording and preprocessing). Remaining ocular, muscle and other artifacts were removed using 
ICA. For the face task, the average proportion of channels removed across participants was 0.12 ± 0.07, range 
0.02–0.28; mean proportion of epochs removed due to non-stereotyped artifacts, peristimulus eye blinks and 
eye movements: 0.04 ± 0.06, range 0.002–0.26); proportion of ICA components removed: 0.05 ± 0.03, range 
0.01–0.15. For the motion task, the average proportion of channels removed was 0.14 ± 0.06, range 0.02–0.23, 
the average proportion of epochs removed was 0.03 ± 0.03, range 0.005–0.13); proportion of ICA components 
removed: 0.05 ± 0.04, range 0.008–0.13.

Figure 2 shows the grand-average VEPs for the Face, Scrambled Face, Coherent Motion and Incoherent 
Motion conditions, showing robust evoked responses with components that conform the existing literature.

MRI and connectomes.  After recording MRI data were visually inspected and checked for neurologi-
cal anomalies by the radiologist. Quality of T1w data was further inspected quantitatively by running MRIQC 
v0.16.1, an automated and robust quality control tool for T1w data which derives a set of 56 different image qual-
ity metrics to characterize image quality at different levels such as noise, motion or imaging artifacts53. Results 
were summarized in reports at both individual and group levels, which are included in the mriqc/ derivatives 
folder.

De-identification of T1w data was checked individually and supported by the creation of a PDF report that 
is available in the code/ folder.

For each participant, the quality of the output after each processing step of the CMP3 pipelines was assessed 
using its graphical user interface, where we inspected individually the different Freesurfer outputs, brain par-
cellations, DTI data after preprocessing, co-registered T1w-derived parcellations with DTI data, the estimated 
FOD image, the reconstructed tractogram, and the reconstructed connectomes. Visual inspection did not reveal 
any artifacts.

Usage Notes
For optimal sharing and re-usability, raw data of the dataset conforms to BIDS standards for MRI38 and EEG39.

Python and Matlab example code in Source-Reconstruction-Python/ and Source-Reconstruction-Matlab/ 
shows how to import the various raw and derivative files. This assures compatibility with commonly used 
EEG and MRI software, including MNE-Python54, NeuroPycon55, Fieldtrip56 and SPM57. The code also shows 

Fig. 2  Grand-average VEPs for each of the four stimulus conditions, with corresponding scalp potential maps.
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how to calculate one time-series of activity from all source points contained in a region using singular-value 
decomposition. Source activity for around 5000 freely oriented dipoles was extracted from all the source points 
inside each cortical area, as defined by the parcellation, and projected to a representative single direction using 
singular-value decomposition32.

For creating new inverse solutions, new forward models can be created from the T1w images, using the indi-
vidual electrode coordinate files. When new leadfields are generated using the defaced MRIs, small differences 
can occur, but are unlikely to pose problems for the intended reuse purposes58.

Code availability
The dataset contains a code/folder with scripts, and .ini files for generating each derivative. CMP3 is freely 
available at https://connectome-mapper-3.readthedocs.io, the Cartool software via https://sites.google.com/site/
cartoolcommunity.
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