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1. Introduction

The motivation for this article comes from the deep contribution Kabluchko (2011) which shows in particular that

the minima of the absolute values of Gaussian random vectors have also asymptotically independent components. The

Gaussian framework is appealing from both theoretical and applied point of view. In order to still consider Gaussian

random vectors for modelling asymptotically dependent risks, triangular arrays of Gaussian random vectors with in-

creasing dependence should be considered – this approach is suggested in Hüsler and Reiss (1989). As shown in the

aforementioned paper the maxima of Gaussian triangular arrays can be attracted by some max-stable distribution

function (df) with dependent components (often referred to as the Hüsler-Reiss df ). In fact, the Hüsler-Reiss copula

is a particular case of the Brown-Resnick copula; a canonical example of a max-stable Brown-Resnick process is first

presented in Brown and Resnick (1977) in the context of the asymptotics of the maximum of Brownian motions. See

Kabluchko et al. (2009) for the main properties of Brown-Resnick processes. Kabluchko (2011) discusses a more general

asymptotic framework analysing the maximum of independent Gaussian processes showing that the Brown-Resnick

process appears as the limit process if the underlying covariance functions satisfy a certain asymptotic condition. Ad-

ditionally, the aforementioned paper investigates the asymptotics of the minimum of the absolute value of independent

Gaussian processes extending some previous results of Penrose (1991).

Indeed, Gaussian random vectors are a canonical example of elliptically symmetric (for short elliptical) random vectors.
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Therefore it is natural to consider Kabluchko’s findings in the framework of elliptical random vectors and spherical

processes. Belonging to the class of conditional Gaussian processes, spherical processes appear naturally in diverse

applications, see e.g., Falk et al. (2010), or Hüsler et al. (2011a,b).

As shown in Hashorva (2005,2011) the maxima and the minima (of absolute values) of elliptical random vectors have

asymptotically independent components. Elliptical random vectors are defined by the marginal df’s and some non-

negative definite matrix Σ, see (2.1) below. If Σn, n ≥ 1 are k × k correlation matrices pertaining to an elliptical

triangular array, the crucial condition for the asymptotic behaviour of both maxima and minima is

lim
n→∞

cn(11> − Σn) = Γ =: (γij)i,j≤k, with γij ∈ (0,∞), i 6= j, i, j ≤ k, (1.1)

where cn, n ≥ 1 is a sequence of positive constants determined by a marginal df of the elliptical random vectors, and

1 = (1, . . . , 1)> ∈ Rk (here > stands for the transpose sign).

In Theorem 3.1 we specify the constants cn such that the minima of absolute values of triangular arrays are attracted

by some min-infinitely divisible df in Rk; the dependence function of the limiting df is indirectly determined by the

marginal df’s of the triangular array. Utilising Kabluchko’s approach we reconsider the aforementioned results for the

maxima deriving some new representations for the limiting distributions under the assumptions that the marginals of

the elliptical random vectors have df in the Gumbel or Weibull max-domain of attraction (MDA).

A direct application of our result concerns the asymptotics of maximum and minimum (of absolute values) of independent

spherical processes. It turns out that the limiting process of the normalised maximum of spherical processes is the same

as that of Gaussian processes discussed in Kabluchko (2011), namely the max-stable Brown-Resnick process. However,

the norming constants are necessarily different. One important consequence of our findings is that the Brown-Resnick

process is shown to be also the limit of the maximum of non-Gaussian processes. When instead of maximum the

minimum of absolute values of Gaussian processes is considered, from the aforementioned reference, we know that the

limiting process is min-id; we refer to that process as Penrose-Kabluchko process. As demonstrated in our application,

Penrose-Kabluchko processes can be retrieved in the limit in the more general framework of spherical processes.

The paper is organised as follows: Section 2 introduces our notation and presents some preliminary results. In Section

3 we deal with the asymptotics of minima of absolute values of elliptical triangular arrays. Section 4 investigates the

maxima of triangular arrays with marginal df’s in the MDA of the Gumbel or the Weibull distribution. The applications

mentioned above are presented in Section 5. Proofs of all the results are relegated to Section 6.
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2. Preliminaries

Let in the following I, J be two non-empty disjoint index sets such that I ∪ J = {1, . . . , k}, k ≥ 2, and define for

x = (x1, . . . , xk)> ∈ Rk the subvector of x with respect to I by xI = (xi, i ∈ I)>. If Σ ∈ Rk×k is a square matrix, then

the matrix ΣIJ is obtained by retaining both the rows and the columns of Σ with indices in I and in J , respectively;

similarly we define ΣJI ,ΣJJ ,ΣII . Given x,y ∈ Rk write

x > y, if xi > yi, ∀ i = 1, . . . , k,

x+ y = (x1 + y1, . . . , xk + yk)>, cx = (cx1, . . . , cxk)>, c ∈ R.

The notation Ba,b, a, b > 0 stands for a beta random variable with probability density function

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1),

where Γ(·) is the Euler Gamma function; Y ∼ F means that the random vector Y has df F .

Throughout this paper U is a k-dimensional random vector uniformly distributed on the unit sphere (with respect to

the L2-norm) Sk of Rk being further independent of Rk > 0 and A,An, n ≥ 1 are k-dimensional square matrices such

that Σ = AA> and Σn = AnA
>
n are positive definite correlation matrices (all entries in the main diagonal are equal to

1). We write Um if m < k to mean again that Um has the uniform distribution on Sm. The df of Rk, k ≥ 1 will be

denoted by Hk, whereas the df of RkU1 will be denoted by G; ω ∈ (0,∞] is their common upper endpoint.

Let X = (X1, . . . , Xk)>, k ≥ 2 be an elliptically symmetric random vector with stochastic representation

X
d
= RkAU , (2.1)

where
d
= stands for equality of the df’s . As shown in Cambanis et al. (1981) S

d
= RkU is a spherically symmetric

random vector with tractable distributional properties. For instance (S1, . . . , Sm)>
d
= RmUm,m < k with positive

random radius Rm such that

R2
m

d
= R2

kBm/2,(k−m)/2, (2.2)

with Bm/2,(k−m)/2 independent of Rk. Eq. (2.2) can be written iteratively as

R2
m

d
= R2

m+1Bm/2,1/2, m = 1, . . . , k − 1, (2.3)

where R2
m+1 and Bm/2,1/2 are independent. Note that if R2

k is chi-square distributed with k degrees of freedom (abbre-

viate this by R2
k ∼ χ2

k), then (2.3) holds for any m ∈ N with R2
m ∼ χ2

m.
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Another interesting result of Cambanis et al. (1981) is that µ>S
d
=
√
µ>µS1 for any µ ∈ Rk. Consequently, the

assumption that Σ is a correlation matrix yields

Xi
d
= X1

d
= RkU1, 1 ≤ i ≤ k.

We call a positive random variable Z ∼ F regularly varying at 0 with index γ ∈ [0,∞] if

lim
s↓0

F (st)

F (s)
= tγ , ∀t > 0, (2.4)

which is abbreviated as Z ∈ RVγ or F ∈ RVγ . Condition (2.4) is equivalent with 1/Z (or its survival function) being

regularly varying at infinity with index −γ. When γ = −∞, then the survival function of 1/Z is called rapidly varying

at infinity. See Jessen and Mikosch (2006) or Omey and Segers (2010) for details on regular variation.

Central for our results is an interesting fact discovered by Kabluchko (2011) pointing out the importance of the incre-

mental variance matrix (function) for the properties of the Brown-Resnick process. Given a k-dimensional Gaussian

random vector X this k × k matrix is denoted by Γ = (γij)i,j≤k, where γij = Var{Xi −Xj}. The covariance matrix Σ

of X is related to Γ by

Σ = AA> = (θ1> + 1θ> − Γ)/2, θ = (Var{X1}, . . . ,Var{Xk})>. (2.5)

If {Z(t), t ∈ T} is a mean-zero Gaussian process with variance function σ2(·), we define similarly to the discrete case

the incremental variance function Γ by

Γ(t1, t2) = Var{Z(t2)− Z(t1)}, t1, t2 ∈ T.

By Theorem 4.1 of Kabluchko (2011) the stochastic process

ηΓ(t) = min
i≥1
|Υi + Zi(t)|, t ∈ R (2.6)

is the limit of the minima of absolute values of independent Gaussian processes, if additionally ΞL =
∑∞
i=1 εΥi is a

Poisson point process on R with points Υ1,Υ2, ... and intensity measure given by the Lebesgue measure being further

independent of the Gaussian processes {Zi(t), t ∈ R}, i ≥ 1. Here εx denotes the Dirac measure at x; εx(B) = 1 if

x ∈ B ⊂ R, and εx(B) = 0 when x 6∈ B.

In the sequel, for given θ ∈ (0,∞)k, k ≥ 2 and A,Σ,Γ satisfying (2.5) we writeX h E[θ,Γ;Hk] ifX
d
= RkAU , Rk ∼ Hk.

We write simply X h E[Γ;Hk] if the specification of θ is not necessary for the stated result, meaning that the result

holds for any θ ∈ (0,∞)k. Further, if R2
k ∼ χ2

k we write X h Gauss[Γ], with X a mean-zero Gaussian random vector

with incremental variance matrix Γ.
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3. Minima of Elliptical Triangular Arrays

Let X(i)
n

d
= RkAnU , 1 ≤ i ≤ n, n ≥ 1 be k-dimensional independent elliptical random vectors, where the square

matrix An is such that Σn = AnA
>
n , n ≥ 1 is a correlation matrix. Next, we discuss the asymptotic behaviour of

Ln = (Ln1, . . . , Lnk)>, n ≥ 1 defined by

Lnj = min
1≤i≤n

|X(i)
nj |, j = 1, . . . , k, n ≥ 1.

We have

X
(i)
nj

d
= X

(1)
11 =: X11, Lnj

d
= Ln1, j = 1, . . . , k, 2 ≤ i ≤ n

and |X11|2
d
= R2

kB1/2,(k−1)/2.

Next, we assume that Rk ∈ RVγ with index γ ∈ (0, 1], which in view of Lemma 6.1 implies |X11| ∈ RVγ ; note that the

converse holds if γ ∈ (0, 1). Define a sequence of constants an, n ≥ 1 by

P {a−1
n ≥ X11 > 0} = 1/n. (3.1)

For such constants we have the convergence in distribution (n→∞)

anLnj
d→ Lj ∼ Gγ , j = 1, . . . , k,

with df Gγ given by

Gγ(x) = 1− exp(−2xγ), x > 0. (3.2)

In view of Hashorva (2011) if Σn has all off-diagonal elements bounded by some constant c ∈ (0, 1), then

anLn
d→ L = (L1, . . . ,Lk)>, n→∞ (3.3)

holds with L1, . . . ,Lk being mutually independent. By allowing the off-diagonal elements of Σn to converge to 1 as

n→∞ with a certain speed, it is possible that the random vector L has dependent components. If Hi, i ≤ k is the df

of Ri in (2.3) it turns out that Rm,m ≤ k − 1 with df

Hm(z) =

∫ z

0

1

rE{1/Rm+1}
dHm+1(r), z > 0 (3.4)

determine the df of L (assuming E{1/Rk} <∞). For the derivation of this result we shall define an elliptical random

vector ZK;j d
= Rm−1Γm,KUm with

Γm,K(Γm,K)> = (1Γ>Kj ,J + ΓKj ,J1
> − ΓKj ,Kj )/2, 1 = (1, . . . , 1)> ∈ Rm−1, Kj = K \ J, J = {j},

where K ⊂ {1, . . . , k} has m ≥ 2 elements, and Γ is the matrix in (1.1).
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Theorem 3.1. Let X(i)
n , 1 ≤ i ≤ n, n ≥ 1 be a triangular array of k-dimensional elliptical random vectors with

correlation matrices Σn, n ≥ 1 as above, and Rk ∼ Hk. Suppose that |X(1)
11 | ∈ RVγ , γ ∈ (0, 1] and E{1/Rk} <∞.

If condition (1.1) is satisfied for cn = 2a2
n with an determined by (3.1), then (3.3) holds and for all x ∈ (0,∞)k

P {L > x} = exp
( k∑
m=1

(−1)m
∑
|K|=m

∫ xγj

−xγj
P
{∣∣∣sign(y)|y|1/γ + ZK;j

i

∣∣∣ ≤ xi, i ∈ K \ {j}, j ∈ K} dy), (3.5)

where the summation above runs over all non-empty index sets K with |K| = m elements and j is some index in K.

Set the integral in (3.5) equal to 2xγj if K = {j}.

Remarks: a) The result of Theorem 3.1 can be extended for Γ with off-diagonal elements equal to 0. For instance when

Γ = 00> with 0 = (0, . . . , 0)>, then it follows that

P {L > x} = 1− Gγ( min
1≤i≤k

xi), x ∈ (0,∞)k.

b) In view of (3.5) the random vector (Ld,Ll), d 6= l has joint df depending on the element γdl of Γ.

Example 1. Let X(i)
n , 1 ≤ i ≤ n, n ≥ 1 be a triangular array of k-dimensional mean-zero Gaussian random vectors

with covariance matrix Σn, n ≥ 1. Since R2
m ∼ χ2

m,m ≤ k, then an defined by (3.1) satisfies

an = (1 + o(1))
n√
2π
, n→∞.

Hence when (1.1) is valid with cn = 2a2
n, then (3.5) holds with ZK;j a mean-zero Gaussian random vector with

covariance matrix Γm,K(Γm,K)>.

Next, we extend Theorem 3.1 imposing a smoothness assumption on Rk, namely that (2.3) holds also for m = k.

Theorem 3.2. Under the assumptions and notation of Theorem 3.1 if further (2.3) holds for m = k with Rk+1 ∼

Hk+1, then

P {L > x} = exp
(
−
∫
R
P {∃i ≤ k : |sign(y)|y|1/γ + Zi| ≤ xi} dy

)
, x ∈ (0,∞)k, (3.6)

with Z h E[Γ;Hk] and Hk defined by (3.4).

Remark: The assumption (2.3) is satisfied for m = k, provided that X(i)
n , i ≤ n is a subvector of an elliptical random

vector, see Cambanis et al. (1981). In particular, it holds if Rk
d
= SR̃k with S a positive random variable independent

of R̃2
k ∼ χ2

k.
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Example 2. Let X(i)
n , 1 ≤ i ≤ n, n ≥ 1 be as in Example 1. Next, define

Y (i)
n = SniX

(i)
n , 1 ≤ i ≤ n, n ≥ 1,

with S, Sni, i ≤ n independent positive random variables with df F being further independent of X(i)
n , 1 ≤ i ≤ n. If F ∈

RVγ , γ ∈ (0, 1], then by Lemma 6.1 |Y (1)
n1 | ∈ RVγ . Define constants an, n ≥ 1 such that P {0 < SX11(1) ≤ 1/an} = 1/n

holds for all large n. If further (1.1) is satisfied with cn = 2a2
n, then (3.6) holds. Note in passing that Hk satisfies (3.4)

with R2
k+1 ∼ χ2

k+1, Rk+1 > 0.

4. Maxima of Elliptical Triangular Arrays

With the same notation as above we consider again the triangular array X(i)
n , 1 ≤ i ≤ n, n ≥ 1 of k-dimensional

independent elliptical random vectors with stochastic representation (2.1) and Σn = AnA
>
n , n ≥ 1 given correlation

matrices. Define the componentwise maxima Mn = (Mn1, . . . ,Mnk)> by

Mnj = max
1≤i≤n

X
(i)
nj , j = 1, . . . , k, n ≥ 1.

The asymptotic behaviour of the maxima of elliptical triangular arrays is discussed in Hashorva (2006) assuming that

the random radius Rk has df Hk in the Gumbel MDA. A canonical example of such triangular arrays is that of the

Gaussian arrays for which the limit distribution of the maxima is the Hüsler-Reiss copula which is a particular case of

the Brown-Resnick copula. When Hk is in the Weibull MDA the limit distribution of the maxima is a max-infinitely

divisible df , see Hashorva (2005).

We reconsider the findings of the aforementioned papers showing novel representations of the limit distributions given in

terms of the distribution of the maxima of some point processes shifted by elliptical random vectors. For the derivation

of the next results we impose asymptotic assumptions on either the marginal df ’s or on the associated random radius

Rk, which is of some interest for statistical applications where some data might be missing, or some component of the

random vector might be unobservable, and therefore the random radius itself cannot be estimated.

4.1. Gumbel Max-Domain of Attraction

The main assumption in this section is that the marginal df ’s of the elliptical triangular array are in the Gumbel MDA.

A univariate df G is in the Gumbel MDA (abbreviated G ∈ GMDA(w)) if for any x ∈ R

lim
t↑ω

1−G(t+ x/w(t))

1−G(t)
= exp(−x), ω = sup{t : G(t) < 1}, (4.1)
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with w(·) some positive scaling function. If ω =∞, an important property for the df G satisfying (4.1) is a key finding

of Davis and Resnick (1988), namely by Proposition 1.1 therein (see also Embrechts et al. (1997) p. 586) for any

µ ∈ R, τ > 1 we have

lim
x→∞

(xw(x))µ
1−G(τx)

1−G(x)
= 0. (4.2)

Indeed (4.2), which we refer to as the Davis-Resnick tail property is crucial for several asymptotic approximations.

Theorem 4.1. Let R ∼ Hk,X
(i)
n , 1 ≤ i ≤ n,Σn, n ≥ 1 be as in Theorem 3.1. If either G ∈ GMDA(w) or Hk ∈

GMDA(w) and condition (1.1) is satisfied with

cn = 2
bn
an
, bn = G−1(1− 1/n), an = 1/w(bn), n > 1, (4.3)

then for any x ∈ Rk and Z h Gauss[Γ] we have

lim
n→∞

P {(Mn − bn1)/an ≤ x} = QΓ(x) = exp
(
−
∫
R
P {∃i ≤ k : Zi > xi − y + θi/2} exp(−y) dy

)
, (4.4)

where θi = Var{Zi}, i ≤ k.

Since the above result holds for Gaussian triangular arrays with scaling function w(x) = x, the df QΓ is the multivariate

max-stable Hüsler-Reiss df . For a particular choice of a Gaussian process {Z(t), t ∈ R} this distribution has the Brown-

Resncik copula; in fact it can be directly defined by Brown-Resnick processes βR;Γ with independent Gaussian points

ξi(t) := Zi(t)− σ2(t)/2, i ≥ 1 given as

βR;Γ(t) = max
i≥1

[Υi + ξi(t)], t ∈ R. (4.5)

Here Ξ =
∑∞
i=1 εΥi is a Poisson point process with intensity measure exp(−x) dx being independent of {Zi(t), t ∈ R}, i ≥

1. In view of our result the Brown-Resnick process with Gaussian points does not depend on the variance function, which

is already established in Theorem 2.1 of Kabluchko et al. (2009).

4.2. Weibull Max-Domain of Attraction

The unit Weibull distribution with index α ∈ (0,∞) is Ψα(x) = exp(−|x|α), x < 0. In view of Hashorva and Pakes

(2010) the df G is in the Weibull MDA if Hk is in the Weibull MDA. We assume for simplicity that Hk has upper

endpoint equal to 1. By definition, Hk is in the MDA of Ψα (for short Hk ∈WMDA(α)) if for any x ∈ (0,∞)

lim
n→∞

Hn
k (1− a(n)x) = Ψα(x), an = 1−H−1

k (1− 1/n). (4.6)
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If Hk ∈WMDA(α), with some index α ∈ (0,∞) and Hk has upper endpoint equal to 1, then by Theorem 2.1 in Hashorva

(2008)

lim
n→∞

P {(Mn − 1)/an ≤ x} = Q̃Γ,α(x), ∀x ∈ (−∞, 0)k, (4.7)

with Q̃Γ,α a max-infinitely divisible df , provided that (1.1) holds with cn = 2/an, an = 1−G−1(1− 1/n), n > 1.

In the next theorem we show that (4.7) holds if either G or Hk is in the Weibull MDA. Furthermore, we give a new

representation for the limit df Q̃Γ,α.

Theorem 4.2. Let R ∼ Hk,X
(i)
n , 1 ≤ i ≤ n,Σn, n ≥ 1 be as in Theorem 3.1, and assume that G has upper endpoint

1. If either G ∈WMDA(α+ (k − 1)/2), or Hk ∈WMDA(α), with α ∈ (0,∞), then (4.7) holds where

Q̃Γ,α(x) = exp
(
−
∫ ∞

0

P {∃i ≤ k :
√

2yZi > xi + y + θi/2} dyα+(k−1)/2
)
, (4.8)

with Z h E[Γ;Hk],θ ∈ (0,∞)k and H̃α the df of R̃α > 0 which satisfies R̃α
2 d

= Bk/2,α.

We remark that Q̃Γ,α has Weibull marginal distributions Ψα+(k−1)/2. It follows from our result that Q̃Γ,α is determined

by Γ and α but not by the vector θ, and further Q̃Γ,α is not a max-stable df ; clearly, it is a max-infinitely divisible df .

5. Results for Spherical Processes

It is well-known that spherical random sequences are mixtures of Gaussian random sequences. Specifically, if the random

variables Xi, i ≥ 1 with some common non-degenerate df G are such that (X1, . . . , Xk) is centered and spherically

distributed for any k ≥ 1, then Xi
d
= SX∗i , i ≥ 1 with X∗i , i ≥ 1 is a sequence of independent standard Gaussian random

variables being further independent of S > 0. Consequently, a spherical random process {X(t), t ∈ R} such that X(t)

has df G for any t ∈ R can be expressed as {X(t) = SY (t), t ∈ R} with Y (t) a mean-zero Gaussian process and S a

positive random variable independent of {Y (t), t ∈ R}; see Theorem 7.4.4 in Bogachev (1998) for a general result on

spherically symmetric measures. We note in passing that {X(t), t ∈ T} is a particular instance of Gaussian processes

with random variance, see Hüsler et al. (2011b) for recent results on extremes of those processes.

We shall discuss first the asymptotic behaviour of the maximum of independent spherical processes. Then we shall briefly

investigate the asymptotics of the minima of absolute values of those processes.
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Model A: Assume that S has an infinite upper endpoint such that for given constants α1 ∈ R and C1, L1, p1 ∈ (0,∞)

P {S > x} = (1 + o(1))C1x
α1 exp(−L1x

p1), x→∞ (5.1)

is valid. We abbreviate (5.1) as S ∈ W(C1, α1, L1, p1).

Model B: Consider S with upper endpoint equal to 1 such that

lim
u→∞

P {S > 1− x/u}
P {S > 1− 1/u}

= xγ , x ∈ (0,∞), (5.2)

with γ ∈ [0,∞) some constant.

Since for S = 1 almost surely, the spherical process is simply a Gaussian one (which is covered by Model B for γ = 0)

intuitively, we expect that under the Model B the maximum of independent elliptical processes will behave asymptotically

as the maximum of independent Gaussian processes. This intuition is confirmed by Theorem 5.1 below. In fact, it turns

out that the limit process of the maximum of independent spherical processes is in both models the Brown-Resnick

process. Next, if Γ(·, ·) is a negative definite kernel in R2 we define as previously the Brown-Resnick stochastic process

with Gaussian points as

βR;Γ(t) = max
i≥1

(
Υi + Zi(t)− σ2(t)/2

)
, t ∈ T ⊂ R, (5.3)

with {Zi(t), t ∈ T} independent Gaussian processes with incremental variance function Γ, variance function σ2(·) being

further independent of the point process Ξ with points Υi, i ≥ 1 appearing in (4.5). For simplicity, we deal below with

the case T = R establishing weak convergence of finite-dimensional distributions (denoted below as =⇒).

Theorem 5.1. Let {Yni(t), t ∈ R}, 1 ≤ i ≤ n, n ≥ 1 be independent Gaussian processes with mean-zero, unit variance

function and correlation function ρn(s, t), s, t ∈ R. Let S, Sni, i ≤ n be independent and identically distributed positive

random variables. Set {Xni(t) = SniYni(t), t ∈ R}, n ≥ 1, and let G be the df of X11(1). Suppose that

lim
u→∞

cn

(
1− ρn(t1, t2)

)
= Γ(t1, t2) ∈ (0,∞), t1 6= t2 ∈ R, (5.4)

where cn = 2bn/an and an = 1/w(bn), bn = G−1(1− 1/n) with G−1 the inverse of G.

A) If (5.1) holds, then as n→∞

1

an
[ max
1≤i≤n

Xni(t)− bn] =⇒ βR;Γ(t), t ∈ R, (5.5)

where =⇒ means the weak convergence of the finite-dimensional distributions, and

bn
an

= (1 + o(1))
2p1 lnn

2 + p1
, bn = (1 + o(1))

(
lnn

L1A−p1 +A2/2

)(2+p1)/(2p1)

, A = (p1L1)1/(2+p1).

B) If (5.2) holds with γ ∈ [0,∞), then (5.5) is satisfied and limn→∞ bn/
√

2 lnn = limn→∞ an
√

2 lnn = 1.
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Extremes of Elliptical TRA’s 11

Next, we discuss the asymptotic behaviour of the minimum of absolute values in the framework of independent spherical

processes.

Theorem 5.2. Let {Yni(t), Zi(t), t ∈ R}, 1 ≤ i ≤ n, n ≥ 1 be as in Theorem 5.1, and let {Sni(t), t ∈ R}, n ≥ 1 be

independent copies of {S(t), t ∈ R}, being further independent of the Gaussian processes. Define the spherical processes

{Xni(t) = Sni(t)Yni(t), t ∈ R}, n ≥ 1, and suppose that S(t) > κ, t ∈ R almost surely for some positive constant κ. If

an = n/
√

2π and (5.4) holds with cn = 2a2
n, then as n→∞

min
1≤i≤n

an|Xni(t)| =⇒ min
i≥1

Si(t)
∣∣∣Υi + Zi(t)

∣∣∣ = ζΓ,S(t), t ∈ R, (5.6)

where Υi, i ≥ 1 are the points of Ξ defined in (4.5) being independent of both Zi(t), Si(t), t ∈ R, i ≥ 1.

Remarks: a) In Theorem 5.2 we can relax the assumption that S(t) is bounded from below by assuming instead

E{[S(t)]−1−ε} <∞ for some ε > 0.

b) The process {ζΓ,S(t), t ∈ R} is defined by Γ and {S(t), t ∈ R} but does not depend on the variance function σ2(·).

The processes ζΓ,1 appears first in Penrose (1991) and recently in Kabluchko (2011). We refer to {ηΓ,S(t), t ∈ R} as

Penrose-Kabluchko process.

6. Further Results and Proofs

Lemma 6.1. Let X
d
= RAU be an elliptical random vector in Rk, k ≥ 2 with A such that AA> is a positive definite

correlation matrix and R > 0.

a) If for some γ ∈ [0,∞] we have R ∈ RVγ , then |X1| ∈ RVγ∗ with γ∗ = min(γ, 1).

Conversely, if |X1| ∈ RVγ∗ with γ∗ ∈ (0, 1), then R ∈ RVγ∗ .

b) If E{R−1−ε} <∞ for some ε > 0, then |X1| ∈ RV1.

Proof of Lemma 6.1 a) If γ ∈ [0,∞) the proof follows from Theorem 4.1 in Hashorva (2011). When γ = ∞, then

1/R is rapidly varying at infinity. Hence from Theorem 5.4.1 of de Haan and Ferreira (2006) E{R−p} < ∞ for any

p ∈ (0,∞), and thus the claim follows once the statement b) is proved. Statement b) can be directly established by

applying Breiman’s Lemma (see Breiman (1965), Davis and Mikosch (2008)), and thus the proof is complete. �

Proof of Theorem 3.1 By the relation between the minima and maxima, in view of Lemma 4.1.3 in Falk et al.
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(2010) the proof follows if

lim
n→∞

nP {an|Xni| ≤ xi, i ∈ K} = LK(xK), x ∈ (0,∞)k (6.1)

holds for any non-empty index set K ⊂ {1, . . . , k} with m ≥ 2 elements, and LK(·) some right-continuous functions.

In the sequel we write simply Xn instead of X(1)
n ; the subvector (Xn)K is an elliptical random vector with associated

random radius Rm ∼ Hm satisfying (2.3). By Lemma 6.1 Hk ∈ RVγ , γ ∈ (0, 1] implies Hm ∈ RVγ , 1 ≤ m ≤ k − 1.

Consequently, it suffices to show (6.1) for the case m = k. Since the df of Xn depends on Σn and not on An, and further

Σn is positive definite, we can assume that An is a lower triangular matrix. Define qn(y) = y/an, y ∈ R and recall that

G denotes the df of X11. It follows that conditioning on Xnk = qn(y) with y 6= 0 such that G(|y|/an) ∈ (0, 1), n ≥ 1 we

have the stochastic representation (set I = {1, . . . , k − 1}, J = {k})

(Xn)I
∣∣Xnk = qn(y)

d
= Ry,n,k−1BnkUk−1 + (Σn)IJqn(y), n ≥ 1, (6.2)

where Bnk is a lower triangular matrix satisfying BnkB
>
nk = (Σn)II − (Σn)IJ(Σn)JI . In view of Cambanis et al. (1981)

Uk−1 is independent of Ry,n,k−1, n ≥ 1 which has survival function Qy,n,k−1 given by

Qy,n,k−1(z) =

∫ ω
((y/an)2+z2)1/2

(r2 − (y/an)2)(k−1)/2−1r−k+2 dHk(r)∫ ω
y/an

(r2 − (y/an)2)(k−1)/2−1r−k+2 dHk(r)
, z ∈ (0,

√
ω2 − y2/a2

n). (6.3)

Clearly, limn→∞ an =∞ and the monotone convergence theorem implies the convergence in distribution

Ry,n,k−1
d→ Rk−1, n→∞,

where Rk−1 ∼ Hk−1 with

Hk−1(z) = 1−
∫ ω
z
r−1 dHk(r)

E{1/Rk}
, z ∈ (0, ω). (6.4)

In view of relation (2.2) and since for any integer m ≥ 2 we have E{1/Bm/2,(k−m)/2} <∞ the assumption E{1/Rk} <

∞ implies E{1/Rm} <∞. Hence the above convergence holds also for the omitted case k = m. Next, by (1.1) and the

fact that BnkB
>
nk (and not the matrix Bnk) defines the conditional distribution in (6.2) we can choose Bnk such that

limn→∞ anBnk = Bk with

BkB
>
k = (1θ> + θ1> − ΓII)/2, θ = ΓIJ .

Hence for any x ∈ (0,∞)k utilising further (6.2) and the fact that G is symmetric about 0 we obtain (set Gn(y) =

G(y/an), n ≥ 1) and K = {1, . . . , k})

P {an|Xni| ≤ xi,∀i = 1, . . . , k}
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Extremes of Elliptical TRA’s 13

=

∫
R
P {an|Xni| ≤ xi,∀i ∈ I

∣∣Xnk = y} dG(y)

=

∫ xk

−xk
P {an|Xni| ≤ xi,∀i ∈ I

∣∣Xnk = y/an} dGn(y)

=

∫ xk

0

[
P {an|Xni| ≤ xi,∀i ∈ I

∣∣Xnk = y/an}+ P {an|Xni| ≤ xi,∀i ∈ I
∣∣Xnk = −y/an}

]
dGn(y)

=

∫ xk

0

[
P {an|Zni + dniy/an| ≤ xi, i ∈ I}+ P {an|Zni − dniy/an| ≤ xi,∀i ∈ I}

]
dGn(y),

with Zn = Ry,n,k−1BnkUk−1 and dni the ith component of (Σn)IJ . By the construction we have the convergence in

distribution (n→∞)

Ry,n,k−1(anBnk)Uk−1
d→ Rk−1BkUk−1 =: (Z1, . . . , Zk−1)>.

Further, by the regular variation at 0 of the df of |X11|, the fact that X11 is symmetric about 0, and the choice of

an, n ≥ 1 we have

lim
n→∞

n[Gn(t)−Gn(s)] = tγ − sγ , ∀s, t ∈ (0,∞). (6.5)

Consequently, since limn→∞ dni = 1

lim
n→∞

nP {an|Xni| ≤ xi,∀i = 1, . . . , k} =

∫ xk

0

[
P {|Zi + y| ≤ xi, i ∈ I} dyγ + P {|Zi − y| ≤ xi, i ∈ I}

]
dyγ

=

∫ xγk

0

[
P {|Zi + y1/γ | ≤ xi, i ∈ I} dy + P {|Zi − y1/γ | ≤ xi, i ∈ I}

]
dy

=

∫ xγk

−xγk
P {|Zi + sign(y)|y|1/γ | ≤ xi, i ∈ I} dy,

hence the proof follows. �

Proof of Theorem 3.2 First we show that Xn = X(1)
n , n ≥ 1 is the k-dimensional marginal of some (k + 1)-

dimensional elliptical random vector. Define therefore a new random vector Y n, n ≥ 1 with stochastic representation

Y n
d
= Rk+1A

∗
nUk+1,

where Uk+1 is uniformly distributed on Sk+1 independent of Rk+1 ∼ Hk+1, and A∗n is a non-singular (k+1)-dimensional

square matrix. Choose A∗n, n ≥ 1 such that Σ∗n = A∗n(A∗n)> is again a correlation matrix satisfying

(Σ∗n)II = Σn, I = {1, . . . , k}, J = {k + 1},

and

lim
n→∞

a2
n(11> − Σ∗n) = Γ∗ ∈ (0,∞)(k+1)×(k+1), (Γ∗)II = Γ, 1 ∈ Rk+1.

Since Σn,Σ
∗
n are positive definite, by condition (1.1) this construction is possible. Note that Σ∗n satisfies (1.1) with

cn = 2bn/an and limit matrix Γ∗ ∈ [0,∞)(k+1)×(k+1). We write for notational simplicity (Γ∗)IJ = θ/2 and assume that
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θ has positive components. It is well-known (see Cambanis (1981)) that

Uk+1
d
= (UW,

√
1−W 2J ),

with W a positive random variable such that W 2 d
= Bk/2,1/2, and J a Bernoulli random variable taking values −1, 1

with equal to probability 1/2. Furthermore J ,U , and W are mutually independent.

By the assumption, R2
k
d
= (Rk+1)2Bk/2,1/2 with Rk+1 ∼ Hk+1 independent of Bk/2,1/2, implying Y n,I

d
= Xn. Since the

df of Xn depends on Σn and not on An, and further Σn is positive definite we can assume that An is a lower triangular

matrix. We construct A∗n to be also a non-singular lower triangular matrix. With the same notation as in the proof of

Theorem 3.1 we have

(Y n)I
∣∣Yn,k+1 = qn(y)

d
= Ry,n,kBnU + (Σ∗n)IJqn(y), n ≥ 1, (6.6)

where Bn is a lower triangular matrix satisfying BnB
>
n = Σn − (Σ∗n)IJ(Σ∗n)JI , and Ry,n,k, n ≥ 1 (being independent of

U) has survival function Qy,n,k+1 given by (6.4). As in the proof of Theorem 3.1

Ry,n,k
d→ Rk ∼ Hk, n→∞.

By (1.1) and the fact that BnB
>
n (and not the matrix Bn) defines the conditional distribution we can choose Bn such

that limn→∞ anBn = B with BB> = (1θ> + θ1> − Γ)/2. Hence for any x ∈ (0,∞)k utilising further (6.6) we obtain

lim
n→∞

P {anLn > x}

= lim
n→∞

P {∀i ≤ k : anLni > xi}

= lim
n→∞

P {∀i ≤ k : an|Xni| > xi}n

= exp
(
− lim
n→∞

nP {∃i ≤ k : an|Xni| ≤ xi}
)

= exp
(
− lim
n→∞

n
[∫ ∞

0

P {∃i ≤ k : an|Yni| ≤ xi
∣∣Yn,k+1 = y/an} dGn(y)

+

∫ 0

−∞
P {∃i ≤ k : an|Yni| ≤ xi

∣∣Yn,k+1 = y/an} dGn(y)
])

= exp
(
− lim
n→∞

n

∫ ∞
0

[
P {∃i ≤ k : an|Yni| ≤ xi

∣∣Yn,k+1 = y/an}

+P {∃i ≤ k : an|Yni| ≤ xi
∣∣Yn,k+1 = −y/an}

]
dGn(y)

)
= exp

(
− lim
n→∞

n

∫ ∞
0

[
P {∃i ≤ k : an|Zni + dniy/an| ≤ xi}+ P {∃i ≤ k : an|Zni − dniy/an| ≤ xi}

]
dGn(y)

)
= exp

(
−
∫ ∞

0

[
P {∃i ≤ k : |Zi + y| ≤ xi}+ P {∃i ≤ k : |Zi − y| ≤ xi}

]
dyγ
)

= exp
(
−
∫ ∞

0

[
P {∃i ≤ k : |Zi + y1/γ | ≤ xi}+ P {∃i ≤ k : |Zi − y1/γ | ≤ xi}

]
dy
)

= exp
(
−
∫
R
P {∃i ≤ k : |Zi + sign(y)|y|1/γ | ≤ xi} dy

)
,
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with (Z1, . . . , Zk)> = RkBU , and thus the claim follows. �

Proof of Theorem 4.1 By Theorem 4.1 in Hashorva and Pakes (2010) H ∈ GMDA(w) is equivalent with G ∈

GMDA(w). Let Bn,Y n, n ≥ 1 be as in the proof of Theorem 3.2 and adopt below the same notation as therein.

Conditioning on Yn,k+1 = qn(y) = any + bn, with y ∈ R such that G(qn(y)) ∈ (0, 1), n ≥ 1 we have that (6.6) holds,

with Ry,n,k independent of U satisfying (see Hashorva (2009a))

1√
anbn

Ry,n,k
d→ R, n→∞,

where R2 ∼ χ2
k+1, and Rk > 0. Next, G ∈ GMDA(w), (1.1) and the choice of Bn imply for any x ∈ Rk (omitting some

details)

lim
n→∞

P {Mn ≤ anx+ bn1}

= lim
n→∞

[1− P {∃i ≤ k : Xni > qn(xi)}]n

= exp
(
− lim
n→∞

nP {∃i ≤ k : Xni > qn(xi)}
)

= exp
(
− lim
n→∞

n

∫
R
P {∃i ≤ k : Yni > qn(xi)

∣∣Yn,k+1 = qn(y)} dG(qn(y))
)

= exp
(
− lim
n→∞

n

∫
R
P
{
∃i ≤ k :

1√
anbn

Ry,n,k([
√
bn/anBn]U)i > xi − ydni + [1− dni]bn/an

}
dG(qn(y))

)
= exp

(
−
∫
R
P {∃i ≤ k : Zi > xi − y + θi/2} exp(−y) dy

)
,

with Z h Gauss[Γ]. Recall RkU is a k-dimensional Gaussian random vector with independent components, and further

note that the choice of θi above is arbitrary. The assumption that (2.3) holds also for m = k needed to define Y n can

now be dropped since the limit distribution is independent of that assumption, and further the convergence in distribution

holds without imposing that assumption, hence the proof is complete. �

Proof of Theorem 4.2 First note that Theorem 4.5 in Hashorva (2010) states that H ∈ WMDA(α), α > 0 is

equivalent with G ∈ WMDA(α + (k − 1)/2). We proceed as in the proof of Theorem 4.1 (keeping the same notation).

Conditioning on the event Yn,k+1 = qn(y) = 1− any, with y such that G(qn(y)) ∈ (0, 1), n ≥ 1 and constants an defined

in (3.1) we have that again (6.6) holds. In view of Hashorva (2009a) for any y > 0

1
√
an
Ry,n,k

d→
√

2yR̃α, n→∞,

with R̃α ∼ H̃α where H̃α(0) = 0 and R̃α
2 d

= Bk/2,α. Furthermore

lim
u→∞

1−G(1− x/u)

1−G(1− 1/u)
= xα+(k−1)/2, ∀x ∈ (0,∞)

holds. Hence for any x ∈ (−∞, 0)k we obtain (set Gn(y) = G(1− any))

lim
n→∞

P {Mn ≤ 1 + anx}
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= exp
(
− lim
n→∞

n

∫ ∞
0

P
{
∃i ≤ k :

1
√
an
Ry,n,k(

Bn√
an
U)i > xi + ydni + [1− dni]/an

}
dGn(y)

)
= exp

(
−
∫ ∞

0

P {∃i ≤ k : Zi > [xi + y + θi/2]/
√

2y} dyα+(k−1)/2
)
,

with Z h E[Γ; H̃α], and thus the proof is complete. �

Proof of Theorem 5.1 A) Let G denote the df of S1Y11(1), and let Φ denote the standard Gaussian df on R. The

Mills ratio asymptotics (see e.g., Lu and Li (2009)) implies Y11(1) ∈ W(1/
√

2π,−1, 1/2, 2). Consequently, by Lemma

2.1 in Arendarczyk and Dȩbicki (2011)

1−G(x) = (1 + o(1))
( 2π

2 + p1

)1/2 C1√
2π
A−α1x

α1(p1−1)+p1
2+p1 exp

(
−(L1A

−p1 +A2/2)x
2p1

2+p1

)
= (1 + o(1))

C1√
2 + p1

A−α1x
α1(p1−1)+p1

2+p1 exp(Bx
2p1

2+p1 ), x→∞,

with A = (p1L1)1/(2+p1), B = L1A
−p1 +A2/2 > 0. Hence G ∈ GMDA(w) with

w(x) = B
2p1

2 + p1
x(p1−2)/(2+p1), x > 0.

Set bn = G−1(1− 1/n), n > 1 with G−1 the generalised inverse of G. Now, by (4.2)

lim
n→∞

bn
b∗n

= 1, (6.7)

where b∗n = Ψ−1(1− 1/n), n > 1 and Ψ is some df satisfying

1−Ψ(x) = (1 + o(1)) exp(−Bx
2p1

2+p1 ), x→∞.

The above asymptotics implies

lim
n→∞

n
(

1−G(anx+ bn)
)

= exp(−x), ∀x ∈ R, (6.8)

with

bn = (1 + o(1))

(
lnn

B

)(2+p1)/(2p1)

, an =
1

w(bn)
=

(2 + p1)b
(2−p1)/(2+p1)
n

2p1B
, n→∞.

Consequently, as n→∞

bn
an

= (1 + o(1))
2p1

2 + p1
lnn,

hence (5.5) follows by Theorem 3.1 of Kabluchko (2011) and Theorem 4.1.

B) Since Φ ∈ GMDA(w) with scaling function w(x) = x, x > 0 Theorem 3 in Hashorva (2009b) implies

1−G(x) = (1 + o(1))Γ(α+ 1)P {S > 1− 1/(xw(x))}P {Y11(1) > x}, x→∞
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and thus G ∈ GMDA(w). If an, bn, n ≥ 1 are defined by (6.8), then Theorem 3.1 in Kabluchko (2011) and Theorem 4.1

establishes (5.5). By the form of w(·) we have limn→∞ anbn = 1, and further (6.7) holds with b∗n = Φ−1(1−1/n), n > 1.

Consequently, bn = (1 + o(1))
√

2 lnn for all large n, and thus the result follows. �

Proof of Theorem 5.2 Let S(i)
n and X(i)

n , i ≤ n, n ≥ 1 be such that S
(i)
nj = Sni(tj), tj ∈ R, j ≤ k and X(i)

n , i ≤ n

are independent copies of the Gaussian random vector Xn1(tj), 1 ≤ j ≤ k. By the assumptions of the theorem, the proof

follows if we show that the limit of the minima of the absolute values for the triangular array S(i)
n X

(i)
n , i ≤ n, n ≥ 1

converges to the random vector L such that

P {L > x} = exp
(
−
∫
R
P {∃i ≤ k : Si|y + Zi| ≤ xi} dy

)
, x ∈ (0,∞)k,

where S := S
(1)
1 is independent centered Gaussian random vector Z with incremental variance matrix Γ which has

components γij = Γ(ti, tj). The proof follows with similar arguments as that of Theorem 3.2 since S(i)
n is, by the

assumption, independent of X(i)
n . �
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[11] Hashorva, E. (2005) On the max-domain of attractions of bivariate elliptical arrays. Extremes, 8, 225–233.
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