
	
	
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
	

Year : 2015 

 
Dying neurons in thalamus of asphyxiated term newborns and 

rats are autophagic 

 
Pittet Marie Pascale 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pittet Marie Pascale, 2015, Dying neurons in thalamus of asphyxiated term newborns and 
rats are autophagic 
 
Originally published at : Thesis, University of Lausanne 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN :	urn:nbn:ch:serval-BIB_3186855D812D0	
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



 
 

UNIVERSITE DE LAUSANNE - FACULTE DE BIOLOGIE ET DE MEDECINE 
 

Département des Neurosciences Fondamentales 

     

 
 
 

 
 
Dying neurons in thalamus of asphyxiated term newborns and rats are 

autophagic 
 
 

THESE 
 
 

préparée sous la direction du Docteure Anita C. Truttmann, PD et MER 
(avec la co-direction du Docteur PhD Julien P. Puyal, MER) 

     

 
 

et présentée à la Faculté de biologie et de médecine de 
l’Université de Lausanne pour l’obtention du grade de 

 
 
 

DOCTEUR EN MEDECINE 
 
 

par 
 
 

Marie Pascale PITTET 
 
 

Médecin diplômée de la Confédération Suisse   
Originaire de Sâles (FR) 

 
 
 

Lausanne 
 

2015 

1





Rapport de Synthèse 

Enjeu: Déterminer si la macroautophagie est activée de façon excessive dans les neurones en 
souffrance dans l’encéphalopathie anoxique-ischémique du nouveau-né à terme.  
Contexte de la recherche: L’encéphalopathie anoxique-ischémique suite à une asphyxie 
néonatale est associée à une morbidité neurologique à long terme. Une diminution de son 
incidence reste difficile, son primum movens étant soudain, imprévisible voire non identifiable. 
Le développement d’un traitement pharmacologique neuroprotecteur post-anoxie reste un défi 
car les mécanismes impliqués dans la dégénérescence neuronale sont multiples, 
interconnectés et encore insuffisamment compris. En effet, il ressort des études animales que la 
notion dichotomique de mort cellulaire apoptotique (type 1)/nécrotique (type 3) est insuffisante. 
Une même cellule peut présenter des caractéristiques morphologiques mixtes non seulement 
d’apoptose et de nécrose mais aussi parfois de mort autophagique (type 2) plus récemment 
décrite. L’autophagie est un processus physiologique normal et essentiel de dégradation de 
matériel intracellulaire par les enzymes lysosomales. La macroautophagie, nommée 
simplement autophagie par la suite, consiste en la séquestration de parties de cytosol à éliminer 
(protéines et organelles) dans des compartiments intermédiaires, les autophagosomes, puis en 
leur fusion avec des lysosomes pour former des autolysosomes. Dans certaines conditions de 
stress telles que l’hypoxie et l’excitoxicité, une activité autophagique anormalement élevée peut 
être impliquée dans la mort cellulaire soit comme un mécanisme de mort indépendant 
(autodigestion excessive correspondante à la mort cellulaire de type 2) soit en activant d’autres 
voies de mort comme celles de l’apoptose.  
Description de l’article: Ce travail examine la présence de l’autophagie et son lien avec la 
mort cellulaire dans les neurones d’une région cérébrale fréquemment atteinte chez le nouveau-
né humain décédé après une asphyxie néonatale sévère, le thalamus ventro-latéral. Ces 
résultats ont été comparés à ceux obtenus dans un modèle d’hypoxie-ischémie cérébrale chez 
le raton de 7 jours (dont le cerveau serait comparable à celui d’un nouveau-né humain de 34-37 
semaines de gestation). Au total 11 nouveau-nés à terme décédés peu après la naissance ont 
été rétrospectivement sélectionnés, dont 5 présentant une encéphalopathie hypoxique-
ischémique sévère et 6 décédés d’une cause autre que l’asphyxie choisis comme cas contrôle. 
L’autophagie et l’apoptose neuronale ont été évaluées sur la base d’une étude 
immunohistochimique et d’imagerie confocale de coupes histologiques en utilisant des 
marqueurs tels que LC3 (protéine dont la forme LC3-II est liée à la membrane des 
autophagosomes), p62/SQSTM1 (protéine spécifiquement dégradée par autophagie), LAMP1 
(protéine membranaire des lysosomes et des autolysosomes), Cathepsin D ou B (enzymes 
lysosomales), TUNEL (détection de la fragmentation de l’ADN se produisant lors de l’apoptose), 
CASPASE-3 activée (protéase effectrice de l’apoptose) et PGP9.5 (protéine spécifique aux 
neurones). Chez le raton l’étude a pu être étendue en utilisant d’autres méthodes 
complémentaires telles que la microscopie électronique et le Western-blot. Une quantification 
des différents marqueurs montre une augmentation statistiquement significative de l’autophagie 
neuronale dans les cas d’asphyxie par rapport aux cas contrôles chez l’humain comme chez le 
raton. En cas d’asphyxie, les mêmes neurones expriment une densité accrue 
d’autophagosomes et d’autolysosomes par rapport aux cas contrôles. De plus, les neurones 
hautement autophagiques présentent des caractéristiques de l’apoptose. 
Conclusion: Cette étude montre, pour la première fois, que les neurones thalamiques lésés en 
cas d’encéphalopathie hypoxique-ischémique sévère présentent un niveau anormalement élevé 
d’activité autophagique comme démontré chez le raton hypoxique-ischémique. Ce travail 
permet ainsi de mettre en avant l’importance de considérer l’autophagie comme acteur dans la 
mort neuronale survenant après asphyxie néonatale.  
Perspectives: Récemment un certain nombre d’études in vitro ou sur des modèles d’ischémie 
cérébrale chez les rongeurs suggèrent un rôle important de la macroautophagie dans la mort 
neuronale. Ainsi, l’inhibition spécifique de la macroautophagie devrait donc être envisagée dans 
le futur développement des stratégies neuroprotectrices visant à protéger le cerveau des 
nouveau-nés à terme suite à une asphyxie. 
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RESEARCH ARTICLE

Dying Neurons in Thalamus of
Asphyxiated Term Newborns and Rats

Are Autophagic

Vanessa Ginet, PhD,1* Marie P. Pittet, MD,1,2* Coralie Rummel,1

Maria Chiara Osterheld, MD,3 Reto Meuli, MD, PhD,4 Peter G. H. Clarke, PhD,1

Julien Puyal, PhD1,2&, and Anita C. Truttmann, MD2&

Objective: Neonatal hypoxic–ischemic encephalopathy (HIE) still carries a high burden by its mortality and long-term
neurological morbidity in survivors. Apart from hypothermia, there is no acknowledged therapy for HIE, reflecting
the lack of mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological intracellular process
of lysosomal degradation, has been proposed to be excessively activated in excitotoxic conditions such as HIE. The
present study examines whether neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is
enhanced and related to neuronal death processes.
Methods: Neuronal autophagy and cell death were evaluated in the thalamus (frequently injured in severe HIE) of both
human newborns who died after severe HIE (n 5 5) and P7 hypoxic–ischemic rats (Rice–Vannuci model). Autophagic (LC3,
p62), lysosomal (LAMP1, cathepsins), and cell death (TUNEL, caspase-3) markers were studied by immunohistochemistry in
human and rat brain sections, and by additional methods in rats (immunoblotting, histochemistry, and electron microscopy).
Results: Following severe perinatal asphyxia in both humans and rats, thalamic neurons displayed up to 10-fold (p< 0.001)
higher numbers of autophagosomes and lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons
presented strong features of apoptosis. These findings were confirmed and elucidated in more detail in rats.
Interpretation: These results show for the first time that autophagy is enhanced in severe HIE in dying thalamic neu-
rons of human newborns, as in rats. Experimental neuroprotective strategies targeting autophagy could thus be a
promising lead to follow for the development of future therapeutic approaches.

ANN NEUROL 2014;76:695–711

Perinatal asphyxia is a major cause of newborn mortal-

ity and long-term neurodevelopmental disabilities,

with very limited therapeutic options.1 Its best known

complication is hypoxic–ischemic encephalopathy (HIE),

which is characterized by acute neurological impairment,

often with seizures and early lesions seen on magnetic

resonance imaging (MRI), especially at the level of the

perirolandic cortex, the basal ganglia, the thalamus, and

the brainstem. Twenty-five percent of HIE cases lead to

death in the first week of life, and up to 50% of survi-

vors develop permanent sequelae such as cerebral palsy,

seizures, and cognitive and neurosensorial impairment.2

Despite considerable efforts in research to find clinically

safe and effective neuroprotective pharmacotherapy, the

only therapy that is currently approved is moderate

hypothermia. The heterogeneity of the human hypoxic–

ischemic insults and the presence of multiple interacting

cell death mechanisms are major difficulties.

Our current understanding of neuronal cell death

in human HIE term newborns is very limited because of

the lack of human brain studies.3 One of the most rele-

vant animal models in HIE is a combination of unilateral

View this article online at wileyonlinelibrary.com. DOI: 10.1002/ana.24257
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common carotid artery ligation and exposure to hypoxia

in P7 rats,4 this age being considered comparable to late

preterm/term in human brains (34–36 weeks gesta-

tion).5,6 An important conclusion emerging from studies

on rodent perinatal hypoxia–ischemia (HI) is that cell

death occurs along an apoptotic–necrotic “continuum”7

involving predominance of hybrid morphologies of cell

death with mixed features of apoptosis and necrosis.8

However, these may not be the only cell death mecha-

nisms involved, because morphological characteristics of

enhanced autophagy have recently been described in the

dying neurons.9–11

Macroautophagy (hereafter called autophagy) is a

physiological degradative process in which cellular com-

ponents are sequestered in autophagosomes, which fuse

with acidic organelles (late endosomes, lysosomes, etc) to

form autolysosomes containing the hydrolytic enzymes

necessary for the autophagic degradation. Autophagy is

essential for maintaining homeostasis and cell survival,

but recent studies indicate that it can be involved in cell

death, either as a trigger of apoptosis or necrosis, or as

an independent mechanism of cell death.12

In situations of cerebral HI, the evidence for a

death-mediating role of autophagy stems from a combi-

nation of morphological and functional evidence. Differ-

ent studies have demonstrated the presence of enhanced

autophagy in dying neurons in neonatal animal models

of cerebral ischemia or HI in the cortex and/or hippo-

campus.9,10,13 Inhibition of autophagy either pharmaco-

logically14 or more specifically in neonatal conditional

knockout mice with neuron-specific deletion of Atg710 is

neuroprotective, suggesting a death-mediating role of

autophagy.

As the thalamus, including its ventrolateral nucleus

(VLNT), is often involved in human HIE, we have stud-

ied whether neuronal autophagy is enhanced in the

VLNT in brains of human newborns who died from

severe HIE and have compared the results with those

obtained in a human control group and in the animal

model.

Materials and Methods

Rat Model of Neonatal HI
All experiments were performed in accordance with the Swiss

laws for the protection of animals and were approved by the

Vaud Cantonal Veterinary Office. Seven-day-old male rats

(Sprague Dawley; Janvier Labs, Saint Berthevin, France) under-

went HI (8% of oxygen for 2 hours) according to the Rice–

Vannucci model4 as previously described.9 The damage induced

by our model of neonatal cerebral HI (2 hours of hypoxia) was

very severe, but with low individual/litter variability in our

hands compared to shorter and less severe hypoxic periods (Fig

1A, B).

Human Newborn Brain Specimens
Human brain tissues were obtained from 11 deceased and

autopsied newborns, provided by the Institute of Pathology,

University of Lausanne (Table 1). The studied population was

selected retrospectively from the death reports of the Clinic of

Neonatology (Lausanne University Hospital) between 2001 and

2009. Autopsies were done for medical and legal reasons, and

informed consent was obtained from the parents. The postmor-

tem interval (time between death and autopsy) was between 5

and 24 hours, and the bodies where conserved in a cold envi-

ronment. During autopsy, the brain was removed and fixed in

10% buffered formalin for 3 weeks. Samples were then embed-

ded in paraffin, and 3mm-thick sections were cut. Specimens

were then anonymized for research purposes with the approval

of the local ethical committee. We selected newborns who had

died after birth in the context of severe HIE (HIE group,

n 5 5). Death was due to withdrawal of care in 4 cases and due

to additional respiratory failure in 1 case. The criteria for HIE

cases were: newborns at or near term (35–37 weeks gestation),

with severe perinatal asphyxia, and clinical HIE according to

Sarnat grade III.15 For the control group (n 5 6), newborns at

or near term (35–37 weeks of gestation) with life-incompatible

conditions were selected (transposition of the great vessels with

intact septum [n 5 1], primary pulmonary lymphangiectasia

[n 5 1], congenital diaphragmatic hernia [n 5 1], congenital

myopathy [n 5 2], intrauterine demise with endocardial fibroe-

lastosis [n 5 1]). Babies with cerebral malformations and

genetic anomalies were excluded, as well as babies from whom

autoptic material from thalamus was no longer available. For

comparing the selection criteria between the groups, we calcu-

lated the resuscitation score according to Miller et al.16

Cerebral MRI and Apparent Diffusion
Coefficient
MRI was available for 3 of 5 HIE cases, using 1.5 or 3T scan-

ners. Conventional T1 and T2 images and diffusion-weighted

images (DWI) were acquired using spin echo echoplanar imag-

ing, with 5mm-thick slices (b values: 0, 500, 1,000mm2/s).

Apparent diffusion coefficient (ADC) values were calculated

from the ADC map choosing similar bilateral regions of inter-

est in the VLNT. As reference values, we used those published

by Rutherford et al.17

Immunoblotting
Immunoblots on thalamic extracts of sham-operated or HI rat

pups were done as described previously.18 The following

primary antibodies were used for protein immunodetection:

anti–a-tubulin (sc-8035) mouse monoclonal from Santa Cruz

Biotechnology (Santa Cruz, CA); anti-LC3 (ab48394) rabbit

polyclonal from Abcam (Cambridge, MA); anti–active caspase-

3 (9661) from Cell Signaling Technology (Danvers, MA); anti–

p62/SQSTM1 (P0067) rabbit polyclonal from Sigma-Aldrich

(St Louis, MO), and anti-fodrin (FG6090) mouse monoclonal

ANNALS of Neurology
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FIGURE 1: Perinatal asphyxia induces severe neuronal injury in the thalamus of both rat and human neonates. (A) Representa-
tive images of coronal brain sections stained with cresyl violet showing the evolution of the lesion as sampled at 4 time-points:
6 hours, 24 hours, 72 hours, and 1 week after hypoxia-ischemia (HI). Bar 5 1cm. (B) Quantification of damaged brain tissue 24
hours after the insult induced by 2 hours of hypoxia in P7 male and female rats shows a severe but reproducible lesion. No sig-
nificant difference in the percentage of total damaged tissue relative to the contralateral hemisphere was found between
males (74 6 4%, n 5 11) and females (70 6 8%, n 5 11). Values are mean 6 standard deviation. (C) Hematoxylin–eosin (HE) stains
reveal that the rat ventrobasal thalamus is strongly affected by perinatal HI 24 hours after the insult, with the presence of cell
shrinkage and pyknotic nuclei. Black rectangles correspond to the higher magnifications in the ventrobasal thalamus.
Bars 5 200mm for low resolution (left panel) and 50mm for higher magnifications (middle and right panels). (D) Cerebral mag-
netic resonance imaging with T2-weighted, diffusion, and apparent diffusion coefficient (ADC) maps obtained in hypoxic–ische-
mic encephalopathy (HIE) Cases 1 (a1–3), 2 (b1–3), and 3 (c1–3). Top row shows transverse T2-weighted images at 34 hours (a),
40 hours (b), and 48 (c) hours after birth, respectively; middle row shows the diffusion-weighted images (DWIs) at the same
times; and bottom row represents the ADC maps. Image a1 shows the absence of signal anomaly in thalamus, basal ganglia,
and cortex on T2-weighted images, but a2 presents a restricted diffusion in thalamus (arrow) bilaterally as well as the cortico-
spinal tract and both hippocampi (not seen here), confirmed on ADC maps (arrow in a3). Image b1 shows a severe diffuse cere-
bral edema with hyperintensity in thalamus/basal ganglia and loss of differentiation between gray and white matter for global
cortex, seen also on the DWI (b2) with restricted diffusion on the thalamus (short arrow) and global cortex (long arrow) and
confirmed on ADC maps (b3). Image c1 shows no anomaly on this image, but additional corticospinal tract hyperintensities
were seen on adjacent images. Image c2 shows restricted diffusion bilaterally in the posterior limb of the internal capsule and
ventrolateral thalamus; restricted diffusion occurred also in the corticospinal tract (not in this image, but in adjacent ones). This
was confirmed on ADC maps (c3). The mean ADC values measured on the right and left ventrolateral nucleus of the thalamus
(VLNT) were strongly reduced in all 3 HIE cases, confirming cytotoxic edema in VLNT bilaterally. (E) Representative images
showing that dying neurons in the VLNT of HIE cases display cell shrinkage and pyknotic nuclei as shown using an HE stain
compared to control cases. Bar 5 20mm.

Ginet et al: Autophagy in Asphyxiation
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from Biomol (Enzo Life Sciences, Plymouth Meeting, PA). Pro-

tein bands were visualized using the Odyssey Infrared Imaging

System (LI-COR, Lincoln, NE). Odyssey v1.2 software (LI-

COR) was used for densitometric analysis. Optical density values

were normalized with respect to tubulin and expressed as a per-

centage of values obtained for sham-operated rat pups (100%).

TABLE 1. Descriptive Data of the Human Population

Groups HIE, n 5 5 Control, n 5 6 p

Gestational age, days 0.712

Median 277 272.5

Range 268–287 250–290

Birth weight, g 0.537

Median 3,180 3,255

Range 2,610–3440 2,240–4,070

Apgar, 1 min 0.029a

Median 0 2b

Range 0–1 1–7

Apgar, 10 min 0.673

Median 4 5b

Range 1–6 0–8

Umbilical arterial pH 0.019a

Median 6.83 7.28b

Range 6.7–6.99 7.23–7.32

Lactate, mmol/l 0.596

Median 17 16b

Range 16–21 3–21

Time of death after birth, h 0.143

Median 44 13b

Range 20–171 1–672

Resuscitation scorec 0.600

Median 6 6b

Range 5–6 5–6

Gender, No. (%) 0.545

F 1 (20) 3 (50)

M 4 (80) 3 (50)

Secondary apnea, No. (%) 5 (100) 1 (20)b 0.047a

Seizures, No. (%) 4 (80) 0 (0)b 0.048a

There was a significant difference (p< 0.05) between the 2 groups for the Apgar score at 1 minute, the initial umbilical arterial
pH, and the frequency of secondary apnea and of postnatal seizures. Interestingly, the resuscitation score according to Miller
et al16 was not different between the groups, strengthening the choice of the control group. The data are expressed as median and
range, or in some cases ratio and percentage because of the small numbers. Some information such as Apgar score, secondary
apnea, and seizures are missing for 1 control case.
ap< 0.05 statistically significant.
bOne case is missing information.
cAccording to Miller score.16

F 5 female; HIE 5 hypoxic–ischemic encephalopathy; M 5 male.

ANNALS of Neurology

698 Volume 76, No. 5

6



Histochemistry for Lysosomal Enzymes
Histochemistry for acid phosphatase and b-N-acetylhexosaminidase

was performed on rat pups perfused intracardially with 2% glutaral-

dehyde and 1% paraformaldehyde in cacodylate buffer (0.1mol/L,

pH 7.4) as previously described.9

Electron Microscopy
Electron microscopy was done on rat brains fixed following

intracardiac perfusion with 2.5% glutaraldehyde and 2% para-

formaldehyde in cacodylate buffer as previously described.14

Immunohistochemistry
For rat tissue, pups were perfused intracardially with 4% para-

formaldehyde in 0.1mol/l phosphate-buffered saline (PBS), pH

7.4. Immunohistochemistry was performed on 18lm cryostat

sections as previously described.9 For human tissue, the

paraffin-embedded sections were first deparaffinized. After anti-

gen retrieval and blocking in PBS with 15% donkey serum, sec-

tions were incubated with primary antibodies in 1.5% donkey

serum overnight at 4�C.

For both rat and human sections, Alexa Fluor 488 don-

key–antirabbit (Invitrogen, Carlsbad, CA; A21206) and Alexa

Fluor 594 donkey–antimouse (Invitrogen, A21203) secondary

antibodies were incubated and then sections were mounted

with FluoroSave (Calbiochem, Darmstadt, Germany; 345–789-

20) after a Hoechst staining. An LSM 710 Meta confocal

microscope (Carl Zeiss, Oberkochen, Germany) was used for

confocal laser microscopy. Confocal images were displayed as

individual optical sections. For double labeling, immunoreactive

signals were sequentially visualized in the same section with 2

distinct filters, with acquisition performed in separated mode.

Images were processed with LSM 710 software and mounted

using Photoshop 10.0 (Adobe Systems, San Jose, CA).

The following primary antibodies were used: anti-LC3

(ab48394, for humans) rabbit polyclonal from Abcam, anti–

active caspase-3 (9661) rabbit polyclonal from Cell Signaling

Technology, anti–cathepsin D (cathD; sc-6486, for humans)

goat polyclonal from Santa Cruz Biotechnology, anti–cathB

(06–480) and anti–cathD (06–467, for rats) rabbit polyclonal

antibody from Upstate Biotechnology (Lake Placid, NY), anti–

anti-NeuN (MAB377) mouse monoclonal antibody from

Chemicon (Temecula, CA), anti–lysosomal membrane protein

1 (LAMP1; 428017, for rats) from Calbiochem, anti-GFAP

(G3893) mouse monoclonal from Sigma, anti-PGP9.5 (7863-

0504) rabbit polyclonal from Biotrend (Wangen, Switzerland),

and anti-LAMP1 (611042, for humans) mouse monoclonal

from BD Biosciences (Franklin Lakes, NJ). Anti-LC3 for rat

tissue was a generous gift from Dr Yasuo Uchiyama (Tokyo,

Japan).

TUNEL Staining
After an antigen retrieval for paraffin sections or permeabiliza-

tion (5 minutes in 0.2% Triton-X100) for cryostat sections,

TUNEL (terminal deoxynucleotidyl transferase biotin–deoxyuri-

dine triphosphate nick end labeling) staining was performed

with the DeadEnd Fluorimetric TUNEL system (Promega,

Madison, WI; G3250) according to the manufacturer’s instruc-

tions. For combined immunolabeling, sections were extensively

washed in PBS and incubated in primary and secondary anti-

bodies as described above, except that preincubation of cryostat

sections was done without Triton-X100.

Quantification of Autophagic and Lysosomal
Labeling
For rat and human thalamus, confocal images of immunocyto-

chemistry against LC3, cathD, cathB, and LAMP1 were

acquired using the confocal laser scanning microscope, and

images were then processed with Photoshop 10.0. Dots positive

for LC3, cathD, cathB, and LAMP1 were quantified using

ImageJ (NIH, Bethesda, MD) software and expressed as num-

ber of positive dots per neuron per square micrometer. For dots

positive for cathD, cathB, and LAMP1, dot areas were also

quantified using ImageJ software. To quantify autolysosomal

areas, we set a lower limit of 0.5mm2, in view of the finding

that electron microscopical images gave a mean autolysosomal

area of 0.58 6 0.28mm2 per neuron.

Statistics
Biological markers data were expressed as mean 6 standard

deviation. Rat data were derived from at least 3 independent

hypoxic–ischemic experiments, corresponding to at least 3 dif-

ferent litters. Data were analyzed statistically using JMP soft-

ware (v.10; SAS, Cary, NC). After testing each group of data

for distribution normality (using Shapiro–Wilk tests), we used a

multivariate analysis of variance (ANOVA) for histochemistry

to compare rat sham or human control versus rat HI or human

HIE values. For immunoblot, in cases of normal distribution,

Welch ANOVA test was followed by a post hoc Tukey–Kramer

test. In the case of a non-normal distribution, a Kruskal–Wallis

test (nonparametric analog of the 1-way ANOVA) was followed

by a post hoc Steel–Dwass test to compare the different time

points.

The human descriptive data were expressed as median

and range, and analyzed using Statistical Package for Social Sci-

ence software (v20.0; IBM, Armonk, NY). Univariate analyses

of variance, using the Mann–Witney–Wilcoxon and Fisher

exact tests, were performed; p< 0.05 was chosen as statistically

significant.

Results

Perinatal Characteristics of the Human
Population
Perinatal data and particularly postnatal adaptation from

the 2 groups are represented in the Table.1 There were

no statistical differences between the groups for most of

the characteristics, such as birth weight, gestational age,

and gender. As expected, there were significantly more

prenatal sentinel events, reflected by the significantly

lower umbilical artery pH and postnatal seizures in the

HIE group than in the control group. The time between

birth and death was not statistically different in the 2

Ginet et al: Autophagy in Asphyxiation
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groups, although the median value was higher in the

HIE group. In the control group, the babies died

between 1 hour and 28 days after birth (median 5 13

hours), whereas in the HIE group, the babies died

between 20 hours and 7 days after birth (median 5 44

hours).

VLNT of Human Neonates and Ventrobasal
Thalamus of Rat Pups Are Highly Vulnerable to
HI
In human newborns at term, the predominant neuronal

injury pattern after acute and severe asphyxia, known as

the “deep nuclear pattern” or “BGT (basal–ganglia–thala-

mus) pattern,” involves the perirolandic cortex, the basal

ganglia, the thalamus, and sometimes the brainstem and

hippocampus.19 But the thalamus, and particularly the

VLNT, is especially sensitive to HI,19,20 so we focused

on it, and confirmed this sensitivity. In 3 of 5 HIE cases,

cerebral MRI (T1 and T2) was performed and showed

severe thalamic lesions that were confirmed with

diffusion-weighted imaging–ADC as is shown in Figure

1D. Diffusion was severely restricted with ADC levels in

the ventrolateral thalamus, ranging from 0.53 to 0.73 3

103mm2/s (normal values for thalamus 5 1.0–1.1 3

103mm2/s). Moreover, hematoxylin and eosin staining

revealed pyknotic nuclei and cell shrinkage, confirming

neuronal suffering in the VLNT in HIE cases, whereas

the control group did not show neuronal injury in the

VLNT (see Fig 1E) or in several other gray matter

regions (not shown). Similar histological results were

observed for the ventrobasal thalamus (VBT) at 24 hours

in rat pups in our severe model of neonatal cerebral HI

(see Fig 1C).

HI Increases Autophagosome Abundance in
Thalamus of Both Rat Pups and Human
Newborns
In the neonatal rat model, Western blot analyses of tha-

lamic extracts showed that HI caused an increase in the

expression of LC3-II, the lipidated form of LC3, which

is a marker of autophagosomal membranes (Fig 2A).

Because the LC3-II expression level was highest at 24

hours after HI, we decided to focus our investigations on

the 24-hour time point in the rat model.

The effect of HI on autophagy was further investi-

gated by performing immunohistochemistry against LC3.

Immunoperoxidase labeling showed a marked increase in

the presence of LC3-positive dots (presumably autopha-

gosomes) in the VBT of rats at 6 hours or 24 hours after

HI, and to some extent at 72 hours, and in the VLNT

of the human HIE cases (see Fig 2). The numbers of

LC3-positive dots per neuron were then quantified in

confocal images of the VBT of HI rat pups and the

VLNT of HIE newborns and compared to counts in

sham-operated rats or human control cases, respectively.

At 24 hours after HI in rats, the number of LC3-positive

dots per neuron was increased by 6-fold compared to

sham-operated animals. Similarly, all human HIE cases

displayed an up to 10-fold increase in LC3-positive dots

compared to control cases, and this was persistent at 7

days (HIE Case 3).

Electron microscopy in HI rat pups revealed that

dying VBT neurons displayed marked autophagic charac-

teristics, containing numerous vacuoles, autophagosomes,

and autolysosomelike structures in their cytosol (Fig 3).

More specifically, the cell death resembled a recently

defined kind of autophagic cell death called autosis,21

which has been shown to involve sequential phases called

1a, 1b, and 2. Each of these phases was represented.

Thus, some neurons displayed numerous empty vacuoles,

autophagosomes, and autolysosomes (arrowheads) in the

cytosol, features representative of autosis phase 1a. In

others, parts of the perinuclear space were dilated and

contained membrane-bound cytosolic regions, the defin-

ing characteristic of phase 1b. Still other dying neurons

displayed features of phase 2: gross ballooning of parts of

the perinuclear space, and the presence of swollen organ-

elles and rupture of the plasma membrane (see Fig 3B).

In addition, these dying neurons also showed some mor-

phological characteristics of apoptosis (chromatin con-

densation, shrinkage of the cytoplasm) and necrosis

(observed in phase 2 autosis such as swelling of organ-

elles). These ultrastructural results thus confirmed that

HI induced an increase in autophagosomes in neurons

from the rat VBT.

Lysosomal Activity and Autophagic Flux Are
Increased following HI in Thalamus of Rat Pups
and Human Newborns
To evaluate whether the increased number of autophago-

somes was due to enhanced autophagic flux (autophago-

some formation and autolysosomal degradation after

autophagosome–lysosome fusion) or to failed lysosomal

degradation, lysosomal activity was investigated. Immu-

nohistochemistry against different lysosomal markers was

performed, and the numbers and sizes of positive dots

were quantified. An increased number of lysosomes, espe-

cially of very large lysosomes (>0.5mm2), which are puta-

tively autolysosomes, would reflect an increase in

autophagic flux. In neurons in the thalamus of rat pups

and of human newborns, the number of LAMP1-positive

vesicles was strongly increased by HI. Moreover, among

the positive dots the percentage of larger ones

(>0.5mm2), which we assume to represent autolysosomes,

increased by 12-fold after HI in rats and by 8-fold in
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FIGURE 2: Hypoxia–ischemia (HI) increases the number of neuronal autophagosomes in the thalamus of both rat and human
neonates. (A) Representative immunoblots and the corresponding quantification of LC3-II expression after HI in rat pups, dem-
onstrating a persistent increase in autophagosomes peaking at 24 hours (6 hours: 116 6 20%, n 5 13; 24 hours: 176 6 42%
n 5 16; 48 hours: 146 6 34%, n 5 17; 72 hours: 149 6 31%, n 5 10; 1 week: 156 6 22%, n 5 8) compared to sham-operated ani-
mals (sham P8: 100 6 6%, n 5 11; sham P14: 128 6 11%, n 5 7). Values are mean 6 standard deviation (SD) and are expressed
as a percentage of sham P8 value. Steel–Dwass test: *p < 0.05, **p < 0.01, ***p < 0.001. (B) Representative LC3 immunoperoxi-
dase labeling in the ventrobasal thalamus of rat pups at different time points indicating an increase in LC3-positive dots after
HI. High magnifications of a representative neuron in a sham-operated rat and 24 hours after HI are shown. Bars 5 20mm. (C)
Representative LC3 immunoperoxidase labeling in the ventrolateral thalamus of human newborns illustrating the increase in
LC3 expression in hypoxic–ischemic encephalopathy (HIE) cases compared to control. High magnification shows punctate label-
ing in the HIE case. Bars 5 20mm. (D) Representative confocal images of neurons in ventrobasal thalamus of rat pups and quan-
tification of LC3-positive dots (red) in neuronal autophagosomes showing an increase (24 hours HI: 0.278 6 0.069; sham:
0.046 6 0.018 LC3-positive dots/neuron/mm2) at 24 hours after HI. The quantification was performed on neurons labeled with
NeuN (green) in 5 rats (20 neurons/rat). Bar 5 20mm. (E) Representative confocal images of neurons in ventrolateral thalamus
of human newborns, and quantifications. Left graph: numbers of LC3-positive dots in the 6 control and 5 HIE cases shown indi-
vidually. Right graph: average numbers of LC3-positive dots in control (0.028 6 0.003) and HIE (0.328 6 0.035) cases.
Bar 5 50mm; n�50 neurons/case. Nuclei are stained with Hoechst (in blue). Values are mean 6 SD. Welch analysis of variance:
**p < 0.01, ***p < 0.001.
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human HIE (Fig 4). Double immunolabeling against

LC3 and LAMP1 showed that neurons with a strong

punctate LC3 labeling also showed numerous LAMP1-

positive vesicles in HI human newborns (see Fig 4E) and

rat pups (not shown).

Likewise, immunohistochemistry against the lysoso-

mal protease cathD demonstrated many more cathD-

positive dots in HI neurons in both rats (NeuN-positive

cells) and humans (PGP9.5-positive cells; Fig 5). More-

over, the size repartition per neuron revealed >34% large

FIGURE 3: Neonatal hypoxia–ischemia (HI)-induced neuronal death in the rat thalamus with autophagic characteristics. (A) Rep-
resentative electron micrographs of neurons in sham-operated rat pups (right panel) and 24 hours after HI (middle and left
panels) showing numerous multimembrane vacuoles (presumably autophagosomes) containing cytoplasmic material as illus-
trated at high magnifications. Bars 5 1mm, 0.5lm for higher magnifications. ER 5 endoplasmic reticulum; GA 5 Golgi apparatus;
m 5 mitochondrion; N 5 nucleus. (B) Electron microscopic analyses revealed that dying neurons in the thalamus showed mor-
phological features of autosis (autophagic cell death). Some dying neurons displayed numerous empty vacuoles, autophago-
somes (asterisks), and autolysosomes (arrowheads) in the cytosol representative of autosis phase 1a. Others exhibited swollen
parts of the perinuclear space containing membrane-bound cytosolic regions (arrows, phase 1b). Then, some dying neurons dis-
played features of phase 2 autosis: focal ballooning of the perinuclear space, swollen organelles, and rupture of the plasma
membrane. In addition, these dying neurons also showed some morphological characteristics of apoptosis (chromatin conden-
sation, shrinkage of the cytoplasm) and necrosis (observed in phase 2 autosis such as swelling of organelles). INM 5 inner
nuclear membrane; ONM 5 outer nuclear membrane; PNS 5 perinuclear space.
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FIGURE 4: Hypoxia-ischemia (HI) in the thalamus of both rat and human neonates increases the number and size of LAMP1-
positive vesicles. (A, B) Representative immunoperoxidase labeling of LAMP1 illustrating the increase in its expression after HI in
rats (A) and in human hypoxic–ischemic encephalopathy (HIE) cases (B). High magnifications of a representative neuron are shown
in each case. At 72 hours after HI, the positive labeling probably corresponds mainly to macrophages, as is suggested by the cel-
lular morphology. Bars 5 20mm. (C) Confocal images of LAMP1 expression (green) in neurons labeled with MAP2 (red), near the
periphery of the lesion in HI rat pups. Quantification of these data shows increases in the number of dots/neuron/mm2 (left histo-
gram; sham: 0.065 6 0.018; 24 hours HI: 0.302 6 0.077) and in the percentage of large dots with respect to all dots (right histo-
gram; sham: 2.6 6 1.3%; 24 hours HI: 33.6 6 3.3%) in rat pups 24 hours after HI; n 5 5 rats (20 neurons/rat). (D) A similar analysis
showing a strong increase of LAMP1 dots in neurons in human HIE cases. The 2 histograms on the left represent the number of
dots/neuron/mm2 (upper) and the percentage of large dots (>0.5mm2; lower) in the 6 control and the 5 HIE cases shown individu-
ally. The histograms on the right represent the average numbers. Human newborns with severe HIE display far more LAMP1-
positive dots (control: 0.033 6 0.022; HIE: 0.261 6 0.05) and with a much higher proportion of large vesicles (control: 4.2 6 1.9%;
HIE: 32.2 6 5%). ***p < 0.001. (E) Double immunolabeling against LAMP1 (in green) and LC3 (in red) in human newborn brain sec-
tions reveals that in HIE cases neurons with strong autophagic features also display numerous putative autolysosomes (shown by
numerous large LAMP1-positive dots). Nuclei are stained with Hoechst (in blue). Bars 5 20mm.
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FIGURE 5: Hypoxia–ischemia (HI) in the thalamus of both rat and human neonates increases the number and size of cathepsin
D (cathD)-positive vesicles. (A, B) Representative immunoperoxidase labeling of cathD illustrating the increase in cathD expres-
sion after HI in rats (A) and in human hypoxic–ischemic encephalopathy (HIE) cases (B). High magnifications of a representative
neuron are shown in each case. At 72 hours after HI, the positive labeling probably corresponds mainly to macrophages, as is
suggested by the cellular morphology. Bars 5 20mm. (C, D) Confocal images of cathD expression (red) in neurons labeled in
green with (C) NeuN for rats or (D) PGP9.5 for humans. Quantification of these data shows increases in the numbers of cathD
dots. (C) In the rat HI model, the numbers of dots/neuron/mm2 (upper graph) are 0.039 6 0.009 for sham and 0.112 6 0.031 for
24 hours HI. The percentages of dots >0.5mm2 with respect to all dots are 2.6 6 1% for sham and 34.4 6 4% for 24 hours HI.
Nuclei are stained with Hoechst (in blue). (D) For human HIE, the 2 histograms on the left represent the number of dots/neu-
ron/mm2 (upper) and the percentage of large dots with respect to all dots (>0.5mm2) (lower) in the 6 control and 5 HIE cases
shown individually. The 2 histograms on the right represent the average numbers. Human newborns with severe HIE display
far more cathD-positive dots (control: 0.033 6 0.007; HIE: 0.166 6 0.026) with a much higher proportion of large vesicles (con-
trol: 4.3 6 1%; HIE: 28.6 6 4%); n�50 neurons/case. Values are mean 6 standard deviation. Welch analysis of variance:
***p < 0.001. Bars 5 20mm.
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dots (>0.5mm2) after HI in rats and >28% in humans,

whereas in controls the percentage was <3% in both rats

(see Fig 5C) and humans (see Fig 5D). Immunolabeling

for another lysosomal protease, cathB, gave similar results

in the rat HI model (data not shown). These results sug-

gest increased lysosomal activity following HI.

To verify this, we studied the activity, rather than

merely the expression, of 2 lysosomal enzymes, acid phos-

phatase (Fig 6A) and b-N-acetylhexosaminidase (see Fig

6B), and found that in each case their activity was

enhanced following HI in rat pups, as shown by increased

acid phosphatase and b-N-acetylhexosaminidase–positive

dots.

To further investigate the change in the level of

autophagy, we studied the expression of p62/SQSTM1, a

protein selectively degraded by autophagy, by immuno-

blot on rat extracts.22 As is shown in Figure 6C, p62

expression was significantly decreased 24 hours after HI.

Immunohistochemistry against p62 confirmed the

decrease in p62 expression 24 hours after HI in rat pups

(see Fig 6D) and also in HI human newborns (see Fig

6E).

Altogether, these results indicate that HI enhances

autophagic flux in thalamic neurons in rats and humans.

Enhanced Autophagy in Relation to Neuronal
Death in Thalamus of Both Rat Pups and Human
Newborns
To investigate the role of the increased neuronal autoph-

agy following HI, we next evaluated the relationships

between enhanced autophagy and cell death, focusing on

the activation of caspase-3 as a marker of apoptosis and

using DNA fragmentation and morphology as additional

markers of cell death.

In rat pups, we showed by immunoblotting that

cerebral HI increases progressively the expression levels

both of cleaved caspase-3 and of the caspase-dependent

cleavage product (120kDa) of a-fodrin from 6 hours to

at least 72 hours after HI (Fig 7). Immunohistochemistry

for cleaved caspase-3 clearly confirmed the activation of

caspase-3 in rat VBT, where DNA fragmentation was

also detected by TUNEL staining (Fig 8). In human

newborns, we likewise showed caspase-3 activation and

TUNEL labeling after HI, whereas the controls were

always negative for both caspase-3 and TUNEL staining.

FIGURE 6: Lysosomal activity is enhanced by cerebral
hypoxia–ischemia (HI) in the thalamus of both rat and
human neonates. Histochemistry for the activity of (A) acid
phosphatase and (B) b-N-acetylhexosaminidase shows an
increase in the number of positive dots. Bars 5 20mm. (C)
Representative immunoblots for p62/SQSTM1 and the cor-
responding quantification, showing that p62 expression in
the rat thalamus is significantly reduced 24 hours after HI
(sham: 100 6 7%, n 5 9; 24 hours HI: 65 6 17%, n 5 8). Val-
ues are mean 6 standard deviation and are expressed as a
percentage of sham value. Welch analysis of variance:
**p < 0.01. (D, E) Representative confocal images of p62 (in
green) and lysosomal markers (LAMP1 and cathepsin D
[cathD] in red) in (D) the rat HI model and (E) human new-
borns with severe hypoxic–ischemic encephalopathy (HIE)
confirming that HI induces a decrease in p62 expression
(and no p62 accumulation) in neurons displaying strong
autophagic features. Nuclei are stained with Hoechst (in
blue). Bars 5 20mm.
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FIGURE 7: Caspase-3 (casp3)-positive neurons are highly autophagic in the thalamus of both rat and human neonates after
hypoxia–ischemia (HI). (A) Representative immunoblots for cleaved casp3 and a-fodrin in rat thalamic extracts and the corres-
ponding quantifications demonstrate that HI triggers casp3 activity as shown by an increase in both its cleaved active form
(17kDa; 6 hours: 671 6 477%; 24 hours: 2,135 6 1,325%; 48 hours: 2,826 6 1,502%; 72 hours: 3,236 6 2,430%) and the casp3-
dependent cleavage of a-fodrin (120kDa; 6 hours: 153 6 49; 24 hours: 388 6 295%; 48 hours: 438 6 326%; 72 hours:
448 6 236%; Steel–Dwass test). Immunoblots for a-fodrin also indicate an HI-induced activation of calpains, as suggested by the
high level of the calpain-dependent cleavage product (150kDa; 6 hours: 766 6 487%; 24 hours: 1,268 6 573%; 48 hours:
1,259 6 494%; 72 hours: 1,037 6 841%; Tukey–Kramer test). Values are mean 6 standard deviation (SD). *p < 0.05, ***p < 0.001.
(B) Representative images of immunoperoxidase labeling against cleaved casp3 confirm a strong activation of casp3 after HI in
the rat ventrobasal thalamus at 6, 24, and 72 hours. (C) Peroxidase immunohistochemistry against cleaved casp3 (in brown) fol-
lowed by a Nissl stain (in purple) reveals that human hypoxic–ischemic encephalopathy (HIE) brains expressed numerous casp3-
positive neurons (arrows) with highly condensed and pyknotic nuclei (high magnification) compared to control newborns.
Bars 5 20mm. (D, E) Confocal images showing LAMP1 (in green) and cleaved casp3 (c-casp3; in red) distribution and the corres-
ponding quantifications illustrating that casp3-positive neurons show a high number of LAMP1-positive dots (upper graph), with
a strong proportion of large ones (>0.5mm2; lower graph) in both (D) the ventrobasal thalamus of rat pups 24 hours after HI and
(E) the ventrolateral thalamus of human newborns with severe HIE (n 5 5). The numbers of LAMP1-positive dots (0.29 6 0.1 dots/
mm2 for rats; 0.23 6 0.09 dots/mm2 for humans) and the percentage of dots >0.5mm2 (32 6 9% for rats; 27 6 10% for humans) per
neuron expressing c-casp3 are not significantly different (p > 0.05) from the average values obtained in overall neurons after HI
(0.30 6 0.08 dots/mm2 and 34 6 3% for rats; 0.26 6 0.05 dots/mm2 and 36 6 3% for humans). Nuclei are stained with Hoechst (in
blue). Values are mean 6 SD. Welch analysis of variance was used. n�20 neurons per rat or per human case. Bars 5 20mm.

14



FIGURE 8: TUNEL-positive neurons are highly autophagic in the thalamus of both rat and human neonates after hypoxia–ische-
mia (HI). (A) Representative images of peroxidase revelation of TUNEL staining following HI demonstrate that neonatal HI
strongly increases the number of TUNEL-positive cells at 24 hours after HI. Black rectangles correspond to the higher magnifi-
cations in the ventrobasal thalamus. Bar 5 100mm. (B) Confocal images of LAMP1 expression (in red) combined with a TUNEL
stain (in green) and corresponding quantifications demonstrate that TUNEL-positive neurons of the rat ventrobasal thalamus
24 hours after HI show an increased number of LAMP1-positive dots (upper graph, 0.33 6 0.14 dots/mm2) with a strong per-
centage of large dots (>0.5mm2; lower graph, 26.43 6 12.09%) which are not statistically different compared to the overall HI
neurons (0.30 6 0.08 and 34 6 3%, respectively). Bars 5 20mm. Nuclei are stained with Hoechst (in blue). (C) Confocal images
showing cathepsin D (cathD; in red) combined with a TUNEL stain (in green) and the corresponding quantifications demonstrat-
ing that TUNEL-positive neurons in the ventrolateral thalamus of human newborns show numerous cathD-positive dots (upper
graph, 0.18 6 0.03 dots/mm2), with a strong proportion of large ones (>0.5mm2; lower graph, 26.57 6 7.45%) in severe hypoxic–
ischemic encephalopathy (n 5 5), although the numbers are not statistically different (p > 0.05) from the average value obtained
in overall neurons after HI (0.16 6 0.03 dots/mm2 and 28.57 6 3.71%, respectively). Values are mean 6 standard deviation.
Welch analysis of variance was used. n�20 neurons/rat or case. Bars 5 20mm.
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As apoptotic and autophagic processes share several

regulators and as autophagy has been shown to trigger

caspase-3 activation in cerebral HI, we evaluated the level

of autophagy in caspase-3–positive neurons by quantify-

ing the number and size of LAMP1-positive vesicles in

rats (see Fig 7D) and humans (see Fig 7E). Double label-

ing experiments revealed that many thalamic neurons

positive for cleaved caspase-3 presented a strong punctate

LAMP1 staining, suggesting that the 2 mechanisms occur

in the same neurons in HI rats and human HIE brains.

Similar results were obtained with TUNEL stain in the

rat model 24 hours after HI (see Fig 8B) and in human

HIE brains (see Fig 8C).

Altogether, these results reveal that autophagy is

enhanced in dying neurons of human VLNT and rat

VBT.

Discussion

The present study was designed to investigate the possibil-

ity of enhanced neuronal autophagy in severe perinatal

HIE in human newborns and to validate the clinical rele-

vance of results obtained by our group and others in

experimental HI rodent models. We previously demon-

strated that HI in P7 rats enhances neuronal autophagy in

CA3 hippocampal and cortical dying neurons.8,21 More-

over, in a similar HI mouse model, the specific inhibition

of autophagy through neuron-specific deletion of the

autophagy-related gene Atg7 conferred resistance to hippo-

campal neurons,10 providing a strong argument for a

death-mediating role of autophagy in rodent neonatal HI.

Our human brain specimens came from autopsied

newborns who died in the context of severe hypoxic–

ischemic encephalopathy. It was therefore logical to relate

the human results to those from an animal model that is

likewise severe. The present neonatal HI rodent model,

proposed by Vannucci >30 years ago,4 has become the

standard model and has allowed several deleterious cellu-

lar pathways to be identified.3 One conclusion has been

that excitotoxic and HI-induced neuronal death in

immature brains occurs across a spectrum ranging from

apoptosis to necrosis,7 but the situation has been compli-

cated by evidence for multiple interacting neuronal death

mechanisms,3,23 including a death-mediating role of

enhanced autophagy in different brain regions of neona-

tal rodents after HI.8,9,24,25

Neuronal Autophagy Is Enhanced in Neurons of
Human VLNT after HI
We here report for the first time the presence of

enhanced autophagy in dying neurons after HI in human

newborns. We compared samples to tissues from new-

borns who died due to other life-incompatible condi-

tions, where no enhanced autophagy could be detected.

The main differences between the HIE and the control

groups resided in the finding that all HIE cases presented

sentinel events affecting them already just before birth.

The control group presented a compromised postnatal

adaptation due mainly to respiratory insufficiency. Sup-

ported by our data from the rat model, we can conclude

that autophagic flux, meaning autophagosome formation

and autolysosomal degradation, is increased in VLNT

human neurons.

First, all HIE cases display an increased number of

LC3-positive vesicles compared to control cases. After

conjugation to phosphatidylethanolamine, LC3 is con-

verted to the LC3-II form and recruited to the autophago-

somal membrane until its degradation by lysosomal

hydrolases. Quantification of LC3-positive dots is consid-

ered one of the most reliable methods for evaluating auto-

phagosome abundance.26 Other complementary strategies

are the measure of LC3-II expression level after immuno-

blotting and the identification of multimembrane com-

partments surrounding cytoplasmic materials including

organelles by electron microscopy. The latter two techni-

ques were not possible on the human brain samples but

were performed on rat pup brains, confirming that neona-

tal HI increases autophagosomal numbers in the rat VBT.

To confirm an enhanced autophagic flux, it is

essential to demonstrate that increased autophagosome

abundance occurs along with a higher level of lysosomal

clearing, because a defect in degradation would result in

autophagosome accumulation. After human and rat neo-

natal HI, lysosomal vesicles labeled with LAMP1, cathD,

and/or cathB were not only more numerous but also

larger in thalamic neurons containing abundant autopha-

gosomes (LC3-positive dots), indicating greater autopha-

gic lysosomal activity with increased presence of

autolysosomes. This hypothesis was strengthened by our

results in the rat model showing degradation of the

autophagy substrate p62 and enhanced activity of 2 lyso-

somal enzymes in VBT after HI. In both rat and human

thalamic neurons, p62 immunolabeling confirmed that

p62 was apparently reduced and certainly not accumu-

lated following HI. Several studies have shown enhanced

neuronal autophagy in diverse in vitro27,28 and in

vivo29,30 models of excitotoxicity, including adult and

neonatal cerebral HI.9,10,13,14,31–35

Enhanced Autophagy Occurs in Dying Neurons
of Human VLNT after HI
Our results also show, in both humans and rats, that

many of the neurons expressing enhanced autophagy

were dying, because many of them were positive for acti-

vated caspase-3 and for TUNEL. In humans, very few
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postmortem neuropathological studies of neonatal HIE

are available, and most described only necroticlike cell

death,36 although a few did mention the presence of apo-

ptosis in the cerebral cortex and basal ganglia.3 Our

results make it clear that apoptoticlike cell death with

apoptotic (but also necrotic) features including caspase-3

activation did occur in VLNT. This was yet another

point of resemblance between the human and the rodent

neuropathologies. Several rodent studies have described

related results in cerebral ischemia in both adults29,31,34

and neonates.9,10 However, in our neonatal HI rat model

the relationships with apoptosis can be region-dependent,

because strong autophagy is activated simultaneously

with apoptosis in cortical neurons, whereas in the degen-

erating hippocampus CA1 neurons are purely apoptotic

(not autophagic) and CA3 neurons are purely autophagic

(not apoptotic).9 The neuronal cell death induced by HI

in the thalamus of rat pups is thus more comparable to

that occurring in the cortex. In such cases, with autoph-

agy and apoptosis activated in the same neuron, the

autophagy may perhaps trigger an apoptotic execution, as

has been shown in the death of cortical neurons exposed

to different apoptotic stimulations.18

Both human and animal studies have demonstrated

sexual dimorphism in neonatal cerebral HI.37–40 It has

been shown that there is sex-specific activation of cell

death signaling pathways. For example, cell death in

females occurs mainly via a caspase-dependent pathway,

whereas in males caspase-independent pathways (apopto-

sis-inducing factor [AIF], poly[adenosine diphosphate

ribose] polymerase) seem to be more important play-

ers.41–43 We currently work only with male rat pups to

avoid any possible gender differences in signaling. How-

ever, in the human data we were obliged to use both

genders because of the scarcity of available brain tissue.

However, when the HI insult is severe in rodents, there

are no significant sex differences in the extent of brain

damage41 (see Fig 1B) or in the level of LC3-II expres-

sion (not shown).41

We did not, however, address the function of the

neuronal autophagy in the present study. Enhanced

autophagy can be related to cell death in different ways.

Its best known function is a protective reaction to main-

tain cell survival, as has been described in nutrient depri-

vation or pathogen invasion.44–46 It can also be just an

epiphenomenon or, at the other extreme, an active player

in the cell death machinery. Evidence for a detrimental

role in cerebral ischemia is currently much stronger than

that for a protective one.23 In particular, strong evidence

for a death-promoting role of autophagy has been

deduced in several cerebral ischemia models from the

neuroprotective effects of its inactivation, achieved not

only by pharmacological means in numerous

papers,11,14,47 but also by the specific knockdown of

autophagy genes in adult cerebral ischemia35 or their spe-

cific deletion in a conditional knockout model of neona-

tal HI.10 We recently demonstrated that downregulation

of the autophagy-related protein beclin1 reduced the

striatal lesion in the same hypoxic–ischemic rodent

model as in the present experiments.48 Our data corrobo-

rate the study of Koike and colleagues showing that the

hippocampus becomes resistant in mice when another

autophagy-related gene, Atg7, is specifically inhibited in

neurons after mild HI.10 Moreover, we recently showed

that cardiac glycosides such as neriifolin were able to

inhibit a form of autophagic cell death, designated auto-

sis, that occurs in the present model.21 Our present

results indicate that the neuronal death in the thalamus

resembles autosis but has features of apoptosis as well.

Of particular interest, neonatal hypoxic–ischemic brain

damage and autophagy in rats were both strongly

reduced by treatment with neriifolin in both cortex and

thalamus.21 In cases where neuronal enhanced autophagy

promotes cell death, the cellular pathways involved can

be various. It can trigger necrosis49,50 but more often

apoptosis.18,51–53 We previously demonstrated that some

widely used apoptotic stimuli can activate autophagy flux

in primary cortical neurons with a strong contribution to

caspase-dependent (caspase-3 activation) and caspase-

independent (AIF nuclear translocation) apoptosis.18 In

specific conditions, autophagy can also be a cell death

mechanism by itself, independently of apoptosis or

necrosis.12,19,54–56 Due to its described paradoxical roles,

the function of enhanced autophagy in cell death is still

a subject of debate.12,57

In conclusion, we have shown for the first time

that autophagy is enhanced in thalamic neurons of

human newborns with HIE as well as in a rodent model

of severe perinatal asphyxia. We hypothesize, based on

experimental results on different rodent models of cere-

bral ischemia, that autophagy could be involved in trig-

gering neuronal death in the human HIE. Experimental

neuroprotective strategies targeting autophagy could then

be a promising lead to follow for the development of

future therapeutic approaches.
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