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Abstract: Despite improvements in survival after the introduction of chemo-radiotherapy (CRT) in the treatment of patients with cervical 
cancer, loco-regional control of this disease continues to be a major problem. The present article reviews current and emerging therapeu-

tic strategies combining CRT with novel molecular agents that specifically target the abnormal tumor microenvironment, with the aim of 
improving local control and survival in patients with locally advanced cervix cancer. 

The evidence supporting the biological rational to combine novel non-cytotoxic agents with CRT is strong, and drugs targeting different 
molecular pathways are currently under clinical development (EGFR inhibitors, COX-2 inhibitors, hypoxia targeted agents, etc). Early 

pre-clinical and clinical strategies also favor the use of vascular-targeted agents with the aim to normalize the abnormal tumor vascula-
ture, increase tumor oxygenation, and reduce interstitial fluid pressure (IFP). The integration of these novel targeted therapies with CRT 

in clinical trials is discussed, as well as new and promising biomarkers to test drug activity.  
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INTRODUCTION 

Cancer of the cervix is the second highest cause of cancer death 
among women worldwide, with an incidence of 500,000 cases di-
agnosed per year and more than 288,000 associated deaths in 2006 
[1]. 

 In the vast majority of established cervical carcinomas, persis-
tent infection with oncogenic types of genital human papilloma 
virus (HPV) have been detected, and this is considered the major 
stimulus for cervical cancer development [2, 3]. New vaccines have 
become available to prevent HPV infection, however in women 
already infected with the virus, vaccination has no effect on viral 
clearance, and the risk of progression to cervical intraepithelial 
neoplasm (CIN) and invasive cancer is higher among this subset of 
patients [4]. Thus, the therapeutic impact of these vaccines on cer-
vical cancer incidence will take several generations to determine [5, 
6]. 

Since the publication in 1999 of 5 randomized trials of platinum 
based-chemotherapy (CT) in patients with cervix cancer and the 
clinical recommendations announced by the National Cancer Insti-
tute (NCI), concurrent radiotherapy (RT) and cisplatin-based CT 
are considered standard management with a significant improve-
ment in survival rates compared with RT alone [7-11]. Despite this 
improvement there are still a significant number of patients who do 
not achieve pelvic control and eventually die of disease. Thus, the 
development of therapeutic strategies that can target chemo-
radiation resistant disease is essential. There is strong evidence that 
a variety of different targets involved in signal transduction, onco-
gene transcription factors, cell death, angiogenesis, and prostaglan-
din biosynthesis are implicated in cervix tumor growth, invasion, 
metastasis, and resistance to standard treatments. For these reasons, 
current areas of interest are the combination of standard CRT with 
novel non-cytotoxic agents that target the tumor microenvironment 
(e.g., hypoxia, angiogenesis and IFP, growth factors, etc) and onco-
genes associated with HPV early protein 6 and 7 (E6/E7). The inte-
gration of these novel targeted therapies in combination with CRT 
is expected to enhance tumor cell killing and provide better thera-
peutic responses, without the burden of increased or overlapping 
toxicities. 
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Our discussion will focus on current and upcoming studies in-
vestigating biologically targeted treatments in combination with 
CRT with the aim to improve local control and survival in cervix 
cancer patients. 

HPV and Its Influence on the Tumor Microenvironment  

HPVs are sexually transmitted agents that contribute to car-
cinogenesis and are consistently expressed in cervical cancer. More 

than 30 types of HPV have been described and are classified into 

low and high risk on the basis of their oncogenic potential [12]. 

Functionally, high risk HPV infection (HPVs 16, 18, 31, 33, 35, 45, 

51, 52 and 56) contributes to carcinogenesis and tumor progression 

predominantly through the action of two viral-encoded proteins, E6 

and E7. Fig. (1) One major function of E6 and E7 is to disrupt the 

activity of two tumor suppressor genes, p53 and pRB, respectively 

[13, 14]. This disruption results in dysregulated proliferation, unre-

stricted cell cycle entry, and amplification of oncogenes, transcrip-

tional factors and growth factors (e.g. c-myc, c-fos, c-jun, H-ras, 

erb-b2, transforming growth factor  (TGF ), vascular endothelial 
growth factor - VEGF) [15-18]. These altered phenotypes contrib-

ute to a multi-step process in the development of cervix cancer. One 

critical feature that must be acquired by transformed cells is the 

ability to recruit their own blood supply, a process known as 

angiogenesis [19]. 

In virally infected cells, a link between loss of tumor suppressor 

genes p53 and pRB, and dysregulation of angiogenesis has been 

described [20-22]. Analysis of angiogenesis inducers and modula-
tors in different stages of cervix cancer has shown that the presence 

of HPV-16 in human epithelial cells results in a decrease of the 

anti-angiogenic factors thrombospondin 1 and 2 (TSP-1, TSP-2) 

and the expression of proangiogenic molecules, such as basic fibro-

blast growth factors (bFGF), interleukin 8 (IL-8), TGF , tumor 

necrosis factor  (TNF ) and VEGF [23-25]. More recently, the 

expression of E6 and E7 proteins in squamous epithelial cells from 

an HPV16 transgenic mouse model has been associated with early 

activation of the angiogenic pathway and rapid induction of VEGF 

in pre-malignant and tumor tissue. [26, 27]. Well documented data 

indicates the role of VEGF in cervix tumor angiogenesis, [28, 29] 

and clinical evidence suggests that the over-expression of this pro-
angiogenic factor correlates with tumor development and is a prog-

nostic indicator for overall and disease free survival in cervix can-

cer patients [30].  



112    Reviews on Recent Clinical Trials, 2008, Vol. 3, No. 2 Herrera et al. 

Angiogenesis, Interstitial Fluid Pressure and Hypoxia 

The structure and function of the newly formed vasculature in 
tumors is disorganized, with irregularly shaped vessels with areas 
of dilation and constriction [31]. Similarly, pericytes lose their as-
sociation with endothelial cells, contributing to high vascular per-
meability. These structural abnormalities result in impaired tumor 
perfusion and high tumoral IFP [32-34]. Interstitial fluid pressure is 
a new and promising biomarker of vascular complexity and tumor 
response to therapy in cervix cancer and other solid tumors [32, 35]. 
Patients with cervix cancer and high IFP are significantly more 
likely than those with low IFP to recur after RT and die of pro-
gressive disease, independent of other prognostic factors [34]. 
IFP is easily evaluable using a needle probe technique, and corre-
lates with capillary flow resistance, tumor perfusion, and oxygena-
tion [35, 36]. These abnormal micro-environmental features cou-
pled with other factors such as anemia [37] and transient tumor 
blood flow fluctuations [38] result in profoundly hypoxic regions in 
tumors. Clinically significant levels of hypoxia have been measured 
in cervical cancer using needle-electrode-techniques, nitroimidazole 
drugs that bind in hypoxic regions or endogenous tissue bound or 
circulating proteins that are up regulated by hypoxia [39-43]. In 
general, cervical cancer hypoxia has been associated with more 
malignant phenotypes [44, 45] higher rates of metastatic disease 
[39, 40, 46] and higher recurrence rates regardless of whether 
treatment is RT or surgery [44]. It is now well established that hy-
poxia contributes to radiation resistance by decreasing the availabil-
ity of reactive oxygen species, up-regulation of angiogenesis and 
metastasis genes, and altering cell-cycle checkpoints and DNA 
repair, thereby inducing genetic instability and more aggressive 
tumor phenotypes[33, 47-49]. Novel therapies designed to target 
the hypoxic response and defective DNA repair may therefore be 
effective as chemopreventive agents or as adjuncts to surgery, RT 
and CT.  

There is also pre-clinical data indicating that the over-
expression of HPV-16 E6 and E7 oncoproteins contributes to en-
hanced angiogenesis in cervical cancer cells via stimulation of hy-
poxia-inducible factor alpha (HIF- ) in a VEGF dependent manner 
[50]. HIF-1  is a downstream effector of the phosphatidylinositol 3-
kinase (PI3K) - alpha serine-threonine-protein kinase (Akt) path-
way that modulates apoptosis and regulates the expression of many 
genes including those involved in blood vessel formation. Figure 2 
Pre-clinical data has demonstrated that activation of the PI3K/Akt 
pathway increases HIF-1  expression in tumor cells through activa-
tion of HIF-1  protein translation under hypoxic conditions [51]. 
The PI3K-Akt pathway can also be activated by members of the 
growth factor family, such as platelet-derived growth factor 
(PDGF) and VEGF [52]. The tumor suppressor gene PTEN is a 
negative regulator of this signaling network. Specifically, the loss 
of PTEN protein expression and methylation are early events in the 
development of cervical cancer and are associated with reduced 
rates of disease free survival [53, 54]. PTEN deficient cells display 
an exaggerated HIF-1  activation in response to hypoxia, and this 
finding may partially explain the more aggressive phenotype of 
these tumors [55].  

Increased intra-tumoral phosphorylated Akt has been linked to 
decreased radiation responsiveness in squamous cell carcinomas, 
thus inhibition of the PI3K-Akt pathway may provide a direct 
therapeutic approach and radiosensitization in cervix cancer [56]. 
Recent studies have focused on the development of inhibitors of the 
PI3K/AKT/PTEN pathway or its downstream effectors such as 
HIF-1 , or AKT-phosphorylated targets such as the mammalian 
target of rapamycin (mTOR). The kinase mTOR is a central regula-
tor of protein synthesis whose activity is modulated by a variety of 
signals. It was recently shown that mTOR function is down-
regulated by hypoxia independently of HIF-1  [57]. Rapamycin is a 
specific inhibitor of mTOR that can inhibit HIF-1  transcription 
through suppression of mTOR function in hypoxic cells by increas-

ing the rate of HIF-1  degradation in the proteasome [58, 59]. If 
rapamycin or other mTOR inhibitors (such as its analog CCI-779), 
as well as PI3K/Akt/PTEN inhibitors prove to be effective thera-
peutic targets of hypoxia adaptation in tumors, this could have a 
tremendous impact on tumor growth, angiogenesis, invasiveness, 
and metastatic potential in human cancers, and the combination 
with CRT in cervix cancer patients represents an attractive thera-
peutic approach. 

The extra cellular and extra vascular space is also abnormal in 
cervix tumors. Integrins are receptors for extracellular matrix pro-
teins (collagens, laminin, fibronectin) that bind the cellular compo-
nents of the interstitium to the elastic matrix. They play an impor-
tant role in cellular signaling, and have been shown to promote cell 
cycle progression in response to mitogens [60, 61]. Integrins, act as 
mechano- and chemo-receptors to facilitate compaction or expan-
sion of the interstitium in response to acute inflammation and spe-
cific cytokines such as PDGF. In this way, integrins are implicated 
in the regulation of IFP [34, 62, 63].  

It is clear that the abnormal microenvironment in cervix cancer 
contributes to the failure of standard treatments; therefore pharma-
cological agents that either target hypoxia directly, the upstream 
regulators of angiogenesis or the abnormal tumor vasculature, and 
molecular targets associated with HPV, have the potential to im-
prove patient outcome when used in combination with CRT. In 
addition, the mechanistic link between elevated IFP and abnormal 
tumor vasculature, and in particular, the strong prognostic effect of 
IFP may facilitate the evaluation of agents targeting angiogenesis, 
and could help to identify which patients may benefit most from 
these therapies.  

Incorporating Molecular Targeted Agents with CRT in Cervix 
Cancer 

We are now in the era of rationally designed molecularly tar-
geted therapies against cancer. Targeted agents are increasingly 
used, either as single agents or in combination with CRT. The 
choice of agents and combinations is dependent on understanding 
the biology of cancer and availability of anticancer agents and their 
toxicities. There is also increasing understanding of the biological 
effect of radiation on molecular pathways and mechanisms of radia-
tion resistance that will lead to the development of logical synergis-
tic combinations with targeted agents [64, 65]. Current develop-
ments in cervix cancer treatment have been to identify biologically 
active agents, and to combine them with CRT. The burden of iden-
tifying improved activity, balanced with acceptable toxicity, is 
critical. Radiation, much more than CT, has a narrower cumulative 
lifetime normal tissue tolerance that, if exceeded, may result in 
significant increase in side effects. In addition, dose-limiting late 
radiation toxicity particularly involving bowel or bladder is a sig-
nificant concern yet is usually seen 6 months or longer after treat-
ment. This pattern poses significant challenges for the design of 
phase I-II clinical trials combining CRT with molecular targeted 
agents, because toxicity following standard treatment is already at 
the upper limit of what is considered clinically acceptable. Investi-
gators have adopted novel designs for clinical trials in cervix cancer 
patients, including delayed assessment of interim end-points to 
allow the development of late effects, and dose and drug duration 
escalation schemas, particularly for oral agents given on a daily 
basis. 

Another important issue under debate is the assessment of tu-
mor response. Objective tumor shrinkage has been widely adopted 
as a standard end-point to estimate treatment efficacy [66]. How-
ever, new molecular targets may work by mechanisms unlikely to 
cause tumor regression, and there remains an important need to 
develop biomarkers to provide early evidence of drug activity not 
only in the tumor but also its vasculature. Moreover, while tumor is 
known to regress substantially in some cervix cancer patients dur-
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ing standard CRT, regression has not been shown to correlate with 
long-term patient outcome {Lim 2008 #283}. Finally, the inhibition 
of a single-cellular pathway may be not enough to result in thera-
peutic benefit. Multiple factors such as tumor cell heterogeneity and 
genetic instability may limit single-target efficacy. More likely, 
broad spectrum target drugs which hit multiple targets present in 
the tumor and/or its microenvironment may overcome tumor resis-
tance to treatment and achieve better therapeutic results. If these 
novel molecular- targeted agents have the potential to kill surviving 
tumor cell populations after standard treatment, or if they interfere 
in the mechanisms of resistance, then combination with CRT may 
lead to an important improvement in local tumor control and sur-
vival. 

EGFR Inhibitors 

The epidermal growth factor receptor (EGFR) is a transmem-
brane receptor tyrosine kinase (TK) of erb-b (also known as HER) 
family that is abnormally activated in many epithelial tumors. Sev-
eral mechanisms lead to aberrant receptor activation, including 
receptor overexpression, gene amplification, activating mutations, 
overexpression of receptor ligands, and/or loss of their negative 
regulatory mechanisms. Receptor activation leads to recruitment 
and phosphorylation of several intracellular substrates, which, in 
turn, engage mitogenic signaling and other tumor promoting activi-
ties [68, 69]. 

It was not until the late 1990s that the interaction of EGFR in-
hibitors with RT was first explored. Several investigators identified 
the capacity of radiation exposure to induce EGFR phosphorylation 
and tumor cell proliferation that could be effectively blocked by the 
addition of an EGFR signaling inhibitor [70, 71]. These findings, as 
well as work which identified an inverse relationship between the 
expression level of EGFR and response to RT in tumor model sys-
tems [72, 73] and preclinical investigations that identified the ca-
pacity of EGFR inhibition to enhance RT response in cell culture 
and in animal xenografts, [74-78] opened the door for investiga-
tions to examine the combination of EGFR inhibitors with radia-
tion. 

The common end-point of these preclinical investigations in-
volved augmentation of radiation response after the inhibition of 
EGFR signaling. Examples of specific mechanisms for enhanced 
radiation response include the capacity of EGFR inhibitors to abro-
gate radiation-induced phosphorylation of EGFR (EGFR phos-
phorylation represents a proposed mechanism underlying acceler-
ated repopulation during RT) [71], enhanced radiation-induced 
apoptosis, and attenuated radiation-induced expression of DNA 
repair proteins such as RAD 51. EGFR inhibition either with mono-
clonal antibodies (m-Ab) such as cetuximab or small molecule 
agents (gefitinib, erlotinib) has shown improvement in progression-
free survival and overall survival in colorectal, lung and pancreatic 
cancer. In head and neck cancer cetuximab has recently been shown 
to significantly improve overall survival in combination with radia-
tion alone [79]. 

Carcinoma of the uterine cervix seems to be an appropriate dis-
ease setting where there is a good biological rationale to improve 
outcome using EGFR inhibitors. EGFR over expression is seen in 
up to 70% of cervical cancers. Mathur et al. [80] have demonstrated 
increasing EGFR expression with the transition from CIN to malig-
nancy, and this over expression was correlated with poor outcome 
by other authors [81]. 

A recent phase I study of erlotinib combined with CRT in lo-
cally advanced cervix cancer has been reported in abstract form, 
establishing a maximum tolerated dose for erlotinib of 150 mg with 
no evidence of increased acute toxicity [82]. According to the NCI 
Clinical Trial Database there are two studies assessing cetuximab in 
cervix cancer: one looking at cetuximab with cisplatin in patients 
with recurrent disease and another investigating cetuximab/cisplatin 

and RT as a phase-I trial in patients with stage Ib to stage IVa dis-
ease. These trials will assess the tolerability and feasibility of add-
ing cetuximab to CRT or CT alone in cervix cancer. 

COX-2 Inhibitors 

Cyclooxygenase-2 (COX-2) is an enzyme required in the con-
version of prostaglandins (PGs) from arachidonic acid. Its tumor 
promoting activities are mediated via several mechanisms including 
conversion of procarcinogens to carcinogens, stimulation of tumor 
cell growth, prevention of apoptosis, promotion of angiogenesis and 
immunosuppression [83]. COX-2 over-expression has been re-
ported in cervix cancers in association with locally advanced stage, 
distant metastasis and poor survival [84-86]. 

Cervical cancer cell lines treated with celecoxib, a non-steroidal 
anti-inflammatory drug (NSAID) that directly inhibit the enzyme 
COX-2, are more sensitive to radiation induced apoptosis, and this 
appears to be due to an increase in G2M cell cycle arrest and inhibi-
tion of sub-lethal radiation damage repair [87-89]. In pre-clinical 
models celecoxib suppresses the growth of corneal capillaries in 
rats exposed to basic fibroblast growth factors and this potent angi-
ogenesis inhibition seems to be derived from its capacity to inhibit 
PG production via COX-2 [90]. 

While there is a biological rationale for combining CRT with 
COX-2 inhibitors to treat patients with cervix cancer, two recent 
phase I-II trials have reported increased rates of acute and late toxic 
effects. A Phase I/II RTOG study accrued 81 patients with ad-
vanced stage cervix cancer, treated with celecoxib 400 mg twice 
daily for one year in combination with RT, cisplatin and 5-
fluorouracil (5-FU). Thirty-five of 75 patients (47%) experienced 
grade 3-4 acute toxicity, which was mainly hematological and gas-
trointestinal (GI). This high rate, perhaps due to the addition of 5-
FU to cisplatin, exceeded the toxicity threshold of 35% that was 
established in advance and the regimen was therefore considered 
unacceptable for further clinical development [91]. A recent analy-
sis of efficacy and patterns of failure from this study showed that 
locoregional control continues to be problematic, with local failures 
representing 23% of the first recurrences [92].  

Our group has recently published the results of a phase I/II trial 
of celecoxib combined with cisplatin-based CRT. The effectiveness 
of the drug was assessed at the level of the tumor microenvironment 
using IFP and oxygen measurements. The acute toxicity, GI and 
hematological, was acceptable and mainly attributed to CT. How-
ever, there were higher than expected late complications, with an 
actuarial rate of grade 3-4 late toxicity at 2 years of 13.7%, mainly 
due to recto-vaginal fistulas. Celecoxib was associated with a 
modest reduction in the angiogenic biomarker IFP but this did not 
correlate with tumor response and no systematic change in tumor 
oxygenation was observed [93]. These results again highlight the 
importance of toxicity assessment as an end-point for trials of 
biologically targeted agents in addition to CRT. 

Anti-Angiogenic Agents 

Targeting the angiogenic pathway is an increasingly important 
therapeutic strategy for cervix cancer. Many of the microenviron-
mental abnormalities that have been associated with a poor 
prognosis in these patients, for example hypoxia and high IFP, are a 
reflection of the chaotic and dysfunctional tumor vasculature. 
Therefore, therapeutic strategies that combine CRT with vascular-
targeted agents that either target hypoxia directly, the upstream 
regulators of angiogenesis or the abnormal tumor vasculature may 
lead to improved patient outcome.  

Antiangiogenic therapy has been shown in laboratory and 
clinical studies to increase tumor oxygenation [94], reduce IFP [95, 
96], and reduce capillary permeability [97]. More recently, three 
distinct mechanisms that may help to explain the chemo-sensitizing 
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activity of these drugs has been described: normalizing tumor vas-
culature, preventing rapid tumor cell repopulation, and augmenting 
the antivascular effects of chemotherapy [98]. 

Jain [32] has hypothesized that antiangiogenic treatment causes 
time-dependent normalization of the tumor vasculature and that an 
optimal window exists when vascular efficiency is maximal. If so, 
the timing of how antiangiogenic treatment is combined with 
conventional CRT in patients with cervix cancer may be critical to 
assuring maximal improvement in outcome. This implies the need 
to incorporate biological monitoring of the tumor 
microenvironment into future studies of these agents. IFP may be 
useful in this regard given our clinical results, as may dynamic 
contrast-enhanced magnetic resonance and computed tomography 
imaging measurements of vascular permeability [97, 99-102]. 

The agent that is most advanced in clinical development is 
bevacizumab, a humanized mAb against VEGF. Bevacizumab has 
been shown to improve outcome in colorectal and lung cancers 
when used in combination with CT, and is currently being 
evaluated in many other malignancies. These studies have identified 
some of the toxicities that may arise with bevacizumab therapy, 
particularly a higher than expected rate of hemorrhage and bowel 
perforation. Severe late radiation GI toxicity occurs in 5-7% of 
cervix cancer patients treated with conventional CRT [103], which 
raises concern about the safety of adding bevacizumab. At present, 
there is one trial underway evaluating bevacizumab in women with 
recurrent or metastatic cervical cancer, and one in combination with 
CRT (RTOG 0417).  

The TK VEGF inhibitors do not appear to present the same 
high risk of GI toxicity as bevacizumab, making them more 
attractive candidates to use with conventional cytotoxic agents. 
They also have the theoretical advantage of inhibiting other TK 
domains including PDGF, which plays a central role in vascular and 
lymphatic development [104, 105]. PDGF has been shown to 
modulate angiogenesis by recruiting VEGF-producing fibroblasts, 
enhancing endothelial cell survival and promoting pericyte cover-
age and stability of newly formed vessels [106]. Inhibition of PDGF 
has been associated with reduction in IFP, tumor specific increases 
in drug uptake and greater CT cytotoxicity. [34, 104, 107]. 

We have implemented a clinical trial with sorafenib in women 
with high risk cervix cancer being treated with CRT. Sorafenib is 
an oral multitargeted TK inhibitor that has potent anti-angiogenic 
properties, targeting both tumor cells and the tumor vasculature. It 
was originally developed as an inhibitor of Raf-1, a member of the 
Raf/MEK/ERK signaling pathway [108]. Sorafenib was subse-
quently found to have activity against B-Raf, VEGF receptor–2, 
PDGF receptor, Fms-like TK-3 (Flt-3), and the stem-cell growth 
factor c-KIT [109]. In phase-I studies investigating various oral 
dosing schedules, sorafenib was generally well tolerated. Dose-
limiting toxicities at continuous doses higher than 400 mg twice 
daily were diarrhea, fatigue, and skin rash [110, 111]. In patients 
with renal cell carcinoma, and more recently hepatocellular 
carcinoma, phase III trials have shown improvement in survival and 
quality of life with sorafenib, and it is now approved by the Food 
and Drug Administration for the treatment of metastatic renal 
cancer [112-114].  

However, there is no in-vivo data assessing the risk of GI 
toxicity with this anti-angiogenic agent combined with RT, and this 
is currently being tested in animal models in our lab. Our clinical 
trial will assess the safety and tolerability of the combination with 
cisplatin and RT in a phase I setting, and also the pharmacodynamic 
changes on tissue oxygenation and IFP.  

Hypoxia - Targeted Agents 

Several pharmacological strategies have been proposed for 
overcoming the adverse effects of tumor hypoxia in patients with 

cervical cancer, including the connection of anemia with erythro-
poietin, radiation sensitization of hypoxic cells using nitroimidazole 
compounds, and direct killing of hypoxic cells with mitomycin C or 
tirapazamine.  

There is substantial clinical evidence to indicate that anemia 
prior to and especially during RT for cervical cancer is associated 
with poorer patient outcome [37, 115]. The underlying mechanism 
is not known, although it is possible that the lower oxygen carrying 
capacity of blood in anemic patients contributes to the development 
of tumor hypoxia, radiation resistance and dysregulated angiogene-
sis. An important question is whether or not the normalization of 
hemoglobin levels either by transfusion or with recombinant human 
erythropoietin overcomes the adverse consequences of anemia and 
improves patient survival. The only randomized trial to date that 
has addressed this issue demonstrated that transfusion to maintain 
hemoglobin levels above 120 g/l during RT was associated with 
better local tumor control than transfusion for hemoglobin levels < 
100 g/l; [116] however, this result was based on a subgroup analy-
sis, as not all patients were transfused, making the results difficult 
to interpret. Erythropoietin stimulates red cell production, and has 
been shown to increase hemoglobin levels and improve the quality 
of life of cancer patients when administered weekly before and 
during RT or CT. A large intergroup randomized study was de-
signed to test the benefit of maintaining hemoglobin levels >120 g/l 
throughout treatment in patients with advanced cervical cancer 
treated with CRT, but was closed prematurely because of an excess 
risk of thrombosis, and new information linking erythropoietin to 
inferior patient outcome in other randomized studies [117, 118]. 
This latter effect may have been due to direct stimulation of 
erythropoietin receptors on cancer cells, activation of anti-apoptotic 
pathways and angiogenesis promotion [119-122].  

The nitroimidazole family of drugs has been shown to sensitize 
hypoxic cells to RT [123]. There are at least seven phase III studies 
in which patients with advanced cervical cancer were randomized 
to receive standard RT with or without a nitroimidazole [124-130]. 
Misonidazole has been the most common drug used in these stud-
ies; all pre-dated the modern era of CRT. Only two of these studies 
showed improved patient outcome [125, 130]. In addition, two 
meta-analyses, which pooled the results from these studies, found 
no difference in local tumor control or survival rate [131, 132]. 
Neurotoxicity was significantly higher in nitroimidazole-treated 
patients, which may limit their use with other neurotoxic agents 
such as cisplatin. These disappointing results have been attributed 
to drug levels that were inadequate to achieve sensitization, and the 
fact that some of the patients in these studies probably had rela-
tively well oxygenated tumors and could not have benefited from 
the treatment. In general, the nitroimidazoles have fallen out of 
favor in cervical cancer, being displaced by enthusiasm for drugs 
that are directly cytotoxic under hypoxic conditions.  

Mitomycin-C and tirapazamine are examples of hypoxia-
activated drugs that have been studied in patient with gynecological 
cancer; both undergo reduction in the absence of oxygen to form 
reactive compounds that cause DNA damage and inhibit DNA re-
pair. There have been numerous phase I-II studies of RT and con-
current mitomycin-C (with or without other drugs such as 5-FU) in 
cervix cancer. In addition there have been at least two phase-III 
studies of RT plus mitomycin-C vs. RT alone in locally advanced 
cervical cancer. These studies demonstrated improved disease-free 
survival and a reduction in the risk of distant recurrence, with no 
apparent increase in late treatment complications [133, 134]. How-
ever, other studies have identified unacceptably higher rates of late 
GI toxicity when mitomycin C was combined with RT to treat cer-
vical cancer [135]. 

Tirapazamine is the most promising hypoxic-cell cytotoxic drug 
currently in clinical testing. It selectively kills hypoxic cells in tu-
mors that are resistant to the effects of RT, and also potentiates 
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cisplatin cytotoxicity [136]. A phase I study has demonstrated the 
feasibility and safety of using cisplatin CRT and tirapazamine every 
2 weeks to treat cervical cancer [137]. A recent phase I study has 
been reported in abstract form evaluating the weekly dosing of 
tirapazamine in combination with CRT. The combined treatment 
was associated with more grade 3-4 acute toxicity than anticipated, 
predominantly neutropenia and thrombotic events (total of 4 of 11 
patients with grade 3/4 complications), and the dose limiting toxic-
ity was established at tirapazamine 260 mg/m

2
 and cisplatin 30 

mg/m
2 

[138]. The role of agents targeting hypoxia still needs to be 
elucidated. An ongoing Phase III randomized trial is comparing 
weekly cisplatin and alternate weekly tirapazamine to cisplatin 
alone.  

Pro-Apoptotic Agents 

Apoptosis can be induced by many stimuli; growth factors, RT, 
CT, immunotherapy or activation of death receptors. Tumor resis-
tance to treatment is commonly cause by a loss of the tumor cell’s 
ability to enter apoptosis. Therefore, modulation of specific mo-
lecular pathways leading to increased tumor cell death could widen 
the therapeutic window. Enhancing apoptotic cell death by modu-
lating the survival pathway and combining this with RT induced 
cell killing may be synergistic. This may be more relevant in cervi-

cal cancer as the normal apoptotic signaling pathways may be dis-
rupted by the HPV genome [139].  

The extrinsic apoptotic pathway is initiated by activation of the 
death receptors on the cell membrane, among them the tumor ne-
crosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL 
became attractive as a potential anti-tumor therapeutic agent due to 
the selective induction of apoptosis in tumor cells while sparing 
normal cells. This challenging attribute stands in contrast to TNF 
and FasL, which have been shown to induce cell death in tumor 
cells, but to also cause lethal systemic toxicity. TRAIL binds to five 
different receptors, but only the death receptor 4 (TRAIL R1) and 
death receptor 5 (TRAIL R2) elicit an apoptotic response [140, 
141]. TRAIL-R1 and R2 are expressed in a broad range of cancer 
cells including carcinoma of the cervix [142-145]. 

Recently, Mapatumumab (HGS-ETR1), a mAb that binds with 
high affinity to TRAIL-R1 and activates the extrinsic apoptotic 
pathway has been tested as a single agent in a phase I trial. Two out 
of 49 patients developed hyperbilirubinemia and respiratory distress 
as grade 3-4 acute toxicity. Fatigue, pyrexia and myalgia were the 
most common grade 1-2 acute effects. No evidence of objective 
tumor responses were observed, however the study included a het-
erogeneous population of solid malignancies with no specific selec-
tion of patients whose tumors over-expressed TRAIL-R1 [146]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Microenvironmental Condition of the Tumor Present Barriers to Therapy Adapted from Cairns, R. et al. Mol Cancer Res 2006;4:61-70. The 

genetic, biochemical, and physiologic factors that regulate these barriers to therapy represent potential targets for novel molecular targeted agents. a) Chaotic 

tumor vasculature contains unstable endothelium, leaky vessels, and instability in RBC flux. Poor oxygen delivery by the defective vasculature and oxygen 

consumption by the tumor cells result in hypoxic areas. Oxygen deprivation and activation of HIF-1 mediates adaptation of tumor cells to hypoxia. b) Major 

function of viral proteins E6 and E7 is to disrupt the activity of both tumor suppressor genes, p53 and pRB which results in dysregulated and unrestricted cell 

proliferation. Early activation of the angiogenic pathway with over-expression of the proangiogenic factor VEGF and decrease of the anti-angiogenic factors 

thrombospondin 1 and 2 have been associated with HPV infection. c) Induction of VEGF contributes to angiogenesis, increased numbers of activated fibro-

blasts and macrophages contribute to the formation of highly contractile ECM, rich in collagen fibers, raising the IFP. The release of cytokines and angiogenic 
factors by cancer and stroma cells creates a complex network of interactions regulating the plasticity of the connective tissue and the perfusion of the tumor. 
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Apo2L/TRAIL, a dual (R1&R2) pro-apoptotic receptor agonist 
have also been tested as a single agent in phase I studies, and results 
have been reported in abstract form demonstrating that it can be 
safely administered in humans solid tumors with modest antitumor 
activity [147, 148]. 

In vitro and in vivo preclinical models combining CRT with 
mAbs that bind TRAIL R1&R2 have demonstrated enhanced anti-
tumor efficacy and synergistic effect in a variety of solid tumors 
including cervix cancer, however no clinical data in cervix cancer 
patients is available to date [149, 150]. 

The proteasome also plays an important role in apoptosis by 
regulating intracellular protein degradation. HPV targets the ubiq-
uitin-proteasome system: the viral oncoprotein E6 and E7 target 
host-tumor suppressor gene products p53 and pRB for accelerated 
proteasomal degradation and inactivation, causing cellular immor-
talization and transformation. The proteasome inhibitor bortezomib 
induces apoptosis and inhibits radiation-induced activation of nu-
clear factor  (NF ), which reduces tumor growth, enhances 
radiosensitivity, and has the potential to reverse chemo resistance 
[151, 152]. It has been recently shown that proteasome inhibition 

alters the response to tumor hypoxia and HIF production by a hy-
poxia independent mechanism [153]. This observation warrants 
assessment of bortezomib in combination with CRT in cervix can-
cer. 

Anti-viral Therapies 

New strategies are under study to enhance the anti-tumor effect 
of RT in HPV related cancers. Recently, experimental studies have 
shown that cidofovir, a DNA incorporated nucleoside analogue 
which has anti-viral activities through inhibition of the DNA po-
lymerase, can enhance the therapeutic effect of ionizing radiation 
through down-regulation of E6-E7 and subsequent restoration of 
the tumor suppressor gene pathways [154, 155]. Specifically, in cell 
cultures treated with RT and cidofovir, significant inhibition of E6 
and restoration of p53 function was observed with a simultaneous 
decrease in both VEGF expression and endothelial cell migration 
suggesting that the anti-tumor efficacy is due to inhibition of tumor 
angiogenesis [156].  

Another promising agent under investigation is nelfinavir, 
which belongs to the protease inhibitor family and is currently used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Biological events in cervix cancer oncogenesis.  HPV E6 induces degradation of p53 through ubiquitin dependant proteolysis causing G1 cell cycle 

arrest. HPV E7 binds pRb, rendering it unable to bind and regulate E2F, which then activates the cell cycle, decreases DNA repair thereby increasing mutations 

and genetic instability. This disruption also results in amplification of oncogenes, transcriptional factors and growth factors (e.g. cmyc, c-fos, c-jun, H-ras, erb-

b2, TGF , VEGF. P53 induces transcription of a number of genes including BAX. BAX translocates into the mitochondria where it triggers cytochrome-C 

release, activating the caspases cascades and leading to apoptosis. Cells with defective function of p53 have increased resistance to apoptosis. Growth factors 

such EGF, VEGF, PDGF, and many others act by binding to a transmembrane TK receptor, activating the Ras protein signalling pathway. Ras activates the 

Ras/Raf/MEK/ERK pathway including MAPK, which ultimately activates the gene transcription factor family AP-1, resulting in increased gene transcription of 

cyclin proteins that drive the cell cycle. Integrins (surface proteins mediating cell motility, attachment and associated growth signals) can also actívate Ras. 

Both the p53 and ras promote VEGF secretion -- promoting angiogenesis and metastasis. Over-expression of E6 and E7 oncoproteins contribute to enhance 

angiogenesis in cervical cancer cells via stimulation of HIF-  in a VEGF dependent manner. HIF-1  is a downstream effector of the PI3K/Akt pathway that 

modulates apoptosis and regulates the expression of many genes including those involved in blood vessel formation, contributing to more aggressive pheno-

types and resistance to cancer therapies. 
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in the treatment of human immunodeficiency virus (HIV) [157]. 
Interestingly, in-vivo and in-vitro studies have shown that its anti-
tumor activity is mediated via inhibition of the PI3K-Akt pathway, 
leading to a decreased expression of both VEGF and HIF . When 
combined with radiation nelfinavir exerted significant radio-
sensitization in pre-clinical studies [158].  

CONCLUSIONS AND FUTURE DIRECTIONS 

HPV infection and its tumor promoting activity are associated 
with the micro-environmental changes observed in cervix cancer. 
Cytology screening programs and vaccination will have a tremen-
dous impact in reducing cervical cancer worldwide, as well as other 
HPV-associated neoplasms. However, for many women who are 
already infected with the virus the effect of vaccination will take 
longer to evaluate as the progression from infection to cancer oc-
curs over decades. In women with locally advanced cervix cancer 
CRT has become the standard treatment. However despite im-
proved survival, loco-regional control still constitutes a major prob-
lem and other targeted treatments are necessary to improve effec-
tiveness. Advances in the understanding of the tumor microenvi-
ronment such as hypoxia, angiogenesis, and apoptosis will open the 
window to implement new therapeutic approaches. Innovative tar-
geted drugs alone and in combination with CRT are under investi-
gation and there is a biological rationale to combine these agents 
with CRT in cervix cancer patients. Understanding the molecular 
biology of tumor microenvironment is essential in order to validate 
not only tumor but also vasculature biomarkers in clinical studies 
and optimize targeted delivery of these novel therapies. 
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