Differentiation of Crystals Associated With Arthropathies by Spectral Photon-Counting Radiography

A Proof-of-Concept Study

Florian Alexander Huber, MD,* Fabio Becce, MD,† Spyridon Gkoumas, PhD,‡ Thomas Thüring, PhD,‡ Sylvain Steinmetz, MD,§ Igor Letovance, MD,|| and Roman Guggenberger, MD*

Objectives: The aims of this study were to test whether spectral photon-counting radiography (SPCR) is able to identify and distinguish different crystals associated with arthropathies in vitro and to validate findings in a gouty human third toe ex vivo.

Materials and Methods: Industry-standard calibration rods of calcium pyrophosphate, calcium hydroxyapatite (HA), and monosodium urate (MSU) were scanned with SPCR in an experimental setup. Each material was available at 3 different concentrations, and a dedicated photon-counting detector was used for SPCR, whereas validation scans were obtained on a clinical dual-energy computed tomography (DECT) scanner. Regions of interest were placed on SPCR images and consecutive DECT images to measure x-ray attenuation characteristics, including effective atomic numbers (Z_eff). Statistical tests were performed for differentiation of Z_eff between concentrations, materials, and imaging modalities. In addition, a third toe from a patient with chronic gouty arthritis was scanned with SPCR and DECT for differentiation of MSU from HA.

Results: In both SPCR and DECT, significant differences in attenuation and Z_eff values were found for different concentrations (P < 0.001) and between different materials (P < 0.001). Overall, quantitative measurements of Z_eff did not differ significantly between SPCR- and DECT-derived measurements (P = 0.054–0.412). In the human cadaver toe, gouty bone erosions were visible on standard grayscale radiographic images; however, spectral image decomposition revealed the nature and extent of MSU deposits and was able to separate it from bone HA by Z_eff.

Conclusions: Identification and differentiation of different crystals related to arthropathies are possible with SPCR at comparable diagnostic accuracy to DECT. Further research is needed to assess diagnostic accuracy and clinical usability in vivo.

Key Words: crystal arthropathies, gout, monosodium urate, radiography, spectral photon-counting radiography

Received for publication June 7, 2020; and accepted for publication, after revision, July 10, 2020.

From the Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and Faculty of Medicine, University of Zurich, Zurich; †Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne; ‡DECTRIS Ltd, Baden; †Department of Orthopaedics and Traumatology, and †University Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland. S.G. and T.T. are full-time employees of Dectris Ltd, a company with headquarters in Switzerland that supported us with the detector prototype used for this investigation. F.A.H. who has affiliation with the aforementioned company.

Correspondence to: Florian Alexander Huber, MD, Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and Faculty of Medicine, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland. E-mail: florian.huber@usz.ch.

DOI: 10.1097/RLI.0000000000000717
as reference standard. Crystal identification was then validated on an excised human third left toe from a chronic gouty arthritis patient to prove possible clinical application of SPCR in vivo.

MATERIALS AND METHODS

Samples

Phantom

Industry standard samples of synthetic MSU, CPP, and HA crystals at 3 different concentrations mimicking in vivo conditions were used for all scans: 200, 400, and 600 mg/mL of MSU and 50, 100, and 150 mg/mL of CPP and HA, respectively. According to in vivo findings and empirical data from previous pilot studies, MSU at 200 mg/mL is a borderline concentration for positive gout detection in the default DECT postprocessing workflow. The maximum MSU concentration was the highest achievable value by the manufacturer for ensuring a homogeneous phantom. Calcium pyrophosphate and HA are known to be of higher attenuation; hence, their concentrations were adapted accordingly. The respective concentrations were considered as “low,” “medium,” and “high.” All samples were available as same-sized calibration rods at a diameter of 5 mm each and homogeneous crystal concentrations (Fig. 1). The samples were obtained from a CE-certified and Food and Drug Administration–certified vendor for medical imaging phantoms (Computerized Imaging Reference Systems, Inc, Norfolk, VA).

Human Specimen

In addition, an ex vivo fresh (thawed at room temperature) anatomical specimen of the third toe of the left foot was harvested from a 65-year-old male patient with known chronic gouty arthritis who had surgical amputation of his limb performed as the ultimate therapeutic option. The presence of MSU was then confirmed by polarized light microscopy, and the specimen was subsequently scanned with SPCR in perpendicular standard views and with DECT with routine protocol for gout assessment of the foot. Written consent of the patient to use the biological material for scientific purposes was given before surgery. Institutional review board approval was waived, as data inclusion concerned less than 5 patients, in compliance with local and national ethics regulations.

SPCR Image Acquisition, Calibration, and Postprocessing

All samples were scanned using a microfocus source x-ray tube (Hamamatsu microfocus x-ray source L9181-02; Hamamatsu Photonics K.K., Hamamatsu, Shizuoka Prefecture, Japan), a standard 0.52-mm aluminum filter, and an industry-standard high-resolution PC detector prototype of the latest generation (blinded). Tube-detector distance and tube voltage were chosen similar to presets of a clinical standard radiograph and kept constant throughout all scans. The respective acquisition and image reconstruction parameters are listed in detail in Table 1. Because of the complexity of dose calculations under clinical conditions, we decided to estimate dose ranges only using a standard simulation tool, instead of a systematic assessment. Based on a previous pilot study, quantitative results of our SPCR setup did not differ significantly between low and high dose, given a range between 0.18 and 18 mAs (ie, 300 μA tube current over an exposure time of 60 seconds). For the parameters as stated in Table 1, the simulation output was an air kerma of 191 μGy/mAs. For our different exposure values, this value was multiplied with the mAs, resulting in a dose estimate of 34.4 μGy up to 3.44 mGy. As the conversion to organ dose (Sievert) is difficult due to lack of organ-specific weighting factors at the appendicular skeleton, we compared our results with the clinical routine of 2 perpendicular radiographic projections of the hand. These examinations usually range approximately 1 to 5 mAs and were therefore considered comparable with regard to radiation dose of the SPCR setup used in this study.

Calibration was necessary before material decomposition and was performed with industry-standard pure plates in different

FIGURE 1. A–D, Cylindrical samples of monosodium urate (MSU), calcium pyrophosphate (CPP), and calcium hydroxyapatite (HA) in low, medium, and high concentration (as explained in the manuscript), examined by (A and B) spectral photon-counting radiography, from left to right, respectively. The samples are visualized in (A) a grayscale-coded absolute attenuation image and (B) a color-coded decomposition image. For better presentation, the images were postprocessed to fit in 1 line (from 2 separate scans with identical acquisition parameters). C and D, Images show the same cylindrical samples in representative axial images of DECT validation scan, where HA, CPP, and MSU are ordered clockwise, in decreasing concentration, respectively, starting at the 1-o’clock position. The last sample is a resin rod without any further additives. Panel C is a standard grayscale image (soft tissue kernel, mixed sources), whereas panel D was extracted from the vendor workflow for gout detection. Note that despite quite high concentration of MSU, CT is able to detect “tophi” only in the highest concentrated MSU rod, because of material separation by attenuation thresholding (>150 HU, clinically validated and vendor-recommended threshold).
thickesses of polychloride (1–16 mm) and acrylic glass (polymethyl methacrylate; 2–48 mm).

Reconstructions were generated for energy windows of 15 to 25, 25 to 30, 30 to 35, and 35 to 50 keV. Image postprocessing for decomposed images and determination of Z\text{eff} values was performed using the method described in the original research of Alvarez and Macovski31 and Lehmann et al.35

Validation DECT Scans

All samples were additionally scanned with a DECT scanner of the latest generation (Siemens Force; Siemens Healthcare Inc, Erlangen, Germany) using the clinical standard protocol for gout assessment of peripheral joints (dual-source imaging with tube voltages at 80 kV and tin [Sn]–filtered 50 kV). For further acquisition and image reconstruction parameters, see Table 1.

Image postprocessing and measurements of Z\text{eff} values were performed using the corresponding CE-certified vendor software for tophus detection (syngo.via CT Dual-Energy Gout; Siemens Healthcare Inc, Erlangen, Germany). Minimum thresholds for Z\text{eff} analysis were set at the recommended clinical standard of 150 Hounsfield units (HUs).8,9

Quantitative Analysis

Narrow rectangular regions of interest (ROIs) at a defined size of 2 pixels width and 60 pixels length were placed over the middle aspect of the rods in the SPCR images to reduce the effects of the cylinder's thickness variation to extracted quantitative values. Round ROIs of 1 mm2 (21 pixels) were placed in the central portions of the crystal rod cross-sectional area on 10 consecutive images in DECT-derived Zi maps series, respectively. Thereby, means and standard deviations of Zi values for each material (F = 14.5–6187.6, all P < 0.001) and for different materials at matching concentrations (F = 56.4–50,697.2, all P < 0.001), respectively. For all samples, no significant differences were observed for Z\text{eff} values among different DECT images in the central portions of the respective rods (P = 1).

In general, quantitative measurements in SPCR were comparable with findings on DECT images, where HU, DEI, and Z\text{eff} values were also significantly different among all materials (F = 6.97–34,627.2, all P < 0.001), except when comparing HU values among Sn150kV images of all high concentration samples (F = 0.183, P = 0.834).

Comparing mean Z\text{eff} values of identical concentrations and materials, no significant differences were found between SPCR and DECT, except for MSU in low concentration (P < 0.05) as well as CPP and HA in high concentrations (P < 0.001 for both).

A detailed overview of SPCR- and DECT-derived measurements of all crystal suspensions used and their respective concentrations is given in Table 2.

Although larger overlaps of materials were seen regarding GV, substantial differences between calcium-containing crystals (CPP and HA) and MSU were noted in the respective Z\text{eff} and DEI values. Eventual differentiation by those discriminators was always possible for MSU versus CPP/HA, as Z\text{eff} of the highest concentrations of MSU ranged markedly below the lowest concentrations of calcium-containing phantoms. The observed trends of attenuation behavior and Z\text{eff} were comparable with findings in DECT (Fig. 2).

Human Specimen

Visual analysis in SPCR of the anatomic specimen showed typical bone erosions in the gouty-affected distal interphalangeal joint of the third left toe in grayscale radiographic images, yet without clear depiction of MSU gouty tophi. Image decomposition of SPCR with color coding of highly attenuating (GV > 0.90) materials with a Z\text{eff} ranging between 6 and 8 as green revealed presence and extent of MSU deposits mostly concordant with DECT. Because we chose a very high attenuation cutoff in SCPR color-coded images, disease extent was considered to be depicted with good specificity but reduced visual sensitivity compared with the vendor default setup of DECT postprocessing. This is,
TABLE 2. GVs/HU Values As Well as eff Values for All Samples in SPCR Test Setting and From Clinical Standard DECT Scan as Reference Standard

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MSU Low</th>
<th>MSU Mid</th>
<th>MSU High</th>
<th>CPP Low</th>
<th>CPP Mid</th>
<th>CPP High</th>
<th>HU/MSU Low</th>
<th>HU/MSU Mid</th>
<th>HU/MSU High</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV SPCR</td>
<td>0.18 ± 0.01</td>
<td>0.20 ± 0.01</td>
<td>0.23 ± 0.01</td>
<td>0.25 ± 0.01</td>
<td>0.24 ± 0.01</td>
<td>0.30 ± 0.02</td>
<td>0.44 ± 0.01</td>
<td>0.25 ± 0.01</td>
<td>0.31 ± 0.01</td>
</tr>
<tr>
<td>HU SPCR</td>
<td>10.9 ± 3.4</td>
<td>62.5 ± 5.8</td>
<td>67.9 ± 1.4</td>
<td>183.8 ± 39.5</td>
<td>84.6 ± 2.3</td>
<td>180.2 ± 17.7</td>
<td>354.6 ± 2.8</td>
<td>87.6 ± 2.1</td>
<td>176.7 ± 1.8</td>
</tr>
<tr>
<td>DECT dual-energy index</td>
<td>0.025 ± 0.002</td>
<td>0.021 ± 0.002</td>
<td>0.011 ± 0.002</td>
<td>0.001 ± 0.002</td>
<td>0.023 ± 0.002</td>
<td>0.058 ± 0.002</td>
<td>0.08 ± 0.002</td>
<td>0.05 ± 0.002</td>
<td>0.021 ± 0.002</td>
</tr>
<tr>
<td>Zeff SPCR</td>
<td>5.41 ± 0.70</td>
<td>6.05 ± 0.58</td>
<td>6.42 ± 0.59</td>
<td>6.80 ± 0.36</td>
<td>7.05 ± 0.32</td>
<td>7.22 ± 0.32</td>
<td>6.80 ± 0.36</td>
<td>7.05 ± 0.32</td>
<td>7.22 ± 0.32</td>
</tr>
<tr>
<td>Zeff DECT</td>
<td>6.29 ± 0.11</td>
<td>6.52 ± 0.09</td>
<td>6.65 ± 0.08</td>
<td>6.96 ± 0.08</td>
<td>7.47 ± 0.08</td>
<td>8.30 ± 0.07</td>
<td>9.47 ± 0.05</td>
<td>7.57 ± 0.09</td>
<td>8.20 ± 0.12</td>
</tr>
</tbody>
</table>

Additional dual-energy indexes were retrieved from the DECT post-processing workflow. Values indicate mean and standard deviation for measurements in a region of interest with constant size.

GV, gray value; SPCR, spectral photon-counting radiography; DECT, dual-energy computed tomography; MSU, monosodium urate; CPP, calcium pyrophosphate; HA, calcium hydroxyapatite.

This proof-of-concept study shows that identification and discrimination of different concentrations of arthropathy-related crystals are feasible with SPCR at comparable diagnostic accuracy to DECT. In this study, beyond the identification of 3 crystal materials and concentrations in a high-end industry phantom, subcutaneous and intraosseous (ie, within a gouty bone erosion) MSU deposits in and around the distal interphalangeal joint of an excised human third left toe could also be identified for the first time with SPCR, as confirmed by gross pathology, histology, and polarized light microscopy. To the best of our knowledge, this is the first description of the use of PC detectors in radiography for this clinical application in the scientific literature.

This finding is concordant with and supported by our recently performed initial study that suggested the ability of crystal differentiation with SPCR. However, this previous purely in vitro experiment included only 2 materials (MSU and HA), and quantitative results were based on own-built suspensions with subsequent crystal suspension heterogeneity. Distinguishing between MSU and other crystal-associated arthropathies can be effectively performed using DECT. This technique is already well described and hence established clinically. Dual-energy computed tomography is usually performed to exclude subcutaneous tophi in patients with high disease pretest probability and/or negative microscopic results from synovial fluid aspiration, and to assess crystal burden in known chronic gouty arthritis patients. In this study, beyond the identification of 3 crystal materials and concentrations, DECT scans of a single extremity region imply a dose increase by at least a hundredfold compared with a standard bilplanar radiography, and the latter would be an interesting modality for screening—voluntary or opportunistic—and disease monitoring of crystal-associated arthropathies, providing adequate identification of crystal nature.

With this proof-of-concept study, we demonstrate the possible identification and differentiation of crystals in SPCR beyond visual assessment based on plain attenuation (GV) but with additional information on crystal nature based on Zeff. Although larger overlaps of materials were seen regarding GV, substantial differences between calcium-containing crystals (CPP and HA) and MSU were noted in the respective Zeff values and consequently with DEI in DECT, respectively. The latter reflects a material specific index that puts into relation the attenuation behavior at 2 different tube potentials, that is, HU values at 80 kV and Sn150kV.

In addition, Zeff values derived from SPCR were highly concordant with reference standard DECT derived values, except for MSU in low concentration (P < 0.005) as well as CPP and HA in high concentrations (P < 0.001 for both). At first, this finding suggests reduced accuracy in the highest and lowest Zeff samples of crystal suspensions but may be explained by 2 reasons: first, despite using state-of-the-art methods and well-accepted algorithms for prior calibration, it is known that consideration of areal densities (ie, density × thickness in grams per centimeter square) plays an essential role in Zeff accuracy. Although our calibration materials were acrylic glass (areal density, 0.24) and polyvinyl chloride (0.14), areal density of different MSU and HA/CPP concentrations ranged somewhere around 0.1 to 0.3 (low to high concentration) and 0.025 to 0.075, respectively. This perfectly matches with the reduced comparability of low concentrated MSU, which was of slightly lower areal density than the calibration materials, but also partly HA/CPP, which ranked comparably farer off the calibration range. It is common practice to apply extrapolation from the calibration data for measurements outside range; however, this is naturally associated with however, a product of arbitrary color coding independent from true quantitative calculations. Postimaging validation by gross pathology and histology confirmed the distribution pattern of gout tophi, whereas polarized light microscopy confirmed the presence of MSU (Fig. 3).

DISCUSSION

This proof-of-concept study shows that identification and discrimination of different concentrations of arthropathy-related crystals are feasible with SPCR at comparable diagnostic accuracy to DECT. In this study, beyond the identification of 3 crystal materials and concentrations in a high-end industry phantom, subcutaneous and intraosseous (ie, within a gouty bone erosion) MSU deposits in and around the distal interphalangeal joint of an excised human third left toe could also be identified for the first time with SPCR, as confirmed by gross pathology, histology, and polarized light microscopy. To the best of our knowledge, this is the first description of the use of PC detectors in radiography for this clinical application in the scientific literature.

This finding is concordant with and supported by our recently performed initial study that suggested the ability of crystal differentiation with SPCR. However, this previous purely in vitro experiment included only 2 materials (MSU and HA), and quantitative results were based on own-built suspensions with subsequent crystal suspension heterogeneity. Distinguishing between MSU and other crystal-associated arthropathies can be effectively performed using DECT. This technique is already well described and hence established clinically. Dual-energy computed tomography is usually performed to exclude subcutaneous tophi in patients with high disease pretest probability and/or negative microscopic results from synovial fluid aspiration, and to assess crystal burden in known chronic gouty arthritis patients. In this study, beyond the identification of 3 crystal materials and concentrations, DECT scans of a single extremity region imply a dose increase by at least a hundredfold compared with a standard bilplanar radiography, and the latter would be an interesting modality for screening—voluntary or opportunistic—and disease monitoring of crystal-associated arthropathies, providing adequate identification of crystal nature.

With this proof-of-concept study, we demonstrate the possible identification and differentiation of crystals in SPCR beyond visual assessment based on plain attenuation (GV) but with additional information on crystal nature based on Zeff. Although larger overlaps of materials were seen regarding GV, substantial differences between calcium-containing crystals (CPP and HA) and MSU were noted in the respective Zeff values and consequently with DEI in DECT, respectively. The latter reflects a material specific index that puts into relation the attenuation behavior at 2 different tube potentials, that is, HU values at 80 kV and Sn150kV.

In addition, Zeff values derived from SPCR were highly concordant with reference standard DECT derived values, except for MSU in low concentration (P < 0.005) as well as CPP and HA in high concentrations (P < 0.001 for both). At first, this finding suggests reduced accuracy in the highest and lowest Zeff samples of crystal suspensions but may be explained by 2 reasons: first, despite using state-of-the-art methods and well-accepted algorithms for prior calibration, it is known that consideration of areal densities (ie, density × thickness in grams per centimeter square) plays an essential role in Zeff accuracy. Although our calibration materials were acrylic glass (areal density, 0.24) and polyvinyl chloride (0.14), areal density of different MSU and HA/CPP concentrations ranged somewhere around 0.1 to 0.3 (low to high concentration) and 0.025 to 0.075, respectively. This perfectly matches with the reduced comparability of low concentrated MSU, which was of slightly lower areal density than the calibration materials, but also partly HA/CPP, which ranked comparably farer off the calibration range. It is common practice to apply extrapolation from the calibration data for measurements outside range; however, this is naturally associated with however, a product of arbitrary color coding independent from true quantitative calculations. Postimaging validation by gross pathology and histology confirmed the distribution pattern of gout tophi, whereas polarized light microscopy confirmed the presence of MSU (Fig. 3).
larger errors/biases. Second, despite high homogeneity of crystal rods and ROI measurements with maximum precision for delineation and thickness calibration in SPCR, ROI widths of only 2 pixels because of cylindric rod dimensions may be prone to measurement bias as compared with 3D image information from DECT.

The SPCR technique supplements high-resolution spatial information from conventional radiography with material decomposition from multienergy imaging. A Z_{eff}-based material decomposition per se would also technically be possible with DE radiography. Yet, several benefits come along with the utilization of PC technique, compared with DE. Photon-counting detector can ensure minimal dose to the patient while producing sharper images because of direct conversion sensors. Furthermore, different to most DE techniques, patient motion–related image blurring is usually not an issue in SPCR. The use of more than 2 energy bins may in addition lead to better specificity in material discrimination and allow for future settings of multicontrast agent examinations. Some of these findings have already been investigated, and our results in general concur with previous CT studies from Kirkbride et al and Stamp et al, who have proved increased accuracy of material discrimination using PC-CT instead of DECT. Also, for other reasons, such as excellent spatial resolution because of a reduction in image noise, PC detectors are increasingly being investigated for CT imaging, and they are widely recognized as key components for personalized functional imaging in the near future. Furthermore, Stamp et al have similarly demonstrated visible differences in the extent of MSU between DECT and spectral PC-CT, as was also clearly shown in our FIGURE 2.

FIGURE 2. Comparison of quantitative attenuation descriptors of monosodium urate (MSU), calcium pyrophosphate (CPP), and calcium hydroxyapatite (HA), measured by dual-energy CT (DECT) and by spectral photon-counting radiography (SPCR). Panel A compares the Hounsfield units (HUs; Mixed kV image of routine gout postprocessing workflow) with SPCR-derived gray values (GVs; defined as written in the methods section). For better visual comparability, GVs were multiplied by 500. In B, Z_{eff} of both modalities are compared. Panel C compares dual-energy indices (DEIs) from DECT scans of all materials and concentrations. All DECT measurements were performed at 10 consecutive images and are presented with usual boxplots. The SPCR-related measurements represent the mean value of the continuous total measurement area.

FIGURE 3. Comparison of grayscale spectral photon-counting radiography (SPCR) images (A and D), Z_{eff} color-coded SPCR images (B and E), as well as volume-rendered 3D reconstructions of validating dual-energy CT scans (C and F) in panels A to C lateral and panels D to F dorso-palmar views of an ex vivo third left toe (anatomic cadaver specimen) from a 65-year-old male patient with known history of chronic gouty arthritis. The images clearly show disease-typical bony erosions (exemplary dotted lines in A and D). In comparison, color-coded images (B and E, C and F), photograph of pathologic dissection (G), as well as exemplary histologic hematoxylin and eosin stain (H) reveal significantly larger disease extent. Panels B and E are overlays of a standard grayscale visualization and a color-coded mask, which labels all highly attenuating structures with effective atomic numbers within the range of monosodium urate (MSU; ie, tophi; green; arrowheads). The periarticular opacities can be clearly identified as gout manifestations. Corresponding green areas were seen in CT (arrowheads in C and F) and in photographs as yellow tophaceous tissue during dissection (G, asterisks), which left typical “washed out” spots after staining (H, also asterisks). The criterion standard of (f) polarized light microscopy confirmed the extensive presence of MSU crystals; in the right upper corner of the panel, a magnified area shows an exemplary singular crystal (white arrows). The difference in MSU extent between SPCR and DECT is owed to currently missing thresholds for minimum attenuation cutoffs, as established by diagnostic accuracy studies. The authors chose the DECT setting as recommended by the vendor, whereas the SPCR color setting was chosen arbitrarily, and it was considered to match most optimally with the criterion standard of anatomic resection, that is, not overemphasizing disease extent.
investigation (Fig. 3). This may further highlight the clinical need and importance of novel modalities for correct crystal identification and quantification in gout and related conditions.

The limitations of this study are inherent to its experimental design. Although the used medical imaging phantom was of high quality and crystal compounds were homogeneously fabricated, in vivo conditions may be more heterogeneous with even mixed deposits, that is, coexisting MSU and calcium crystals.42 However, simulated conditions should rather reflect limits of reference range to extrapolate to real in vivo conditions. Although we were able to reliably differentiate compounds in all phantom and human specimen scans and could visually identify crystalline MSU regions from possible confounders, we did not investigate the impact of material overlay. Surrounding soft tissue is known to have comparable Zn to MSU and can suggest high attenuation on superimposed views. This may also result in inferior sensitivity and specificity of SPCR compared with cross-sectional imaging with DECT or PC-CT. Further, at present, SPCR is dependent on quite expensive high-end detectors that allow for identification of different photon energies. Moreover, the detector in use was a prototype built with a comparably small field of view. To reach broad acceptance, clinical applicability and costs of this technique using larger detectors and fast postprocessing will be crucial. Ideally, solutions should be sought that allow to upgrade preexisting conventional radiography units with SPCR detectors, thereby introducing the additional benefit of material decomposition to conventional radiography with minor efforts.

In conclusion, both in vitro and ex vivo identification and differentiation of crystals related to arthropathies are possible with SPCR at comparable diagnostic accuracy to DECT. Further research is needed to assess diagnostic accuracy and clinical usability of this new technique in vivo in clinical routine.

REFERENCES