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Metapopulation models have been instrumental in quantifying the ecological impact of
landscape structure on the survival of a focal species. However, extensions to multiple
species with arbitrary dispersal networks often rely on phenomenological assumptions
that inevitably limit their scope. Here, we propose a multilayer network model
of competitive dispersing metacommunities to investigate how spatially structured
environments impact species coexistence and ecosystem stability. We introduce
the concept of landscape-mediated fitness, quantifying how fit a species is in a
given environment in terms of colonization and extinction. We show that, when
all environments are equivalent, one species excludes all the others—except the
marginal case where species fitnesses are in exact trade-off. However, we prove that
stable coexistence becomes possible in sufficiently heterogeneous environments by
introducing spatial disorder in the model and solving it exactly in the mean-field limit.
Crucially, coexistence is supported by the spontaneous localization of species through
the emergence of ecological niches. We show that our results remain qualitatively
valid in arbitrary dispersal networks, where topological features can improve species
coexistence by buffering competition. Finally, we employ our model to study how
correlated heterogeneity promotes spatial ecological patterns in realistic terrestrial and
riverine landscapes. Our work provides a framework to understand how landscape
structure enables coexistence in metacommunities by acting as the substrate for
ecological interactions.

metapopulation dynamics | landscape structure | dispersal networks | optimal channel networks

Predicting the effect of landscape and habitat changes, including fragmentation, on the
dynamics of interacting species is a pressing and paramount challenge (1–3). However, a
comprehensive understanding of the key processes that foster biodiversity of ecosystems in
the presence of spatial disturbances remains largely elusive to date (4, 5). Though several
mechanisms for coexistence and maintenance of biodiversity have been proposed (6–8),
studies validating them at a local scale vastly outnumber the spatial counterpart (9, 10).
This poses a fundamental limit to our understanding of the composition of ecological
communities across spatiotemporal scales and their relation to habitat heterogeneity.
Constructing a framework for spatially structured ecosystems is, in general, a formidable
and challenging task due to the complexity of species interactions and their role in
determining ecosystem stability (11–14), the influence of ever-changing environmental
fluctuations shaping population dynamics (15), and the effects of landscape structure
(16). Such challenges are complicated by the simultaneous presence of both the short-
range dynamics of intra- and interspecific interactions and long-range colonization and
migration processes.

In this context, models of metapopulations have proven to be remarkably successful
in predicting the survival of a single focal species in complex landscapes of habitat
patches interconnected by dispersal networks (17–21). In the presence of colonization
and extinction events, the seminal work by Hanski and Ovaskainen (22) has shown
that the long-term survival of a species is quantified by a single landscape measure,
named metapopulation capacity. The metapopulation capacity is the leading eigenvalue
of a suitable landscape matrix, and it subsumes the general viability of a focal species
by determining the stability of the persistence-free equilibrium, where the species goes
extinct in all patches (23). By developing an individual-based metapopulation model
in ref. 24, we have analytically shown that the metapopulation capacity is related to
the underlying dispersal pathways through which the species individuals move. Thus,
by shaping the landscape and characterizing the relationships between patches, dispersal
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networks act as the template for ecological strategies (25). They
drive a population’s dynamics, stability, and persistence in both
theoretical (11, 26–32) and field studies (33–37). Unaware of
these exact results, Tao et al. (38) have independently developed
a computational individual-based model that is similarly claimed
to be applicable to realistic landscape structures.

Yet, how the interplay among ecological interactions and
landscape structures shapes ecological metacommunities is still
puzzling (39). The presence of mutualistic and competitive
interactions leads to large-scale fluctuations, both at local and
mean field scales (40–43), while niche differences arising due
to interspecific tradeoffs act as a stabilizing force to promote
coexistence (44, 45). Crucially, dispersal may benefit from
coexistence (46) and possibly rescue habitats from extinction
(47). However, it can also lead to instabilities with unclear effects
on diversity (48). Although spatial heterogeneity is generally
accepted to favor biodiversity, empirical studies have suggested
that it may have both positive and negative effects (49). These
contrasting results partly arise due to the complex relationship
between the different mechanisms at work in spatially extended
ecosystems. At a local scale, mutualistic interactions are necessary
to promote coexistence (50–53). However, in a spatial setting,
one wonders under what conditions dispersal and spatial struc-
tures are beneficial despite competition, or detrimental despite
mutualism. This is a fundamental open question to date.

In this work, we address the above shortcomings by developing
a general model of ecological metacommunities derived from
an underlying individual-level metapopulation description. We
focus on the case of species competing for limited space in
multiple habitat patches with varying environments. Patches
are connected by a dispersal network leading to global col-
onization dynamics described by an explicit dispersal kernel.
We first show that a spatially heterogeneous generalization of
Hanski and Ovaskainen’s metapopulation capacity fails to predict
species’ survival in a metacommunity. Rather, by introducing
a suitable notion of landscape-mediated fitness, we find that
the survival of a species depends on the average fitness of
all other species. We analytically prove that, in homogeneous
environmental conditions, only the species with the largest fitness
survives, and coexistence arises only in a suitable dispersal-
extinction trade-off. However, stable coexistence is attainable in
sufficiently heterogeneous environments, where habitat patches
are distinct from one another, leading to the spontaneous
emergence of spatial ecological niches. Although our analytical
results are rigorously derived in the mean-field limit of large
disordered landscapes, we show numerically that they remain
good approximations even for smaller ecosystems with varying
spatial structures. In particular, we find that structured dispersal
networks are often beneficial to species populations, and that
correlated environmental heterogeneity leads to the formation of
ecological patterns in realistic terrestrial and aquatic landscapes.
Our findings underscore the complex interplay between land-
scape heterogeneity and species survival and coexistence, offering
insights into biodiversity preservation in fragmented habitats.

Results

Multilayer Network Model for Dispersing Metacommunities.
We describe the dynamics of S species in a landscape of N
interconnected habitat patches, each with a finite number of
colonizable sites. We distinguish individuals of each species
into sessile individuals settled on a given habitat, and mobile
individuals that can explore different patches through a shared

or species-specific dispersal network. Model details are given in
Materials and Methods. In particular, each patch consists of a
sink habitat, where the local population would not be able to
survive without colonization (54). Within a patch, species do
not interact directly but rather compete for the finite number of
empty sites available at a given time. This microscopic description
corresponds to a multilayer network dynamics of local and global
processes occurring at different scales, and it gives rise to the
seminal model by Hanski and Ovaskainen (22), as shown in
ref. 24. Assuming that the number of colonizable sites is large
and that exploration is fast compared to colonization and death
(55), we explicitly derive the time evolution of the fraction of
space occupied by species � in patch i, p�i as

dp�i
dt

= −e�ip�i +

1−
S∑

�=1

p�i

 N∑
j=1

K�,ij p�j, [1]

where e�i > 0 is the local (within patch) extinction rate
of species � in patch i. The species-specific dispersal kernel
K�,ij describes colonization by quantifying the rate at which
individuals of species � generated from patch j explore the
network and eventually colonize patch i. The analytic expression
for K�,ij connects it directly to the properties of the underlying
dispersal network (Materials and Methods). Finally, the term
(1 −

∑S
�=1 p�i) represents the free space in patch i, which

introduces competition between species for the finite number
of colonizable sites in each habitat.

If only a single focal species were present, the long-time
behavior of the system would be determined by a measure
called metapopulation capacity. For constant extinction rate e,
the seminal work of Hanski and Ovaskainen (22) showed that
the metapopulation capacity is the largest eigenvalue �M of
a suitable landscape matrix determining the global extinction
threshold for the focal species. Indeed, if �M > e, the species
survives; otherwise, it goes extinct in all patches. In heterogeneous
landscapes, where ei depends explicitly on the patches, we prove
instead that survival is possible only when � > 1, where � is
the largest eigenvalue of the matrix KE−1, with Eij = ei�ij (SI
Appendix). Thus, the metapopulation capacity depends on all ei
at once, which underlines the significance of variations in local
extinction rates. This suggests that landscape heterogeneity plays
a major role in determining the survival and, as we will show, the
coexistence of multiple species. We sketch the model and these
ideas in Fig. 1.

Fine-TunedCoexistence inHomogeneous Landscapes. In Eq. 1,
landscape heterogeneity enters through both the dispersal path-
ways determining K�,ij and the patch- and species-dependent
extinction rates e�i. To disentangle their effects, we first consider
the homogeneous case in which all habitat patches have the same
extinction rate, i.e., e�i = e� for all i.

Although we can trivially extend the notion of metapopulation
capacity for each species ��M , the condition ��M > e� no
longer guarantees species survival. Rather, we introduce the
concept of average landscape-mediated fitness for the �-th species
〈r�〉 = 〈K�〉 /e� , where 〈K�〉 = N−2∑

ij K�,ij. 〈r�〉 quantifies
the balance between colonization and extinction due to the
landscape properties, both in terms of the features of habitat
patches and the dispersal structure. As we prove in SI Appendix,
species survival in homogeneous landscapes depends on 〈r�〉,
and not on the metapopulation capacity. In Fig. 2A, we show the
phase plot in the (e1, e2) space for two species in the homogeneous
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A B

Fig. 1. In a general model of dispersing metacommunities with competition for space, stable coexistence states emerge in heterogeneous landscapes. (A) We
consider a multilayer dispersal network, where each layer describes the dispersal of a species. Nodes represent shared habitat patches where the species settle
and compete for a finite amount of space. (B) With dispersal in homogeneous landscapes, where habitat patches are equivalent, only the fittest species survives.
However, if landscape heterogeneity is high enough, the coexistence of a large number of species becomes possible through the spontaneous emergence of
habitat niches.

case of a grid dispersal network, where the dispersal kernel
is invariant under translations. We find that the species with
the highest landscape-mediated fitness typically survives in the
long-time limit, leading to stable monodominance. However,
coexistence is possible by fine-tuning the average landscape-
mediated fitnesses to be equal (Fig. 2A, solid black line). This
requires a precise trade-off between dispersal and extinction,
i.e., 〈K�〉 /e� = 〈K 〉� /e� for all species pairs �, �. As we
explicitly prove in SI Appendix, this stationary coexistence state
is marginally stable, i.e., different stationary states emerge with

A

B

C

Fig. 2. With homogeneous extinction rates, a single species dominates in
the long-time limit, and general stable coexistence is not possible except
in a fine-tuned regime. (A) Results for a grid dispersal network with two
species (red and blue) with extinction rates e1 and e2, respectively, equal in
all patches. If an extinction rate exceeds the corresponding metapopulation
capacity ��M , a species goes extinct (Upper Right corner). Coexistence is only
possible if the ratio 〈K�〉 /e� is equal for all species (black line), where the
average kernel 〈K�〉 cannot depend on patches due to the translational
invariance of the underlying dispersal network. ( B) With an equal ratio for
all species, the stationary coexistence state depends on the initial conditions
(solid and dashed lines) and corresponds to a central manifold. Note that,
since exploration is most effective between neighboring patches, the two
species survive in separated regions of the dispersal network. (C) In general
dispersal networks, the stable state is one in which one species dominates
and all others go extinct, independently of the initial conditions. These results
hold for a generic number of species (SI Appendix). For both these panels the
kernels are computed explicitly from the network adjacency matrix (Materials
and Methods), e1 = 0.25, and e2 is computed via the central manifold
condition.

different initial conditions, a common feature in several models
of ecological communities, including metacommunities (56–58).
Thus, the patches where a species survives are solely determined
by its initial state (Fig. 2B).

However, this fine-tuned coexistence is not possible in less
homogeneous dispersal networks. In Fig. 2C we show the
evolution of two species in an Erdős–Rényi dispersal network.
Even if their average landscape-mediated fitness is equal, the
ecosystem reaches monodominance after displaying a metastable
state in which the two species only temporarily coexist. Although
the lifetime of this metastable state increases with network size N
(SI Appendix), it is always one species that survives and colonizes
the whole network at stationarity, independently of the initial
state. Hence, coexistence in general landscapes is not feasible
when all habitat patches are identical.

Stable Coexistence in Heterogeneous Landscapes. To under-
stand how landscape heterogeneity shapes ecosystem diversity,
we now turn to the general case in which e�i depends also
on the habitat patch i. In order to derive analytical insights,
we first consider the mean field limit of the model, where
all patches are completely connected in a large ecosystem,
i.e., N → ∞. In this scenario, the dispersal kernel reads
K�,ij = K�/N (Materials and Methods). The stationary state p∗�i
obeys a consistency equation that depends on the local landscape-
mediated fitness (LLMF) r�i = K�/e�i, which quantifies the
balance between colonization and extinction on each patch rather
than across all the patches (Materials and Methods). That is, r�i
measures how much the interplay between dispersal and local
extinction favors the �-th species. If r�i is large, the species is
fit for survival on patch i; otherwise, a small r�i denotes that
individuals of species � will not be able to effectively colonize
patch i. For brevity, we will simply refer to r�i as local fitness.
We assume that, for a given species �, the values of r�i are
extracted from a generic probability distribution Pr(r|E��), where
E�� are the species-dependent parameters on which Pr depends.
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Fig. 3. Strong spatial heterogeneities lead to stable coexistence through the emergence of ecological niches. (A) Coexistence in an all-to-all dispersal network
with N = 105 patches and S = 20 species, where R is the baseline species fitness and v2 is the variance of the spatial heterogeneity, which follows a log-normal
distribution of mean 〈r�〉 = R + Δ�/S. Coexistence of all species is possible at strong enough heterogeneity, in agreement with theoretical predictions (black
lines). Below R = 1, no species can survive. Here, we take Δ� to be evenly spaced between ±5/2, so that 
Δ = 2.5. (B) Coexistence is enabled through species
localization (computed via the inverse participation ratio, Materials and Methods), signaling the spontaneous emergence of ecological niches. (C) Close to the
extinction line at R = 1, species become strongly localized in a few habitat patches, as predicted by the theory in the N → ∞ limit. (D) For large ecosystems,
localization increases with the heterogeneity variance v2. At low enough N, localization displays a local peak at intermediate values of the variance due to
finite-size effects. (E) The fraction of coexisting species, at constant average fitness, strongly depends on the topology of the dispersal network. Small-world
(SW) and Barabasi–Albert (BA) networks allow for the coexistence of more species at lower values of the variance. Here, R = 2, 
Δ = 1, S = 5, and N = 100.
(F ) As the species become more different and 
Δ increases, it becomes harder to sustain them and topology plays a fundamental role in determining their
coexisting fraction. Parameters are as in the previous panel, with v2 = 3. We note that, due to finite-size effects, in the mean-field case, we do not find that
all species coexist when 
Δ is small. (G) At 
Δ = 0, the average fitness across species is equal. We find through numerical simulations that the topology of
dispersal networks affects the extinction transition (R = 1 in the mean-field case), allowing for a broader region of survival. (H) Diversity and localization increase
in complex dispersal networks, with Barabasi–Albert and small-world networks displaying a higher total population. Color transparency corresponds to the
population density in the patch, and the bar plot below each network shows the population density in each species for each patch. Simulations and parameters
of the dynamical model are specified in Materials and Methods.

Pr describes the landscape heterogeneity in terms of habitat-
dependent colonization and extinction.

For a large ecosystem, Eq. 9 can be solved exactly as a 1/S
expansion for the stationary state. For simplicity, we consider
the case in which all species have the same landscape-mediated
fitness variance, �2

r = v2, which quantifies the strength of the
landscape heterogeneity. We also take the mean of Pr to scale
as 〈r�〉 = R + Δ�/S, where R sets the baseline LLMF, and the
vector (Δ1, . . . ,ΔS) measures the deviation of each species from
such baseline. As we show in Materials and Methods, when S is
sufficiently large, the coexistence of all species becomes possible
only if:

R > 1 and v2 > v2
c := 
Δ

R2

R − 1
. [2]

independently on the choice of the fitness distribution. The
parameter 
Δ =

∑S
�=1 Δ�/S −min� Δ� determines the extent

to which species are different from one another. The first of
the two conditions in Eq. 2 indicates that the baseline must be
large enough to allow for coexistence. The second, instead, sets
a minimal level of heterogeneity, which must exceed a critical
value v2

c . The more species are diverse, the larger 
Δ and the
more heterogeneous the landscape needs to be for them to
survive. Notably, when the average LLMF is identical for all
species 
Δ = 0, this implies that v2

c = 0 and coexistence is
guaranteed whenever R > 1. In Fig. 3A, we show the number of
coexisting species in the (R, v2) phase space for a given choice of
Δ� and a log-normal distribution for Pr , obtained numerically for

a finite number of habitat patches and species. The results are in
excellent agreement with the theoretical prediction (black lines).
Numerical simulations suggest that this coexistence solution is
unique, and corresponds to stationary values of the populations
that do not depend on the initial conditions, contrary to the case
of homogeneous landscapes.

In particular, no species survives if R < 1, as the baseline is too
small to support survival. For R > 1, full coexistence becomes
possible at large enough landscape heterogeneity. Remarkably,
the critical variance diverges also for R → ∞. In this scenario,
all species have very high baseline LLMF and thus they can
grow easily in all habitat patches, regardless of the variance. As
a consequence, competition is widespread, effectively hindering
coexistence, which is instead optimal at intermediate values of
R. These results suggest that the coexistence state does not
correspond to species densities that are evenly spread throughout
the landscape. We measure this effect by computing how localized
each species is (Materials and Methods), which we plot in
Fig. 3 B–D. At fixed v2, we find indeed that localization decreases
with R, as larger baselines allow species to grow in more habitat
patches—thus increasing competition and making coexistence
harder. On the other hand, as the ecosystem approaches the
R = 1 line, localization drastically increases. This phenomenon
is well predicted by the theory and has profound ecological and
physical consequences, as the boundary at R = 1 marks a sharp
transition toward widespread extinction. To be able to survive
near this threshold, species must maximize their segregation, as
any amount of competition would push them to extinction.
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At fixed R, instead, localization increases with the variance of
LLMF. Once more, this is due to the fact that, at higher v2, the
heterogeneity of the landscape forces the species to become more
and more segregated. In doing so, competition is reduced, as
the largest share of each species is concentrated within a fraction
of the available habitat patches, benefiting coexistence. From an
ecological perspective, this result shows that a stronger landscape
heterogeneity fosters the spontaneous emergence of ecological
niches. Such emergence can be understood in terms of a trade-off
between species needing the baseline R large enough to survive,
but small enough to allow landscape heterogeneity to minimize
competition. As a consequence, by localizing their population
in those patches where they are fitter, species survive in niches
that buffer the detrimental effect of competition for space, as
measured by the local landscape-mediated fitness.

Landscape Structure Promotes Coexistence. Our analytical re-
sults have been obtained for an all-to-all dispersal network, and
in the limit of a large spatial ecosystem, i.e., N → ∞. We
now study the effect of small N and S and the impact of
network motifs by comparing the mean-field (MF) scenario with
three prototypical networks: Erdős–Rényi (ER) networks at two
different connectances, introducing network sparsity; Barabàsi-
Albert (BA) networks, characterized by hubs; and small-world
(SW) networks, with high clustering coefficient (59). To compare
the effects of different dispersal topologies, we keep the mean
LLMF 〈r�〉 for each species constant, which results in similar
single-species survivability across different networks (Materials
and Methods).

We find that our results remain qualitatively valid, with the
fraction of coexisting species increasing with landscape hetero-
geneity across all networks (Fig. 3E). However, the dispersal
structure quantitatively shifts the coexistence transition. ER
networks display enhanced coexistence with increasing sparsity
(Fig. 3E), a trend further detailed in SI Appendix. At a fixed
sparsity, coexistence is also boosted by the introduction of hubs
or small-world topological features. In Fig. 3F, we also show
that complex dispersal networks can also sustain more diverse
coexisting species, with higher 
Δ for the same variance of the
landscape-mediated fitness.

We further consider the case of neutral species with equal
LLMF on average, given by 
Δ = 0. In this way, we remove
the disadvantage due to intrinsic fitness differences, as all species
share the same baseline R, and coexistence is solely driven by the
distribution’s variance (Materials and Methods). Thus, we focus
on how the extinction transition changes from the mean-field
case at R = 1. In Fig. 3G, we show that changing the topology
shifts the extinction transition line, allowing for survival with
less spatial heterogeneity. Indeed, for the same realization of r�i,
structured landscapes such as SW and BA networks support a
larger number of species as well as a higher total population (Fig.
3H ). Interestingly, although all species in this example have the
same average fitness, the interplay between spatial heterogeneity
and the given dispersal network structure determines which
species survive, leading to uneven population distributions. For
instance, the second species in Fig. 3H becomes dominant in
the BA network because of its higher LLMF within the largest
hub. Hence, landscape structure plays a fundamental role in
shaping species’ survival when dispersal and colonization are
both taken into account. Depending on the interplay between
LLMF and dispersal topology, a species may thrive in a given
network but go extinct in another. Importantly, the presence
of the coexistence transition across different networks shows

that our exact results are still qualitatively valid well beyond the
mean-field case.

Spatial Patterns in Heterogeneous Landscapeswith Correlated
Habitats. Realistic landscapes not only consist of structured
dispersal networks, but of spatial correlation in environmental
factors as well. To investigate our results under this constraint,
we introduce a correlation between a species’ LLMF in the habitat
patch i and patch j which decreases with distance, with a typical
correlation length of dcorr (Materials and Methods). We also
consider two realistic landscapes with intrinsic spatial structures:
terrestrial and aquatic. We model terrestrial landscapes using
random geometric graphs (RGGs) (60). Each habitat patch is
embedded in a random spatial position, and the patches are
connected if their Euclidean distance is smaller than a given
threshold. Furthermore, exploration through these dispersal
pathways is inversely proportional to their distance. In Fig. 4A,
we show that, on average, a larger correlation length between
habitat patches increases the total population in the ecosystem.
This increase is fostered by a spatial clustering of niches, such that
the same species occupies habitat patches that are close together
(Fig. 4 B and C ), making colonization more efficient overall and
thereby also reducing interspecies competition.

The features of aquatic landscapes, instead, have been ex-
tensively shown to be well-captured by theoretical constructs
termed optimal channel networks (OCNs) (4, 61, 62). In this
case, patches represent fluvial habitats connected by a river
network flowing from high to low elevations, and recapitulated
by aggregated pathways, i.e., the total contributing area at-a-

A

B C

D E

Fig. 4. Effect of spatially correlated heterogeneity in niche formation. (A)
The total population ptot increases with the spatial correlation length over
the maximum distance between nodes, dcorr/dmax. (B and C) We first study
the effect of spatial correlations on terrestrial landscapes, modeled through
a random geometric graph (RGG). The correlation decays with the Euclidean
distance between the nodes and allows for the spatial clustering of niches.
As a result, nodes that are close together in space are occupied by the
same species (different node colors represent different species). (D and
E) In aquatic landscapes, obtained via optimal channel networks (OCNs),
spatial correlations decay instead with the network distance. Now, niches
for different species spontaneously emerge in different river branches, since
nodes that are spatially close to each other may be at large network distances.
The shaded terrain map represents the elevation map obtained from the
OCN. The definition and parameters of the networks are reported inMaterials
and Methods.
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site (63), the master variable of fluvial geomorphology (64)
(Materials andMethods). We assume that the correlation between
species LLMF decays with the network distance rather than the
Euclidean one, which quantifies the dendritic connections along
the river network. In Fig. 4D andE, we see that again correlations
induce the emergence of spatial ordering. This time, nearby
spatial regions may be occupied by different species, as spatially
close habitat patches may be distant along the river network.
Thus, the emergent ecological patterns in space intrinsically
reflect the underlying landscape structure.

Discussion

In this work, we studied a general theoretical framework to
characterize coexistence in ecosystems dominated by dispersal,
induced by the connectivity of habitat patches. We find that
stable coexistence is favored in heterogeneous landscapes, where
it is enabled by the spontaneous emergence of ecological niches
that minimize direct competition. The topological and spatial
structure of dispersal networks may help coexistence, therefore
playing a pivotal role in shaping the features of dendritic
ecosystems. Crucially, our results suggest that a sufficient degree
of landscape heterogeneity is essential for sustaining biodiversity.

In homogeneous networks and environments, we find that
dispersal can foster a large degree of diversity of coexisting
species when it is fine-tuned to be in a trade-off with local
extinction. However, even small perturbations from this fine-
tuned coexistence lead to dispersal promoting interspecific
competition, thereby ultimately leading to monodominance.
As in our model monodominance arises due to competition
for space, this is reminiscent of the competitive-exclusion
principle, implying that the number of species cannot exceed
the number of resources (65). Yet, in the presence of spatial
heterogeneity, we have shown that coexistence in different habitat
patches is possible in landscapes with strong heterogeneity,
as measured by a suitably defined landscape-mediated fitness.
Indeed, in this case, habitat patches may be viewed as multiple
resources arising from landscape heterogeneity, allowing for
large-scale coexistence without violating the competitive exclu-
sion principle.

Further, our results demonstrate that dispersal can act as a
stabilizing force in general metacommunities. This applies when
the underlying substrate for dispersal and ecological interactions
acts synergistically with landscape heterogeneity to reduce in-
terspecific competition (66–68). In particular, the structure of
dispersal networks may enable broader niche creation and reduce
competition, and realistic terrestrial or aquatic networks lead
to the emergence of characteristic spatial patterns in correlated
environments. Indeed, weak and sparse interactions in local
communities have been shown to be beneficial to coexistence
(66), with the topology of interactions playing a driving role in the
stability of metacommunities (69). Although our considerations
are limited to spatial competition, they provide a baseline for
the impact of dispersal, allowing future works to incorporate
it alongside direct ecological interactions among species (44).
Importantly, one of the key predictions of our model is that, as the
landscape parameters are driven toward widespread extinction,
species localization will rapidly increase. This is akin to typical
early warning signals of critical transitions in ecological systems
(70), possibly serving as an indicator of the health of the
ecosystem.

In the last twenty years, it has become clear that dispersal
mechanisms can fundamentally alter the structure of ecosystems,

both with and without disorder. In this context, our framework
allows for deeper insight into quantitative characterizations of
individual-level processes underlying colonization and extinc-
tion, while being simple enough to allow for analytical treatment.
As such, several extensions could be readily considered, allowing
for in-depth characterizations of specific ecosystems. Expanding
the multilayered network model to include other interactions,
such as mutualism and predation would help us better understand
the role of dispersal in mediating intra- and interspecific
competition. Moreover, the addition of migration of new species
is an interesting extension that would allow for diversification
and community turnover, where the absence of the extinction
transition may lead to richer temporal dynamics (43). Apart from
demonstrating a natural extension of metapopulation models to
metacommunities, our framework can be generalized to account
for different biological behavior both in plants and animals, for
instance, organisms with life-history stages such as sessile adults
and mobile juveniles or motile and nonmotile subgroups within
a given life-history stage. The presented microscopic model is
immediately malleable to include such additional effects. Overall,
our approach will enable us to study how landscape structure
affects cooperation and competition between different ecological
niches, a pressing matter in understanding how biodiversity
evolves under environmental changes.

Materials and Methods

Metacommunity Model with Dispersal. We start from an individual-based
dynamics describingS species inN interconnected habitat patches. Each species,
in principle, may explore the patches differently, according to its dispersal
pathways, so that the overall dispersal network is a multilayer network, with
each layer corresponding to a given species. For simplicity, here we assume
that all species share the same dispersal network, but our framework can be
immediately generalized to other cases. Each habitat patch has a finite number
Mof colonizable sites. We denote withP�i a sessile individual of the�-th species,
that settled in a site of patch i. As in typical metapopulation models (22), the local
habitat follows a sink dynamics, where sessile individuals can only go extinct
with a rate e�i. However, species can explore the dispersal network by giving
rise to mobile offspring, denoted with X�i, which move between habitat patches
before settling. When settling, if an empty space is encountered, settlement is
successful. However, if an occupied site is encountered, settlement fails and the
explorer dies. The model is described by the microscopic reactions

Death of settled individual : P�i
e�i
−→ ∅i,

Creation of explorers : P�i
h�Aij
−−−→ P�i + X�j,

Diffusion of explorers : X�i
D�Aij
−−−→ X�j, [3]

Successful colonization : X�i + ∅i
��/M
−−−→ P�i,

Unsuccessful colonization : X�i + P� i
��/M
−−−→ P� i,

where D� and �� are respectively the exploration and settling rate for species
�, h� is the feasibility of exploration of the species, and Aij is the adjacency
matrix of the dispersal network that connects habitat patches. In particular, we
assume that mobile individuals are created in neighboring patches to avoid
self-colonization of the same patch. These explorers move along the landscape
through the dispersal network until they attempt to colonize one of the sites in
their current habitat patch, either successfully settling on an empty site or dying
in the process.

This model is the natural multispecies generalization of seminal metapopula-
tion models, as it reduces to that of Hanski and Ovaskainen in the case of a single
focal species (22). Indeed, as in previous works (24), we can obtain an explicit
metapopulation model in the limit of fast exploration (55). Ifp�i =

〈
P�i
〉
/M, we
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can derive Eq. 1 exactly from the leading order of the Kramers–Moyal expansion
of the master equation (SI Appendix) (71). In particular, the kernel is given by
the matrix

K�� ,ij = ���h�
N∑
l=1

Ajl

N∑
k=1

Vik(V
−1)kl

1 + f�!k
, [4]

where !k is the k-th eigenvalue of the transpose outdegree Laplacian of the
dispersal network, and Vij is the matrix of its right eigenvectors. The parameter
f� = D�/�� represents the exploration efficiency of species � - if f� � 1,
explorers will visit many habitat patches before attempting colonization, whereas
if f� � 1 they will remain close to the originating patch. In simulations of the
model, we typically set h� = ��/(1 + f−1

� ), with �� the maximal dispersal
capacity of the species (24). In this way, we ensure that exploration is not possible
as f� → 0, and that f� →∞ gives a finite kernel.

We would like to stress that the presented microscopic model is a
generalization of the single-species metapopulation model corresponding to
thatofHanskiandOvaskainen(22).However,modifyingtheunderlyingreactions
to include other life-history stages or different explorer creation-colonization
dynamics can still lead to qualitatively similar macroscopic models in terms of
the density of the settled individuals, albeit with different characteristics of the
dispersal kernel.

Mean-Field Dispersal Kernel. In a mean-field network, we write the adjacency
matrix as Aij = (1− �ij)/N, which, in the fast exploration limit, is equivalent
to rescaling the maximal dispersal capacity as �� → ��/N. Then, the kernel
elements are given by

KMF
�,ij = h�

[
(N− 1)f�

1 + Nf�
�ij +

1 + (N− 1)f�
1 + Nf�

(
1− �ij

)]
so that, in the large N limit, we find that K�,ij = K�/N for all edges i and j, with

K� = ��/(1 + f−1
� ).

Fine-Tuned Coexistence. We consider a homogeneous landscape, where all
habitat patches have the same extinction rate e� for a given species, and the
dispersal network is invariant under translations. In this scenario, the stationary
species density cannot explicitly depend on the habitat patches, so p∗�i = p∗� .
A solution p∗� > 0 must obey the self-consistency equation

1−
S∑

�=1

p∗� =
e�

N 〈K�〉
, ∀� = 1, . . . , S, [5]

where 〈K�〉 = N−2 ∑
j K�,ij does not depend on i due to the underlying

translational invariance. Thus, coexistence is possible if and only if the average
species LLMF 〈r�〉 = 〈K�〉/e� is identical for all species. In SI Appendix,
we prove that this stationary solution corresponds to a zero eigenvalue of
the Jacobian, and thus is a central manifold. Hence, this comprises a family
of stationary solutions that explicitly depend on the initial condition, which
disappears in the absence of translational invariance.

General Solution in Heterogeneous Landscapes. The mean-field equation
corresponding to Eq. 1 are given by

ṗ�i = e�i

−p�i +
1−

S∑
�=1

p� i

 r�i
〈
p�
〉 , [6]

where
〈
p�
〉
=
∑N

j=1 p�j/N, and we introduced the local species fitness r�i =
K�/e�i. The stationary values p∗�i must obey the consistency equation

1 =
1
N

N∑
i=1

r�i

1 +

S∑
�=1

r� i〈p
∗
� 〉

−1

. [7]

We assume that r�i are quenched random variables extracted from a distribution
Pr(r|E��), where E�� are species-dependent parameters. In SI Appendix, we
show that the consistency equation can be rewritten in terms of the moment-
generating function of the distribution of local fitness

W�(!) =

∫
∞

0
dr Pr(r|E��) e−r! [8]

as

1 = S
∫
∞

0
dze−SF̄(z,Ex)

(
−
W ′�(z x�)
W�(z x�)

)
, [9]

where x� = S
〈
p∗�
〉
, W�(!) is the moment generating function of Pr(r|E��)

and F̄(z,Ex) = z − 1
S
∑S
�=1 lnW�(z x�). In particular, we take the average

to scale as 〈r�〉 = R + Δ�/S + O(1/S2), where R is the baseline LLMF
and Δ� represent the deviation from such baseline. Then, the rescaled average
stationary population x� = S

〈
p∗�
〉

obeys

x� =
Δ� − H

v2
�

R +O
(

1
S

)
, [10]

where v2
� =

〈
r2�
〉
− 〈r�〉2, and

H =

(
1

v2

)−1 [(
Δ
v2

)
−

R− 1

R2

]
[11]

with y = S−1 ∑
� y� denotes the average over disorder (SI Appendix). Thus,

from Eq. 10, we have that coexistence is possible if Δ� > H, which reduces to
the set of conditions in Eq. 2 if we take v2

� = v2 for all species �. In general,
we immediately see that at large disorder variance, it is easier to satisfy the
coexistence condition. All plots in the mean-field case are obtained by explicitly
solving the consistency equation.

Species LocalizationandEcologicalNiches. Wecomputespecies localization
through the inverse participation ratio (IPR), defined as

NI� =

〈
p4
�

〉
〈
p2
�
〉2 . [12]

If a species is present prevalently in k < N habitat patches, then it is easy to
show that the IPR is NI� ≈ N/k. Hence, if a species is not localized, we expect
NI� ≈ 1, whereas if it is present in only one habitat patch we have NI� ≈ N.
Therefore, the IPR is a measure of localization and thus of how much species
survival relies on the emergence of ecological niches. In Fig. 3B, we plot the
average S−1N

∑
� I� . In SI Appendix, we show that the IPR can be computed

exactly as

NI� =
1
6

∫
∞

0 dz z3 e−SF̄(z,x)W(4)(zx�)/W(zx�)[∫
∞

0 dz z e−SF̄(z,x)W(2)(zx�)/W(zx�)
]2

, [13]

where W(m) is the m-th derivative of the moment-generating function, and F̄
has been defined in the main text.

Dynamics inArbitraryDispersalNetworks. In an all-to-all dispersal network,
the kernel does not depend on the habitat patches and the system solely
depends on the average species LLMF. However, this is not true in general,
as the dispersal kernel in Eq. 4 has been shown to depend on all possible
paths between pairs of patches (24). In this scenario, the local species fitness is
r�i = N 〈K�〉/e�i,wheretheNprefactorcomesfromtherescaling�� → ��/N.
This definition immediately reduces to the mean-field case when we consider an
all-to-all network, and once more can be interpreted as a local balance between
colonization and extinction.
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To integrate numerically the dynamics in an arbitrary dispersal network,
which depends explicitly on the extinction rates, we consider first a quenched
realization of the disordered local species fitnesses r�i. Then, for each species �,
we compute the kernel elements K�,ij and its average 〈K�〉 = N−2 ∑

ij K�,ij,
from which we can get the extinction rates as e�i = N 〈K�〉/r�i. Notice that
this explicitly shows that, in order to maintain the average 〈r�〉 constant, the
extinction rates must be tuned in response to the specific kernel, i.e., to the
topology of the dispersal network. In particular, in Fig. 3H, we take the parameters
of the log-normal distribution for the local species fitness to be 〈r〉 = R = 1,
v2 = 1.5. The kernel for each species is computed as in Eq. 4, with �� =
1/N and f� to be uniformly spaced in [0.5, 2]. To highlight the effect of the
network structure, the disorder realization is kept fixed across the different
topologies.

Terrestrial andAquatic Landscapes. To model realistic terrestrial landscapes,
we consider RGGs (60). RGGs are generated by samplingN patches uniformly in
the unit square, i.e., each patch has a spatial position (xi, yi) ∈ [0, 1]× [0, 1].
Two patches are connected if their Euclidean distance dij is smaller than a given
threshold dth. We set dth = 0.17 for Fig. 4, but our results are qualitatively
independent of this choice, provided that the network is connected and not
dense. In this spatially embedded network, we take the weights of each edge to
be functions of the distance between the patches, i.e., we write the adjacency
matrix as

Aij =
dmin
dij
∈ [0, 1], [14]

where dmin is the minimum distance between two patches of the network.
In this way, the exploration rate in Eq. 3 decreases for habitats that are
far apart.

Aquatic and riverine landscapes, instead, are well modeled by OCNs (4, 61,
62). An OCN is a spanning tree where each node is associated with a slope-
area law relating the elevation hi and the local drainage areaAi (63, 64, 72),
related to one another by the scaling relation |∇hi| ∝ A


−1
i , with the scaling

exponent 
 = 1/2. For a given adjacency matrix Aij, the areas are given by
Ai =

∑
j WjiAj + 1 (a unit pixel size is conventionally assumed, i.e., the

random variable A is concentrated in the domain (1,Amax), characterized
by a universal probability distribution p(≥ a) = a−�F(a/Amax), where:
� = 0.43 ± 0.2, and F(x) = 0 for x → ∞ and F(→ 0) is a constant
(62, 64). An OCN then is a spanning tree that reaches a dynamically accessible
local minimum of the total energy dissipation functional EOCN =

∑
iA



i (64).

This proves to be an exact property of the general landscape evolution equation
under reparameterization invariance and in the limit of the small gradient
approximation (73). In particular, in Fig. 4, the OCN has been aggregated so that
each pixel represents either a source, an outlet, or a confluence (74). In the case
of OCNs, the relevant distance that we use to build the metacommunity model
is not the Euclidean distance as for RGGs, but rather the alongstream network
distance (also known as chemical distance).

Spatially Correlated Disorder. To study the case of spatially correlated
disorder, we start from distance matrix dij—either Euclidean distance for RGGs or
network distance for OCNs. Then, we parameterize the covariance Σij between
two habitat patches i and j as

Σij =

1−

(
m1dij
m2

)2
 exp

−
(
m1dij

)2

2m2
3

 [15]

which is a Ricker wavelet and allows for both local correlations and long-range
anticorrelations. Then, the local species fitness is distributed as a multivariate
log-normal distribution, i.e., r�i = ey�i with y�i a multivariate Gaussian variable
y�i ∼ N ( E�, Σ̂). For Fig. 4, we take �i = 0.5 and set m1 = 3, m2 = 1.3,
and m3 = 1 for RGGs—resulting in small anticorrelations at long distances—
and m1 = 0.8, m2 = 5, and m3 = 1 for OCNs—resulting in positive and
exponentially decaying correlations with the network distance. The emergence
of spatial patterns is qualitatively independent of these choices, with the only
constraint being that Σ̂must be a semipositive-definite matrix. In Fig. 4, we take
the mean of the multidimensional log-normal distribution to be �i = 0.5 for
all patches. The simulation of the dynamics for each network is performed with
the parameters described above.

Data, Materials, and Software Availability. There are no data underlying
this work.
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