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Résumé 

 
 Lors d’un exercice à une intensité au-dessous du seuil ventilatoire 1 (V1), la réponse 

fondamentale de la cinétique de la consommation de dioxygène (V̇O2) s'élève de manière mono-

exponentielle, atteignant un état stable après quelques minutes. Cependant, lors de l'exercice à une 

charge de travail constante au-dessus de V1, la cinétique de V̇O2 est caractérisée par un début de l’état 

stable retardé et une deuxième augmentation de V̇O2 superposée à la réponse initiale de V̇O2.Cette 

augmentation lente de V̇O2 est appelée la composante lente (V̇O2sc). Il a été proposé que cet excès de 

V̇O2, reflet de l'inefficacité musculaire, provienne principalement des muscles exercitant; cependant, à 

ce jour, les mécanismes putatifs à cette augmentation sont toujours mal compris. Plusieurs théories ont 

été proposées, parmi lesquels : a) la combinaison de processus liés à la fatigue nécessitant un 

recrutement supplémentaire de fibres pour compenser les fibres déjà fatiguées, et b) l'influence 

potentielle des différents profils métaboliques de différentes populations de types de fibres. 

Le but de cette thèse est de clarifier et de nourrir le débat sur les causes de V̇O2sc, en particulier pour 

ces deux derniers paradigmes. Trois expérimentations ont été réalisées pour mesurer la concordance et 

les interférences de différentes cinétiques de fibres musculaires et la fatigue musculaire avec la V̇O2sc. 

Les résultats de cette thèse sont les suivants : 

1) Lors d’un exercice difficile, l'altération des propriétés neuromusculaires des extenseurs du genou 

(reflétant les processus de fatigue) n’a été significativement réduite qu’après 20-30 min d'exercice, alors 

que la V̇O2sc avait fini de croitre. Ce résultat suggère qu'une relation temporelle entre la fatigue et la 

V̇O2sc ne semble pas exister et, par conséquent, le développement de la fatigue n'est pas une condition 

essentielle pour le développement de la V̇O2sc. 

2) La fonction neuromusculaire évaluée à l’aide d’une stimulation double (Ddb, 100 Hz) pendant 

l'exercice d'extension du genou n'a pas été altérée dans le domaine difficile. En revanche, dans le 

domaine intense, la diminution significative de la force maximale et du taux maximal de développement 

de la force lors de la Ddb, reflétaient des processus de fatigue et étaient partiellement corrélées au 

développement de V̇O2sc relatif. Par conséquent, les résultats suggéraient que la V̇O2sc dans les 

domaines difficiles et intenses n'est pas le produit d'un mécanisme identique. 

3) Afin de construire une nouvelle courbe combinant les principes de Henneman et de superposition, les 

trois courbes de transitions (repos-modérée, modérée-difficile et difficile-intense) ont été alignées dans 

le temps et sommées. Les résultats ont montré que globalement les paramètres de la cinétique de la 

courbe reconstruite n'étaient pas significativement différents d'une transition depuis le repos à un 

exercice d'intensité intense. Cela suggère que le recrutement supplémentaire de fibres n'était pas présent 

et que l'apparition de V̇O2sc est au moins liée, sinon le résultat, des différentes propriétés métaboliques 

des fibres musculaires. 

Ces résultats évidence, lors de l'exercice chez l'homme, que les processus de fatigue représentés par des 

altérations des propriétés neuromusculaires ne sont pas une condition sine qua non pour le 

développement de la V̇O2sc  dans le domaine difficile, et que l'apparition du V̇O2sc pourrait être le 

résultat des différents propriétés métaboliques des fibres musculaires. 

 



 

Abstract 

 
 Below the gas exchange threshold (GET), the fundamental response of O2 consumption (V̇O2) 

kinetics rises monoexponentially, reaching a steady state after a few minutes. However, at a constant 

work rate exceeding the GET, the response is characterized by a delayed onset and a second rise in V̇O2 

superimposed on the initial V̇O2 response. This slowly developing rise in V̇O2 is termed the slow 

component (V̇O2SC). This excess of V̇O2, a reflection of muscle inefficiency, has been proposed to arise 

primarily from the exercising muscles; however, to date, the putative mechanisms are poorly understood. 

Several theories have been proposed, including the combination of fatigue-related processes requiring 

additional fiber recruitment to compensate for the already fatigued fibers and the potential influence of 

the different metabolic profiles of different fiber-type populations. 

The aim of this thesis is to clarify and nourish the debate on the causes of the V̇O2SC, especially for these 

last two paradigms. Three different experiments were performed to measure the concordance and 

interferences of different kinetics of muscle fibers and muscle fatigue with the V̇O2SC. 

The findings of this thesis are as follows: 

1) During exercise at heavy intensity, the alteration in the neuromuscular properties of the knee extensors 

(reflecting fatigue processes) was significantly reduced after only 20-30 min of exercise, while the 

V̇O2SC was stable. The results suggest that a temporal relationship between fatigue and the V̇O2SC does 

not appear to exist; therefore, the development of fatigue is not an essential requirement to elicit the 

V̇O2SC. 

2) Neuromuscular function assessed through doublet stimulation (Ddb, 100Hz) during knee extension 

exercise was not altered in the heavy domain. In contrast, in the severe domain, the significant 

diminution in maximal force and maximal rate of force development during the Ddb, reflected fatigue 

processes and were partially correlated with the development of the relative V̇O2sc. Therefore, the 

results suggest that the V̇O2sc in the heavy and severe domains is not the product of an identical 

mechanism. 

3) After constructing a new kinetics curve combining the Henneman and superposition principles, the 

three different intensity curves (moderate, heavy and severe) were time aligned and summed. The results 

showed that overall kinetics parameters from the reconstructed curve were not significantly different 

from one transition to severe-intensity exercise. This suggests that additional fiber recruitment was not 

present and that the appearance of the V̇O2sc is at least related to, if not the result of, the different 

metabolic properties of muscle fibers. 

These results provide evidence in exercising humans that fatigue processes portrayed by alterations in 

neuromuscular properties are not a sine qua non for the development of the slow component in the heavy 

domain, and that, the appearance of the V̇O2sc could be the result of the different metabolic properties 

of muscle fibers.  
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Figure 18 Example of the VO2 response (thick line) and model (thin line) for a horse during heavy-

intensity exercise. TD1 and TD2, independent time delays; A′0, value of A0 (amplitude of 

phase I response) at TD1. A′1 =A′0 +A1 (amplitude of phase II response) and represents the 

physiologically relevant amplitude. A′2, magnitude of the VO2SC at the end of exercise; 

EEVO2, net increase in VO2 at the end of exercise. Modified from I. Langsetmo et al. 1997.

 ........................................................................................................................................... - 16 - 
Figure 19 VO2 responses to the work rate step on-transient, with the overshoot phenomenon either 

present (gray line) or absent (dashed line) in the fundamental component. From de Lima 

2018. .................................................................................................................................. - 17 - 
Figure 20 Cardiovascular drift. Adapted from Coyle and Gonzalez- Alonso 2001. ........................ - 18 - 
Figure 21 VO2 responses for one subject during five different exercise intensities. Arrows indicate 

the point of maximum fatigue. Note the existence of a slow component when the VO2 after 

the 3rd minute of exercise continues to rise at 275 and 300 W.  Adapted from Astrand and 

Saltin 1961. ........................................................................................................................ - 19 - 
Figure 22 O2-delivery-dependent and -independent regions.  From Poole & Jones 2011 ............. - 28 - 
Figure 23 Relationship between muscle fiber type and the kinetics of VO2 (normalized as O2 cost) 

during heavy exercise. From Barstow et al. 1996............................................................. - 29 - 
Figure 24. Sites where neuromuscular alterations could occur to cause fatigue. Modified from 

Bigland-Ritchie 1981. ........................................................................................................ - 44 - 
Figure 25 Molecular mechanism of muscle contraction. An action potential travels through the 

transverse tubule system and the sarcoplasmic reticulum, resulting in the release of Ca 

ions. Ca ions bind to troponin C, resulting in conformational changes that allow myosin to 

bind to actin, producing muscle contraction. From ........................................................... - 45 - 
Figure 26. General representation of an M-wave and some of the commonly extracted parameters. 

Peak-to-peak amplitude (PtP), time between peaks (PtP time), time to peak (TtP), first peak 

area (FPA), second peak area (SPA). From Ibitoye, Estigoni et al.2014. ......................... - 51 - 
Figure 27 Measurement of the peak twitch torque (Pt), rate of force development (RFD), 

contraction time (CT), half-relaxation time (HRT) and rate of force relaxation of a 

twitch. ................................................................................................................................ - 55 - 
Figure 28 Common measurements of the rising force-time curve. Force at specific time points 

(F50, F100, etc.) and overlapping RFD measurement all starting from force onset (RFD 

(0-50), RFD (0-100), etc.). Adapted from N.A. Maffiuletti et al. 2016 .............................. - 56 - 
Figure 29 F-V relationship for a multijoint task.  The linear solid line represents the linear F-V 

relationship; the dashed line represents the corresponding parabolic P-V. F0, force at null 

velocity; V0, velocity at null force; Pmax, peak power; Fopt and Vopt, optimal force and 

velocity for Pmax, respectively. From Jaric, S 2015. ........................................................ - 58 - 
Figure 30 F-V relationship for a muscle or monoarticular movements. The solid line represents 

the typical F-V relationship; the dashed line represents the corresponding P-V relationship 

obtained from a hypothetical muscle or muscle group. F0, force at null velocity; V0, 

velocity at null force; Pmax, peak power; Fopt and Vopt, optimal force and velocity for 

Pmax, respectively. From Jaric, S 2015. ........................................................................... - 58 - 
Figure 31 Description of events completed during experimental testing (Figure A) and during 

neuromuscular testing (Figure B). Neuromuscular tests (dotted box) were completed prior 

to the rest period (filled box) and after exercise (box with diagonal lines). Neuromuscular 

testing involved three single stimulations (single solid lines) followed by three stimulations 

at 10 Hz (thick-double solid lines) and then three stimulations at 100 Hz (thin-double solid 

lines). Each stimulation had a four second separation. Finally, three MVCs were completed 

with superimposed 100 Hz doublets applied (empty box with thin-double solid lines), each 

separated by a minute rest period. ..................................................................................... - 67 - 
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Figure 32 Neuromuscular alterations for peak twitch amplitude (Figure 2A), 10 Hz paired (P10) 

stimulation (Figure 2B), 100 Hz paired (P100) stimulation (Figure 2C), and P10/P100 

(Figure 2D) over the course of exercise. * Significant difference from baseline (p < 0.05); 

§ Significant difference from 2 minutes (p < 0.05). & Significant difference from 6 minutes 

(p < 0.05). $ Significant difference from 10 minutes (p < 0.05). Error bars are SE. ........ - 75 - 
Figure 33 The relationship between peak twitch amplitude (Figure 33A), 10 Hz paired (P10) 

stimulation (Figure 33B), 100 Hz paired (P100) stimulation (Figure 33C), and P10/P100 

(Figure 33D) and the change in of VO2sc relative to the primary phase.  2 minutes;  

6 minutes;  10 minutes;  20 minutes; and  30 minutes represent average values. Theil's 

line is characterised by the dashed line. Error bars are SE. Error bars in the figures are 

presented as SE for more clarity. ....................................................................................... - 79 - 
Figure 34 Leg extension home-made dynamometer. The strain gauge was located between the 

mobile part of the machine and the participant. The rotational optical encoder was placed 

on the vertical column to measure linear movements. A horizontal target bar 66 cm above 

the ground indicated the range of motion. On the fixed part of the ergometer, a quick 

stop/release manually operated by a pedal allowed the stop/release of the mobile part to 

provide isometric neuromuscular function measurements during the exercise. 

Instantaneous visual feedback of the speed, force and power were provided as a real time 

signal displayed on a computer screen at the front. .......................................................... - 91 - 
Figure 35 Schematic illustration of the time course of neuromuscular function evaluation. The 

protocol depicted above involved a 5SIMVC with 60 s recovery between, represented with 

grey rectangles. Black thick arrows represent superimposed 100Hz doublets; thin arrows 

represent potentiated 100Hz doublets delivered 2s after each 5SIMVC and small pyramid 

arrows represent force-velocity test performed after the correspondent potentiated doublet. 

Rectangles with horizontal bars represent the 10 min step transition exercise. ................ - 93 - 
Figure 36 Illustration of mean VO2 Kinetics during the 10min exercise from different intensities. ... - 

98 - 
Figure 37 Development of the relative V̇O2sc in function of the change in neuromuscular 

parameters during the time course of exercise. Black, blue and red lines represent 

moderate, heavy and severe intensity respectively. In the frontal plane is represented the 

evolution of the relative V̇O2sc (As’/Ap) in function of time, in the transverse plane the time 

course of fatigue for the change of different neuromuscular variables representing the 

fatigue, and in the sagittal plane the evolution of relative V̇O2sc as a function of these same 

variables. Plot A, Db100 (PT) ; B maximal rate of force relaxation (MRFR) and C maximal 

rate of force development (MRFD). ................................................................................. - 101 - 
Figure 38 Illustration of reconstructed method used to analyze the work-to-work transitions 

protocol kinetics. Letters M, H and S represent the model for Moderate, Heavy and Severe 

intensities, respectively; H' and S' represents model for Heavy and Severe kinetic curves 

when 𝑉𝑂2 baseline was set at zero; H” and S” represents Heavy and Severe kinetic curves 

when time was aligned to zero; M+H”+S” represent the reconstructed curve with the sum 

of the three different intensities. ....................................................................................... - 116 - 
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Figure 39. Pulmonary oxygen response (𝑽𝑶𝟐) of reconstructed curve. Upper panel illustrates time 

course comparison of the different reconstructed curves. Blue thick vertical squares 

represent the differences between protocols. On the right, Fit calculations represent the 

percentage of equality between protocols. Lower panel shows the time course of all 

reconstructed curves. Light blue color represents MHS; Red color represents HS; Grey 

color represents MS; Yellow color represents SPost; Dark blue color represents S. HS, 

reconstructed curve for Heavy and Severe intensities; MHS, reconstructed curve for 

Moderate, Heavy and Severe intensities; MS, reconstructed curve for Moderate and Severe 

intensities; S, reconstructed for Severe intensity; SPost, reconstructed curve for Severe 

intensity after prior Severe intensity. ............................................................................... - 121 - 
Figure 40 Hypothetical model of the VO2sc in the heavy domain. The gray line represents the energy 

cost of the anaerobic alactic metabolism; the yellow line represents the energy cost of 

anaerobic lactate metabolism; the blue line represents the aerobic energy cost of 

ventilation; and the black line represents the aerobic muscular energy cost + the cost of 

ventilation. The blue and green zones represent an increase in the VO2 cost of ventilation 

and the metabolic shift from anaerobic to aerobic metabolism, respectively, explaining the 

appearance of the VO2Sc. .................................................................................................. - 128 - 
Figure 41 Mean (± SD) oxygen consumption (black) and oxygen consumption allocated to the 

work of breathing (gray) during 9 min of cycling exercise at Δ60%. The VO2SC is indicated 

by the area between the horizontal black line and the data indicated by the black symbols. 
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Figure 42 Overview of the energetic contribution to exercise at severe intensity. The white columns 

represent directly measured VO2. The gray columns indicate the O2 cost required by 
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130 - 
Figure 43 Hypothetical model of VO2sc in the severe domain. The gray line represents the energy 
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As’   Real value of the amplitude of the slow component 

ATP   Adenosine triphosphate 

Ca2+   Calcium ion 

CaO2    Arterial O2 content 

CF   Correction factor 

CO2    Carbon dioxygen 

COPD    Chronic obstructive pulmonary disease 

CP    Critical Power 

Cp   Creatine phosphate 

CT    Contraction time 

CvO2     Venous O2 content 

DHPRs   Dihydropyridine receptors 

EMG   Electromyogram 

EMS   Electrostimulation 

F    Force 

Fopt   Force at peak power 

F0   Estimated maximal force 

G   Gain 

GainEnd  Gain at the end 

GET    Gas exchange threshold 

H   Heavy domain 

H+   Hydrogen ion 

H2CO3    Carbonic acid 

H2O    Water 

HbO2   Haemoglobin 

Hbtot   Total  haemoglobin 

HCO3    Bicarbonate 



 

XII 

 

HFF    High frequency fatigue 

HHb   De-oxyhemoglobin 

HR   Heart rate 

Hz   Hertz 

iEMG   Integrated electromyogram 

LT   Lactate threshold 

K+   Potassium ion 

KE    Knee extension 

LBF    Leg blood flow 

LFF   Low frequency fatigue 

M   Moderate domain 

MAP    Muscle action potential 

MHC   Myosin heavy chain  

MLSS   Maximal lactate steady state 

MPF   Mean power frequency 

MRFD    Maximal rate of force development 

RFD   Rate of force development 

MRFR   Maximal rate of force relaxation 

MRI    Magnetic resonance images 

MRT    Mean response time 

MU   Motor Unit 

MUAP    Motor Unit Action Potentials 

MVC    Maximal voluntary contraction 

MWVL   M-wave amplitude of vastus lateralis 

MWVM  M-wave amplitude of vastus medialis 

Na+   Sodium ion 

NIRS    Near–infrared spectroscopy 

NMJ    The neuromuscular junction 

O2   Dioxygen 

P/O ratio  Reduction of ATP production per mole of oxygen 

Pcr   Phosphocreatine 

Pi   Phosphate inorganic 

Pmax    Peak power 

PNS   Peripheral nerve stimulation 



 

XIII 

 

 

PT   Peak torque single twitch 

PTMVC    Amplitude of peak torque 

Q    Cardiac output 

RFR   Rate of force relaxation 

RMS   Root mean square 

Rpm   Revolution per minute 

S   Severe domain 

SFV   Slope of force-velocity relationship 

SR   Sarcoplasmic reticulum 

SS   Steady state 

t   Time 

t1/2   Half response time of the response 

T2   Transverse relaxation time 

TDp    Time delay for the primary phase 

TDs   Time delay of the slow component     

TIT    Twitch interpolation technique 

UCP3    Mitochondrial uncoupling protein3 

V    Velocity 

VO2(𝑡)   Oxygen consumption at any point in time 

V0    Estimated velocity of unloaded shortening 

VA   Voluntary activation 
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  Theoretical background 

  Introduction  

 

 Increasing dioxygen (O2) uptake from the ambient environment and clearing carbon dioxide 

(CO2), a product of buffering reactions, the citric acid cycle and oxidative phosphorylation in 

mitochondria, humans and animals, are able to sustain muscular exercise through adenosine triphosphate 

(ATP) production. This process, called “gas exchange”, and the speed at which it responds to meet the 

different demands when exercise is started, is defined as oxygen consumption kinetics (Rossiter 2011). 

The term kinetics has been defined as “the science of the action of force in producing or changing 

motion” (Chambers English Dictionary). Oxygen consumption (V̇O2) kinetics in human physiology can 

be defined as “the science of the study of the dynamic VO2 response to exercise and its subsequent 

recovery” (Jones and Poole 2013). 

In physiological terms, V̇O2 is defined with the Fick equation or principle as the product between the 

cardiac output and the artery-venous difference in O2, and it reflects the amount of O2 that the tissues 

and cells are able to take up. Therefore, the different speeds of VO2 kinetics are dependent on the 

pulmonary, circulatory and muscle systems. The measurement of V̇O2 kinetics in human muscle is an 

invasive procedure not suitable for routine laboratory use; nevertheless, V̇O2 measurements at the level 

of the lungs have been shown to accurately reflect the kinetics of O2 in the working muscles (Barstow 

and Mole 1987, Whipp and Ward 1990, Jones and Poole 2005). 

Fick equation: 

 VO2=Q x (CaO2-CvO2)          Eq 1 

where Q is the cardiac output, the product between the stroke volume and the heart rate (HR), and CaO2 

and CvO2 are the arterial and venous O2 contents, respectively. Therefore, VO2 always depends on 

central oxygen delivery and peripheral O2 extraction (Jones and Poole 2013). Maximal oxygen 

consumption (V̇O2max) is defined as the maximal rate at which ATP can be synthetized aerobically, and 
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it symbolizes and yields important information regarding the coordination and capacity of the 

neuromuscular, cardiovascular and pulmonary systems (Jones and Poole 2013). 

  Exercise intensity domains 

 In exercise physiology, exercise intensity is a fundamental cornerstone of exercise advice, 

analysis and testing. The most logical procedure to assign relative exercise intensity is to normalize it to 

a given percentage of V̇O2max. The problem is that this percentage can have dramatic physiological and 

metabolic variations between subjects. As an example, figure 1 shows the pulmonary V̇O2 of two 

subjects who were instructed to exercise for 30 min or to the limit of tolerance, both at a work rate (WR) 

of 85% of V̇O2max. Subject A reached the limit of tolerance after 10 min of effort, while subject B was 

able to maintain the effort for 30 min; therefore, he was able to maintain a lower relative exercise 

intensity than subject A. 

 This example shows why additional features of physiological stress 

(more adapted to the fitness level of the subject) should be taken into 

account. The factors limiting exercise tolerance are well known to be 

closely related to O2 exchange, as observed in altitude or pulmonary 

disorders (Hill, Long et al. 1924, Edwards 1936), and this is one of the 

reasons why it has been proposed to describe the notion of exercise 

intensity within the oxygen uptake domain. Whipp, in 1982, (Whipp, 

Ward et al. 1982) showed that the parameters that describe V̇O2 kinetics, 

such as gains, time constants and delays (explained later in this rapport), 

change and adapt their responses at different exercise intensities. 

Therefore, he argued that parameters that describe V̇O2 kinetics could be 

used to provide a tool for the assessment of the exercise intensity and the 

parameters that divide them. Exercise intensity is customarily partitioned into 4 domains based on 

evoked metabolic responses and V̇O2 kinetics during constant work exercise (Hill, Poole et al. 2002, 

David C. Poole 2011). Here, the key features that form the central delimitation from which the intensities 

Figure 1 𝑽̇𝑶𝟐uptake of two 

subjects (A & B) during a 

constant work rate of 275 W. 
Note that subject A reaches the 

limit of tolerance at 10 min while 

subject B rode for 30 min. 

Reproduced from Rossiter 2011. 
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are classified are the gas exchange threshold (GET) (Whipp 1987), the critical power (CP) (Poole, Ward 

et al. 1988), and the V̇O2max. 

 In the moderate domain, blood concentrations of lactate and H+ are stable and confounded with 

resting concentrations. Nevertheless, at a specific metabolic rate, there is a disproportionate increase in 

VĊO2 with respect to V̇O2, defined as the GET. The metabolic event that explains this excess of CO2 is 

the rise in blood lactate concentrations above baseline levels, which is why this specific point is also 

known as the lactate threshold  (LT) (Connett, Honig et al. 1990). At these WRs, the intensity of exercise 

cannot be maintained with only oxidative phosphorylation; therefore, the anaerobic lactic system also 

has to play a role. The rise in lactate, and therefore in H+
, creates a drop in the pH, and; consequently, 

the pancreas in an attempt to tampon it, secretes bicarbonate. This increase in bicarbonate then pushes 

the following reaction to the left, generating nonmetabolic CO2, which in turn activates the ventilatory 

response, increasing its rate: 

 CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3       Eq 2 

where CO2 is carbon dioxide, H2O is water, H2CO3 is carbonic acid, H+ is hydrogen ion and HCO3 is 

bicarbonate. 

 This rise in CO2 affects both pulmonary gas exchange 

and ventilation and can be conveniently identified as the 

intersection point of the regression analysis of the slopes of 

the breath-by-breath values of V̇CO2 plotted against V̇O2 

values during an incremental test (figure 2) (Beaver, 

Wasserman et al. 1986). This rise in CO2 is used as an index 

of the LT, i.e., is the increase in blood lactate above resting 

levels (Wasserman and McIlroy 1964), and delimits the 

moderate and heavy domains. 

  In the moderate domain, a steady state (SS) in gas exchange is achieved and can be 

sustained mainly by aerobic metabolism. After a small increase in blood lactate and a small drop in pH, 

the values become stable and close to those found at the start of exercise. In fact, even if there is constant 

Figure 2 CO2 production (VCO2) vs. O2 uptake (VO2) 

showing regression lines for detecting the inflection 

point (AT point). STPD, mean standard temperature 

and pressure in dry conditions. Adapted from Beaver 

1986. 
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lactate production, this SS is achieved if and only if the removal is equal to the production, regardless 

of the absolute level (Antonutto and Di 1995). At this intensity, the SS of  V̇O2 values in healthy subjects 

can be attained in only approximately 2-3 min. 

 In the heavy domain, lactatemia rises and the pH drops in a more pronounced way; however, 

after a while (approximately 10 min), both reach an equilibrium, as the rates of appearance of lactate in 

blood are counterbalanced by the rates 

of its removal from blood. This delay 

in the SS is accompanied by 2 features 

represented by a progressive rise in 

V̇O2, termed the V̇O2 slow component 

(V̇O2SC), and sustained (but stable) 

metabolic acidosis. 

 The CP is defined as the highest WR 

that can be sustained for a prolonged period 

of keeping stable the blood acid-base status, or more properly, the highest metabolic rate at which 

intramuscular creatine phosphate (Cp) and H+ are still stabilized after an initial adaptation (Jones, 

Wilkerson et al. 2008). Functionally, or physiologically, the CP is very close to the concept of maximal 

lactate steady state (MLSS) (Housh, Devries et al. 1991). Even though the methods for determining the 

CP and MLSS are completely different, both typically occur at approximately 50%𝚫 (Pringle and Jones 

2002), although Pringle and Jones (Pringle and Jones 2002) found that MLSS underestimates the CP by 

approximately 20 W. This metabolic state point is used to differentiate the heavy and severe domains. 

 Above the CP, in the severe domain, an SS in V̇O2 is never achieved, blood lactate and H+ 

accumulate, and muscle phosphocreatine (PCr) is progressively depleted (Jones, Wilkerson et al. 2008). 

What characterizes this domain is a clear, progressive reduction in work efficiency, with the appearance 

of a V̇O2SC that decreases with intensity and causes V̇O2 to rise to its maximum until the exercise is 

terminated (figure 4). The higher the WR above the CP, the faster the projection of the V̇O2SC and the 

shorter the exercise can be maintained before exhaustion (Gaesser and poole 1996). 

Figure 3 Pulmonary VO2 response to exercise in the moderate-, 

heavy- and severe-intensity domains. The dashed horizontal lines 

represent the VO2 measured at the participant’s gas exchange threshold 

(GET), the estimated VO2 at the critical power (CP) and the VO2 peak 

determined in the preliminary ramp test. Adapted from Wilkerson et al. 

2004. 
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V̇O2max is the last demarcator that delimits the severe from the extreme domain. The term V̇O2max was 

defined by Hill and Lupton in 1923 (Hill and Lupton 1923) as the highest amount of O2 uptake during 

maximal exercise that could not be increased even with increments in the workload. 

 In the extreme domain, there is no time for an SS, even though the V̇O2SC is not discernable due 

to the rapidity in achieving the maximum rate of O2 consumption (2-4 min in healthy subjects (Hill, 

Poole et al. 2002). Two scenarios are plausible: the subject stops the exercise either because of 

exhaustion or because he has reached V̇O2max. 

 V̇O2 kinetics and exercise intensity in the different domains 

- Moderate domain 

At the onset of a constant, moderate-intensity WR exercise, three different phases that 

correspond to distinct physiological events can be differentiated when looking at the pulmonary oxygen 

uptake kinetics (figure 3&4). 

The first phase, called the cardiodynamic phase (phase 

I), does not represent increased muscle O2 consumption 

but, is the result of blood flow into the lungs resulting 

from the sudden increase in venous return from exercise 

onset as a result of muscle contraction. The exact 

inflection point where this phase ends is not always 

easy to recognize; therefore, some groups have decided 

to eliminate it from consideration by omitting data 

collected from the onset of the exercise to a specific time point (Whipp, Ward et al. 1982). Indeed, 

Whipp and colleagues (Whipp, Ward et al. 1982) demonstrated that, on average, the exponential 

response began approximately 20 s after exercise onset. Later, Krustrup and colleagues (Krustrup, Jones 

et al. 2009) demonstrated that the mean transit time from muscle capillaries to the lung was 

approximately 17 s before exercise and that the removal of this phase did not distort the fidelity of the 

relationship between muscle V̇O2 kinetics and pulmonary V̇O2 kinetics. Therefore, as a consensus, the 

Figure 4 Oxygen uptake kinetic response to exercise in 

children. Taken from Samantha G. Fawkner & Neil 

Armstrong 2003. 
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first 20 s of the pulmonary V̇O2 signal, which does not reflect muscle O2 consumption, are removed 

from the analysis. 

 After this cardiodynamic phase, V̇O2 increases in an exponential fashion, describing phase II, 

or the primary component, which quite closely represents the muscle V̇O2 kinetics after exercise onset 

(Barstow, Scremin et al. 1996, Krustrup, Jones et al. 2009). The amplitude of the primary phase is 

proportional to the exercise intensity, and V̇O2 increases as a linear function of WR with a slope or gain 

(G) (𝚫V̇O2/𝚫W) of 10 ml/min/W on average for cycle ergometry (Wasserman and Whipp 1975). 

Relatively rapidly (within 2-3 min) after the beginning of exercise, a new SS called phase III is achieved 

(Whipp, Ward et al. 1982, Jones and Poole 2005). 

 - Heavy domain 

At this intensity, the amplitude increases according to the exercise intensity, and the primary 

phase length is reflected by a larger time constant (τ). τ represents the time taken to achieve 63% 

𝚫V̇O2 (Jones and Poole 2013) (this term will be explained in more detail later in the manuscript). As 

mentioned before, in this domain, the attainment of an SS is delayed, and the time to achieve an SS 

increases greatly with the increases in WRs, leading to the appearance of an excess of oxygen 

consumption, called the V̇O2sc (Whipp and Wasserman 1972). This secondary V̇O2 elevation becomes 

apparent after approximately 90 to 120 s and is superimposed on phase III (Poole, Barstow et al. 1994). 

- Severe domain 

In the severe-intensity domain, as in the heavy-intensity 

domain, there is an increase in the amplitude of the primary 

component proportional to the exercise intensity and a slowdown 

of V̇O2 kinetics. A specific feature in this domain is the progressive 

diminution in the V̇O2sc, as shown in figure 5, and the inevitable 

progress of the V̇O2 towards the V̇O2max boundary. 

Talking strictly about the kinetics of V̇O2, related to 

different intensities or exercise domains, in the moderate or extreme domain, the kinetics can be 

Figure 5 Magnitude of the slow component 

during incremental exercise. Taken from 

Poole, D. C., & Jones, A. M. (2011). Oxygen 

Uptake Kinetics (Vol. 72, pp. 1810–65). 
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represented by a primary component modeled by an exponential. In contrast, in the heavy and severe 

domains, the appearance of the slow component adds an exponential relation to the model. However, 

the reasons are different, because in the moderate domain, there is not enough metabolic challenge for 

the development of the V̇O2SC, and in the extreme domain, there is not enough time to develop it. Hence, 

the heavy and severe exercise domains are better fit with two exponential terms. 

 Modeling V̇O2 kinetics 

 The exact date when V̇O2 kinetics were signaled as a scientific investigation field is difficult to 

define, but it has been argued that it could be when O2 itself was discovered. Between 1772 and 1774, 

Joseph Priestly and Carl Wilhelm Scheele independently discovered oxygen (Sternbach and Varon 

2005). Both communicated this discovery to Antoine Lavoisier in Paris. Three years after Priestly’s 

visit, Lavoisier named the gas “oxygine” because when different substances burned in it, their oxides 

dissolved in water and formed acids (in Greek, oxygen “acid former” (Lavoisier 1777)). Years later, 

Lavoisier (figure 6) and the mathematician Pierre 

La Place, created an innovative device that 

revealed that the quantity of “that gas” decreased 

while CO2 and heat were produced when a guinea 

pig was sealed within. He made the epic statement 

“eminently respirable gas (O2) that enters the lung, 

leaves it in the form of chalky aeroform acid 

(CO2)…in almost equal volume” (Lavoisier 1789) 

Lavoisier concluded that respiratory combustion 

took place in the lungs and that the heat evolved 

was passed into the blood for transport throughout the body. Unfortunately, he could not investigate this 

conclusion further, as he was guillotined during the French Revolution despite being an eminence and 

his service to science (Sprigge 2002). 

Figure 6 Lavoisier measuring the respiration of a subject at 

rest, as drawn by his wife, who is depicted herself at the table 

on the far right. Adopted from: Wellcome Library London 

(Grimaux 1888). From Schoffelen, P.F.M; Plasqui,G 2018. 
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 This event represents the earliest form of indirect calorimetry, i.e., the quantification of O2 

consumption and CO2 production by measures of the difference in O2 and CO2 contents between the air 

inspired and expired, along with minute ventilation. 

However, this type of calorimetry was a closed-circuit version, as the individual was breathing air within 

a sealed system and was Humphry Davy (Davy 1800), the first person to use open-circuit spirometry 

(breathing ambient air) (Sprigge 2002). He collected his expired air for 1 min over a series of 20 

experiments and compared those data with the data from his ambient inspired air. Davy was able to 

measure his own resting VO2 (484 ml/min) and CO2 (447 ml/min), which are perhaps quite high values 

for a resting person; however, he was probably not resting while performing his experiments (Sprigge 

2002). 

 In 1911, the British scientist Claude Douglas and his colleagues took part in an expedition to 

Pikes Peak in Colorado. Douglas is mainly remembered 

for confirming that the concentration of hemoglobin in 

blood increases with altitude but also because, in 

preparation for the expedition, he developed the gold-

standard method against which other methods are 

compared today, the Douglas method (Cunningham 

1964). The Douglas method consists of a rubber-lined 

cloth bag capable of holding 10 to 50 L of gases. This bag 

was fitted with straps so that it could be fastened around 

the shoulders, with the possibility of being used during 

physical activities (figure 8). The bag was 

connected to a three-way tap, which in turn was 

connected to a mouthpiece placed between the lips 

(figure 7). After respiratory equilibrium of the 

subject was achieved, the three-way valve was 

turned, and the succeeding expirations were 

collected inside the bag for a certain period. Then, 

Figure 7 The Douglas bag, 1970, skiing.  Attributed to an 

unnamed 1970 article. By Astrand and Rodahl. 

Figure 8 From the respiratory exchange of animals 

and man. By August Krogh, 1916, page 43 
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the air contained inside the bag was mixed, analyzed and measured by connecting the bag to a gas meter 

to obtain the O2 and CO2 concentrations. Oxygen uptake and CO2 production could be calculated from 

the difference between the inspired and expired air in the bag, taking into account the temperature and 

barometric pressures. The Douglas bag is, therefore, called a SS gas exchange analyzer. 

  Nevertheless, it was not until 1913 that August Krogh and Johannes Lindhard published a 

revolutionary study describing the changes in 

ventilation, respiratory exchange and 

circulation that occurred during a non-SS but 

during the first minutes of light or heavy 

cycling exercise (Krogh and Lindhard 1913). 

They had subjects exercise with sudden and 

violent exertions or with lower loads and 

longer periods. The results showed that the O2 

absorption values for the 2-8-, 4-6- and 4-5-s 

durations were 200, 250 and 750 cubic 

centimeters (cc), respectively, in contrast with the 300 cc found in control resting conditions. They 

concluded from these experiments that the O2 absorption was not abrupt (i.e., not in a square-wave 

manner, in which target demand is attained instantaneously when the change in requirements occurs); 

in contrast, O2 absorption took place gradually (figure 9). 

 In 1924, two years after being awarded the Nobel Price (for his discovery of the production of 

heat in muscle), Archibald Vivian Hill (figure 10) used a portable Douglas bag to 

measure O2 and CO2 while subjects were walking or running around an 85 m grass 

track (Hill, Long et al. 1924, Bassett 2002). Hill and colleagues collected gases 

for periods of half a minute, using a system with several bags and taps for 

instantaneous switching, making it possible to accurately measure the rapid 

alterations in O2 uptake and CO2 output at the beginning and at the end of exercise 

(Hill, Long et al. 1924). 

Figure 9 Curves showing oxygen absorption before and during 

work. Figures along curves kg. m. per min. From Lindhard and 

Krogh 1913 

Figure 10 Nobel laureate 

Archibald Vivian Hill 

(1886-1977). Pictured in 

1927. 
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Hill's works in the field of sports performance are worth highlighting, since owing to them, the scientific 

discipline of exercise physiology was established (Hill, Long et al. 1924, Bassett 2002). 

Hill and colleagues were the first to demonstrate the clear exponential nature of the V̇O2 response at 

exercise onset, the concept of VO2max and the concept of anaerobic energy production during exercise 

(Hill, Long et al. 1924). Indeed, the concept of the O2-independent metabolic pathway was unknown, 

and the overall consensus was that energy was provided by an aerobic metabolism in a “pay-as-you-go” 

manner. Hill and colleagues demonstrated the existence of another method of energy production, the 

“buy-now-and-pay-later method”, called oxygen debt (this term is explained in more detail later in this 

manuscript). 

 Although Hill and colleagues demonstrated the exponential nature of V̇O2, they never modeled 

it. A few years later, in 1951, Franklin M. Henry (Henry 1951) hypothesized that when there was no 

limitation to O2 delivery, O2 uptake could be determined by the amount of oxidizable substrate present, 

which in turn would be determined by the rate of muscular work. 

Henry formulated the idea with the assumption that, during constant work, a units of substrate x will be 

produced. Some proportion, c, of this substrate x will be oxidized, but the rest will be added to the 

previous a units. Therefore, if c does not change, the rate of the accumulation of substrates will have an 

exponential form, and consequently, the rate of oxygen consumption will be 

              V̇O2(𝑡) = 𝑎0(1 − 𝑒−𝑘𝑡)                                                             Eq 3 

where V̇O2(t) is the oxygen consumption at time t, a0 is the SS of V̇O2 and k is a velocity constant (later 

established as time constant τ). With this 

system, a0 will increase linearly with the 

WR. 

Henry measured O2 uptake in 12 

subjects and found close agreement of the 

theoretical curve with the experimental 

results, as shown in figure 11. However, it is important to note that the subjects exercised at relatively 

light workloads. 

Figure 11 Exercise and recovery curves. Experimental points represent 

the average of 12 individuals measured at the lightest bicycle workload. 

Adapted from F.M. Henry 1951. 
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 Three years later, Henry showed that at higher loads, the time for O2 to reach the SS was 

increased and suggested a two-component exponential equation (Henry and DeMoor 1956): 

    V̇O2(𝑡) = 𝑎𝑖(1 − 𝑒−𝑘𝑖𝑡) +  𝑎𝑖𝑖(1 − 𝑒−𝑘𝑖𝑖𝑡)     Eq 4 

where V̇O2(t) is the oxygen consumption at time t, ai is the SS of V̇O2 and k is a velocity constant. 

 In 1967, Wasserman and colleagues (Wasserman, Kessel et al. 1967) measured the metabolic 

effects, circulation and respiration responses of three different work intensities and durations in healthy 

male subjects. 

At that time, gas analyzers had improved dramatically with the advancement of technology, and 

pulmonary gas exchange could be analyzed on a breath-by-breath basis. They determined moderate, 

heavy and very heavy (another nomenclature for severe) intensities, and the results showed that the time 

to reach an SS in V̇O2 was related to intensity. Indeed, a true SS was reached after 4 min in the moderate 

domain but was delayed for 10 min in the heavy domain and was never reached in the very heavy 

domain. 

 Five years later, J. Whipp and Karlman Wasserman (Whipp and Wasserman 1972), in a study 

performed to determine the effect of intensity in V̇O2 kinetics, 

confirmed that at high intensities, the non-SS phase was made 

with two exponentials, one being rapid and the other much 

slower. In their study, subjects performed a six-exercise test 

consisting of 10 min of rest followed by cycling at 50, 75, 100, 

125, 150 and 175 W at 60 rpm for a minimum of 6 min each 

(figure 12). The results showed that the difference in V̇O2 

between 3 and 6 min (𝚫V̇O2 (3-6)) was close to zero, and an SS in 

V̇O2 was attained by the third minute of exercise. In contrast, at 

high WRs, (𝚫V̇O2 (3-6)) increased as the WR increased, showing 

a delayed process, which affected the kinetics and WRs. 

Moreover, the increase in (𝚫V̇O2 (3-6)) coincided with the rise in lactate, reaffirming the delay in SS 

Figure 12 VO2 of a subject during six 

constant-load exercises. Solid vertical line 

indicates the start of exercise. Arrows indicate 

the time exercise stopped. From Whipp and 

Wasserman 1972. 
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beyond 3 min in work above the “anaerobic threshold”. Whipp and Wasserman  also clarified why the 

studies of Magaria (Margaria, Manglli et al. 1965) and Di Prampero (Prampero, Davies et al. 1970) have 

contradictory results. Both investigated exercises lasted for only 2 min, not giving enough time for a 

true SS to be installed. 

Whipp and Wasserman also proposed the classic 

V̇O2 model. With this model, they represented an excess 

of V̇O2 compared with the VO2 predicted from the V̇O2-

WR relationship during submaximal exercise, i.e., the 

differences between the predicted and the measured V̇O2 

value. The break point of the slope of the line represents 

the start of the second component (figure 13). 

  

 In 1982, Whipp and colleagues (Whipp, Ward et al. 1982) performed an interesting study in 

which the cardiorespiratory phase was defined. They had six subjects perform square-wave exercises at 

intensities below the anaerobic threshold, starting from complete rest or from unloaded pedaling (0-W). 

Each exercise was performed 8 times by each subject, and breath-by-breath data for the eight tests were 

interpolated for the first time, time aligned and 

averaged ensemble. The averaging of several tests 

permitted the visualization of the different patterns 

more clearly, as fluctuations from breath-by–breath 

data were reduced. To characterize the kinetic behavior 

of V̇O2, they proposed three different models: in model 

1, the exponential response started at the onset of the 

100 W exercise, time delay (TD) = 0; in model 2, they 

incorporated a TD; and in model 3, the exponential 

response started only at the inflection point of the 

response (figure 14). The results showed that from rest 

Figure 14 Best fits of single exponential models 1 (top), 

2 (middle) and 3 (bottom) to averaged breath-by-breath 

responses of VO2 to 100-W exercise from 0-W baseline 

(left) or from rest (right). From B.J. Whipp et al., 1982. 

Figure 13 Semilogarithmic model. Rate of change in 

VO2 as a function of time for the subject described in 

figure 7. From Whipp and Wasserman (1972). 
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(not from unloaded pedaling), an abrupt initial response was apparent after 20 s; thereafter, the response 

developed exponentially to a new SS. As mentioned in chapter 5.3, this increase in pulmonary V̇O2 does 

not represent O2 uptake by the tissues but a muscle-to-lung transit delay. Whipp and colleagues termed 

this first response “cardiodynamic” and concluded that model 3 provided the most accurate description 

of the exponential behavior responses of V̇O2, CO2 and V̇E during phase II starting from the inflection 

point from phase I to phase II. 

To wrap up, this study was key in VO2 kinetics, as Whipp et al. (Whipp, Ward et al. 1982) identified 

and defined the three different phases of V̇O2 kinetics: phase I, rapid increase in blood flow perfusing 

the lungs; phase II, increasing in O2 uptake from the exercising muscles; and phase III, an SS in V̇O2. 

 A few years later, in 1991, Barstow and colleagues (Barstow and Molé 1991) performed a study 

with the purpose of deciphering whether the fast component 

(phase II) behaved as a linear first-order system, i.e., whether V̇O2 

increased as a unitary function with the WR or the V̇O2 profile 

ascribed to a single exponential process. If so, it would suggest 

that the extra O2 cost would arise solely from the slow process 

(V̇O2SC) having no impact on the speed or magnitude of phase II. 

Barstow and colleagues proposed two different models. In model 

1 (parallel model, Eq 5), there was no TD between the fast and 

slow components; in contrast, in model 2 (model serial, Eq 6), the 

second exponential component started after a second independent 

TD (figure 15). With these two models, what Barstow and 

colleagues tried to demonstrate was that, if the two processes 

began together, the second TD would ultimately converge to that 

for the first one, and Eq 2 would be reduced to model 1. 

  V̇O2(𝑡) = A1 (1-exp – (t- TD)/τ1) + A2 (1-exp – (t- TD)/τ2)                     Eq 5 
 

  V̇O2(𝑡) = A1 (1-exp – (t- TD1)/τ1) + A2 (1-exp – (t- TD2)/τ2)                    Eq 6 

 

(equations explained in detail on the next page) 

Figure 15 Schematic of the 2 double 

exponential models. A, Amplitudes or 

gains; τ, time constant; TD, time delay from 

the onset of exercise to the beginning of the 

respective exponential processes; 1 and 2, 

phases of the responses. From Barstow and 

Molé 1991. 
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Barstow and colleagues had subjects exercise at different intensities below and above the GET. The 

results showed that responses for exercise below the GET were well fit with model 1, confirming a 

monoexponential response. 

On the other hand, when exercise was done above the GET, model 2 (Eq 6) was a better fit, confirming 

that the second component did not begin coincident with the first but rather later into exercise. Instead, 

it seems that the authors did not take into account the degrees of freedom of the two models in the 

comparison. In fact, the greater the number of parameters in the equation, the better the fit but also the 

greater the degrees of freedom, something that should be taken into account when making the 

comparison. 

 As a recapitulation, for most of the 20th century, 

research papers about V̇O2 kinetics assumed that VO2 

followed a nonlinear first-order system. However, further 

studies demonstrated that this first-order nonlinearity of 

V̇O2 was valid only for exercise within the moderate-

intensity domain, represented with an exponential function. 

 An exponential response of a system is in  

accordance with a difference between the instantaneous and 

required values (in this case of V̇O2) and the feedback control of the response until the error signal is 

eliminated (figure 16) (Jones and Poole 2013). 

Today, most publications describe the V̇O2 response under the GET with the following equation: 

 V̇O2(𝑡) =  V̇O2baseline + Ap (1-exp – (t- TDp)/τp)                  Eq 7 

 

where V̇O2(𝑡) is the oxygen consumption at any point in time and V̇O2baseline is the oxygen consumption 

before exercise starts. Ap is the SS amplitude of the V̇O2 response of the primary phase, and the term (1-

exp – (t- TDp)/τp) is the exponential function describing the rate at which V̇O2 rises towards the SS 

amplitude. t is time, and TDp is the TD before the start of the exponential term, i.e., the time it takes 

oxygen to travel from the muscle capillaries to the pulmonary capillary bed (Rossiter 2011). Indeed, as 

Figure 16 Kinetics of VO2 in the moderate 

domain. BL is baseline; 𝑉̇𝑂2(𝑡) is the O2 

consumption at any time point in time; 

𝑉̇𝑂2𝑠𝑠   𝑖𝑠 𝑡ℎ𝑒 𝑉̇𝑂2 𝑎𝑡 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒; Ap, is the 

amplitude of the primary phase; and (1-exp – (t- 

TDp)/τp)) is the exponential function describing the 

rate at which 𝑉̇𝑂2 rises towards the SS amplitude. 

Adapted from D.C. Poole and A.M. Jones (2011).  
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mentioned before, after an abrupt increase in exercise intensity, the result of oxygen extraction from the 

muscles will not be reflected in pulmonary gas exchange for the period of this TD (Whipp, Ward et al. 

1982). This TDp is not constant and normally takes from 10 (during exercise) to 20 s in resting 

conditions (Krustrup, Jones et al. 2009). Of course, this TDp is inversely proportional to the cardiac 

output; the larger Q is, the smaller the TD. Finally, τp is the time constant of the primary phase, i.e., the 

time that V̇O2 takes to reach 63% of the amplitude of the action potential (AP), and can take from 10 to 

>100 s. 

The smaller the τ value, the faster the V̇O2 kinetics, which is very important in regards to the O2 deficit, 

since the metabolic perturbations (e.g., 𝚫[H+] or 𝚫[Lactate] or 𝚫[PCr]) will be minimized (Poole and 

Jones 2012). For instance, elite cyclists (Barstow and Molé 1991) and marathon runners (Jones and 

Poole 2009) could achieve V̇O2SS within 30 or 40 s. On the other hand, patients suffering from 

pulmonary or cardiac diseases could require several minutes to reach SS and will therefore incur a larger 

O2 deficit associated with premature fatigue (Poole and Jones 2012). 

The oxygen deficit is represented as the shaded 

area in figure 17. The absolute size of this area 

(deficit) is the product of 𝚫V̇O2 and the speed 

of the V̇O2 response, represented by τ. 

Therefore, the faster the V̇O2 response is, the 

smaller τ and the O2 deficit are. In contrast, 

unhealthy individuals with a slow response 

(larger τ) will incur a greater degree of 

metabolic perturbation, such as an increase in 

lactic acid production and PCr degradation, 

because in the transition from rest to any WR (below the GET), the vertical distance between the baseline 

V̇O2 and the V̇O2 required at SS must be met from the energy stores within the muscle, principally PCr 

hydrolysis and anaerobic glycolysis (Poole, Kindig et al. 2005). 

Figure 17 Schematic representation of the O2 deficit. The range 

of τ values given represent measures of a racehorse (10 s),  a 

sedentary human (45 s) and a cardiac patient (90 s). The shaded 

area represents the O2 deficit for a τ of 10 s. Note that the area l 

becomes larger as the VO2 kinetics become slower. From Poole, 

Kindig et al. 2005. 



 

- 16 - 

 

Contrary to moderate, heavy and severe domains are better fit with two exponential functions; 

consequently, the independent variables A, TD and τ are elected to partition V̇O2 kinetics into discrete 

components. 

Therefore, as seen in figure 18, the V̇O2SC has its 

own independent TDs, As and τs. These differences 

are made because the V̇O2SC does not commence 

when exercise begins, but instead appears sometime 

after following the onset of exercise. In addition, 

this is a requisite to clarify why, the kinetics are 

slower in the heavy compared with the moderate 

domain (Koga, Shiojiri et al. 1999, Borrani, Candau 

et al. 2001, Pringle, 2003 #25). 

 The three exponential functions are described with the following equations: 

 

 V̇O2(t) = V̇O2baseline + Ac (1-e –(t/τc)                             Phase I cardiodynamic phase 

 

   + Ap (1-e –(t - TDp)/τp)                           Phase II primary component  

              + As (1- e 
– (t-TDs)/τs)                                  Slow component 

where V̇O2(𝑡) is the oxygen consumption at any point in time and V̇O2baseline is the oxygen 

consumption before exercise starts. Ac, Ap and As are the amplitudes for the cardiodynamic, primary 

and slow components, respectively. τc, τp and τs are the time constants, and TDp and TDs are the TDs. 

Because the asymptotic value of the exponential equation describing phase III may represent a higher 

value than the one actually reached, the actual amplitude at the end of exercise for the V̇O2SC is described 

as As´ and is calculated as follows: 

  As´ = As (1-e –(T.end-TDs)/ τs)       Eq 8 

 

 

 

Figure 18 Example of the VO2 response (thick line) and model 

(thin line) for a horse during heavy-intensity exercise. TD1 and 

TD2, independent time delays; A′0, value of A0 (amplitude of 

phase I response) at TD1. A′1 =A′0 +A1 (amplitude of phase 

II response) and represents the physiologically relevant 

amplitude. A′2, magnitude of the VO2SC at the end of exercise; 

EEVO2, net increase in VO2 at the end of exercise. Modified from 

I. Langsetmo et al. 1997. 

https://journals.physiology.org/doi/full/10.1152/jappl.1997.83.4.1235
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As mentioned before, during the XX century, the V̇O2 kinetics were modeled with first-order 

multiexponential (FOME) model. 

However, at the beginning of the XXI century, two new models were proposed by Luis A.P. de Lima 

(de Lima, Raison et al. 2018, de Lima, Achiche et al. 2020). 

Over the last few years, some studies have reported a 

remarkable VO2 overshoot phenomenon (OV̇O2K) in phase II, 

or the fundamental phase, of the V̇O2 kinetics of step-on 

transient responses (figure 19) (Hoogeveen and Keizer 2003, 

Koppo, Whipp et al. 2004). This phenomenon is observed 

during constant load exercises in well-trained endurance 

athletes during the first 2 min of exercise. De Lima and colleagues proposed in their study (de Lima, 

Raison et al. 2018) a mixed multiexponential (MiME) model, combining a first-order model for the 

cardiodynamic and slow components with a second-order model for the fundamental phase, as a better 

overall fitting of V̇O2 kinetics. As hypothesized, the results showed that the MiME model presented is 

more adequate than the FOME model in explaining the V̇O2kinetics, regardless of the presence of 

OV̇O2K. 

 

In 2020, de Lima and colleagues (de Lima, Achiche et al. 2020) proposed another new model composed 

of two second-order simultaneous components (SOSCs) for a better overall fit for both the OV̇O2K 

phenomenon and the delayed response of the slow augmentation of V̇O2 of the V̇O2SC. The results 

confirmed SOSCs as a better alternative to a FOME model. 

Nevertheless, to date, it has not been confirmed that any of the proposed models are better than the 

actual multiexponential model, as they have still not been utilized. 

 

 

 

 

 

 

Figure 19 VO2 responses to the work rate step 

on-transient, with the overshoot phenomenon 

either present (gray line) or absent (dashed 

line) in the fundamental component. From de 

Lima 2018. 
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   Origin of the V̇O2sc 

 Historical precedence 

 The first authors reporting the existence of the V̇O2SC were probably Hill and Lupton (Hill and 

Lupton 1923) when they found an increase in the VO2 of 320 ml/min in a subject running at a constant 

speed of 14.4 km/h. The authors attributed this to a painful blister 

causing inefficient movement. The fact that the running speed 

represented 86% of V̇O2max suggests that these data probably 

represent the first observation of the V̇O2SC in humans. 

 Importantly, the V̇O2SC should not be confused with the 

modest V̇O2 drift (~200 ml) that may occur during moderate-

intensity exercise for a duration of more than 60 min (figure 20). 

After the first 10-15 min of a constant-rate, moderate-intensity exercise at 50-75% of V̇O2max, a slow 

and progressive change over time in some of the cardiovascular measures occurs. The arteriovenous 

difference in O2 and HR increases progressively while the stroke volume and mean arterial and 

pulmonary pressures decrease, resulting in a cardiac output that is relatively constant but an increase in 

O2 uptake. This rise in V̇O2 is not associated with an increase in blood lactate; it is observed mostly in 

warm environments (Montain and Coyle 1992), and the mechanism after this cardiovascular drift 

remains controversial. One hypothesis is that this drift is caused by peripheral displacement of the blood 

volume to the cutaneous blood bed, causing a drop in arterial and central venous pressure and stroke 

volume (Ekelund and Holmgren 1964). Another hypothesis is that hyperthermia causes an increase in 

sympathetic nervous system activity, which decreases the ventricular filling time, the end-diastolic 

volume and, as a consequence, the stroke volume (Coyle and Gonzalez-Alonso 2001) 

 The V̇O2SC should not be confused with the gradual rise in V̇O2 normally seen during 

submaximal negative work, such as downhill running. Dick & Cavanaught (Dick and Cavanagh 1987) 

proposed that this drift in V̇O2 while performing low-intensity downhill running is related to the damage 

that occurs in the muscle with this form of exercise. They suggested that with this type of exercise, some 

Figure 20 Cardiovascular drift. Adapted 

from Coyle and Gonzalez- Alonso 2001. 
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muscle fibers are damaged and are no longer able to maintain or generate force; therefore, other motor 

units (MUs) must be recruited to maintain the WR. However, the damaged fibers continue to utilize 

oxygen, resulting in an increase in V̇O2 up to 10% and associated with an increase in muscle 

electromyography. 

 The first publication in the literature as evidence of the V̇O2SC was in 1961 by Astrand and 

Salting (Åstrand and Saltin 1961). In their study, the profile 

bouts of exercise at different intensities showed how the 

V̇O2SC drives V̇O2 towards V̇O2max and exhaustion (figure 

21). The figure shows the data of one of the subjects in 

whom the slow component can be observed in the two last 

less-intense WRs. 

 After the work of Astrand and Saltin (Åstrand and 

Saltin 1961), a multitude of other authors established evidence about the existence of the slow 

component, including Whipp et al. (Whipp 1994). 

 As mentioned before, the appearance of the V̇O2SC causes an augmentation in V̇O2, which 

confers a diminution in the muscular efficiency and is characterized by a rise in the G (ΔV̇O2/ Δwork) 

above the GET. This increase in the G is inversely proportional to the efficiency. This reduced muscle 

efficiency should not be ignored since it could account for as much as a 1.0-1.5 L/min increase in V̇O2 

in the severe domain (Poole, Schaffartzik et al. 1991). 

 The slow component phenomenon causes a delay in SS achievement, limiting the individual’s 

capacity to tolerate exercise at high intensity for a prolonged period of time. Thus, preventing the 

emergence or limiting the magnitude of this component is crucial for the success of athletes competing 

at high intensity or for individuals in which a high WR is necessary to reduce the risk of the onset of 

diseases, such as hypolipoproteinemia or hypertriglyceridemia (Slentz, Houmard et al. 2007). 

 

 

Figure 21 VO2 responses for one subject during 

five different exercise intensities. Arrows indicate 

the point of maximum fatigue. Note the existence of 

a slow component when the VO2 after the 3rd 

minute of exercise continues to rise at 275 and 300 

W.  Adapted from Astrand and Saltin 1961. 
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 Putative causes of the V̇O2SC 

 To explain the phenomenon of the V̇O2SC, several putative mechanisms have been proposed. 

One of the first and most obvious was the accumulation of lactate concentration in the blood, since the 

V̇O2SC has been reported to emerge at exercise intensities above the LT. The physiological basis of this 

increase in V̇O2 accompanying the accumulation of blood lactate was assumed to be the result of the 

stimulation of glycogenesis or gluconeogenesis (McArdle, Katch et al. 2001, Shulman and Petersen 

2009). However, some studies have shown that the small V̇O2 cost of the Cori cycle process is not 

enough to support the notion that the emergence of the V̇O2sc results from an elevated level of blood 

lactate (Whipp 1994, Gaesser and poole 1996). Additionally, it has been argued that the decrease in pH, 

rather than the mere accumulation of lactate in blood, contributes to the increased magnitude of the 

V̇O2sc (Wasserman, Whipp et al. 1974, Stringer, Wasserman et al. 1994, Gaesser and poole 1996, Xu 

and Rhodes 1999). This decrease in pH (lactic acidosis) allows hemoglobin to readily release and deliver 

oxygen to the active muscles, which in turn allows the increase in V̇O2 to meet energy demands. This 

phenomenon is known as the “Bohr effect”, which promotes the right shift of the oxyhemoglobin 

dissociation curve or the decrease in oxygen affinity of hemoglobin (Riggs 1988). However, this 

hypothesis has been argued by researchers to be an insufficient explanation of the excess oxygen evident 

during heavy exercise from the predicted V̇O2-WR relationship above the LT (Whipp 1994, Gaesser and 

poole 1996). 

Despite the correlation reported between the V̇O2SC time course and the magnitude of the blood 

lactate concentration (Casaburi, Storer et al. 1987, Poole, Ward et al. 1988), later studies employing an 

infusion of epinephrine and blood lactate (Gaesser 1994) eliminated lactate as a major contributor to the 

development of the appearance of the V̇O2SC. Furthermore, other possible causes, such as the increase 

in catecholamines (Gaesser and poole 1996); exercising muscle temperature (Hagberg, Mullin et al. 

1978, Whipp and Wasserman 1986); metabolic acidosis (Zoładź, Duda et al. 1998); and respiratory 

(Poole, Ward et al. 1990), cardiac (Poole, Wagner et al. 1995) and auxiliary muscle work (Cross, Morris 

et al. 2010), were considered putative mediators of the V̇O2SC. Nevertheless, the landmark study of Poole 

et al. (Poole, Schaffartzik et al. 1991) disproved many of the mechanisms mentioned above, with the 
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discovery that approximately 86% of the V̇O2SC originates from the exercising limbs. To show this, they 

had subjects exercise in the moderate and severe domains and simultaneously measured the pulmonary 

and leg V̇O2 by thermodilution. During severe-intensity exercise, both pulmonary and leg V̇O2 increased, 

and these increases were highly correlated. 

The notion that the V̇O2SC predominantly originates in the “exercising limb” was further supported by 

others (Krustrup, Jones et al. 2009). For instance, during repeated two-legged isometric contractions of 

the quadriceps at 30% of maximum voluntary contraction (MVC) for 6 s with 4 s of rest in between 

series until exhaustion, a twofold increase in V̇O2 occurred. Blood samples were taken from the femoral 

vein and artery, and blood velocity was recorded by ultrasound Doppler from the same artery. The results 

showed that the increase in energy demand resulted from an increase in blood flow and oxygen 

extraction by 54% and 34%, respectively (Vollestad, Wesche et al. 1990). 

 These investigations, which point to a significant increase in blood flow and oxygen uptake by 

the working muscles at the intensities where the V̇O2sc is expected to happen, indeed suggest that the 

V̇O2sc predominantly arises from the exercising limbs due to an increase in energy demands to maintain 

force production. 

Since it was shown that the V̇O2sc originates mainly within the exercising limb rather than from central 

factors such as cardiac, ventilatory, auxiliary muscle work or metabolic stimulation at sites outside the 

exercising limb (Poole, Schaffartzik et al. 1991), some of the proposed mechanisms have been either 

weakened or eliminated. 

 Even though the results from Poole et al (Poole, Schaffartzik et al. 1991) suggested that the 

increase in leg V̇O2 could account for 86% of the pulmonary V̇O2sc and muscle appears to be the location 

of slow component development, the exact mechanisms causing this V̇O2SC are still under debate (Jones 

and Poole 2005, Borrani, Malatesta et al. 2009). 

 Different experiments, such as glycogen depletion in type I muscle fibers (Krustrup, Söderlund 

et al. 2004), slow twitch fiber blockade (Krustrup, Secher et al. 2008), and others performed with 

electromyography (ShlNohara and Moritanl 1992), supported the idea of the involvement of fast twitch 

muscle fiber activation patterns in the development of the V̇O2SC. 
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The reason why all these authors agree with the idea of type II muscle fibers being involved, or even the 

culprit, in the development and appearance of the V̇O2SC is founded in the Henneman principle. Muscle 

fiber activation is not aleatory and follows the “size principle” of MU recruitment (Henneman E 1981). 

The Henneman principle states that MUs and their fibers are recruited in an orderly manner. MUs 

containing slow-twitch, fatigue-resistant muscle fibers have the lowest threshold for activation and will 

be recruited first. This type of MU contains type I slow twitch fibers, which have greater mitochondrial 

density, greater capacity to resynthesize ATP via oxidative phosphorylation (Jackman and Willis 1996), 

more myoglobin content and a higher fiber/capillarity ratio (Gollnick, Armstrong et al. 1972). At the 

other end of the spectrum, MUs innervating type IIx fibers have fewer mitochondrial content and lower 

oxidative enzyme activity (Meyer, Brown et al. 1985), are less efficient (Wendt and Gibbs 1973) and 

have greater ATP cost of force production than their type I counterparts (Stienen, Kiers et al. 1996, Han, 

Proctor et al. 2001). Youn Soo Han and colleagues (Han, Proctor et al. 2001) reported that the reserve 

capacity for ATP consumption for fibers expressing myosin heavy chain 2X (MHC2x) was lower than 

that for fibers expressing slow MHC. MHC2x fibers, on the other hand, have a higher tension cost, which 

is one of the reasons why they are less energy efficient. 

As expected, during moderate-intensity exercise below the LT, the majority, or even all, of the muscle 

work would be produced by the MUs that innervate the slow-twitch fibers. On the other hand, when the 

intensity is above the LT, the power production will come from both the MUs innervating type I fibers 

and the MUs innervating the fast-twitch, type II fibers (Saunders, Evans et al. 2000). 

Glycogen content (VØLLESTAD and BLOM 1985, Krustrup, Söderlund et al. 2004) and 

electromyographic studies (Mateika, Duffin et al. 1994) have demonstrated that type II fibers are 

activated in the intensity domain associated with the V̇O2SC. However, there is still a debate in the current 

literature about the mechanistic link between the recruitment of less efficient type II fibers and the excess 

cost of the V̇O2SC (Poole and Jones 2012). 

Since then, three main research paradigms have been explored: 

- The idea of the central O2 delivery limitation being the principal cause of the alteration in 

V̇O2 kinetics. 
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- The idea of the influence of the different kinetics of fiber type and MU recruitment on the 

development of the V̇O2SC. 

- The idea that the development of fatigue in fibers during exercise triggers the recruitment 

of other fibers (of higher hierarchy and lower economic efficiency) to maintain exercise 

intensity and consequently allows the appearance of the V̇O2SC. 

In the following chapter, these three paradigms will be developed in more detail. 

 Three different paradigms  

  - Central O2 delivery limitation 

Certain authors have hypothesized that the V̇O2SC could be the result of inadequate O2 delivery 

to the working muscles. Some have hypothesized that with a prior “warm up” bout of exercise above 

the GET, perfusion could be improved due to the vasodilating effects of acidosis. 

In 1989, Gauche and colleagues (Gausche, Harmon et al. 1989) were the first to provide evidence that 

a prior bout of heavy exercise altered the V̇O2 kinetics of supra-GET-intensity exercise. Although these 

investigators did not measure acid-base variables, this event raised the possibility that the accelerated 

kinetics after a heavy exercise bout were a consequence of the vasodilating effects of acidosis. In 1996, 

Gerbino et al (Gerbino, Ward et al. 1996), focusing on alterations in acid-base status, established that a 

prior bout of heavy (but not moderate)-intensity exercise could accelerate the overall V̇O2 kinetics 

(reducing τp) in a second bout of heavy exercise performed 6 min later. They proposed two factors that 

could explain this phenomenon: vasodilatation at the start of the second bout and an acidemia-induced 

Borg shift of the hemoglobin dissociation curve. This speculation was based upon the fact that the 

elevation of blood lactate and consequent acidosis caused by high-intensity exercise would still be 

present in the second bout of exercise. This residual acidosis is associated with vasodilation and with 

the right shift in the oxyhemoglobin dissociation curve (rightwards facilitates the release of O2 from 

hemoglobin to the tissues). 

The problem with the study of Gerbino (Gerbino, Ward et al. 1996) is that they used a simple exponential 

function to model the kinetics from the first 25 s to the end of the exercise. With this approach, the 
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“resultant” effective τp may be reduced as a consequence of an acceleration of the primary kinetics or 

due to a reduction in V̇O2SC amplitude. 

 A few years later, it was revealed that with a hyperoxia protocol and prior heavy exercise, V̇O2 

kinetics were faster and the V̇O2sc was decreased compared with normoxia. Both VO2 kinetics and the  

V̇O2sc were faster, but even faster was the adaptation of V̇O2 when the arterial O2 content was increased, 

leading to the conclusion that O2 transport acted as the rate-limiting step (Macdonald, Pedersen et al. 

1997). 

 On the other hand, other groups, such as Burnley et al. and Koppo et al. (Burnley, Jones et al. 

2000, Koppo and Bouckaert 2001), used more complex modeling procedures to provide insights 

regarding the physiological mechanisms after the overall acceleration of V̇O2 kinetics. Both confirmed 

that the acceleration of V̇O2 kinetics found by the Gerbino study (Gerbino, Ward et al. 1996) with prior 

heavy exercise was a consequence of the increase in the amplitude of the primary phase and the reduction 

in the V̇O2SC rather than a faster primary phase. 

 Another important factor to consider for the calculation of the amplitude of the primary phase 

is that it could be influenced by the elevated baseline due to the priming exercise. To verify the influence 

of the baseline value, Burnley and colleagues (Burnley, Doust et al. 2001) extended the duration of the 

recovery between bouts from 6 to 12 min, concluding that the absolute V̇O2 amplitude at the end of the 

primary phase was a consequence of an increase in the net amplitude of the primary phase response 

itself, independent of the baseline V̇O2. 

 Ninety percent of the studies support the idea that prior exercise creates residual blood acidosis 

that accelerates the overall kinetics, increasing the primary component amplitude and reducing the 

V̇O2SC amplitude without changes in τp. Notwithstanding, if the initial conditions of exercise regarding 

O2 availability are modified, the results can be very different. The hydrostatic gradient is well known to 

play a considerable role in the supply of additional perfusion pressure above heart level (Convertino, 

Goldwater et al. 1984). Indeed, when subjects are in the supine position, the blood flow and, by 

implication, O2 delivery to the exercising muscles is reduced because the gravitational assistance is 

attenuated. For instance, it has been shown that VO2peak and ventilatory threshold are reduced in the 
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supine position compared with the upright position (Hughson, Xing et al. 1991, Hughson, Cochrane et 

al. 1993). These results are in line with the study of Rossiter and colleagues (Rossiter, Ward et al. 2001), 

who had subjects exercise in the prone position and noticed that a prior bout of heavy exercise reduced 

τp (46.6 ± 6.0 s vs 40.7 ± 8.4 s) and the amplitude of the V̇O2SC. Additionally, Scheuermann 

(Scheuermann, Bell et al. 2002) found in a study with young (26 years) and older (65 years) individuals 

that prior heavy exercise accelerated the overall V̇O2 kinetics, represented by a decrease in the mean 

response time ((MRT), i.e., the sum of TD and τ) from 52.0 ± 4.3 to 40.6 ± 2.3 in the older population, 

with no significant changes in the younger population (29.9 ± 3.1 s vs 28.3 ± 1.7 s). The authors 

concluded that muscle O2 consumption (in older and young adults) is limited by intracellular processes 

within the exercising muscle when muscle blood flow and O2 delivery are adequate. The same 

conclusions have been found comparing the effect of a prior heavy exercise bout on a moderate-intensity 

second bout in older and young populations, with reductions in τp from 38 to 30 s and from 26 to 25 s, 

respectively (DeLorey, Kowalchuk et al. 2004). In the same manner, others have found significant 

effects of prior exercise during supine cycling, with τp being reduced from 38 to 24 s without changes 

in V̇O2SC amplitude (Jones, Berger et al. 2006). Additionally, when performing arm cranking, when the 

arm was positioned above the level of the heart, V̇O2 availability was compromised (Koppo and 

Bouckaert 2005). 

In addition, in certain pathologies in which muscle O2 delivery is impaired, V̇O2 kinetics can be 

accelerated when the capacity of O2 delivery is increased by arterial oxygen content or by increased 

cardiac output. For example, in hypoxemic chronic obstructive pulmonary disease (COPD) patients, the 

administration of supplemental O2 during moderate constant-load exercise results in enhanced oxidative 

metabolism and faster V̇O2 kinetics (Palange, Galassetti et al. 1995). Another example is found in work 

with chronic heart failure patients (Grassi, Marconi et al. 1997), where it was found that “prior exercise”, 

even if it did not affect the speed of V̇O2 kinetics, was effective in speeding up the convective O2 flow 

to muscles during the second transition bout. In contrast, Paterson and colleagues (Paterson, 

Cunningham et al. 1994) found some speed effects of “prior exercise” in heart transplant subjects with 

a decrease in τp from 77 ± 26 to 46±17 s. 
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 Multiple mechanisms have been proposed to explain the changes in V̇O2 kinetics following prior 

exercise. These mechanisms include the following: 

 -Muscle temperature. During prior heavy exercise interventions, muscle temperature can be 

elevated during the second bout, possibly affecting the dynamics of the V̇O2. Nevertheless, Koga et al 

(Koga, Shiojiri et al. 1997) reported no significant reduction in the V̇O2SC after a 3°C increase in leg 

muscle temperature with hot-water-perfused pants, concluding that elevated muscle temperature does 

not contribute to the V̇O2SC in heavy exercise. Neither Koppo et al (Koppo, Jones et al. 2002) found any 

significant difference in the V̇O2SC when muscle temperature was manipulated. They measured 

intramuscular temperature and V̇O2 simultaneously during heavy exercise bouts, and on a separate day, 

they raised muscle temperature to the same level of prior exercise (37.3°C) before the participants 

performed a unique bout of heavy exercise. The reduction in the V̇O2SC was observed only with prior 

exercise, concluding that elevating muscle temperature per se had no effects on V̇O2kinetics. 

 - Increased enzyme activity. Pyruvate dehydrogenase is a key component of metabolic inertia, 

especially between glycolysis and the Krebs cycle. Pyruvate dehydrogenase is the first enzyme of the 

pyruvate dehydrogenase complex that intervenes in the step from pyruvate to acetyl-CoA, and its 

administration results in less PCr degradation and lactate accumulation during transitions from rest to 

submaximal exercise. Campbell-O’Sullivan et al. (Campbell-O'Sullivan, Constantin-Teodosiu et al. 

2002) showed that after a prior exercise bout at 55% of V̇O2max, there was a stockpiling of acetyl groups 

with a concomitant increase in speed on the V̇O2 response during the second bout of exercise. The 

authors therefore proposed that prior exercise enhances substrate availability (acetyl-CoA) and 

subsequently accelerates the V̇O2 kinetics in the second bout of exercise with a reduction in anaerobic 

ATP synthesis. Nevertheless, others have found opposite results (Bangsbo, Gibala et al. 2002, Grassi, 

Hogan et al. 2002). They did not find any impact on the τ of the primary component, as expected, with 

the administration of dichloroacetate (known to increase the active form of the pyruvate dehydrogenase 

complex) or any anaerobic ATP provision. 

 - MU recruitment. Barstow and Mole (Barstow, Jones et al. 1996) showed that subjects with a 

higher percentage of type I fibers had a larger amplitude of the first component and a smaller V̇O2SC 
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during heavy cycling exercise, hence faster primary V̇O2 kinetics. Therefore, changes in the primary 

phase and V̇O2SC have been proposed to be related to changes in the fiber recruitment pattern. For 

example, Burnley et al. (Burnley, Doust et al. 2002) reported an increase in the integrated 

electromyogram (iEMG) in three different muscle groups (gluteus maximus, vastus lateralis, and vastus 

medialis) in the second bout of heavy exercise, while the mean power frequency (MPF) was unchanged. 

This increase in the iEMG was accompanied by an increase in the amplitude of the primary component. 

These results suggested that the increased primary phase amplitude is related to a greater recruitment of 

MUs at the onset of exercise. Nevertheless, other studies did not find any relation between the second 

bout of heavy exercise and the iEMG response (Scheuermann, Hoelting et al. 2001). 

DiMenna (DiMenna, Wilkerson et al. 2008) examined the interaction between pedal rate and prior 

exercise. They found that τp was speeded only when severe-intensity priming exercise was done at high 

pedal rates (115 rpm). The authors concluded that the effect of priming at high pedal rates was 

presumably through specific priming effects on type II muscle fibers. 

 The above studies show that there is no consensus on MU recruitment theory. 

  

 As originally proposed by the Gerbino and Macdonald groups (Gerbino, Ward et al. 1996, 

Macdonald, Pedersen et al. 1997), prior exercise accelerates the V̇O2 response as a consequence of 

vasodilatation in the active muscle caused by the accumulation of metabolites. As mentioned before, 

metabolic acidosis causes a rightward shift in the oxyhemoglobin dissociation curve, increasing O2 

availability. However, several more studies indicate that acidosis is probably not the cause of the altered 

V̇O2 response after prior exercise. Indeed, Burnley and colleagues (Burnley, Doust et al. 2002) showed 

that regardless of whether the prior exercise in the form of constant-work, heavy-intensity exercise (6 

min Δ50% with 3.4 mmol/L lactate concentration) or a 30-s all-out cycle sprint (6.4 mmol/L), the 

magnitude of the increase in the primary component or the reduced amplitude of the V̇O2SC were similar. 

Koppo and Bouckeart (Koppo and Bouckaert 2000, Koppo and Bouckaert 2002) verified that even 

moderate-intensity prior exercise causes a reduction in the V̇O2SC or increases the amplitude of the 

primary phase, showing that metabolic acidosis is not a necessary condition to elicit a reduction in the 



 

- 28 - 

 

V̇O2sc. More recently, a study showed that baseline blood lactate concentration was still elevated 60 

min after prior exercise, while the V̇O2 kinetics effect persisted for no more than 45 min (Burnley, Doust 

et al. 2006). The results of this study suggested that blood lactate and the V̇O2SC are not temporally 

linked. These studies indicate that a high blood 

lactate concentration or a low muscle pH are not 

sine qua non conditions to see the effects of prior 

exercise on V̇O2 kinetics. 

  Therefore, as shown in figure 22, it can 

be concluded that in young and healthy subjects, as 

they lie to the right of the tipping point, “prior” 

exercise does not have any effect on τp or the final 

value of V̇O2. Even so, the amplitude of the primary phase is increased by the vasodilatation effect, and 

therefore, the V̇O2SC is decreased by this effect. 

On the other hand, under certain conditions where O2 availability is compromised, as in COPD, type II 

diabetes or aging, the “prior exercise effect” can accelerate the primary phase, not only with the 

reduction in the V̇O2SC and the increase in the primary phase but also with the reduction in τ. However, 

there is no consensus on the exact mechanism in which this works. 

  - Studies supporting different kinetics of muscle fiber types being 

involved in the development of the V̇O2sc 

Mammalian skeletal muscle is composed of different cell populations with different metabolic 

and mechanical characteristics, mitochondrial contents and contractile proteins (Pette and Staron 1997). 

Kushmeric and colleagues (Kushmerick, Meyer et al. 1992) compared the V̇O2 of the two different 

muscle fiber types, demonstrating that the mechanism of the control of cellular respiration is 

quantitatively and qualitatively different in fast and slow muscle fibers. Additionally, Stienen and 

colleagues showed in their study (Stienen, Kiers et al. 1996) using single human muscle fibers during 

isometric contraction that ATP consumption depends on the myosin isoform composition. Specifically, 

the ATP consumption in fast IIx fibers was fourfold higher than that in slow type I fibers. In addition, 

Figure 22 O2-delivery-dependent and -independent regions.  

From Poole & Jones 2011 
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Willis and Jackman (Willis and Jackman 1994) showed in rabbit fibers that mitochondrial respiration 

was 27% higher in type IIb fibers than in type I fibers. These differences between the slow- and fast-

twitch fibers may have an impact on the economy of mitochondrial oxidative phosphorylation kinetics 

during heavy-intensity aerobic exercise and thus contribute to the appearance of the V̇O2SC. 

 In 1996, Barstow and colleagues (Barstow, Jones et al. 1996) were the first authors to investigate 

the relationship between muscle fiber type used during exercise and V̇O2 kinetics. They had nine subjects 

with different fitness levels exercise at 𝚫50% and took 

muscle biopsies of the vastus lateralis for the determination 

of fiber type. As seen in figure 23, the subjects with a higher 

percentage of type I muscle fibers had different response 

kinetics than subjects with a lower percentage of type I 

muscle fibers and were characterized by a larger primary 

phase. Their results showed that the percentage of type I 

muscle fibers was significantly correlated with the V̇O2SC (r=-0.83). This finding is in line with other 

studies that also reported that the percentage of type I muscle fibers is associated with an improved 

efficiency or reduced V̇O2 for the same WR in cycling (Coyle, Sidossis et al. 1992) or in running (Bosco, 

Montanari et al. 1987). 

Russell et al. (Russell, Wadley et al. 2002) compared trained vs nontrained individuals and found similar 

results as Barstow (Barstow, Jones et al. 1996), reporting that both the percentage type I muscle fibers 

and markers of aerobic fitness were significantly correlated with the relative magnitude of the V̇O2SC. 

 Additional proof indicating that type II fibers are less efficient and have a greater V̇O2 cost was 

provided by Horowitz and colleagues using the gross efficiency parameter (Horowitz, Sidossis et al. 

1994). Gross efficiency is known to reflect whole-body oxygen consumption and energy expenditure 

from all bodily processes. In their study, at identical oxygen consumption, trained cyclists with a higher 

percentage of type I fibers (73 ± 3%) were able to generate 9% more power during a 1-h performance 

bout, showing higher gross efficiency than equally well-trained cyclists with a smaller percentage of 

type I fibers (48 ± 2%). 

Figure 23 Relationship between muscle fiber type 

and the kinetics of VO2 (normalized as O2 cost) 

during heavy exercise. From Barstow et al. 1996. 
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A few years later, Pringle and colleagues (Pringle, Doust et al. 2003) tested the hypothesis that muscle 

fiber type influences τp and V̇O2SC amplitude. They took muscle biopsies from fourteen subjects for 

histochemical determination and performed square-wave cycling tests at moderate, heavy and severe 

intensities. Their hypotheses were verified when they found that type I fibers were significantly 

negatively correlated with V̇O2SC amplitude for heavy (r= -0.74) and severe (r=-0.64) exercise and with 

the τ of the primary component (r=-0.68). Deley and colleagues (Deley, Millet et al. 2006) observed that 

after prefatiguing by electrostimulation of type II fibers, V̇O2SC amplitude was significantly reduced. 

They concluded that the recruitment of type II fibers may be, at least in part, involved in the V̇O2SC 

phenomenon. The authors made this assumption based on the idea that fatigued type II fibers (recruited 

predominantly during the electromyostimulation (EMS) protocol (Vanderthommen, Depresseux et al. 

1997)) were unable to replace exhausted type I fibers, and as a consequence, there was a diminution of 

the additional O2 uptake and an exercise interruption. These results are in line with the study of Carter 

(Carter, Pringle et al. 2004), who reported an altered response in V̇O2 kinetics during heavy-intensity 

exercise with an increase in the amplitude of the primary component and a decrease in the amplitude of 

the V̇O2SC after a protocol aimed at glycogen depletion in type II fibers. Four years later, Krustrup 

(Krustrup, Secher et al. 2008) tested the hypothesis that energy turnover and therefore the ATP cost 

were higher for type II fibers than for type I fibers with a partial neuromuscular blockade of the latter. 

They confirmed that muscle O2 uptake was 20% higher and the MRT was also significantly longer in 

type II fibers, supporting the idea that type II fibers had slower kinetics and greater ATP cost than type 

I fibers during dynamic exercise. 

Further, as reported by Young-Soo Han et al. (Han, Proctor et al. 2001), type II muscle fibers have a 

lower reserve capacity for ATP consumption than type I muscle fibers. The reserve capacity is defined 

as [1- ratio of ATPiso to ATPmax], where ATPiso is the rate of ATP consumption in single fibers during 

isometric contraction and ATPvmax is the upper limit of ATP consumption. With such an energetic 

imbalance under conditions of high workloads (where energy utilization increases in proportion to the 

WR), the higher ATP cost and the lower ATP reserve capacity may explain, in part, the greater fatigue 
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susceptibility of fibers expressing MHC2x. This fact can have important implications in the development 

of the V̇O2SC. 

 All these outcomes suggest that the V̇O2 primary component is related to type I fibers and that 

the V̇O2SC is associated with type II fibers, although no conclusions about these relationships are stated 

in the literature. 

 The pulmonary V̇O2 signal homogenizes any oxidative response diversity within the activated 

pool of MUs and therefore fibers during any exercise that requires the activation of a heterogeneous 

fiber population. However, if exercise is performed with transitions of two or more steps of sufficiently 

different intensity to activate different fiber populations, it is possible, with the pulmonary V̇O2 signal, 

to unveil which pool of MUs are activated at that specific moment and/or intensity (Brittain, Rossiter et 

al. 2001). 

 The work-to-work transition protocol could be an ingenious tool to disentangle the factors that 

potentially influence the control of V̇O2 kinetics. If exercise is started from a higher metabolic baseline, 

then it could be possible to see alterations in the cardiovascular function affecting O2 delivery (Hughson 

and Morrissey 1982, MacPhee, Shoemaker et al. 2005) but also to see alterations in MU recruitment 

patterns (Brittain, Rossiter et al. 2001), two of the most popular theories. For instance, a transition from 

unloaded to moderate-intensity cycling would be expected to be commanded by the recruitment of type 

I muscle fibers that are positioned low in the recruitment hierarchy (Henneman 1957). On the other 

hand, if the transition is made from the moderate to the severe domain, recruitment would be done 

mainly by the muscle fibers positioned at the higher edge of the recruitment hierarchy, type II (Brittain, 

Rossiter et al. 2001). In 1970, di Prampero et al. (Prampero, Davies et al. 1970) studied the rate of O2 

uptake of an exercise of high intensity when it was started from rest or from moderate intensity (i.e., 

work-to-work transitions). They found faster V̇O2 half-time kinetics (time needed for V̇O2 to increase 

from rest to half of its peak value) in the work-to-work transitions (t1/2=17 s) than in the rest-to-work 

transitions (t1/2=30 s). A few years later, the same group (Davies, Prampero et al. 1972) showed similar 

results. The V̇O2 half-life was reduced in the transition from mild to heavy work compared with the 

transition from rest to mild or heavy work levels. 
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 In 1977, the group of Diamond (Diamond, Casaburi et al. 1977) studied V̇O2 kinetics with WRs 

that fluctuated, in a sinusoidal manner, from 25 W to higher values but always within the moderate 

domain. At these intensities, similar to those of work-to-work transitions, they argued that the 

mechanisms controlling the rate of V̇O2 should be the same as those involved in mild to heavier 

transitions. In contrast, instead of having faster V̇O2response kinetics, the response they found was 

slower than that found in the transitions from rest to work, with a half time of 34 s. These results 

appeared to conflict with those obtained by di Prampero (Prampero, Davies et al. 1970) and Davies et 

al. (Davies, Prampero et al. 1972). 

 Hughson and Morrisey (Hughson and Morrissey 1982) published a work in an attempt to clarify 

the controversy among the previous papers of the di Prampero, Davies and Diamond groups (Prampero, 

Davies et al. 1970, Davies, Prampero et al. 1972, Diamond, Casaburi et al. 1977). They used a different 

protocol in which the subjects exercised in transitions from rest to 80% GET and from rest to 40% GET, 

followed by a stage at 80% GET and finally from rest to 40% GET followed by an intensity at 120% 

GET. The authors observed that V̇O2 kinetics significantly slowed when the transition was from the 

upper region compared with the lower region of the moderate domain. A few years later, Yamamoto, 

Hughson and other researchers (Yamamoto, Hughson et al. 1991) proposed an explanation for this slow 

response in work-to-work transitions. They studied the autonomic control of the HR during cycle 

ergometer exercises at different submaximal intensities below the GET. Their findings were that from 

rest to 60% GET, the HR was controlled by the parasympathetic nervous system, while the sympathetic 

nervous system took control when the intensity exceeded the GET. After this finding, Yamamoto and 

colleagues argued that the cause of the slow response of V̇O2 between 60 and 100% GET was due to the 

slow sympathetic activation after the removal of vagal tone (Rowell and O'Leary 1990), creating this 

biphasic response between these 2 intensities. 

 In 1987, Morton and colleagues (Morton 1987) revisited the previous studies mentioned above 

and suggested several methodological considerations that could explain these bizarre and contradictory 

results. For example, he mentioned the experimental design modeling procedures and the limited 

intensity ranges. After the work of Morton (Morton 1987), new studies were developed in an attempt to 
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elucidate what the issue was. Several authors again performed experiments taking into account his 

considerations. For instance, di Prampero et al. (Prampero, Mahler et al. 1989) eschewed mixing 

chamber collection and used breath-by-breath technology. In addition, they used a cycle ergometer 

instead of running (kinetics are faster in running than in cycling (Martinez, Modrego et al. 1993, Hill 

2000)) to equal the V̇O2 kinetics rate to normalize the test. 

On the other hand, they did not remove the cardiodynamic phase to avoid contamination. Their findings 

supported those of the Hughson team (Hughson and Morrissey 1982), who showed slow kinetics when 

transitions were made from an elevated V̇O2 baseline. 

  In 2001, Britain et al (Brittain, Rossiter et al. 2001) published a paper regarding the effects of 

an elevated baseline in V̇O2 kinetics in the moderate domain. They found the presence of slower kinetics 

in the upper (V̇O2 τp ≈ 40 s) than in the lower moderate region (V̇O2 τp ≈ 25 s), confirming that V̇O2 is 

not dynamically linear even below the LT. In addition, the novel finding was that the G was the lowest 

in the lower region, the highest in the upper region and intermediate for the full transition. They explain 

this phenomenon appealing to the different properties of the fiber recruitment pool, as shown by 

Henneman et al (Henneman, Somjen et al. 1965). 

 In 2005, MacPhee and colleagues (MacPhee, Shoemaker et al. 2005) used a new technology 

(near–infrared spectroscopy (NIRS)), providing information about the change in concentrations in 

muscle microvascular oxy-(HbO2), deoxy-(HHb), and total (Hbtot) hemoglobin 

(hemoglobin/myoglobin) during dynamic exercise to determine why work-to-work transitions were 

slower in the moderate domain. Specifically, they examined the adaptation of V̇O2 to a change in WR 

initiated from different regions of the moderate domain while at the same time measuring the adaptation 

of leg muscle blood flow (LBF), HR, and local muscle HHb during two-legged knee extension exercise. 

The major new findings of their study were that during a knee extension (KE) exercise in the upper 

region of the moderate domain, the kinetics of pulmonary V̇O2 and HR, G, femoral artery blood flow 

and leg vascular conductance were slowed, while the amplitude of HHb was higher. They concluded 

that the increase in HHb suggests an increase in O2 extraction to compensate for the slower femoral 

artery blood flow response and therefore prevent further slowing of V̇O2 uptake. They attributed this 
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slower V̇O2 uptake in the upper domain than in the lower moderate domain to a slowness in the activation 

of intracellular oxidative metabolism, a slower activation of muscle enzymes or a delayed activation of 

the pyruvate dehydrogenase complex in the work-to-work transitions. 

 Wilkerson and Jones (Wilkerson and Jones 2006) investigated the work-to-work effect into 

intensities ranging from the unloaded to moderate (80% GET), moderate to heavy (40%Δ) and heavy to 

severe (100%V̇O2 peak) domains, including the assessment of HR kinetics and surface iEMG. 

Interestingly, they found a complete dissociation between V̇O2 and HR kinetics as the V̇O2 τp 

progressively lengthened when the WR was increased. The authors showed faster HR kinetics during 

both moderate to severe and heavy to severe intensities than during unloading to moderate transition. 

This provides evidence that the slower work-to-work kinetics were not due to slow HR response and/or 

bulk O2 delivery limitation but were associated with iEMG evidence of differences in muscle activation 

and the recruitment of different muscle fibers. However, there was an increase in the iEMG during the 

first 30 s of severe exercise and then a levelling off in all cases. This supports the idea of an increase in 

rate coding of already recruited muscle fibers in the severe domain but also shows a higher recruitment 

of type II muscle fibers that was masked by higher muscle temperatures achieved at the end of heavy 

exercise. The authors explained this by arguing that, at the end of the baseline period of heavy-intensity 

exercise and during the severe-intensity exercise, all the available muscle mass was possibly recruited; 

consequently, the increased iEMG is the result of an increased rate coding in the already recruited MUs 

(Wilkerson and Jones 2006). Britain et al (Brittain, Rossiter et al. 2001) also observed an increase in the 

G when the WR was started from an elevated baseline, which is consistent with the theory of an increase 

in the proportional contribution of fibers with lower oxidative efficiency. 

 In line with this, Keir and colleagues (Keir, Benson et al. 2016) found, with a ramp incremental 

exercise protocol, a curvilinear, rather than linear, relationship between τ and the mean response with 

the WR. They explain these different kinetics as a consequence of the progressive recruitment of higher-

order muscle fibers being kinetically slower and metabolically less efficient. The progressive 

recruitment of type II fibers could contribute to a time-dependent increase in V̇O2 for a given WR. They 

also found counterintuitive the fact that, in athletes and young people, the G was correlated with the 



 

- 35 - 

 

aerobic fitness status (Barstow, Jones et al. 2000), with values of 10.5-12.0 ml/min-1/W-1 for trained 

cyclists  (Boone, Koppo et al. 2010), 9-10 ml/min-1/W-1 for healthy young adults (Hansen, Casaburi et 

al. 1988) and 6.5-8.510 ml/min-1/W-1 for older adults and patients with chronic diseases (Toyofuku, 

Takaki et al. 2003, Gravelle, Murias et al. 2012). On the other hand, in step exercise, the SS G has been 

shown to be independent of age or fitness status (Grey 2014) but to be increased with a greater baseline 

WR. Increases in baseline WR also increase τp values, reflecting slow V̇O2 kinetics, although these 

increases are attenuated in trained adults. The authors explain these changes by two facts: first, 

individuals with greater mitochondrial content have faster V̇O2 kinetics and could, therefore, see the G 

increase as exercise proceeds; second, MU recruitment demands increase along with the WR, and more 

type II fibers, which are less efficient and have slower kinetics, are recruited. Therefore, in healthy 

trained subjects, the larger G may reflect fast kinetic properties in active muscle fibers rather than a 

paradoxical work inefficiency. In subjects with chronic diseases, the low G could reflect a compounding 

inability to activate oxidative metabolism at a sufficient rate to match changes in the WR, showing lower 

V̇O2. 

 Another explanation regarding why the highly trained subjects have greater G than their 

nontrained counterparts was highlighted by Boone and colleagues (Boone, Koppo et al. 2010). They 

found that during ramp exercises, but not during step incremental exercises, cyclists showed a higher G 

in V̇O2 parallel with a higher iEMG/WR. In contrast, there were no differences between exercises in 

either of these variables in physically active students. Boone and colleagues argued that the difference 

could be explained by an overshoot in V̇O2 triggered by a temporary reduction in muscle mechanical 

efficiency due to an “overrecruitment” of muscle fibers in the transition to moderate exercise during 

ramp exercise. This overshoot, in the non-SS during a constant WR, has been suggested to reduce the 

muscular efficiency due to the production of activation heat (in non–cross-bridge activities). This heat 

arises from the movement of calcium in and out of the sarcoplasmic reticulum (SR) (Barclay 1996). At 

the same time, this overrecruitment could also, in return, reduce the metabolic impairments in each 

individual fiber because of the wider spread of force development. Consequently, the fatigue in each 
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fiber is delayed so that it can participate for longer periods to increase the external WR. In that manner, 

this overrecruitment could be seen as an advantage despite a small loss in muscle efficiency. 

In 2007, the same group, (Wilkerson and Jones 2007) implemented a new protocol with full transitions 

to moderate, full to heavy and work-to-work transitions from moderate to heavy. The novel finding was 

that the amplitude of the V̇O2SC during heavy exercise was reduced in the work-to-work transitions. The 

authors explained it as an increase in the proportional contribution of type II fibers to force production 

in the transition from moderate to heavy exercise. 

 As shown in these different studies, there is no consensus about why the V̇O2 kinetics are slower 

during work-to-work transition protocols, nor is there a consensus about what triggers the reduction in 

muscular efficiency or the rise in the G above the LT that characterizes the V̇O2SC. 

  - Studies supporting fatigue as a trigger in the development of the 

V̇O2sc 

One of the most prevalent hypotheses explaining the appearance of the V̇O2SC is the progressive 

increase in MU recruitment during supra-LT exercise (Whipp 1994). Some authors support the idea that 

the recruitment of type II, fast-twitch, and less efficient fibers is involved in the development of the 

V̇O2sc to compensate for the deficiency of type I slow-twitch fibers during heavy-intensity exercise 

(Gaesser and poole 1996). This increase in recruitment is necessary to maintain force production to 

counter muscle fatigue and results in an increased reliance on poorly efficient type II fibers (Crow and 

Kushmerick 1982, Hunter, Newcomer et al. 2001, Han, Geiger et al. 2003) However, there is no 

agreement in the literature concerning the appearance of muscle fatigue as the main reason for the V̇O2SC. 

 One of the first studies showing fatigue as a candidate for the appearance of the V̇O2SC came 

from the study of Shinohara and Moritani (Moritani, Sherman et al. 1992). The study showed that the 

decrease in efficiency, reflected as an increase in V̇O2 during constant power output, was correlated with 

an increase in the iEMG. Shinohara and Moritani argued that the increases in V̇O2 could be caused by a 

progressive recruitment of fast MUs to compensate for the reduced power output of the fatigued muscle 

fibers. However, a few years later, Scheuermann and colleagues (Scheuermann, Hoelting et al. 2001) 

found different results. Subjects performed step increases in exercise bouts from moderate to heavy 
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intensity for 8 min. The V̇O2SC was evident 120 s after the onset of exercise, with no corresponding 

changes in the iEMG or MPF. The authors concluded that the lack of association between the V̇O2SC and 

both parameters was inconsistent with the hypothesis that the V̇O2SC was a consequence of the 

recruitment of additional MUs. 

In 2001, Borrani and colleagues (Borrani, Candau et al. 2001) performed spectral analysis of the 

electromyogram (EMG) signal to test the hypothesis of the V̇O2SC being partially induced by the 

recruitment of type II muscle fibers. By having subjects exercise at 95% of V̇O2max and measuring the 

EMG activity in the vastus lateralis, gastrocnemius lateralis, and soleus muscles, they concluded that 

there was a concomitance between the beginning of the V̇O2SC and the increase in the MPF. In addition, 

the time of the MPF increase onset in the soleus muscle came later than that in the other two muscles. 

Interestingly, the soleus is known to have a high percentage of type I fatigue-resistant muscle fibers. 

Borrani and colleague also observed that the beginning of the V̇O2SC corresponded with the beginning 

of the rise in the MPF in the vastus lateralis and gastrocnemius lateralis but was postponed for the soleus. 

They therefore concluded that low-efficiency type II fiber recruitment partially clarifies the existence of 

the V̇O2SC. 

Later, in 2010, Hirai and colleagues (Hirai, Roseguini et al. 2010) showed that high pedal frequencies, 

expected to enhance fast-twitch muscle fibers, were associated with a greater V̇O2SC amplitude and 

greater surface EMG portrayed by the root mean square (RMS). As the authors mentioned before, there 

are other studies supporting the fact that the increase in the iEMG signal is correlated with the consistent 

progressive increase in the recruitment of type II muscle fibers during the development of the V̇O2SC 

(Perrey, Betik et al. 2001, Sabapathy, Schneider et al. 2005). 

One of the limits of EMG data is that they provide information from only a specific zone of superficial 

muscle, and movement artifacts or signals from other muscles can interfere with the signal. In recent 

years, another technique has been used to determine muscle use during exercise. For example, Saunders 

and colleagues (Saunders, Evans et al. 2000) used magnetic resonance imaging (MRI). They evaluated 

EMGs and MRI transverse relaxation times (T2) during two 15-min bouts of cycling at low and high 

intensities to determine muscle activity. Proton T2 has been shown to increase during exercise and is 
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highly correlated with increases in the iEMG (r=0.99, P < 0.05) (Adams, Duvoisin et al. 1992). Saunders 

and colleagues found that during constant-rate exercise below the GET, there was no significant increase 

in muscle activity and no V̇O2SC. In contrast, during high-intensity cycling, V̇O2, T2, EMG activity and 

MPF rose significantly from 3 to 15 min. Another pivotal finding was that V̇O2 and muscle T2 during 

high-intensity cycling were related (r = 0.63). 

Perhaps one of the most clear examples showing the link between the V̇O2SC and the recruitment of 

fatigued fibers is the study of Vanhatalo and colleagues (Vanhatalo, Poole et al. 2011). Subjects 

performed 2 different protocols, i.e., 3 min of all-out cycling, where all the fibers should be recruited, 

and a constant-WR high-intensity exercise. Even if there is no time for the VO2SC to develop during 

supramaximal exercise, as mentioned before, they argued that the dramatic increase in the O2 cost of 

power production during all-out exercise could be considered a slow-component-like phenomenon. The 

results showed a rise in V̇O2SC amplitude with a progressive decline in muscle activation measured with 

an iEMG. On the basis of these results, Vanhatalo and colleagues suggested that the V̇O2SC could be 

generated by the high O2 cost of the fatigued muscle fibers, which do not contribute any further to the 

power output but continue to consume O2. 

In line with this hypothesis, Zolaz and colleagues (Zoladz, Gladden et al. 2008) observed an V̇O2SC-like 

response in canine isolated gastrocnemius muscle. In the preparation of the isolated muscle, muscle 

fibers were maximally activated by electrical stimulation, corresponding to ∼60–70% of the muscle 

peak V̇O2 so that no progressive recruitment of fibers was possible. Curiously, at the same time, they 

observed a constant V̇O2 value in the presence of a diminution of force output reflected in the increase 

in the V̇O2/force, calling that phenomenon a “mirror image” of the V̇O2SC. They explain this fact with 

different arguments: the muscle was becoming less efficient with fatigue or the fatigued fibers had 

greater metabolic cost for recovery processes while they contributed little, if any, to power output. 

However, after this publication, Borrani and colleagues (Borrani, Malatesta et al. 2009) wrote a letter to 

the editor expressing their disagreement with the interpretation of the results by Zolaz and colleagues. 

Borrani and colleagues argued that if the “real” V̇O2SC is an increase in O2 consumption during a constant 

power output that reflects a decrease in the efficiency of muscle contraction, the unique solution to 
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maintain the same power output is the recruitment of additional MUs. The conclusion of Zolaz and 

colleagues about the reduced efficiency of muscle contraction not being related to the progressive 

recruitment of muscle fibers seemed questionable to Borrani and colleagues. 

In 2011, Canon and colleagues (Bowen, Cannon et al. 2012) published a study with the aim of discerning 

whether muscle fatigue precedes the V̇O2sc. More specifically, they aimed to determine whether the 

magnitude and time course of muscle fatigue are related to the kinetics of the V̇O2sc. They used a 

protocol consisting of a constant-WR exercise for 8 min at 80% LT, Δ20% and Δ60% followed by a 

maximal isokinetic effort maintained for 5 s in isokinetic mode to measure velocity-specific peak torque 

(Pt) and power at 60, 90 and 120 rpm. Their results showed that force production dropped significantly 

within 3 min of exercise onset, but there was no further reduction between 3 and 8 min, although this 

was when the V̇O2sc was most evident. This finding suggested that muscle fatigue precedes the 

development of the V̇O2sc but that the two variables are not temporally related. Canon and colleagues 

concluded that fatigue was probably the mechanism needed to initiate VO2sc development, but fatigue 

did not participate in V̇O2sc progression. In addition, the recruitment of additional muscle fibers was not 

necessary for the development of the V̇O2sc, but a reduction in the mechanical efficiency of fatigued 

fibers was involved. 

Later, in 2016, Keir and colleagues (Keir, Copithorne et al. 2016) wanted to analyze the relationship 

between peripheral muscle fatigue and the V̇O2sc; more specifically, they analyzed whether the 

magnitude of peripheral muscle fatigue was associated with V̇O2sc amplitude. To assess that hypothesis, 

they implemented a protocol consisting of a pre-exercise neuromuscular assessment followed by the 

exercise intervention and finished by a postexercise muscular assessment. The exercise intervention 

consisted of a constant-WR exercise at 80% LT (moderate intensity) for 18 min and five constant-WR 

tests at Δ60% (severe intensity) completed for 3, 8, 13 and 18 min, with a second 18-min cycling trial 

to collect EMG data. 

In contrast to the isokinetic model of Cannon (Cannon, White et al. 2011), Keir and colleagues (Keir, 

Benson et al. 2016) utilized a protocol with low (10 Hz) and high frequencies (50 Hz) of electrical 

stimulation aiming to assess central and/or peripheral fatigue. Their results showed that peripheral 
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muscle fatigue, measured by electrically stimulated muscle torque loss, was coincident with the 

development of the V̇O2sc. The greater depression found in force during low frequencies (10 Hz) 

indicated high-intensity muscle fatigue, which is a hallmark mechanism that occurs beyond the 

neuromuscular junction (NMJ) (Keir, Benson et al. 2016). In addition, the reduction in the 10/50 Hz 

ratio with time confirmed that the decrease in muscle torque was mediated by a peripheral mechanism. 

Additionally, Place et al. (Lepers, Maffiuletti et al. 2002, Place, Lepers et al. 2004) examined the time 

course of neuromuscular fatigue by measuring voluntary and evoked muscle contractions. They found 

that changes in peripheral mechanisms, such as a reduction in twitch force or contraction time (CT), 

were observed at the beginning of exercise (Lepers, Maffiuletti et al. 2002). In contrast, central 

activation and M-wave properties, estimated by the twitch interpolation technique (TIT) (Merton 1954), 

were significantly reduced only at the end of the exercise. Although Place and colleagues did not 

measure the V̇O2SC, their results interestingly show that peripheral fatigue was observed at the beginning 

of the exercise, when the V̇O2sc  developed. Moreover, Decorte et al. (Decorte, Lafaix et al. 2012) found 

after an intermittent constant-load intense cycling test that most of the alterations in mechanical and 

EMG responses to femoral nerve stimulations occurred during the first half of the exercise, but voluntary 

activation (VA) (central drive) was present only at the end of the exercise. These data indicate that 

central and peripheral fatigue have different kinetics and that, if fatigue is associated with the V̇O2sc, it 

is peripheral fatigue. 

In the study of Keir et al (Keir, Benson et al. 2016), the highest amplitudes of the V̇O2sc were associated 

with the largest reductions in muscle torque. The authors concluded that because the time course and 

muscle fatigue were related to V̇O2sc development, muscle fatigue appears not only as an initiator of the 

V̇O2sc but also as a mechanism by which it progresses with time. Surprisingly, the surface EMG data 

showed no changes during the period in which the V̇O2sc and muscle fatigue developed. The authors 

explained this fact by indicating that when exercised muscle fatigues, it concurrently needs more O2 to 

sustain the same power output. The strong association between peripheral fatigue and VO2SC amplitude 

in the absence of any changes in muscle activation suggests that the fatigued muscle fiber pool remains 

capable of generating the required power to continue exercise but with a greater O2 cost. In conclusion, 
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this study provided evidence in humans of the association between muscle fatigue and the development 

of the V̇O2SC. The absence of any changes in muscle activation indicated that muscle fatigue may come 

from metabolic causes (Bongbele 1990) rather than from excitation-contraction issues. 

 Nevertheless, despite the weight of the evidence supporting the hypothesis of progressive 

recruitment of more muscle fibers due to fatigue, there is still no certainty in the literature, since other 

groups found no change in the iEMG. 

For example, Scheuermann (Scheuermann, Hoelting et al. 2001) argued that the information given by 

the iEMG indicates the overall recruitment of MUs but does not provide confirmation about the 

specificity of the recruitment pattern of type I or II fibers. However, this information could be inferred 

from the frequency content (power density spectrum) of the EMG signal (Tesch, Komi et al. 1983, Kupa, 

Roy et al. 1995). Using both treatments, they found a lack of association between the V̇O2SC and the 

changes found in the iEMG or MPF during heavy constant-WR exercise, concluding that there was no 

additional recruitment of type II fibers. Alternatively, they suggested that the V̇O2SC reflects either a 

progressive uncoupling of the mitochondrial P/O ratio or a progressive increase in ATP requirements. 

In contrast, Borrani and colleagues, after performing a treadmill test at 95% of the velocity associated 

with VO2max, found concomitance between the beginning of the VO2sc and the beginning of the MPF 

(Borrani, Candau et al. 2001). 

Alejandro Lucia and colleagues (Lucía, Hoyos et al. 2000) tested the neuromuscular factors implicated 

in the V̇O2SC in professional cyclists. They found no significant changes in the iEMG or MPF after 

cycling at 80% of V̇O2max for 20 min even if a significant but small V̇O2SC was shown, arguing that, 

probably after years of highly demanding training, the slow MUs of professional cyclists have greater 

resistance to fatigue. Similarly, Tordi et al (Tordi, Perrey et al. 2003) found no significant differences 

in the recruitment pattern measured by the iEMG in well-trained cyclists who performed 2 6-min bouts 

of cycling at 85% V̇O2max separated by “prior” exercise of 3 30-s all-out bouts of the Wingate test. 

Krustrup (Krustrup, Söderlund et al. 2004) established an alternative approach to the common EMG to 

evaluate the recruitment pattern—the measurement of Cp and glycogen content in successive muscle 

biopsies during exercise. Their results showed that additional type I and II fibers were recruited from 3 
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to 6 min in intense supramaximal exercise in association with the appearance of the V̇O2SC. The glycogen 

depletion pattern confirmed that both type I and II fibers were active during high-intensity exercise, 

while only type I fibers were recruited during moderate-intensity exercise, with no V̇O2SC presence. They 

concluded that during high-intensity exercise, the recruitment of additional fibers contributes to the 

development of the VO2SC. 

Thistlethwaite and colleagues (Thistlethwaite, Thompson et al. 2008) showed with an ingenuous 

experimental design that prefatigue was not the cause of the appearance of the V̇O2SC. They used KE 

exercises as an alternative way to manipulate the recruitment pattern of quadriceps muscle fibers. 

Indeed, MRI studies have indicated that KE exercises are limited to the quadriceps muscles (Richardson, 

Frank et al. 1998). Koga and colleagues (Koga, Poole et al. 2005) demonstrated that the gain in the 

primary rise in the V̇O2 response is higher in KE exercises than in cycling at the same relative intensity. 

Therefore, KE exercises allow for greater muscle mass activation of both type I and II fibers compared 

with the prior bout of cycling exercise. As discussed above, prefatiguing the muscle will probably result 

in an increase in the recruitment of type II, less-efficient fibers, altering the primary phase or the 

amplitude of the V̇O2 response in the second bout of heavy cycling exercise. The authors designed two 

different protocols. In the first protocol, subjects performed 6 min of heavy constant-load exercise at 

Δ50%. In the second protocol, subjects performed 6 min of exhaustive bilateral KE exercises at 30 

contractions/min with a resistance to elicit twice the active muscle mass recruitment compared to that 

recruited during the heavy cycling exercise, followed by 6 min of heavy constant-load exercise at Δ50%. 

Contrary to the expected results, τp, the gain in the primary response and the amplitude of the V̇O2SC 

were quite similar between the protocols, showing that the “prefatigue” protocol with the KE exercises 

was not an absolute condition for the appearance of the V̇O2SC. 

Hopker and colleagues (Hopker, Caporaso et al. 2016) also showed that the V̇O2SC is not supported by 

fatigue involvement. They used an experimental design to isolate the effects of the reduced maximal 

voluntary power from the metabolic stress effects. They induced locomotor muscle fatigue using a 

protocol consisting of 100 intermittent drop jumps (Skurvydas, Dudoniene et al. 2002). This protocol is 

known to cause prolonged locomotor muscle fatigue by disrupting the excitation-contraction coupling, 
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especially in type II muscle fibers, but at the same time with a pause of 20 s that allows the recovery of 

the ATP and PCr spent during each jump. In that way, it was possible to differentiate locomotor muscle 

fatigue from the metabolic stress associated with high-intensity aerobic exercise. The results of the study 

showed that locomotor muscle fatigue (tested by the reduction in power in the maximal voluntary 

cycling power test) was not associated with the development of the V̇O2sc. In fact, the magnitude of the 

V̇O2SC was not significantly different between the experiment with prefatigue and the control condition. 

Very recently, do Nascimento and colleagues (do Nascimento Salvador, Souza et al. 2018) published a 

study regarding the problem of the cause–effect relationship between the V̇O2sc and fatigue. Because 

prior heavy- or severe-intensity exercise has been shown to result in a reduction in the V̇O2sc during the 

next bout of severe-intensity exercise (Koppo and Bouckaert 2002, Jones, Koppo et al. 2004), they 

designed a study to verify whether prior severe-intensity exercise attenuates the muscle fatigue 

accompanying the reductions in the V̇O2SC in the subsequent bout of severe-intensity exercise. To test 

this hypothesis, they used a protocol consisting of instantaneous switching between constant-WR and 

isokinetic cycling to measure reductions in Pt at 3 and 8 min during severe-intensity exercise with and 

without priming exercise. Their results showed that with prior severe-intensity exercise, the V̇O2SC was 

reduced and that the decrease in force was larger at 8 min than at 3 min regardless of whether the protocol 

was performed with or without prior exercise. The authors concluded that because there was no 

difference in the decline in force with or without priming exercise, the results refute a cause-effect 

relationship between muscle fatigue and the V̇O2sc. 
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 Neuromuscular fatigue 

 Definition 

 Skeletal muscles continuously contract in daily life; nevertheless, they cannot contract 

continuously without the development of fatigue. Muscle fatigue is a fundamental functional 

characteristic of skeletal muscle, defined as a decrease in force or power-generating capacity during 

prolonged muscle activity (McLester 1997, Gandevia 2001). 

 Pathway of the stimulus from the neuromuscular system to the muscle 

cell 

 Fatigue is a complex and multifactorial phenomenon. The exact mechanisms of the decrease in 

muscle performance are complicated to discern in humans, and changes could occur at multiple sites at 

the same time, as shown in figure 24, from the motor cortex to the contractile apparatus (Place, Yamada 

et al. 2010). 

  

 

 

 

 

 

 

 

 

 

 Therefore, it seems necessary first to describe the pathway that the central stimulus follows, 

from the neuromuscular system to the muscle cell, and second to describe what happens to each site 

under normal conditions, i.e., in the absence of fatigue. 

Figure 24. Sites where neuromuscular alterations could occur to cause fatigue. 

Modified from Bigland-Ritchie 1981. 
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During exercise (or movement), skeletal 

muscle cells are activated in the central motor 

areas through a motor nerve impulse. This 

impulse travels from the presynaptic neuron 

through the alfa-motoneurons until it reaches the 

axon terminals (figure 25). Then, it stimulates 

voltage-gated calcium channels, leading to an 

influx of Ca2+ into the terminal button. This 

process triggers the exocytosis of acetylcholine 

(ACh) from synaptic vesicles to the synaptic 

cleft. ACh then diffuses through the sarcolemma and binds to its receptors located in the motor endplate 

of the muscle fiber. When enough ACh binds to its receptors, Na permeability increases, and 

depolarization results. The AP at that time propagates across the sarcolemma and T-tubules to the 

interior of the muscle cell, triggering the release of stored Ca2+ from the SR to the cytoplasm. 

Ca2+ subsequently binds to the complex protein troponin C. This protein is attached along actin filaments 

and twisted around the tube-shaped protein tropomyosin. The binding of Ca2+ to troponin C triggers a 

conformational change in the tropomyosin protein, pulling it out and releasing the active actin sites that 

are normally hidden. Currently, the globular heads of myosin are able to attach to their previously unseen 

binding sites. However, myosin heads have to be activated before the cross-bridge cycle can begin. This 

activation occurs when ATP bound to the myosin head is hydrolyzed into ADP and inorganic phosphate 

(Pi). The energy liberated from the hydrolysis of ATP activates the myosin head, forcing it into the 

cocked position. This latter position of myosin enables spontaneous binding to actin available sites 

(cross-bridge formation) and provokes the tilt of the head of myosin, bringing both filaments close to 

each other. This event is known as a power stroke and is developed in two separate phases (Taylor and 

Trenlham 1979): 

a) With Pi release, the bond between both filaments goes from low-force states to high-force 

states. The large decline in free energy (Taylor and Trenlham 1979, Pate and Cooke 1989, Kawai and 

Halvorson 1991) (approximately half of the energy available from ATP hydrolysis) and the decline in 

Figure 25 Molecular mechanism of muscle contraction. An 

action potential travels through the transverse tubule system and 

the sarcoplasmic reticulum, resulting in the release of Ca ions. 

Ca ions bind to troponin C, resulting in conformational changes 

that allow myosin to bind to actin, producing muscle 

contraction. From  

 Zsolt Radák, in The Physiology of Physical Training, 2018. 
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force in solutions where Pi is added to the bath (Cooke, Franks et al. 1988) confirm this hypothesis. The 

tilt of the myosin head, i.e., the power stroke, is produced by the release of the ADP, and then the myosin 

head pivots, sliding the thin filament towards the center of the sarcomere. Experiments in which ADP 

was added to the muscle fiber bath solution produced increases in isometric tension, which was 

suggested to be due to a higher number of attached cross-bridges and decreases in isotonic shortening 

velocity (Cooke, Franks et al. 1988), probably from the larger number of myosin heads that were not 

dissociated from ATP (Cooke, Franks et al. 1988). 

 b) Once the power stroke has been performed, cross-bridge detachment occurs when another 

ATP binds to the myosin head, causing a weakness in the actin-myosin link. Then, ATP is hydrolyzed 

by the enzyme ATPase into ADP and Pi molecules. The energy released during ATP hydrolysis is used 

to change the angle of the myosin head into a cocked position, and myosin is again ready to bind to actin 

sites if they are available. Actin and myosin have a high affinity at this stage (McLester 1997). 

The cycle of coupling and uncoupling continues as long as the Ca2+ concentration is sufficient. The Ca2+ 

concentration will drop when there is no nerve stimulus and therefore no AP. Then, Ca2+ will be pumped 

back to the SR, troponin C will be deactivated, and tropomyosin will cover the anchoring sites of actin. 

The myofilaments will then be in a relaxed position (McLester 1997). 

Considering the events mentioned above, fatigue could potentially arise at several sites in this 

pathway. For simplicity and to be able to more deeply describe these sites, the processes occurring inside 

the spinal cord, i.e., located before the NMJ, will be defined as neural or central, while processes 

occurring after the NMJ will be defined as intramuscular or peripheral. 

 Possible sites of neuromuscular fatigue 

- Central fatigue 

 To discern whether the brain can drive human muscles during MVCs, it is necessary to 

determine first whether the motor neuron pool has been excited enough by human volition. VA has been 

defined as the level of voluntary drive during an effort (Gandevia 2001). The level of VA (%VA), i.e., 

central fatigue, is normally identified with the TIT (Merton 1954). The TIT is considered the gold-

standard method to evaluate, noninvasively, the ability to maximally activate MUs. In 1954, with the 
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TIT, Merton (Merton 1954) showed evidence that voluntary contraction activates the contractile 

apparatus to the fullest. 

The TIT consists of the comparison of the increment in muscle force produced during MVC while an 

electrical (or magnetic) stimulus is applied to a nerve trunk, with the force increment being the same as 

that when the muscle is potentiated in the resting state. The principle of the method resides in that if all 

the muscle fibers are fully recruited, an extramotor volley will not superimpose any twitch in the record. 

Indeed, during MVC, electrical stimulations do not yield a twitch but a normal AP (Merton 1954, 

Gandevia 2001). When there is an increase in the superimposed twitch, the descending drive to the 

motoneuron is not maximal, and therefore, central fatigue exists. The more MUs recruited and the faster 

they are firing, the smallest the superimposed twitch will be. 

To measure VA through the TIT, the following formula is normally used: 

VA = 100 × [1 − (superimposed twitch/potentiated resting twitch)] (Taylor 2009) 

Once its know that the fatigue is central rather than peripheral, spinal and supraspinal adaptations can 

be evaluated using transcranial magnetic stimulations or corticospinal magnetic or electric stimulation, 

respectively. 

- Transcranial magnetic stimulation 

 

 The first method of transcranial electric stimulation was devised almost 30 years ago by Merton 

and Morton (Merton and Morton 1980). They showed that a high voltage current above the scalp was 

able to activate the motor cortex and evoke contraction in the contralateral muscles, but it was very 

painful. Five years later, Barker et al (Barker, Jalinous et al. 1985) designed an electromagnetic 

stimulator (transcranial magnetic stimulation) that solved this problem. In brief, the stimulator consists 

of a condenser of electric current that is discharged through a coil and produces a magnetic field that, 

through the scalp, induces an electric field in turn. This electric stimulation leads to depolarization 

membrane potentials in the nearby cortical tissue under the coil, affecting neural activity patterns 

(Reithler, Peters et al. 2011). With a circular coil and electrical current flowing clockwise, the left 

hemisphere is preferably excited. Turning the coil so that the current is counterclockwise, the right 
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hemisphere is preferably activated. With an eight-shaped coil, the area of intersection of both rings has 

to be on the motor area to be stimulated. Brief muscle contractions in the contralateral muscle targeted 

are observable via motor evoked potentials and recorded with electrodes located near the relevant muscle 

(Reithler, Peters et al. 2011). 

- Corticospinal magnetic or electric stimulation 

 

 Spinal tracks can also be stimulated by passing a high-voltage stimulus between the mastoids or 

by magnetic stimulation over the back of the head. This stimulus activates the corticospinal track at the 

cervicomedulary junction and evokes motor responses in the arm muscles. With stimulation over the 

thoracic spine or the cervicomedullary junction, responses in the leg can be elicited (Taylor and 

Gandevia 2004). This method, which activates the corticospinal output at a subcortical level, is valuable 

for the investigation of the behavior of the motor pathway and allows a better interpretation of the 

responses evoked in the cortex (Taylor and Gandevia 2004). 

- Peripheral fatigue  

 In elite athletic individuals who are well motivated, the most common form of muscle fatigue is 

peripheral fatigue (Allen, Lamb et al. 2008). Most of the research in this area implies that peripheral 

fatigue is the major limiting factor (McLester 1997). Nevertheless, it is important to note that there are 

two different types of peripheral fatigue: high-frequency fatigue (HFF) and low-frequency fatigue 

(LFF). 

In 1977, Richard Edwards and colleagues started to study muscle fatigue in normal subjects. To measure 

it objectively, methods using electrical stimulation were developed (Edwards, Young et al. 1977). To 

obtain the maximum force from the muscle, it was necessary to stimulate the muscle at approximately 

50 Hz. In contrast, if the goal was to obtain the maximum duration of the contraction, it was important 

to reduce the frequency to approximately 20 Hz. This event raised the idea that the level of fatigue was 

dependent on the frequency of the stimulation, and HFF and LFF were characterized (Jones 1979). 
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 LFF was characterized by a higher relative loss of force at low frequencies of stimulation than 

at high frequencies and very slow recovery, taking hours or even days in severe cases. Indeed, the effects 

could persist even if the disturbance of the muscle disappeared (Jones 1996). 

This type of fatigue is reported during high-intensity exercises as well as during submaximal repetitive 

contractions (Edwards, Hill et al. 1977), in exercises where the active muscle is stretched (Newham, 

Mills et al. 1983) or when the muscle is exercised isometrically at a long length (Jones, Newham et al. 

1989).  

This type of fatigue was usually associated with a reduction in Ca2+ release, although it has also been 

suggested that decreases in Ca2+ myofibrillar sensitivity could play an important role (Millet, Martin et 

al. 2011). Another explanation is that the series of elements damaged during stretching exercises may 

be the middle sarcomeres of the fiber, which are elongated by the stronger sarcomeres at the ends of the 

fiber (Jones, Newham et al. 1989).  

 HFF was characterized by a higher loss of force at high stimulation frequencies (80-100 Hz) 

than at low frequencies and a rapid recovery once the frequency was reduced. This loss of force is 

attributed to an accumulation of extracellular K+ or a decrease in extracellular Na+ (Millet, Martin et al. 

2011). Another characteristic of this type of fatigue is the decrease in amplitude and the slowing down 

of the waveform of the muscle action potential (MAP). Certainly, accumulations of K+ in the 

extracellular spaces would prevent the propagation of the AP through the sarcolemma (Jones 1996). 

 To differentiate between LFF and HFF, the ratio of LFF to HFF is commonly used. In this way, 

a lower ratio means LFF, and a higher ratio means HFF. 

 

 Several steps have been proposed to be implicated in the development of peripheral fatigue, 

including impairments in the NMJ, sarcolemma, transverse tubules, SR, Ca2+ and H+ ion concentrations 

and byproducts of ATP hydrolysis. 

In the next sections, each step will be described in detail: 
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- Neuromuscular transmission  

 The NMJ, or the motor endplate, is the site where the motor nerve AP is transformed into an 

MAP to initiate muscle contraction, i.e., neuromuscular transmission. The NMJ is the synaptic cleft 

formed between the interface of the motor nerve axon and the muscle fiber, also known as the 

presynaptic and postsynaptic terminal, respectively (Moczydlowski 2016). The arrival of central 

commands in the form of APs at the presynaptic (axon) terminal signals vesicles containing the 

neurotransmitter ACh to move towards the presynaptic membrane. These vesicles then fuse with the 

presynaptic membrane and release ACh into the synaptic cleft, which then binds to its receptors, 

triggering the opening of both sodium (Na+) and potassium (K+) channels located at the postsynaptic 

terminal of the sarcolemma of the muscle fiber being innervated. This allows Na+ and K+ ions to rush 

into and out of the muscle cell, respectively, which leads to the generation of postsynaptic APs or MAPs 

(Gandevia 2001). 

 Studies have shown that during exercise-induced fatigue, this neuromuscular transmission may 

be impaired due to factors such as a reduction in the ACh released (Wu and Betz 1998) from the axon 

terminal and the desensitization of ACh receptors at the postsynaptic membrane (Magleby and Pallotta 

1981). 

 To quantify the amount of electrical activity produced by activated MUs during a voluntary 

muscle contraction, iEMGs are commonly used. iEMG recordings from surface electrodes represent a 

very complex summation of varying numbers of motor APs. This method permits indirect measurements 

of neuromuscular fatigue (Moritani and DeVries 1978). An increase in iEMGs has been shown to reflect 

the recruitment of additional MUs and an increase in the MU coding rate as the strength of a muscle 

contraction increases (Lippold 1952). 

The changes in the strength of a muscle contraction are shown in two ways: first, the greater the 

contraction is, the greater the number of MUs recruited, and second, the faster these MUs repetitively 

contract, the larger the rise in frequency. These two factors would increase the iEMG output, showing a 

linear relationship (Lippold 1952). Nevertheless, the interpretation of iEMGs must be done with caution, 

as they could be influenced by factors such as temperature, showing an overestimation of the frequency, 

or changes in intracellular K+, showing an underestimation of the frequency values (Petrofsky and 
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Laymon 2005). The increase in iEMG signal during maintained contractions is assumed to reflect a 

failure in muscle contractility. Indeed, in this scenario, active fibers exert progressively less force; 

consequently, to compensate for this effect, new MUs are recruited, and/or the MUs will fire with an 

increased frequency (Lippold, Redfearn et al. 1960). On the other hand, during maximal contractions, 

all MUs are assumed to be active, and the natural effect of continued contraction in this situation is a 

reduction in both muscle tension and iEMG activity (Komi and Rusko 1974). 

 

The M-wave amplitude (figure 26) is 

essentially a reflection of the magnitude 

of the sum of individual motor unit 

action potentials (MUAPs). 

The M-wave has been analyzed to 

quantitatively investigate the 

relationship between electrical evoked 

contractions and muscle fatigue 

(Ibitoye, Estigoni et al. 2014). 

- Excitation-contraction coupling 

i) Sarcolemma 

 When an MAP is generated from the influx and efflux of Na+ and K+ ions, respectively, it is 

actively conducted through the sarcolemma. During physical exercise, the repeated firing of APs leads 

to changes in intra- and extracellular Na+ and K+ concentrations, which could impair sarcolemma 

excitability (Cheng, Place et al. 2018). The cause of this deficient excitability has been proposed to be 

linked with changes in the K+ gradient across cells. Several studies have found an increase in K+ 

concentration during MVC (Vyskočil, Hnik et al. 1983, Sjogaard, Adams et al. 1985). Others have 

shown that the extracellular K+ concentration could rise from 4 mM in resting conditions to above 10 

mM under high-intensity conditions (Juel, Pilegaard et al. 2000). 

In rested muscle fibers, such a change in K+ concentration would result in impaired AP propagation by 

increasing the excitation threshold of the T-tubule (Cheng, Place et al. 2018). Consequently, if the 

Figure 26. General representation of an M-wave and some of the 

commonly extracted parameters. Peak-to-peak amplitude (PtP), time 

between peaks (PtP time), time to peak (TtP), first peak area (FPA), second 

peak area (SPA). From Ibitoye, Estigoni et al.2014. 
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sarcolemma AP is sufficiently reduced, the T-tubule charge will not be induced, which in turn will 

inhibit Ca2+ release from the SR (Rios and Pizarro 1988, Ríos, Ma et al. 1991). 

ii) Transverse tubules  

 The primary role of the T-tubule system is well known to allow the sarcolemma AP to propagate 

into the core of the muscle cell. Ion flux takes only seconds to occur (Allen, Westerblad et al. 1992), the 

density of Na+- K+ pumps is lower than that of sarcolemma and the lumen of T-tubules is of a smaller 

volume relative to its surface (Venosa and Horowicz 1981). For all these, failure conduction in T-tubules 

has been proposed to be due to the accumulation or deficiency of Na+ and K+ (Allen, Westerblad et al. 

1992). 

The T-tubule membrane expresses high levels of voltage sensors and dihydropyridine receptors 

(DHPRs). If no impairment occurs, AP triggers a change in DHPRs, which in turn leads to the release 

of Ca2+ from the SR to the mycoplasma (Allen, Lamb et al. 2008). 

iii) SR 

  SR Ca2+ release fails with fatigue, and it is not known whether this occurs because of changes 

in the degree of voltage sensor activation, through the influence of muscle metabolites or due to a 

depletion of Ca2+ inside the SR (Allen, Lamb et al. 2008). The magnitude of Ca2+ transients depends on 

SR Ca2+ release but also on all Ca2+ buffers in the cell, such as troponin C, parvalbumin, the SR Ca2+ 

pump, or calmodulin. 

The muscle relaxes when the elevated Ca2+ is pumped back into the SR by the SR Ca2+ pumps. These 

pumps are known to be sensitive to the metabolic and ionic changes that appear during fatigue processes; 

nevertheless, the contribution of the changing pump properties to the slowing of relaxation in fatigue is 

still uncertain (Allen, Lamb et al. 2008). 

Regardless of the role of the T-tubule or the SR in fatigue, a disruption in Ca2+ concentration does occur 

and will be explained in the next section. 

 

- Metabolic changes 

i) Ca2+ 

 As mentioned before, a failure in excitation-contraction coupling is one of the possible sites of 

the development of peripheral fatigue. Nevertheless, fatigue could be caused by a failure in AP 
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propagation, in the coupling mechanism between the AP and the release of Ca2+ or in Ca2+ regulation at 

the level of contractile elements. 

Several authors (Blinks, Rüdel et al. 1978, Allen, Lee et al. 1989, Györke 1993) have demonstrated that 

the amplitude of Ca2+ transients decreases as fatigue develops. 

Two main cellular mechanisms have been proposed to explain the impaired function of muscles during 

fatigue: (a) reduced Ca2+ release from the SR (Allen, Lannergren et al. 1995) and (b) reduced Ca2+ 

sensitivity of the myofilaments (Godt and Nosek 1989). 

Studies on reduced Ca2+ release started with the work of Eberstein and Sandow (Eberstein 1963). They 

fatigued intact muscle with repeated tetani until the force was strongly reduced and then increased the 

level of activation with the perfusion of caffeine (known to directly stimulate the SR to release Ca2+). 

The conclusion was that the decline in tension could be, at least partially, overcome with the facilitation 

of Ca2+ release. Indeed, the rise in tetanic Ca2+ concentration activates contractile proteins. Caffeine 

increases the opening of SR Ca2+-release channels, increasing the myoplasmic Ca2+ concentration and 

therefore overcoming much fatigue. Westerblad and Allen (Westerblad and Allen 1991) performed 

similar experiments with caffeine. They concluded that reduced Ca2+ sensitivity and its release could be 

involved in the later stages of fatigue development but that the tension decline during early stages 

strongly indicates a reduction in the maximum tension-generation capacity. Indeed, metabolic changes 

induced by fatigue, such as an increase in H+ by anaerobic glycolysis and increased Pi by the breakdown 

of PCr, could have deleterious effects. These effects will be discussed in greater detail later in this 

section. 

In 1989, Godt and Nosek (Godt and Nosek 1989) demonstrated that the changes produced in the 

intracellular milieu by hypoxia and fatigue have direct deleterious effects on Ca2+ sensitivity and the 

Fmax of the contractile apparatus. The decreases in Ca2+ sensitivity were due to competition between H+ 

and Ca2+ at the actin filament, as H+ acts directly at troponin C (Robertson, Glenn et al. 1979). 

Nevertheless, they concluded that the cellular acidification accompanying fatigue was not sufficient to 

fully explain the corresponding decline in force. 

 



 

- 54 - 

 

ii) ADP 

 ADP is known to inhibit the dissociation of ATP with the actomyosin complex during the cross-

bridge cycle (Siemankowski, Wiseman et al. 1985). Indeed, White et al (White 1977) found that ADP 

at 0.05 mmol/L in solution inhibited actomyosin dissociation. In addition, ADP has been shown to cause 

an increase in isometric tension in fiber preparation as a result of the inhibition of myosin detachment 

(White 1977). Similarly, others (Cooke and Pate 1985) found that with ADP concentrations similar to 

those observed in fatigue muscles, the isometric tension increased by 2%, and the maximum isotonic 

shortening velocity decreased by 5%. The authors suggested that the results are a consequence of a 

higher number of attached cross-bridges and a larger number of myosin heads not dissociated from 

myosin by ATP. 

iii) Pi concentration 

 Pi is the product of the breakdown of ATP (ADP+Pi) and PCr (CR+Pi); therefore, during intense 

skeletal muscle activity, the concentration of Pi will rise quantitatively. Compelling evidence in the 

literature has reported an increase in the intracellular concentration of Pi under fatigue and its correlation 

with limiting performance. 

During high-intensity physical activity, PCr breaks down to Cr and Pi. PCr has a small effect on 

contractile properties (Murphy, Stephenson et al. 2004); in contrast, Pi has been shown to cause 

deleterious effects in myofibrillar force production, Ca2+ sensitivity, and SR Ca2+ release (Allen, Lamb 

et al. 2008). Most models of cross-bridge action propose that within the cross-bridge, the myosin head 

is weakly bound to actin filaments in the first step, and in the second phase, when Pi is released, the 

myosin head binds strongly (Takagi, Shuman et al. 2004). This proposal implies that increases in Pi will 

inhibit the transition to high-force cross-bridge states, and consequently, fewer cross-bridges would be 

in high-force states during fatigue development (Hibberd, Dantzig et al. 1985). 

Evidence regarding the low-force and high-force states was provided by Martyn and Gordon (Martyn 

and Gordon 1992). They found that with Pi elevation, the maximum force declined but that stiffness 

was reduced only at levels of Pi higher than 10 mol/L. They explained this phenomenon as Pi elevation 

causing a shift of the cross-bridges to a low-force-producing, strongly attached Pi-bound state, which 

takes place before Pi release. The major cause of the reduced tetanic force appears to be the precipitation 
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of Pi with Ca2+ inside the SR. Posterino and colleagues (Posterino and Fryer 1998) tested the effects of 

increased Pi concentration on the SR Ca2+ content using a skinned fiber preparation and stimulating it 

with caffeine. The results confirmed that Pi enters the SR, binds to Ca2+ and precipitates. In this situation, 

the capacity of SR Ca2+ reuptake is greatly increased. Similarly, Westerblad and Allen (Westerblad and 

Allen 1996) directly injected Pi inside the muscle, expecting to see a decrease in force and Ca2+ 

sensitivity. Surprisingly, on the contrary, they found a drastic reduction in SR Ca2+ release with the 

corresponding decline in force. They concluded that most of the injected Pi probably entered the SR and 

precipitated as CaPi, reducing Ca2+ release. 

iv) Glycogen 

             Glycogen depletion is associated with reductions in force and lower Ca2+ release during fatigue 

(Chin and Allen 1997). This association between low muscle glycogen and impaired muscle function 

has been attributed to the tempering role of glycogen in the release of Ca2+ from the SR (Duhamel, Perco 

et al. 2006). Interestingly, the role of glycogen depletion during fatigue has been shown to be present 

mainly at moderate and heavy intensities (Black, Jones et al. 2017). 

 Mechanical responses of skeletal muscle 

 Traditionally, MVC has been used to measure the peak force. Nevertheless, as mentioned above, 

performing MVC depends on the subject’s volition, becoming a vulnerable measure under the possible 

influence of several factors. In contrast, the use of 

electrical stimulation techniques to evoke the isometric 

involuntary twitch is completely independent of the 

subject’s skills or motivation, and as a result, these 

techniques have been used as the preferred method. 

During electrical nerve stimulation, two neuromuscular 

properties can be evaluated: electrical signal transmission 

through the M-wave and the mechanical response of the 

twitch. The mechanical response can be isometric (through 

the twitch response) or dynamic (through a force–velocity test), depending on the test performed. 

Figure 27 Measurement of the peak twitch torque (Pt), rate 

of force development (RFD), contraction time (CT), half-

relaxation time (HRT) and rate of force relaxation of a twitch. 
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- Twitch mechanical responses  

Muscular strength is defined as the production of maximal contractile force against a resistance in a 

single contraction (Coulson 2017), and Pt is the universal standard parameter used to measure muscular 

strength (figure 27). Pt represents the maximum torque produced during the twitch response. Attention 

was also paid to the temporal parameters during the twitch response. For instance, the CT is the time 

from the start of the contraction to the Pt, or the half relaxation time (HRT), which is defined as the time 

from Pt to a 50% decline in Pt. Reductions in Pt, as well as prolongation in the CT and the augmentation 

of the HRT, have been shown to be due to an increase in the duration in the intracellular Ca2+ transient 

rather than an impairment at the cross-bridge level (Allen, Lannergren et al. 1995). 

One other interesting parameter is the rate of 

force development (RFD), which expresses the 

explosiveness of the muscle during the twitch 

and can be defined as the rate of the rise in the 

contractile force, or torque, at the onset of 

contraction (figure 28) (Aagaard, Simonsen et 

al. 2002). The in vivo RFD has been defined as 

the slope of the torque–time curve 

(Δtorque/Δtime) obtained during twitch 

conditions (Andersen and Aagaard 2006). Once the contraction onset has been defined, the RFD can be 

measured notably during the initial phase over periods from 0 to 50 and 0 to 100 and 200 milliseconds 

(ms), as shown in figure 28. The RFD is mostly measured in single-joint tasks, such as elbow 

flexion/extension or knee extension/flexion, using a commercial isokinetic dynamometer with a 

rotational torque transducer (Maffiuletti, Aagaard et al. 2016). 

The highest rate (or the steepest part of the curve) of the produced force is named the maximum rate of 

force development (MRFD) and is measured with the derivative of the development of force (dF/dt; 

derivative of force as a function of time). This parameter seems to be well related to sport-specific 

performances (Tillin, Pain et al. 2013) and could detect acute changes in neuromuscular function 

(Andersen and Aagaard 2006). 

Figure 28 Common measurements of the rising force-time 

curve. Force at specific time points (F50, F100, etc.) and 

overlapping RFD measurement all starting from force onset 

(RFD (0-50), RFD (0-100), etc.). Adapted from N.A. Maffiuletti 

et al. 2016 
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The RFD has been associated with the fiber type composition of the muscle (Andersen and Aagaard 

2006) and with neuromuscular activation mechanisms such as high initial firing rates (Klass, Baudry et 

al. 2008). This neuromuscular property is thought to be limited by the amount of Ca2+ released from the 

SR and by the rate of transition from the weakly bound state to the high-force state when Pi is released 

from the actomyosin complex (Maffiuletti, Aagaard et al. 2016). 

Finally, the rate of force relaxation (RFR), which is the ability to quickly relax the contracted muscle 

during the twitch, has often been investigated. The MRFD has also been evaluated by using the 

maximum rate of force relaxation (MRFR), i.e., the maximum value for –dF/dt (derivative of force as a 

function of time). The RFR, MRFR and HRT are highly dependent on the intrinsic properties of the 

muscles. Indeed, relaxation occurs when Ca2+ is pumped back into the SR, and Ca2+ is pumped back in 

faster in type II fibers than in type I fibers (Rossi and Dirksen 2006). Under fatigue conditions, the RFR 

declines more than the force and more in type II fibers than in type I fibers. This observation alludes to 

a slower dissociation of actin from myosin with fatigue, which could reflect a reduced rate of Ca2+ 

reuptake from the SR pumps or a deficit in the cross-bridge detachment rate (Westerblad and Allen 

1993, Westerblad and Allen 1994). However, even if the rate of the dissociation of Ca2+ from myosin 

could be a limiting step, it has been shown to be too fast to be a limiting factor (Allen, Lannergren et al. 

1995). 

  - Dynamic mechanical responses 

 During locomotion, the skeletal muscles of the different limbs are required to perform concentric 

and eccentric contractions against different loads; consequently, from a functional point of view, the 

analysis of the force (F)–velocity (V) relationship is important in the study of muscle fatigue. 

Several studies performed during the first half of the previous century showed that the force of individual 

muscles and muscle groups decreases with velocity in a nonlinear manner (hyperbolic) (Hill 1938) 

(figure 30). However, more recent studies performed on maximum-performance multijoint tasks have 

suggested a linear relationship between F and V in the entire body (Bosco, Belli et al. 1995) or in the 

limbs (Vandewalle, Peres et al. 1987) (figure 29). The method more utilized to obtain the F-V 
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relationship is based on manipulating an external load to provide different values of F and V to establish 

a linear regression model: 

  F(V) = F0 –aV0        Eq 9 

where F0 is the F-intercept corresponding to the maximum isometric F (i.e., F at zero V), while a is the 

slope that corresponds to the ratio F0/V0, where V0 is the V-intercept (V at zero F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Velocity at null force or maximal unloaded velocity (V0) is attained during maximal unloaded 

contractions where the requirement for the strongly bound high-force state of the cross-bridge is low 

and the overall cycle rate is maximal. V0 corresponds to the intercept with the velocity axis in the force-

velocity relationship (figure 30) and can be determined from the extrapolation of the force–velocity 

relationship to zero load (Hill 1938). V0 appears to be highly correlated with the actomyosin ATP 

hydrolysis rate (Bárány 1967) and limited by the ADP dissociation step (Fitts 2008). In rat skeletal 

muscle, fiber V0 has been shown to be higher in fast glycolytic fibers than in slow oxidative fibers. This 

difference has been attributed to higher ATPase (the enzyme that catalyzes the decomposition of ATP 

into ADP) activity in the fast glycolytic myosin isozymes (Fitts, McDonald et al. 1991). 

Figure 29 F-V relationship for a multijoint task.  The 

linear solid line represents the linear F-V relationship; 

the dashed line represents the corresponding parabolic 

P-V. F0, force at null velocity; V0, velocity at null force; 

Pmax, peak power; Fopt and Vopt, optimal force and 

velocity for Pmax, respectively. From Jaric, S 2015. 

 

 

Figure 30 F-V relationship for a muscle or 

monoarticular movements. The solid line represents the 

typical F-V relationship; the dashed line represents the 

corresponding P-V relationship obtained from a 

hypothetical muscle or muscle group. F0, force at null 

velocity; V0, velocity at null force; Pmax, peak power; 

Fopt and Vopt, optimal force and velocity for Pmax, 

respectively. From Jaric, S 2015. 
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 Maximal force at theoretical null velocity (F0) is attained during maximal isometric contractions, 

where the velocity is null. Contrary to V0, F0 is measurable, and it corresponds to the intercept with the 

force axis in the force-velocity relationship (figure 30). Reductions in force have been related to 

decreases in Ca2+ sensitivity and release and with the precipitation of Ca2+ with Pi inside the SR (Martyn 

and Gordon 1992, Westerblad and Allen 1996). 

As body movement is dependent on the capacity to generate power, muscle fatigue may be better related 

to changes in this neuromuscular property. The greatest values for fibers, isolated muscles and 

monoarticular movements are obtained at contraction velocities and loads of 20 to 40% of V0 and F0, 

respectively (Duchateau and Hainaut 1984) (figure 29). In contrast, when there is a linear relationship 

(figure 30), the greatest values for power (Pmax) are found at 50% V0 and F0 (figure 30). 

  Pmax= (F0 V0)/4        Eq 10 

Since power is the product of force and velocity, higher values will be found in type II muscle fibers 

than in type I muscle fibers (Fitts 2008). In addition, reductions in Pmax are mostly explained by decreases 

in F0; V0 is a late event in the development of fatigue and plays a relatively small role in the loss of 

power (Jones, De Ruiter et al. 2006). 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 60 - 

 

 Purpose of the thesis 

  In view of the previous discussion, it appears that for young and healthy subjects, the O2 supply 

deficit is not a preponderant factor in the development of the V̇O2sc, which is why “prior” exercise does 

not have any effect on τ or the final value of V̇O2 in this population. 

On the other hand, regarding the paradigms of muscular fatigue or the differences in metabolic kinetics 

between slow and fast fibers as the trigger(s) of the slow component, the results remain contradictory. 

Therefore, the aim of this thesis was to clarify and nourish the debate of the causes of the V̇O2SC, 

especially for these last two paradigms. Our interest was in deciphering whether fatigue or the different 

metabolic response profiles of different fiber-type populations are the real culprit, or the trigger, for the 

appearance and development of the V̇O2sc. 

Different experiments were conducted to shed light on that question. Since the V̇O2sc occurs during 

high-intensity exercise and is linked with changes in metabolic concentrations that may produce 

alterations in neuromuscular properties, the latter might be considered the mediator of the former. 

Neuromuscular function evaluation, such as peripheral nerve stimulation, has been extensively used to 

explore the complex relationship between exercise and fatigue. 

Therefore, the aim of the first experiment (chapter 9) was to quantify the alteration of neuromuscular 

properties of knee extensors during heavy exercise and to see whether these impairments covary, as a 

function of time, with V̇O2SC amplitude. 

The hypothesis was that V̇O2sc amplitude would correlate with the change in neuromuscular properties 

of knee extensor muscles, depicted by a decrease in evoked Pt. 

 The second experiment (chapter 10) was conducted to explore whether exercise intensity was 

the trigger of the relationship between fatigue and the V̇O2sc. The apparent discrepancies regarding the 

involvement of fatigue in the development of the V̇O2sc may also be related to other causes, such as the 

measurement according to the stimulation methods (Jones, Bigland-Ritchie et al. 1979), according to 

the protocol used (isometric vs. dynamic (Krüger, Aboodarda et al. 2019)), or the time of data acquisition 

(during exercise or with or without delay after exercise (Froyd, Millet et al. 2013)). Thus, this original 

experiment aimed to measure muscular fatigue before, during and after 10 min of constant KE exercises 
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at different intensities. In addition, to reveal the time course and nature of fatigue and the relationship 

with the development of the V̇O2SC, neuromuscular function was evaluated in a static and dynamic way 

before, after and during the course of these exercises. 

With this strategy, the goal was to answer two questions. First, what are the time course and the nature 

of the changes in fatigue that develop during moderate, heavy and severe bouts of dynamic exercise? 

Second, what is the concordance between muscle fatigue and the development of the V̇O2SC during these 

different exercise intensities? 

 Finally, the last experiment (chapter 11) was carried out to clarify and add more evidence 

regarding whether  V̇O2sc development was related to fatigue processes or was genuinely the product 

of the differences in metabolic properties of different muscle fibers. The purpose was to be able to 

manipulate MU recruitment by applying the work-to-work protocol (DiMenna, Wilkerson et al. 2008) 

to discern which kind of muscle fibers were recruited under each type of exercise intensity. In addition, 

by combining the Henneman and the superposition principles, a new curve, formed with three different 

intensities, was constructed to ascertain whether it was similar to a final severe-intensity kinetic curve. 

The reconstructed V̇O2 kinetics curve from multiple transitions was hypothesized to have identical 

kinetics to a simple transition at the same final intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 62 - 

 

 Article I : Alterations to neuromuscular properties of 

skeletal muscle are temporally dissociated from the oxygen 

uptake slow component 

 ------------------------------------------------------------- 
 

Trishan Gajanand1, 5&, Sonia Conde Alonso2*&, Joyce S. Ramos3, Jean-Philippe Antonietti4, Fabio Borrani2 

1Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand 

2Institute of Sport Sciences of University of Lausanne (ISSUL), Faculty of Biology and Medicine, University of 

Lausanne, Lausanne, Switzerland 

3 SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health 

Sciences, Flinders University, Bedford Park, South Australia 5042, Australia 

4Institute of Psychology, University of Lausanne, Lausanne, Switzerland 

5 School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, 

Australia  

& These authors contributed equally to this work. 

 

*Corresponding author: 

 

Sonia Conde Alonso 

Université de Lausanne 

Institut des Sciences du Sport de l'Université de Lausanne (ISSUL) 

Quartier UNIL-Centre 

Bâtiment Synathlon, bureau 3224 

1015 Lausanne 

Tel: +44(0) 021 692 3796 

Email: sonia.condealonso@unil.ch 

  



 

- 63 - 

 

ABSTRACT  

To assess if the alteration of neuromuscular properties of knee extensors muscles during heavy exercise 

co-vary with the V̇O2sc (V̇O2 slow component), eleven healthy male participants completed an 

incremental ramp test to exhaustion and five constant heavy intensity cycling bouts of 2, 6, 10, 20 and 

30minutes. Neuromuscular testing of the knee extensor muscles were completed before and after 

exercise. Results showed a significant decline in maximal voluntary contraction (MVC) torque only 

after 30 minutes of exercise (-17.01%±13.09%; p<0.05) while single twitch (PT), 10 Hz (P10), and 100 

Hz (P100) doublet peak torque amplitudes were reduced after 20 and 30 minutes (p<0.05). Voluntary 

activation (VA) and M-wave were not affected by exercise, but significant correlation was found 

between the V̇O2sc and PT, MVC, VA, P10, P100, and P10/P100 ratio, respectively (p<0.015). 

Therefore, because the development of the V̇O2sc occurred mainly between 2-10 minutes, during which 

neuromuscular properties were relatively stable, and because PT, P10 and P100 were significantly 

reduced only after 20-30 minutes of exercise while V̇O2sc is stable, a temporal relationship between 

them does not appear to exist. These results suggest that the development of fatigue due to alterations 

of neuromuscular properties is not an essential requirement to elicit the V̇O2sc. 
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 Introduction 

At the onset of constant power exercise, the muscles requirements for ATP re-synthesis increase 

immediately following exercise onset. The same cannot be said about the oxygen uptake (V̇O2) response 

that instead, displays a sluggishness to fully activate metabolism(Grassi, Pogliaghi et al. 2003, Jones 

and Poole 2005, Hughson 2009). During exercise below the lactate threshold, V̇O2 rises mono-

exponentially to a new steady-state (Xu and Rhodes 1999, Jones and Poole 2005) and from unload 

pedalling, the rise of V̇O2 increases as a linear function of work-rate(Hansen, Sue et al. 1987) . However, 

during constant-load exercise completed at intensities above the lactate threshold, the V̇O2 response 

becomes more complex with a second rise in V̇O2, developing slowly, which is superimposed onto the 

initial V̇O2 response (Whipp and Wasserman 1972). This slowly developing rise in V̇O2, termed the slow 

component of V̇O2 (V̇O2sc), results in a greater end-exercise V̇O2 than that predicted by the sub-LTV̇O2-

power output relationship. It has been proposed that the inefficiency which leads to the V̇O2sc originates 

primarily from the active muscles (Poole, Schaffartzik et al. 1991). However, the reason for this 

observed inefficiency in the muscle is not clear and may potentially result from reduction of ATP 

production per mole of oxygen (P/O ratio), diminution of the energy yield per unit of hydrolysed ATP, 

alteration of neuromuscular properties of muscle filament to produce force, and/or deterioration of the 

motor pattern of the motion (Allen, Lamb et al. 2008). However, the potential link between the alteration 

of neuromuscular properties of muscle filament and progressive muscle inefficiency, and therefore the 

V̇O2sc, is not well explored. The capability of muscle to produce force progressively declines during 

high-intensity exercise when fatigue gradually develops (Keir, Copithorne et al. 2016). It is widely 

accepted that alterations of the metabolic milieu of locomotor muscles are mainly responsible for the 

decline in force. Indeed, neuromuscular properties of knee extensor muscles are sensitive to the 

accumulation of muscle metabolites such as adenosine diphosphate (ADP), inorganic phosphate (Pi), 

hydrogen ion (H+), and magnesium ion (Mg2+). Muscular force production is reduced by increases in 

[Pi], [Mg2+], and [H+] while augmented by an increase in [ADP] (Ament and Verkerke 2009). 

Additionally, increased [ADP] reduces cross-bridge cycling rate (Ament and Verkerke 2009). 
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Since the V̇O2sc occurs during high-intensity exercise, and because high-intensity exercise is always 

associated with changes in metabolite concentration that may produce an alteration in neuromuscular 

properties of muscle filament, the latter may be considered a putative mediator of the V̇O2sc (in line 

with current views;(Rossiter 2011, Poole and Jones 2012, Cannon, Bimson et al. 2014, Grassi, Rossiter 

et al. 2015)). Standardised investigative methods of neuromuscular function, such as peripheral nerve 

stimulation (PNS), have been extensively used to explore the complex relationship between exercise 

and fatigue. For instance, using PNS, Decorte and colleagues showed that during exhaustive constant-

load cycling at 80% of maximum aerobic power output, neuromuscular properties were significantly 

reduced as early as 20% of the total duration of cycling, indicating a potential link with the V̇O2sc 

(Decorte, Lafaix et al. 2012). 

Although, little is known about the possible relationship between the V̇O2sc and the alteration of 

neuromuscular properties of knee extensors, Keir and colleagues(Keir, Benson et al. 2016) in 2016 

showed a significant association between the decrements in muscle torque and the V̇O2sc, without 

changes in muscle activation over the course of the exercise. Also in an in vivo study using cycle 

ergometry, Cannon and colleagues have shown that changes in velocity-specific peak power generated 

in the initial minutes of exercise were correlated to the V̇O2sc measured between three and eight minutes 

of heavy and severe exercise (Cannon, White et al. 2011). Results from the same working group suggest 

that the V̇O2sc during heavy exercise arises from both contractile and mitochondrial sources(Bowen, 

Cannon et al. 2012). Furthermore, using self-paced dynamic concentric extension/flexion of the knee 

and interleaving voluntary and electrically evoked contractions, Froyd and colleagues have shown, even 

without measuring directly VO2 kinetics, that fatigue progresses with similar dynamics to those expected 

of the V̇O2sc during an approximately 6-min time trial (Froyd, Millet et al. 2013). However, these 

findings do not show the mechanism linking the alteration of neuromuscular properties of knee 

extensors, per se, and the V̇O2sc.  

The aim of the present study was to quantify the alteration of neuromuscular properties of knee extensors 

during heavy exercise and to see if these impairments co-vary, as function of time, with the V̇O2sc 
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amplitude. The hypothesis was that the V̇O2sc amplitude correlates with the change in neuromuscular 

properties of knee extensor muscles, depicted by a decrease in evoked peak torque. 

 Methods 

Participants  

Eleven healthy, recreationally active, male participants (mean ± SD, age 27 ± 6.6 years, body mass 76 

± 7.6 kg, and height 179 ± 8.1 cm) were recruited for this study. The participants were provided with a 

participant information sheet outlining the procedures involved, time commitment, and requirements of 

the study. Participants were screened using a self-administrated pre-exercise health questionnaire 

designed to identify those who may be at risk of an adverse event during exercise. Participants were 

advised of their right to withdraw from the study at any time without disadvantage.  

Participants were asked to avoid, in the 24h preceding a testing session, strenuous physical activity, 

alcohol, tobacco, and caffeine. Furthermore, participants were asked not to consume any food for the 3h 

preceding a test and to arrive fully hydrated. All tests were completed at a similar time of day (± 1h). 

The study was approved by the local humans Ethics Committee and conformed to the latest revision 

(2013) of the Declaration of Helsinki. All participants provided written informed consent prior to 

participation. 

Experimental Design 

This study involved each participant attending six separate laboratory sessions, with at least a 48h 

interval between tests, over a three-week period. All tests were completed in an air-conditioned (21ºC ± 

1ºC) exercise physiology laboratory. The first session involved an incremental ramp test on a cycle 

ergometer (Velotron, RacerMate, Seattle, WA, USA). This test was used to assign a work-rate for the 

subsequent five experimental sessions during which constant work-rate exercise was completed. 

Following the incremental ramp test, participants were familiarized with the procedure to be used to 

evaluate neuromuscular function. The five experimental sessions (Figure 31A) involved participants 

cycling for different durations of time in a random order at an identical power (heavy domain, see 

below). Neuromuscular evaluation was performed before exercise, and within 1-minute of completing 
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constant work-rate exercise. This was completed to determine the central and peripheral fatigue through 

neural and neuromuscular properties of the knee extensor muscles. 

 

 

Testing procedures 

Incremental ramp test 

Incremental ramp exercise test was completed in order to determine the gas exchange threshold (GET) 

and peak oxygen consumption (V̇O2peak). After a three-minute rest period seated on the cycle ergometer, 

participants performed six minutes of baseline cycling at 60 watts, after which, the work rate was 

increased by the rate of 30 watts each minute until reaching the limit of tolerance. The ergometer allows 

participants to cycle at a constant power output independent of pedal rate, though participants were 

asked to maintain a pedal rate of 85 revolutions per minute (rpm). Verbal encouragement was provided 

throughout the test. The test was terminated when the pedal rate dropped by more than 10 rpm (i.e. 75 

rpm). All cycle tests were completed on an electromagnetically braked cycle ergometer where the seat 

and handlebars were fully adjustable both vertically and horizontally. The horizontal and vertical 

direction of both the seat and handlebars were adjusted to suit each participant and were recorded 

following the ramp test and replicated for subsequent tests. Pulmonary gas exchange and ventilation 

were measured from the beginning of the rest period until cessation of the test.  

 Figure 31 Description of events completed during experimental testing (Figure A) and during neuromuscular testing (Figure B). 
Neuromuscular tests (dotted box) were completed prior to the rest period (filled box) and after exercise (box with diagonal lines). 

Neuromuscular testing involved three single stimulations (single solid lines) followed by three stimulations at 10 Hz (thick-double 

solid lines) and then three stimulations at 100 Hz (thin-double solid lines). Each stimulation had a four second separation. Finally, 

three MVCs were completed with superimposed 100 Hz doublets applied (empty box with thin-double solid lines), each separated by 

a minute rest period. 
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Step transition tests 

Each participant attended a total of five experimental sessions during which cycling at a constant-load 

were completed. The test began with a 5-minute rest period before participants completed three minutes 

of unloaded cycling (20 watts). At the end of the three minutes, an immediate transition to the work rate 

equal to 30%∆ (GET plus 30% of the difference between the work rate at the GET and V̇O2peak; heavy 

exercise) was imposed with the duration altered at each session (2, 6, 10, 20, 30 minutes). Constant 

power was maintained at 85 rpm and was maintained for the duration specified for each of the tests. 

Neuromuscular Evaluation  

Neuromuscular evaluation (Figure 31B) consisted of (1) 3 x single supra maximal electrical 

stimulations, each separated by four seconds, (2) 3 x paired at 10 Hz (two stimulation pulses separated 

by 100 ms) and 3 x paired at 100 Hz (two stimulation pulses separated by 10 ms) electrical stimulations, 

each separated by four seconds, and (3) 3 x five-second isometric maximal voluntary contraction (MVC) 

tests of the knee extensor muscles during which a 100 Hz doublet was superimposed to the MVC. A 

one-minute rest period separated each MVC. Strong, standardised, verbal encouragement was provided 

throughout the MVC. In order to increase the contact between the electrode and the skin during all 

electrical stimulations, a pressure was applied to the cathode electrode using a wooden handle with a 

rubber end. Note that during post exercise, each sequence was repeated only one time in order to 

diminish the possible effect of recovery time. Less than one minute was required to position the 

participant for testing after exercise.  

Measurements 

Pulmonary gas exchange 

During all tests, pulmonary gas exchange was continuously measured using a computerised system 

(MetaMax 3b, Cortex, Leipzig, Germany). The system used an infrared sensor and an electrochemical 

cell to measure fractional concentrations of CO2 and O2 in expired gas. A digital transducer turbine 

assessed inspired and expired gas volume. A capillary line was used to continuously sample gas 

concentration. The transducer and the capillary line were securely attached to the facemask, which was 
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firmly fitted to the participants face using Velcro straps. Immediately before each exercise test, the gas 

analysers were calibrated with gases of known concentration (O2=14.01 %, CO2 =6.03%), and the 

turbine volume transducer was calibrated using a three-litre Rudolph syringe (Cortex, Leipzig, 

Germany).  

V̇O2peak was noted as the highest 30-second average value attained during the incremental ramp test. The 

GET was determined using a number of measurements: (1) visual examination for the first 

disproportionate increase in CO2 production (V̇CO2) from V̇CO2 versus V̇O2 graph, (2) an increase in 

ventilatory equivalent of oxygen (V̇E/ V̇O2) without increase in ventilatory equivalent of carbon dioxide 

(V̇E/ V̇CO2), and (3) increase in partial pressure of end-tidal oxygen with no decrease in partial pressure 

of end-tidal carbon dioxide. Subsequently, the work rate that would require 30%∆ was calculated and 

assigned for the experimental tests after accounting for the mean response time for V̇O2 during ramp 

exercise (2/3 of the ramp rate was subtracted from the work rate at the gas exchange threshold and 

V̇O2peak, i.e. 20 watts) (Whipp, Davis et al. 1981, Bailey, Romer et al. 2010).  

PNS 

Electrical stimulation was delivered using a high-voltage stimulator (model DS7, Digitimer Stimulator, 

Hertfordshire, UK). Low intensity stimulation (~ 20mA) was used to locate the femoral nerve by means 

of a cathode ball electrode (0.5 cm diameter) which was manually pressed into the femoral triangle and 

maneuvered until the femoral nerve was properly located (determined by observing contraction of the 

leg). A 5cm diameter cathode electrode (American Imex, CA, USA) was then placed on the site after it 

was cleaned with an alcohol wipe. The anode, a rectangular electrode (18 x 7 cm, American Imex, CA, 

USA), was placed opposite the cathode in the gluteal fold. Both the cathode and anode electrodes were 

worn during exercise and therefore both were taped to the skin using micropore tape (3M Micropore, 

St. Paul, MN, USA) to limit movement. To determine maximal stimulation, single electrical stimulations 

(rectangular pulse, 1ms duration, 400 V) were delivered to the nerve and progressively increased until 

a plateau in the twitch torque and M-wave amplitude were achieved. The current that achieved plateau 

was increased by 20%, which was then used for subsequent tests.  
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Torque measurement 

The evaluation of neuromuscular function was conducted on the right knee extensor muscles with 

participants seated in a Biodex isokinetic dynamometer (Biodex Medical Systems Inc., Shirley, NY, 

USA). The hip and knee angles were fixed at 90º (0º = full knee extension) with the ankle strapped to 

the lever arm of the Biodex. The rotational axis of the dynamometer was aligned with the lateral 

epicondyle of the femur, found after palpation. Two crossover straps were placed firmly across the 

shoulders to limit upper body movement and one strap was placed midway across the thigh of the right 

leg. Participants were asked to cross their arms across their chest during testing. Adjustments made to 

the seat position and to the lever arm of the Biodex were recorded for each participant during 

familiarisation and reproduced for subsequent tests.  

Electromyography Recordings 

Once participants were seated, the right vastus medialis (VM) and vastus lateralis (VL) muscles were 

palpated and prepared for electromyogram signal (EMG) recording. To reduce impedance, the skin 

around the belly of the muscles was shaven, lightly abraded (3M Red Dot Trace Prep, Ontario, Canada) 

and cleaned using 70% isopropyl alcohol wipes (Kendall Company, Mansfield, MA, USA). One pair of 

silver-chloride electrodes (3M Red Dot, St. Paul, MN, USA) of 10 mm diameter with an interelectrode 

(center to center) distance of 2 cm were then placed lengthwise over the prepared muscle. The ground 

electrode was placed over the patella of the right leg. EMG and torque signals were recorded through 

chart software (v. 5.5.6, ADInstruments, Sydney, Australia). EMG signals were amplified with a 

bandwidth frequency ranging from 1.5 Hz to 2 kHz (common mode rejection = 90 dB; impedance = 100 

MΩ; gain = 1000). The myoelectric and mechanical responses were digitised on-line at a sampling 

frequency of 2000 Hz and stored for off-line analysis. 

Data Analysis 

Oxygen uptake kinetic analysis 

The breath-by-breath V̇O2 data from each of the 30%∆ tests were initially examined to exclude errant 

breaths caused by coughing, swallowing, sighing, etc., and those values lying more than three standard 
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deviations from the model V̇O2 were considered outliers and were removed. The breath-by-breath data 

from the different exercise durations were subsequently linearly interpolated to provide second-by-

second values, and, for each individual, repetitions from different durations were time aligned to the 

start of exercise and the ensemble averaged.  

The primary component (phase 2) kinetics were isolated to identify the mono-exponential region and 

modelled by the following equation: 

                             𝑉̇𝑂2(𝑡) = 𝑉̇𝑂2𝑏 + 𝐴𝑝 ∙ (1 − 𝑒𝑥𝑝
(−

𝑡−𝑡𝑑𝑝

𝜏𝑝
)
) ∙ 𝑈        Eq (1) 

Where V̇O2(t) represents V̇O2 at a given time t; U= 0 for t < td1 and U = 1 for t  td1  

V̇O2b is the V̇O2 during unloaded cycling defined as the mean V̇O2 measured over the final 90 seconds 

of baseline pedaling; AP is the asymptotic amplitudes for the primary phases; P is the time constant, and 

tdP represents the time delay. Since the focus of this study was the V̇O2sc, the cardiodynamic phase was 

removed from analysis (Weissman, Jones et al. 1982, Paterson and Whipp 1991), and therefore, not 

modelled, in order to ensure that the early initial component did not influence the results (Whipp, Ward 

et al. 1982). Initially, the fitting window extended from 20 seconds (i.e., at the end of phase I) to 80 

seconds (only 60 s into the exercise). The window was lengthened iteratively in order to attain four 

series of the initial window length. For each window length, the parameters of the model were 

determined with an iterative procedure by minimising the sum of the mean squares of the differences 

between the model V̇O2 and actual V̇O2.  

Identification of the end of the primary phase was completed using H.B. Rossiter criteria consideration 

(Rossiter, Ward et al. 2001, Murgatroyd, Ferguson et al. 2011).  

As such, the amplitude of the slow component at time 2, 6, 10, 20, and 30 minutes were assigned the 

value (ASX) and were defined as the difference between the value of V̇O2 at a given time and the sum of 

the primary phase and the V̇O2b at the same given time.  

V̇O2sc was also described as a percentage of the primary component (V̇O2sc %) since this ratio would 

provide information regarding the loss of efficiency. 
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Neuromuscular Function Analysis 

From the EMG trace of single stimulations, peak-to-peak amplitude (M-waves) of the VL (MWVL) and 

VM (MWVM) were measured. Peak torque (PT) was determined from the torque signal of the single 

twitch. The highest torque achieved during MVC in their respective conditions were taken as the MVC 

torque. The PT of doublet stimulations were quantified and termed P10 and P100 for 10 Hz, and 100 

Hz, respectively. In addition, the P10-to-P100 ratio (P10/P100) was calculated to assess for the 

occurrence of low or high frequency fatigue. 

The voluntary activation (VA) level was calculated by expressing any increment in torque evoked during 

maximal isometric contractions (superimposed twitch) as a fraction of the amplitude of the response 

evoked by the potentiated doublet (Merton 1954).  

In agreement with the work by Strojnick and colleagues, the following correction factor (CF, the ratio 

between the torque just before the superimposed doublet divided by MVC peak torque) was used in 

order to take into account the possibility that the superimposed twitch was not necessarily applied when 

the torque level was at the true maximal voluntary force (Strojnik and Komi 1998).  

  𝑉𝐴 = 100 − [𝐶𝐹 ∙ (
𝑠𝑢𝑝𝑒𝑟𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒𝑡

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑡𝑒𝑑 𝑑𝑜𝑢𝑏𝑙𝑒𝑡
)] ∙ 100   Eq (2) 

All data presented are the average of three measurements in pre, and a single measurement on post. 

Data and Statistical Analysis 

Data were normalised by expressing the measures taken immediately after exercise as a percentage 

change relative to before exercise. This was completed to avoid day-to-day variations in measures that 

may occur. Normality test (Kolmogorov-Smirnov) and F-test of equality of variances were completed 

to test for normal distribution and equality of variance. . One-way repeated measures analysis of variance 

(ANOVA) was used to test the effect of exercise duration on measurers of neuromuscular function. 

When a significant main effect was found, significant differences were located using Tukey’s post hoc 

analysis test. Pearson correlation coefficient was used to assess relationships between the change of 

V̇O2sc % and changes to neuromuscular parameters. Analyses were completed with Box and Tidwell 
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tests, and the Theil method (Theil nonparametric regression technique). The Box and Tidwell test 

assesses whether the association between the slow component and fatigue is linear or not, and therefore 

related to time. In contrast, Theil's regression highlights, in a qualitative way, the points that are distant 

from the linear relationship. For all tests, significance was set at p < 0.05. Data are expressed as mean ± 

SD. 

 Results 

Oxygen Uptake Kinetics 

Mean V̇O2peak was 3.95 ± 0.18 l.min-1 and the mean power output corresponding to 30%∆ was 200 ± 11 

watts. During the three minutes of unloaded pedalling at 85 rpm, V̇O2b reached a value of 0.85 ± 0.19 

l.min-1. Asymptotic amplitudes of the primary phase attained 1.85 ± 0.38 l.min-1 with a time constant of 

27.1 ± 15.0 s and a time delay of 12.8 ± 2.3 s. Amplitude of the slow component at time 2, 6, 10, 20, 

and 30 minutes are presented in Table 1. Values of V̇O2sc as a percentage of the primary component are 

also described. 

 

 
Table 1 Time course of slow component amplitude in absolute, and in percentage of the primary component. AS2, AS6, AS10, 

AS20, and AS30 are the amplitude of the slow component at time 2, 6, 10, 20, 30 min respectively. Ap is the amplitude of primary 

component. Data are presented as mean ± SD 
 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude  

(l.min-1) 

Amplitude  

(% of Ap) 

AS2 0.037  0.056 1.9  2.5 

AS6 0.298  0.130 16.6  8.6 

AS10 0.373  0.150 20.9  10.2 

AS20 0.450  0.202 25.3  13.2 

AS30 0.515  0.246 29.1  16.3 
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Neuromuscular function 

MVC measurement showed alteration over the course of exercise (Table 2). Post-hoc test revealed a 

significant reduction after 30 minutes of cycling compared to before exercise, 2, 6, and 10 minutes of 

exercise. After 20 minutes of exercise, a trend towards significance was observed compared to before 

exercise (p = 0.1) No effect of exercise duration was detected for VA (Table 2; p > 0.05). 

No effect of exercise duration was detected for the M-wave amplitude of the VM and VL muscles (Table 

2). 

Table 2 Changes in neuromuscular function over the time course of the slow component. MVC: maximal voluntary 

contraction, VA: voluntary activation, MWVM: M-wave amplitude of vastus medialis, and MWVL: M-wave amplitude of vastus 

lateralis. * Different from base line, 2min, 6 min, and 10 min (p < 0.05). Data are presented as mean ± SD 

 

 2 min 6 min 10 min 20 min 30 min 

MVC [%] -2.81 ± 5.39 -2.32 ± 4.19 -2.87 ± 5.31 -9.26 ± 9.67 -17.01 ± 13.09* 

VA [%] -1.81 ± 3.14 0.18 ± 3.90 -1.59 ± 3.4 -2.72 ± 3.92 -4.32 ± 5.66 

MWVM [%] -1.17 ± 5.72 -2.86 ± 8.28 -0.52 ± 8.50 -4.21 ± 8.05 -8.23 ± 7.59 

MWVL [%] 4.07 ± 10.33 6.91 ± 6.39 5.07 ± 8.43 8.32 ± 15.07 6.9 ± 28.92 

 

Twitch amplitude (Figure 32A) showed a significant reduction at 30 minutes of exercise compared to 

before, 2, 6, and 10 minutes of exercise; (p < 0.05). A significant reduction was also observed after 20 

minutes of exercise compared to before, 2, and 6 minutes of exercise (P < 0.05). Finally, significant 

differences were observed for 10 minutes of exercise compared to 2 and 6 minutes of exercise (p < 0.05). 

P10 (Figure 32B) and P100 (Figure 32C) evolved in a similar manner. Specifically, significant 

differences were observed for 20 and 30 minutes compared to before, 2, 6, and 10 minutes of exercise 

(p < 0.05). Furthermore, significant differences were observed at 10 minutes compared to 2 and 6 

minutes (p < 0.05).  

Significant differences for the P10/P100 ratio (Figure 32D) were found for most exercise durations. A 

significantly lower P10/P100 ratio was observed at 30 minutes compared to before, 2, 6, and 10 minutes 

of exercise (P < 0.05). After 20 minutes of exercise, differences were observed compared to before, 2, 
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and 6 minutes of exercise (p < 0.05). Furthermore, significant differences were observed at 10 minutes 

compared to before and 2 minutes of exercise (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 Neuromuscular alterations for peak twitch amplitude (Figure 2A), 10 Hz paired (P10) stimulation 

(Figure 2B), 100 Hz paired (P100) stimulation (Figure 2C), and P10/P100 (Figure 2D) over the course of 

exercise. * Significant difference from baseline (p < 0.05); § Significant difference from 2 minutes (p < 0.05). & 

Significant difference from 6 minutes (p < 0.05). $ Significant difference from 10 minutes (p < 0.05). Error bars 

are SE.  
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The 𝐕̇𝐎𝟐𝐬𝐜 and Fatigue 

Correlation analysis was used to investigate relationships between the V̇O2sc % and neuromuscular 

parameters (Table 3). Changes in M-wave amplitude for either of VL and VM, VA and MVC did not 

correlate with changes of the V̇O2sc relative to the primary phase. However, significant correlations 

were found between the V̇O2sc % and PT, P10, P100 (tendency), and P10/P100 ratio. For these 

neuromuscular parameters, P10/P100 showed the strongest correlation with V̇O2sc % (R2 = 0.88), 

followed by P10 (R2 = 0.81), PT (R2 = 0.81), and P100 ratio (R2 = 0.72). In contrast, the  Box and 

Tidwell's test was smaller than 0.05 (see Table 3) for correlation relationships suggesting that the 

relationship is non-linear and therefore unrelated over time. In addition, Theil's line (see figure 32) 

showed that during the first phase, only the slow component grew (the points of this phase are distant 

from Theil's line); while during the second phase, the slow component continued to grow but fatigue 

also grew (the points of this phase then line up with Theil's line). 

Table 3 Correlation coefficient between the slow component amplitude, as a percentage of the primary phase, and 

neuromuscular function. MWVM: M-wave amplitude of vastus medialis, MWVL: M-wave amplitude of vastus lateralis, PT: 

Peak Torque of the single twitch, MVC: maximal voluntary contraction, VA: voluntary activation, P10: peak torque at 10Hz 

doublet stimulation, P100: peak torque at 100Hz doublet stimulation, P10/P100: ratio of peak torque between 10hz and 100hz 

doublet stimulation, R: correlation coefficient, p: significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 Correlation Box-Tidwell test 

 R P Z P 

MWVM -0.69 0.196 -1.70 0.089 

MWVL 0.76 0.137 -0.20 0.841 

PT -0.90 0.038 -3.06 0.002 

MVC -0.72 0.172 -5.57 <0.001 

VA -0.52 0.370 -5.48 <0.001 

P10 -0.90 0.036 -3.39 <0.001 

P100 -0.85 0.065 -3.97 <0.001 

P10/P100 -0.94 0.019 -4.50 <0.001 
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 Discussion 

The main finding from the present study was that alterations to force production by the knee extensor 

muscles were present during exercise at an intensity of 30%∆, which correlated with the development 

of the V̇O2sc, however, a temporal relationship between the development of the V̇O2sc and fatigue does 

not appear to exist. 

Origin of fatigue observed during exercise 

With neuromuscular fatigue defined as a reduction in force generating capacity (Gandevia 2001), loss 

of MVC torque is used as a general index for evaluating the extent of neuromuscular fatigue. In the 

present study, MVC torque, compared to the beginning of exercise, was found to be significantly 

reduced only after 30 minutes of cycling at 30%∆. However, while loss of MVC torque is a general 

index of fatigue, it does not provide information regarding the site of alterations (i.e. neuromuscular 

fatigue etiology). To determine the origin of the neuromuscular fatigue caused by various durations of 

cycling at 30%∆, electrical stimulations were delivered at rest, as well as during MVC, allowing for the 

evaluation of VA, action potential transmission and propagation, and neuromuscular properties. VA, 

which is commonly used to evaluate central fatigue (Vollestad 1997), was not significantly affected by 

any exercise durations in the present study. The absence of significant central fatigue suggests that 

declines in motivation, afferent feedback, or central drive were not present, or that declines in central 

drive was countered by increased motivation(Bigland-Ritchie, Dawson et al. 1986, Ament and Verkerke 

2009). It subsequently suggests a peripheral origin for the induced neuromuscular fatigue. Muscle 

membrane excitability and neuromuscular propagation appeared to be well preserved, as highlighted by 

the lack of alterations in VL and VM M-wave amplitudes. In contrast, reductions in evoked forces 

suggests the presence of peripheral fatigue. Interestingly, signs of peripheral fatigue were observed 

following shorter exercise durations, suggesting that evoked forces might be more sensitive than MVC 

for detecting fatigue when it is of peripheral origin. Indeed, PT, P10 and P100 were already reduced 

after 20 minutes of cycling compared to the beginning of exercise. As M-wave amplitudes were 

unaltered at all-time points, reductions in evoked forces can highlight either alterations in sarcoplasmic 

reticulum Ca2+ handling (Allen, Lamb et al. 2008) or alterations occurring at the cross-bridge level such 
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as reduced myofibrillar Ca2+ sensitivity, and/or reduced capacity for cross-bridge to produce force 

(Metzger and Moss 1990, Place, Yamada et al. 2010). Further supporting excitation-contraction failure, 

the P10/P100 ratio was found to be reduced following 10, 20, and 30 minutes of exercise compared to 

the start of exercise suggesting the presence of low frequency fatigue (Jones 1996). A study completed 

on rat gastrocnemius muscle ascribed low-frequency fatigue to Ca2+ handling alterations rather than to 

processes occurring at the cross-bridge level (Watanabe, Kanzaki et al. 2015). Indeed, altered Ca2+ 

handling is believed to occur with Pi accumulation during the development of fatigue and its subsequent 

precipitation with Ca2+ within the sarcoplasmic reticulum (Westerblad and Allen 1996). However, the 

exact mechanisms responsible for low-frequency fatigue remain unclear as previous results, also 

obtained using rodents, showed that the site (i.e. Ca2+ handling vs. cross-bridge level) responsible for 

this low-frequency fatigue is dependent on the antioxidant status of the individual (Bruton, Place et al. 

2008). Therefore, based on the measures in the present study, it is likely that the observed neuromuscular 

fatigue following 20 and 30 minutes of cycling at 30%∆ is a result of peripheral rather than central 

fatigue. Based on the literature, while speculative, it suggests that fatigue it is from either impaired Ca 

handling or reduced cross-bridge kinetics. (Metzger and Moss 1990, Place, Yamada et al. 2010). 

The 𝐕̇𝐎𝟐𝐬𝐜 and Fatigue 

Significant correlations were found between the V̇O2sc % and PT, P10, P100, and P10/P100. This 

finding is supportive of the theory regarding the presence of fatigue required to elicit the V̇O2sc. In 

contrast, for these parameters, the Box and Tidwell's test showed that the relationship between the 

development of the V̇O2sc and the alterations of the neuromuscular properties of knee extensor muscles 

were non-linear and therefore unrelated over time. In addition, Theil's line (see figure 33 ) showed two 

distinct phases; the first phase where only the slow component grew (the points of this phase are away 

from Theil's line); while during the second phase, the slow component continued to grow but fatigue 

also grew (the points of this phase then line up with Theil's line). (see figure 33). In other words, the 

development of the V̇O2sc, in fact, occurred mainly between 2-10 minutes during which neuromuscular 

properties were relatively stable (only a reduction in the P10/100 ratio was observed after 10 minutes of 

cycling). In contrast, PT, P10 and P100 were significantly reduced only after 20-30 minutes of exercise 
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compared to baseline values. These results suggest that the development of fatigue due to alterations of 

neuromuscular properties is not an essential requirement to elicit the V̇O2sc at least during the first 10 

minutes of exercises.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 33 The relationship between peak twitch 

amplitude (Figure 33A), 10 Hz paired (P10) 

stimulation (Figure 33B), 100 Hz paired (P100) 

stimulation (Figure 33C), and P10/P100 

(Figure 33D) and the change in of V̇O2sc 

relative to the primary phase.  2 minutes;  6 

minutes;  10 minutes;  20 minutes; and  30 

minutes represent average values. Theil's line is 

characterised by the dashed line. Error bars are 

SE. Error bars in the figures are presented as SE 

for more clarity. 
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 This finding is in line with those from Thistlethwaite and colleagues (Thistlethwaite, Thompson 

et al. 2008). They showed that, during heavy cycling exercise, when preceded either by heavy exercise 

or by heavy knee extensions (requiring twofold greater muscle activation relative to heavy exercise), τp, 

gain of the primary response, and the amplitude of the V̇O2sc were similar between protocols. The 

authors concluded that muscle fatigue is not a determining factor for the development of the V̇O2sc. 

Hopker and colleagues attested similar results. Participants completed either a non-metabolically 

stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest (control) for 33 minutes. 

The results of their study showed that locomotor muscle fatigue, tested by the reduction in power in the 

maximal voluntary cycling power test, was not associated with the development of the of V̇O2sc 

(Hopker, Caporaso et al. 2016). Interestingly, the magnitude of the V̇O2sc was not significantly different 

between the two conditions despite significant differences in locomotor muscle fatigue. Recently, Dos 

Nascimento Salvador and colleagues published a study looking at the cause–effect relationship between 

the V̇O2sc and fatigue. They switched from constant work rate to isokinetic pedaling to quantify 

reductions in peak torque at three and eight minutes, with and without priming exercise. Results showed 

that the V̇O2sc after priming was reduced but there were no significant differences between conditions 

regarding the magnitude of the reduction of maximal isokinetic force and power at three and eight 

minutes (do Nascimento Salvador, Souza et al. 2018). This observation refutes a cause-effect 

relationship between fatigue and the development of the V̇O2sc. 

However, the findings from this study are in contrast with the results by Keir and colleagues. 

Correlations were shown in both studies between some measures of fatigue and the V̇O2sc, however, a 

temporal association was only found in one study (Keir, Benson et al. 2016). In one perspective, this 

difference highlights the importance of exercise intensity. Indeed, in the present study, step transition 

exercise was in the heavy domain, while the study by Keir and colleagues was in the severe domain 

(Keir, Benson et al. 2016). In addition, the amplitude and type of fatigue was potentially different, as 

assessed by the difference in reduction of MVC after 18-20 minutes (9% for the present study vs 22% 

in the study by Keir and colleagues). If the V̇O2sc is related to fatigue parameters, it should be present 



 

- 81 - 

 

in both exercise intensity domains. However, this was not the case, which suggests that the V̇O2sc may 

not be related to fatigue parameters. 

The results in the present study are in agreement with results from a previous study regarding changes 

to velocity-specific peak power during cycling. Cannon et al. (2011) (Cannon, White et al. 2011) 

observed a reduction in velocity-specific peak power, which correlated with the V̇O2sc. However, as 

was observed in the present study, the reduction they observed was not temporally related to the 

development of the V̇O2sc. The reduction in velocity-specific peak power occurred prior to the V̇O2sc 

in their study, while excitation-contraction coupling was altered after the development of V̇O2sc in the 

present study. Nevertheless, both reported no changes during the development of the V̇O2sc which 

suggests that those alterations are likely not essential for the development of the V̇O2sc. If alterations to 

neuromuscular properties are not involved during the development of the V̇O2sc, at least during exercise 

in the heavy domain, it may be possible that the V̇̇O2 cost of force production may increase within a 

given fiber population. A progressive inhibition of ATP supply by anaerobic glycolysis, an increase in 

ATP usage per power output, and/or a reduction of ATP production per mole of oxygen (P/O2 ratio) are 

probably implicated in the V̇O2sc (Korzeniewski and Zoladz 2015). However, the documentation of a 

cause-effect relationship during exercise between muscle fatigue and reduced efficiency remains 

unknown. 

Experimental consideration 

As with the study by Keir and colleagues (2016), at the end of exercise, the time to transfer the subject 

from the ergometer to the Biodex before the start of neuromuscular testing was less than one minute. 

One could argue that fatigue was already modified, and consequently the interpretation of the data in 

relation to fatigue during exercise is limited. Simply, fatigue is likely to have been underestimated in 

the present study and the measurement of fatigue during exercise would have been more appropriate. 

However, neuromuscular measurements were taken after a similar amount of time after each exercise, 

for each participant, and consequently, the change of the robustness of the relationship between fatigue 

and the V̇O2sc is likely to have been marginal, which should not change the general conclusions of the 
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present study. Furthermore, the cause (fatigue) has to precede the effect (V̇O2sc); however, the data 

from the present study indicates that this was not the case. A further limitation is the fact that fatigue 

was measured during static contractions whereas cycling is a dynamic movement. 

 Conclusion 

Fatigue in the present study was observed during exercise completed at 30%∆ and which was at least 

20 minutes in duration. Indirectly, these results suggest that the observed fatigue appears to be a result 

of impaired Ca2+ handling and/or reduced capability of cross-bridges to produce force. While significant 

correlations between the V̇O2sc relative to the primary phase and neuromuscular parameters were found, 

a temporal relationship between the development of the V̇O2sc and fatigue does not appear to exist. 

Therefore, it would seem that the alteration of neuromuscular properties in muscle is not required for 

the development of the V̇O2sc.  

 

Data availability The datasets generated and analysed during the current study are available from the 

corresponding author on reasonable request. 
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ABSTRACT 

To better understand fatigue at different exercise intensities and investigate the concordance between 

fatigue appearance and the development of the oxygen uptake slow component (V̇O2SC), eleven 

recreational active men completed an incremental step test and three knee extension exercises at 

different intensities. Neuromuscular function was assessed through 100 Hz doublets before, during and 

after exercise in isometric mode. In Dynamic mode, before and after exercise, the force–velocity and 

power-velocity relationship was built by increasing the weight to be lifted by 6 kg until it was not 

possible to lift it anymore.  

Results showed no significant differences in voluntary activation between the three exercise intensities. 

On the contrary, there were significant differences through maximal voluntary contraction (MVC), and 

potentiated doublet (PDb100) pre to post exercise and between heavy and severe intensities. 

Additionally significant differences pre to post exercise were found for dynamic variables, estimated 

force (∆F0) and power (∆Pmax) in both domains. During the time course of exercise a significant decline 

in contractile function in severe domain through doublet peak twitch force (Db100) and maximal rate 

of force development (MRFD) variables were found in isometric exercise. On the contrary, there was 

no sign of fatigue in heavy domain during the time course of the exercise in Db100 or MRFD and no 

correlation was found with the development of the V̇O2sc, suggesting no relationship between them. 

Contrarily, in the severe domain, the alteration of neuromuscular function (i.e. decreases in Db100, and 

MRFD) was significantly correlated (r = -0.72 and -0.05, respectively) with the development of V̇O2sc, 

in addition, changes in the heavy and severe domains were statistically different for all variables 

representing contractile properties. Therefore, the present results suggest that the V̇O2SC in the heavy and 

severe domains does not share the same origin. 
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Abbreviations: 

GET  Gas exchange threshold 

V̇O2  Oxygen uptake 

V̇O2SC        V̇O2 Slow component 

P/O ratio Reduction of ATP production per mole of oxygen 

V̇O2peak  Peak oxygen consumption 

UCP3   Mitochondrial uncoupling protein3  

MOD  Moderate domain 

HVY  Heavy domain 

SEV  Severe domain 

IMVC   Isometric maximal voluntary contraction  

V̇E  Minute ventilation 

PT  Peak twitch force  

V̇O2(t)  Oxygen consumption at a given time t 

 V̇O2rest  V̇O2 at rest 

 Ap  Amplitude of the primary phase   

 TDp  Time delay of the primary phase  

τp   Time constant of the primary phase  

τs   Time constant of the slow component  

As  Amplitude of the slow component  

TDs  Time delay of the slow component     

As’  Real value of the amplitude of the slow component   

MRFD  Maximal rate of force development 

MRFR  Maximal rate of force relaxation 

VA  Voluntary activation  

PTMVC   Amplitude of peak torque   

PNS  Peripheral nerve stimulation 

 

F0  Estimated maximal force  

V0   Estimated velocity of unloaded shortening  

SFV  Slope of force-velocity relationship  

Pmax  Peak power 

Vopt & Fopt Force and velocity at peak power 

 



 

- 88 - 

 

 Introduction 

Below gas exchange threshold (GET), oxygen uptake (V̇O2) rises mono-exponentially reaching a steady-

state after a few minutes (Xu and Rhodes 1999, Jones and Poole 2005). The end-exercise V̇O2 increases 

linearly in function of exercise intensity. However, at intensities above the GET, the V̇O2 response 

becomes more complex, with a second rise in V̇O2 slowly developed and superimposed onto the initial 

V̇O2 response (Whipp and Wasserman 1972). This slowly developing rise in V̇O2, termed the slow 

component of V̇O2 (V̇O2SC), results in a greater end-exercise V̇O2 than that predicted by the V̇O2-intensity 

relationship suggesting a reduction in muscle efficiency (Poole, Gaesser et al. 1992).  

Several mechanisms inside the muscle have been explored to find the putative cause of this 

phenomenon: 

a) a reduction of ATP production per mole of oxygen (P/O ratio), b) a diminution of the energy yield 

per unit of hydrolyzed ATP c) an alteration of contractile properties of muscle filament to produce force, 

and/or d) a deterioration of the motor pattern of the motion.  

The reduction of ATP production per mole of oxygen claims that supra GET exercise is associated with 

reductions in mitochondrial coupling, i.e. ratio ATP resynthesized per molecule of O2 (P/O). The long 

uncoupling protein3 is exclusively and abundantly expressed in the skeletal muscle and would dissipate 

energy in the form of heat instead of being converted in ATP. It has been shown that the V̇O2SC amplitude 

during cycling was significantly related to mitochondrial uncoupling protein3 (UCP3) RNA expression 

in vastus lateralis (Russell, Wadley et al. 2002).  

A diminution of the energy yield per unit of hydrolyzed ATP is sustained by research from de Meis and 

colleagues (Meis 2000) who showed that during the hydrolysis of ATP, the amount of heat dissipated 

may vary between 7 and 32 Kcal/mol depending on whether or not a transmembrane Ca2+ gradient is 

formed across the sarcoplasmic reticulum membrane. It has also been estimated that half of the V̇O2SC 

may be explained by a change of 10% of Gibbs free energy of ATP hydrolysis between the start and the 

end of the exercise (Borrani, Malatesta et al. 2009). 

Alteration of contractile proprieties of muscle filaments may arise from metabolic processes occurring 

within the fibers already recruited. High [ADP] (Abbott and Mannherz 1970), accumulation of Pi 
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(Potma, Van Graas et al. 1995), high [H+] (Cooke, Franks et al. 1988), and accumulations of NH4 

(Stephenson and Stephenson 1996) have a significant effect on muscle contractile properties. Because 

the V̇O2SC and the accumulation of these muscles metabolites occur during high intensity exercise, the 

alterations of contractile properties have been considered a putative mediator of its emergence (Rossiter 

2011, Poole and Jones 2012, Cannon, Bimson et al. 2014, Grassi, Rossiter et al. 2015, Keir, Copithorne 

et al. 2016).  

Deterioration of the motor pattern is the mechanism that received the least attention. One the one hand 

it has been shown that under the influence of fatigue and despite a constant running speed, runners 

increased the external mechanical work between the beginning and the end of the V̇O2SC period (Candau, 

Belli et al. 1998). On the other hand, it was argued that the V̇O2SC during running might be due to the 

cost of generating force or to alterations in the storage and recoil of elastic energy (Borrani, Candau et 

al. 2003). 

Others have shown that fatigue is not required to elicit the V̇O2SC. For example, during heavy exercise, 

when preceded either by heavy exercise or by heavy knee extensions, τp, gain of the primary response, 

and the amplitude of the V̇O2SC were similar between protocols (Thistlethwaite, Thompson et al. 2008). 

Hopker and colleagues (Hopker, Caporaso et al. 2016) attested similar results with a pre-fatigue protocol 

vs a rest protocol. In 2018, a study looking at the cause–effect relationship between the V̇O2SC and 

fatigue found no significant differences between pre fatigue and control conditions (do Nascimento 

Salvador, Souza et al. 2018). Finally, it has also been very recently shown the absence of a temporal 

relationship between the development of the V̇O2SC and the alteration of neuromuscular properties due 

to the fatigue during a heavy exercise, concluding that fatigue is not an essential requirement to elicit its 

appearance (O’connell, Weir et al. 2017, Colosio, Caen et al. 2020, Gajanand, Alonso et al. 2020). These 

apparent discrepancies regarding the involvement or not of fatigue may be related to its measurement 

according to the stimulation methods (Jones, Bigland-Ritchie et al. 1979), to the protocol used (isometric 

vs. dynamic (Krüger, Aboodarda et al. 2019)), and to the time of data acquisition (during exercise, or 

with or without delay after exercise (Froyd, Millet et al. 2013)).  
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The present study was therefore designed to better understand the changes in fatigue during and after 

different exercise intensities. In this descriptive study, two questions were addressed. Firstly, what are 

the time course and the nature of the changes in fatigue that develop during moderate (MOD), heavy 

(HVY), severe (SEV) boots of dynamic exercise? Secondly, what is the concordance between muscle 

fatigue and the development of the V̇O2SC during different exercise intensities? 

To address these questions a specific protocol was designed. It has been shown that the contribution of 

the V̇O2SC to the overall response, during HVY knee extensions, was significantly greater than for 

cycling exercise (Koga, Poole et al. 2005). Therefore, constant knee extension exercises, at different 

intensities, during 10 min, were performed in a home-made machine specially designed. In order to 

evaluate fatigue, neuromuscular function was evaluated in a static and dynamic way before, after and 

during the course of the exercise. This allowed to reveal the time course and nature of fatigue and the 

relationship with the development of the V̇O2SC. 

 Methods 

Ethical approval  

The University of Auckland Human Participants Ethics Committee approved this study, and all 

procedures compiled with the latest version of the declaration of Helsinki (2013). All subjects were 

informed about the requirements and potential risks involved in the study in both written and verbal 

forms, previous participation in the study. 

Participants 

Eleven healthy recreationally active males (mean ± SD, age 23 ± 2 years, body mass 78 ± 11 kg, and 

height 173 ± 7 cm) participated in this study. The subjects also completed a Q-AAP questionnaire to 

exclude all potential cardiorespiratory and injury risks. Participants were asked to avoid strenuous 

physical activity, alcohol, tobacco, and caffeine, in the 24h previous to the testing session. Furthermore, 

participants were asked to not consume any food for the 3h preceding a test and to arrive fully hydrated.  

Study Design 

This study involved each participant attending four separate laboratory sessions, with at least a 48h 

interval between tests, over a three-week period. All tests were completed in an air-conditioned (21ºC ± 



 

- 91 - 

 

1ºC) exercise physiology laboratory. The first session involved an incremental step test on leg extension 

home-made machine (Figure 34). This test was used to assign the specific intensity a work-rate for the 

subsequent three experimental sessions. Following the incremental step test, participants were 

familiarized with the procedure to be used to evaluate neuromuscular function. The three experimental 

sessions involved participants practicing leg extension at different intensities MOD, HVY, SEV 

domains respectively, and neuromuscular evaluation. During all test, pulmonary gas exchange was 

measured. 

Figure 34 Leg extension home-made 

dynamometer. The strain gauge was 

located between the mobile part of the 

machine and the participant. The 

rotational optical encoder was placed 

on the vertical column to measure 

linear movements. A horizontal target 

bar 66 cm above the ground indicated 

the range of motion. On the fixed part 

of the ergometer, a quick stop/release 

manually operated by a pedal allowed 

the stop/release of the mobile part to 

provide isometric neuromuscular 

function measurements during the 

exercise. Instantaneous visual 

feedback of the speed, force and 

power were provided as a real time 

signal displayed on a computer screen 

at the front. 

 

 

Testing procedures 

Incremental test 

Participants were subjected to an incremental test on the knee extensor ergometer to determine GET and 

peak oxygen consumption (V̇O2peak). Prior to the test, subjects were familiarized to the procedures and 

rhythm (metronome set at 70 beats per minute) of the test lightly loaded. Each beat was equivalent to a 

sequence of the verbal cue ‘up-down-rest’ (knee extension-knee flexion-rest) given by the experimenter 

throughout the duration of exercise. Following 3 minutes of seated rest, participants performed knee-

extensions at a baseline load of 6 kg. Each exercise bout required the participants to extend both knees 

from a 90 degree angle to a height extension set at 66 cm. Additionally, a visual cue representing the 
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force, velocity, and power was also provided in order to allow subjects to keep the knee-extension and 

flexion intensity as constant as possible. Thereafter, the load was increased by 3 kg per minute until 

volitional exhaustion or until the set height and velocity of the extensions could no longer be maintained.  

Step transition exercise 

The three experimental sessions consisted of a combination of two constant-load knee-extension 

exercise separated by one-hour rest. The different constant-load exercises were performed twice at MOD 

(80% GET), HVY (30% of the difference in power between, GET and V̇O2peak, 30%∆), and SEV (60%∆) 

intensities for a duration of 10 minutes. The order and the intensity were randomized, but each intensity 

was performed in first place at least one time. Neuromuscular function of the knee-extensor muscle of 

the left leg was evaluated before, during, and after each test. 

Neuromuscular function evaluation 

Neuromuscular function was assessed in both isometric (associated with electrical nerve stimulation) 

and dynamic (through the force-velocity relationship) modes. Participants were first instructed to 

perform three 5-s isometric maximal voluntary contraction (IMVC) with one leg (left leg), separated by 

60 s to establish their maximum torque. During every IMVC, a 100 Hz doublet was delivered on the 

IMVC plate (superimposed doublet), and 2 s after the IMVC (potentiated doublet) (Merton 1954). 

During the 10-minute exercises, a doublet stimulation was also delivered to the quadriceps every 30 s 

during the rest period of ‘up-down-rest’ sequence. At post exercise, IMVC was repeated only one time 

in order to minimize the effect of recovery. In dynamic condition, the force–velocity relationship was 

built in a pyramidal way: starting with a light weight (6 kg). Participants were instructed to perform the 

knee extension as fast as possible. After about 7 s, a new knee extension was requested, and the weight 

to be lifted was increased by 6 kg until it was not possible to lift it anymore. The pyramid protocol was 

repeated in an inverted way and performed after the three IMVC pre and the IMVC post. Figure 35 

summarizes the time course of neuromuscular function evaluation.  
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Measurements  

Pulmonary gas exchange 

Breath-by-breath pulmonary gas exchange (O2 and CO2) and ventilation (V̇E) were measured 

continuously throughout all exercise using a MetaMax 3B computerized system (Cortex, Cologne, 

Germany), and V̇O2 and V̇CO2 data were calculated and displayed breath-by-breath using metasoft 

software (Cortex, Cologne, Germany). Immediately prior each exercise, the gas analyzers and flowmeter 

turbine were calibrated with known concentrations of gases (O2=14.01% and CO2=6.03%) and a 3-litre 

Rudolph syringe (Hans Rudolph, Kansas City, MO), respectively. 

Dynamometry 

The seat and the lever arm positions of the knee-extension ergometer were adjusted horizontally and 

vertically, to align lateral condyle of the subject’s femur with the rotational axis of the knee-extensor 

homemade machine (Figure 34). All these adjustments were made to establish both angles, hip and knee 

joints, at 90 degrees at rest and record them for further experimental testing. Straps were placed across 

Figure 35 Schematic illustration of the time course of neuromuscular function evaluation. The protocol depicted above 

involved a 5SIMVC with 60 s recovery between, represented with grey rectangles. Black thick arrows represent superimposed 

100Hz doublets; thin arrows represent potentiated 100Hz doublets delivered 2s after each 5SIMVC and small pyramid arrows 

represent force-velocity test performed after the correspondent potentiated doublet. Rectangles with horizontal bars represent 

the 10 min step transition exercise. 
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the chest, hips and thighs to stabilize the subject through exercise. A broad non-elastic strap over the 

left ankle served to maintain the leg against the strain gauge located between the mobile part of the 

machine and the participant. The rotational optical encoder was placed on the vertical column to measure 

linear movements. A horizontal target bar 66 cm above the ground indicated the range of motion. On 

the fixed part of the ergometer, a quick stop/release manually operated by a pedal allowed the 

stop/release of the mobile part to provide isometric neuromuscular function measurements during the 

exercise. Instantaneous visual feedback of the speed, force and power were provided as a real time signal 

displayed on a computer screen at the front. 

Electrical nerve stimulation  

Electrical stimulation was delivered using a high-voltage stimulator a constant current (DS7A, 

Digitimer, UK). In order to localize the femoral nerve, the anode electrode (18 x 7 cm American Imex, 

CA) was located over the gluteal fold while the cathode ball (0.5cm diameter) was manually pressed 

and maneuvered along the femoral triangle whilst intermittently applying a low electrical stimulation 

(20mA). The location of the femoral nerve was determined with the largest twitch and the greatest peak-

to-peak amplitude of the M-wave of the knee-extensor muscle. Once the stimulation point was found, a 

cathode electrode (American Imex, CA) was placed over the alcohol wiped skin directly above it. To 

determine the optimal stimulation intensity, single electrical stimulations (400V, 1ms duration, 

rectangular pulse) with progressively increasing current intensity (from a baseline of 20mA) were 

applied upon the femoral nerve until a plateau in twitch force and M-wave amplitude were attained. The 

stimulation intensity was then further increased by 25% to ensure all muscle fibers of the knee extensors 

were recruited. Paired stimulation (doublet with 10ms interval between stimuli) of the established 

supramaximal intensity was used to examine the isometric neuromuscular function of the knee-extensor 

muscles before, during, and after exercise. During all electrical stimulations, pressure was applied upon 

the cathode electrode using a wooden device with a rubber end. 
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Data Analysis 

Oxygen Consumption Analysis 

The breath-by-breath V̇O2 data from each test was initially examined in order to exclude errant breaths 

that may have arisen from swallowing, sighing, or coughing. Values lying more than three SDs from 

residue were removed. The breath-by-breath data was then subsequently linearly interpolated to produce 

second-by-second values and identical repetitions for each individual were time aligned to the start of 

exercise and ensemble averaged. The first 20s of the data after the onset of exercise (cardiodynamic 

phase) was not considered (Weissman, Jones et al. 1982, Paterson and Whipp 1991). The following 

equations of a single, and bi-exponential model, were used to characterize the V̇O2 responses to 

moderate, heavy, and severe intensity exercise: 

 V̇O2(t) = V̇O2rest + Ap(1 − e−(t−TDp) σp⁄ )   (moderate)     Eq 13  

V̇O2(t) = V̇O2rest + Ap(1 − e−(t−TDp) σp⁄ ) + As(1 − e−(t−TDs) σs⁄ )  (heavy and severe) Eq 14  

 

V̇O2(t)represents the oxygen consumption at a given time t; V̇O2rest the V̇O2 at rest, Ap, TDp, and τp 

represent the amplitude, time delay, and time constant, respectively describing the primary phase; and 

As, TDs, and τs represent the amplitude of, the time delay before the onset of, and τ describing the time 

constant of the V̇O2slow component, respectively. A nonlinear least squares algorithm was used to 

minimize the error between model and data. Since the asymptotic values (As) of the exponential terms 

describing the V̇O2SC may represent a higher value than the actually reached, the amplitude of V̇O2SC 

were defined as As’ and calculated as followed:  

 𝐴𝑠
′ = 𝐴𝑠(1 − 𝑒−(𝑡𝑒𝑛𝑑−𝑇𝐷𝑠) 𝜎𝑠⁄ )         Eq 15 

were tend is the time at the end of exercise. The amplitude of the slow component was also described 

relative to the amplitude to the primary phase (As’/Ap). 

Isometric Neuromuscular Function Analysis 

From the traces associated to the potentiated doublets the following mechanical variables were 

measured: peak twitch force (Db100), maximal rate of force development (MRFD), as well as the 
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maximal rate of force relaxation (MRFR). For the IMVC, the maximal amplitude of peak torque 

achieved (MVC) and the amplitude of the superimposed twitch torque were recorded. If there was not a 

noticeable difference (~5-10%), MVC performed prior to exercise were taken and averaged, otherwise 

a third measure was performed, and the two best were selected. 

Voluntary activation (VA) was calculated by expressing the superimposed twitch evoked during the 

IMVC as a fraction of the amplitude of the potentiated doublet evoked after the IMVC (PDb100). Since 

the twitch stimulation was not always perfectly timed with MVC, a correction factor was included in 

the equation used to calculate VA as portrayed below (Strojnik and Komi 1998). 

VA = [1-((PTBaseline/MVC) × (superimposed twitch/ PDb100))] × 100    equ. 4 

Where PTBaseline is the torque just before the superimposed doublet. 

 

Dynamic Neuromuscular Function Analysis 

As suggested for a knee extension exercise, the force-velocity relationship was adjusted by a linear 

model (Iglesias-Soler, Fernández-del-Olmo et al. 2017). Estimated force when contraction velocity is 

null (F0), estimated velocity of unloaded shortening (V0), and slope of force-velocity (SFV) relationship 

were defined. Power-velocity relationship was adjusted by a quadratic equation. Pmax is the maximal 

value of Power-velocity relationship. The optimal velocity (Vopt) was deduced by setting the derivative 

of the quadratic function to zero. Finally, the optimal force (Fopt) was defined as the ratio between Pmax 

and Vopt. For both models, to minimize the sum of the squared errors between the fitted functions (linear 

and quadratic) and the calculated values, an iterative process was used.  

As a mean to evaluate fatigue in isometric and dynamic neuromuscular function, the variables (MVC, 

PDb100, VA, F0, V0, SFV, Pmax, Vopt, Fopt) were expressed as a function of their change from their pre 

values. Db100, MRFD, MRFR during the time course of exercise were expressed in percent of values 

obtained during the potentiated doublet. 
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 Statistical Analysis 

To determine if the change between pre and post was significant, one simple T-test was used for all 

variables. After inspecting residual plots, and no obvious deviations from homoscedasticity or 

normality were present in the data set, Linear mixed effects analyses were performed to compare the 

V̇O2 kinetics, and the neuromuscular parameters between intensities. The fixed effect was the 

intensities (MOD, HVY, SEV), were participant was the random effect. To obtain contrasts, Holm 

procedures were used. Since the contractile properties of the muscle evolved linearly during the time 

course of exercise, their behavior was estimated using the slope of the relationship. The relationships 

between the change in V̇O2sc in percent of AP (As’/Ap) and the change in parameters of contractile 

properties of muscle (Db100, MRFD and MRFR) during the time course of exercise were tested 

with the Pearson correlation coefficient. The participants' Pearson correlation coefficients were first 

transformed into z-values, then a mixed linear model was used to compare the mean z-value of 

modalities, and finally the mean z-value was converted back to an r-value (Fisher 1921). Values are 

expressed as mean ± SD, and the significance level was set at p<0.05. 

 Results 

Pulmonary oxygen response. 

The participants’ average V̇O2peak was 1.30 ± 0.21 L/min. Figure 36 shows the V̇O2 kinetics time course 

during the three exercise modalities. No significant differences were observed between MOD, HVY, 

SEV intensities for V̇O2rest (0.42 ± 0.10 vs. 0.40 ± 0.11 vs. 0.40 ± 0.09 L.min-1), TDp (9.1 ± 5.9 vs. 10.4 

± 6.2 vs. 7.8 ± 8.7 s) and τp (38.5 ± 13.5 vs. 38.9 ± 11.0 vs 41.6 ± 20.5 s) parameters. Ap was significantly 

higher in HVY (0.59 ± 0.11 L.min-1, p < 0.001) and SEV (0.61 ± 0.11 L.min-1, p < 0.001) compared to 

MOD (0.45 ± 0.11 L.min-1). Likewise, As’ (0.23 ± 0.10 vs 0.14 ± 0.08 L.min-1, p= 0.004), As’/Ap 

(39±16% vs 23±14%, p=0.007) and TDs (217 ± 71 vs 132 ± 62 s, p= 0.009) were higher in SEV 

compared to HVY.  
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  Figure 36 Illustration of mean VO2 Kinetics during the 10min exercise from different intensities.  

  Black, blue and red colors represent moderate, heavy and severe intensities respectively.  

 

Isometric and Dynamic Neuromuscular Function 

The changes in isometric and dynamic neuromuscular variables between pre and post exercise 

modalities are presented in Table 4. The decrease on MVC between pre and post was significant in the 

three modalities (p<0.016) and was higher in HVY compared to MOD (p<0.001), and in SEV compared 

to MOD (p<0.001) and HVY (p=0.02). The decreases in PDb100 were significantly bigger in SEV 

and HVY compared with MOD (p<0.001; p=0.003 respectively), and in SEV compared with HVY 

(p=0.049), in addition the decrease between pre and post was significant for HVY and SEV (p<0.01). 

No difference was observed for VA between intensities (p=0.41) while the decrease between pre and 

post was significant for MOD (p=0.006) and HVY (p=0.038) modalities. Among the dynamic 

properties, ∆F0,, ∆Pmax, and ∆Fopt followed the same trend, namely a significant differences between pre 

and post during HVY (P<0.043) and SEV (P=0.001) modalities. In addition, for those three parameters, 

the decrease was higher in HVY compared to MOD (p<0.039), and in SEV compared to MOD (p=0.001) 

and HVY (p<0.016). Concerning V0, only a significative decrease in SEV between pre and post was 

observed (p=0.04). SFV were more pronounced for SEV compared to MOD (p=0.018) with no 

significant differences between pre vs post. Neither differences were found for Vopt parameters (p 

>0.51).  
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Table 4 Change () between pre and post exercise modalities  for isometric and dynamic neuromuscular variables . MVC, 

maximal voluntary contraction; VA, voluntary activation; V0, estimated velocity of unloaded shortening; F0, estimated force 

when contraction velocity is null; SFV Slope of force–velocity relationship; Pmax, maximal power; Fopt,  force at the 

maximum power; Vopt, velocity at the maximum power. $ Significantly different between pre-post; * Significantly different 

from moderate (p <= 0.05); # Significantly different from heavy. (p <= 0.05) 

 

 

Time course of neuromuscular variables 

The development of the relative V̇O2sc (As’/Ap) in function of the change in neuromuscular parameters 

during the time course of exercise is depicted in Figure 37: in the frontal plane is showed the evolution 

of the relative V̇O2sc as a function of time, in the transverse plane the time course of neuromuscular 

variables change representing fatigue and, in the sagittal plane, the evolution of relative V̇O2sc as a 

function of these variables. The slope of each neuromuscular variable during the time course of the 

exercise (sagittal plane) are showed in Table 5A. At MOD intensity, the slope of Db100 (p = 0.028), 

MRFD (p<0.001), and MRFR (p <0.001), were significantly positives. During HVY intensity, only 

MRFR parameter showed a positive significant slope (p= 0.022). On the contrary, during SEV 

intensity, the slope of MRFD (p = 0.036) and Db100 (p = 0.003) were significantly negative. 

Interestingly, the slopes were significantly different between MOD and SEV, as well as between HVY 

and SEV for Db100 (p<0.02), and MRFD (p<0.003).  

 Moderate Heavy Severe 

    

∆MVC (%) -8.0±9.2 $ -22.7±7.3 $* -30.4±12.6 $*# 

    

∆PDb100 (%) -2.4±5.2 -17.6±12.05 $*  -26.0±13.1 $*# 

    

∆VA (%) -6.7±6.3 $ -4.3±5.9 $ -4.5±8.7 

    

∆V0 (%) -2.2±5.1 -2.5±4.8 -5.1±7.3 $ 

    

∆F0 (%) -1.3±6.3 -5.7±9.4 $* -17.1±12.9 $*# 

    

∆SFV (%) -1.5±3.6 -3.7±12.9 -11.6±17.9 * 

    

∆Pmax (%) -1.5±5.8 -9.3±7.3 $* -21.9±10.1 $*# 

    

∆Fopt (%) 1.0±8.7 -6.6±9.2 $* -17.5±12.0 $*# 

    

∆Vopt (%) 0.3±7.5 -2.6±4.5 -4.8±7.9 
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Table 5 A) Slope changes in contractile properties during the time course of exercise (transversal plane in figure 37) ; B) 

Correlations and z-values between the As’/Ap and the change in contractile properties relationship (sagittal plane in 

figure 37). Db100, change in peak twitch force; MRFD, change in maximal rate of force development; MRFR, change in 

maximal rate of force relaxation. * Significantly different from moderate (p< 0.05). # Significantly different from heavy. 

(p<0.05). § Slope Significantly different from 0t. (p<0.05). $ Significant correlation. (p>0.05) 

 

 

 

V̇O2sc-Neuromuscular Function relationships.  

The relationship between relative V̇O2sc and the change in contractile properties are summarized in Table 

5B. As’/Ap was significantly correlated with MRFR (r=0.35, p=0.005) in HVY intensity, on the 

contrary, at SEV intensity, Db100 (r= -0.7, p=0.002) and MRFD (r=-0.61, p=0.032) were negatively 

correlated with  As’/Ap . It is also worth noting that the strength of the link was significantly different 

between HVY and SEV, for Db100 (p < 0.001), MRFD (p= 0.001), and MRFR (p = 0.008). 

 

A  Moderate        Heavy        Severe 

ΔDb100 (N/s·10-3) Slope 5.6±7.3 § -2.2±16.5 -26.1±22.2 §*# 

ΔMRFD (N/s2·10-3) Slope 11.4±7.4 § 4.6±14.7 -19.2±26.2 § *# 

ΔMRFR (N/s2·10-3) Slope -28.7±20.6 § 16.3±20.0 § -1.9±24.3 * 

B  Moderate Heavy Severe 

ΔDb100 
Z  0.02±0.63 -0.88±0.70 $# 

r  0.02 -0.7 

ΔMRFD Z  0.28±0.64 -0.71±0.95 $# 
 r  0.28 -0.61 

ΔMRFR Z  0.36±0.33 $ -0.01±0.50 # 
 r  0.35 -0.01 
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Figure 37 Development of the relative V̇O2sc in function of the 

change in neuromuscular parameters during the time course of 

exercise. Black, blue and red lines represent moderate, heavy and 

severe intensity respectively. In the frontal plane is represented the 

evolution of the relative V̇O2sc (As’/Ap) in function of time, in the 

transverse plane the time course of fatigue for the change of 

different neuromuscular variables representing the fatigue, and in 

the sagittal plane the evolution of relative V̇O2sc as a function of 

these same variables. Plot A, Db100 (PT) ; B maximal rate of force 

relaxation (MRFR) and C maximal rate of force development 

(MRFD). 



 

- 102 - 

 

 Discussion 

Correlation between relative V̇O2sc and contractile properties during the time course of the exercise 

showed that the slow component is not related to fatigue in the HVY domain, and only partially 

related in the SEV domain during constant load cycling exercise. 

Isometric and dynamic neuromuscular function 

In the present study, MVC force decreased significantly in all modalities between Pre and Post exercise 

and was significantly more reduced after exercise in HVY and SEV domain compared with MOD, and 

in SEV compared to HYV. However, while a decrease in MVC force shows the existence of fatigue, it 

does not provide information regarding its etiology (central vs peripheral). Central fatigue, commonly 

assessed by VA was not significantly different between the three exercise intensities, suggesting that 

there was no significant difference in decline in central drive. The fact that the change from pre- to post-

exercise in potentiated doublet followed the same trend as MVC suggested the peripheral origin of 

neuromuscular fatigue. This may seem to be in contradiction with the changes observed in Db100, 

MRFD, and MRFR during the time course of exercise. Indeed, whereas Db100 increased during MOD 

exercise it remained constant during HVY activity, and decreased significantly during SEV exercise. 

However, it is forgotten that the contractile response of the muscle is related to the history of its 

activation and that, its response is the balance between potentiation and fatigue (Kufel, Pineda et al. 

2002). Indeed, for the potentiated doublet after MVC, the potentiation is supposed to be maximal and 

only fatigue makes the response vary, while during a sub-maximal exercise, i.e. during MOD, HVY and 

SEV intensities, the potentiation increases with the intensity of the exercise as well as fatigue, so the 

response is a subtle combination of both (Rassier and Macintosh 2000). Thus, during MOD, even if 

fatigue exists the potentiation effect (due to the precedent contractions during the knee extension 

exercise) is more pronounced, giving as a result a positive slope. In HVY, even if there is fatigue, the 

two quantities compensate each other showing null slope. On the contrary, the fatigue in the severe 

domain is so evident that not even potentiation is able to compensate it, resulting in a negative slope. 

Interestingly, the decrease through the time course of Db100 (slope) was significantly different during 
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all conditions, being greater as the intensity increases. Together these results suggest different fatigue 

regulation into these three domains or intensities.  

Decrements in Db100 have been linked with accumulations of Pi (Westerblad, Allen et al. 2002), 

especially in presence of H+ and its effects inhibiting Ca2+ binding Troponin C (Fitts 1994). Similarly, 

the decrease of MRFD observed in the SEV domain is linked to the reduced [Ca2+] concentration and 

has been associated with high concentrations of Pi and H+ (Kent‐Braun, Fitts et al. 2011). MRFR 

increases considerably more in SEV domain, suggesting a slower dissociation of actin from myosin in 

fatigued muscle cells, which could be explained by an impairment on the cross-bridge detachment rate 

or a reduced rate of Ca2+ reuptake by the reticulum sarcoplasmic pumps (Westerblad and Allen 1993). 

Reduction in the rate of force relaxation has also been related with Pi accumulation(Allen, Lamb et al. 

2008) and acidosis(Westerblad, Lännergren et al. 1997).  

In dynamic exercise, power is the product of force and velocity. In the present study, V0 was significantly 

decreased only after SEV intensity, in contrast Vopt did not change after any of the modalities and neither 

changed during the course of the exercise. From these observations, it could be concluded that changes 

in Pmax could be explained mostly from the decreases in force. Indeed, the decreases on F0 in HVY and 

SEV modalities after the exercise, and the greater fall in SEV compared to HVY and MOD intensity are 

in line with results of Jones et al. (Jones, De Ruiter et al. 2006). They showed that the changes in V0 

appeared late in the development of fatigue and played a relatively small role in the loss of power, 

contrarily to the loss of force. They speculated that this could be due to a decrease in the rate constant 

for attachment (the first bond of myosin to actin and the subsequent high force state with the release of 

Pi) which is normally slowed in the presence of Pi (Cooke, Franks et al. 1988, Godt and Nosek 1989).  

Taken together, the loss of contractile function observed through Db100 and MRFD variables in 

isometric exercise, and the decrease of F0 and Pmax in dynamic exercise during SEV work, suggests the 

accumulation of metabolites. On the other hand, since metabolites do not supposed to accumulate, but 

rather to reach a steady state as exercise proceeds in the HVY domain, it is not surprising to observe that 

contractile properties during the time course of exercise were not deteriorated. Critical power (CP), 

would therefore, act as a continuous transition phase threshold (Pethick, Winter et al. 2020) separating 

domains with a different neuromuscular fatigue profile (Burnley, Vanhatalo et al. 2012, Burnley and 
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Jones 2018). Consequently, all the activity performed beyond will results in substantial changes in Pi, 

pH, and muscle metabolites that cannot be stabilized, with the consequent progressive development of 

peripheral fatigue (Jones, Wilkerson et al. 2008). 

 

V̇O2sc neuromuscular function relationships 

During the exercise in the HVY domain, there were no significant relationship between change in 

contractile properties (Db100 and MRFD) and the development of the V̇O2sc expressed as a 

percentage of the amplitude of primary phase. Although the correlation coefficient was significant 

between relative V̇O2sc and MRFR the fact that the coefficient of correlation was low (r= 0.35), the 

strength of the relationship between the two variables is considered as weak. These findings are in line 

with previous papers, where it was found no temporal relationship between the development of the 

V̇O2sc and fatigue parameters during HVY exercise (Cannon, White et al. 2011, Gajanand, Alonso et al. 

2020).  

On the contrary, during the exercise performed in the SEV domain, significant relationships between 

relative V̇O2sc and Db100 (r = -0.70, moderate link) as well as MRFD (r =-0.61, moderate link) were 

observed, showing a partial link with the V̇O2sc. Similarly, the correlations in the HVY and SEV 

domains were statistically different for all variables representing contractile properties. Taken as a 

whole, these results suggest that the development of the slow component have not the same origin in the 

two intensity domains, and that fatigue, even if exist, is not a sine qua non for the development of the 

V̇O2sc, at least in the heavy domain. 

As mentioned above, the two parameters (Db100 & MRFD) that were affected during the time course 

of exercise suggested that contraction function failure is expressed only in SEV domain. Accumulation 

of Pi is considered the largest contributor to fatigue(Allen, Lamb et al. 2008). Similarly, the rate-limiting 

step for a power stroke to occur and the transition to high-force states between actin and myosin is the 

detachment of Pi from the myosin head; an increased Pi concentration, could therefore, enable a decrease 

in force production or MRFD per cross bridge (Fitts 2008). The fact that, neither of these two parameters 
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were affected in the HVY domain could be explained by the absence of deleterious effects of metabolites 

accumulation at this intensity and the consequent absence of contraction function failure.  

The V̇O2sc is measured in the HVY and in the SEV exercise domains as the expression of a single 

phenomenon, nevertheless, in exercise physiology there is a clear distinction between exercises 

conducted above and below the CP (Wasserman, Kessel et al. 1967, Jones and Poole 2013). 

Traditionally, the V̇O2sc has been attributed to an increase cost of locomotion whatever the domain of 

intensity. However, recent studies have refuted this assumption. Indeed, Barret and colleagues (Bartlett, 

Fitzgerald et al. 2021) have showed with an incremental ramp test protocol at 6-10% of the participant’s 

MVIC force that, for workloads above the GET there was no change in ATP cost through the exercise. 

They suggested that the greater O2 cost of contractions above the GET was not caused by an increase in 

ATP cost but rather by an alteration in the mitochondrial function capacity. O’Connell and colleagues 

(O’connell, Weir et al. 2017) have shown that there were no change in O2 cost of locomotors muscles 

during a constant power-cycling ride in the HVY domain, other than the additional O2 uptake for the 

increased cost of ventilation. Very recently, Colosio and colleagues (Colosio, Caen et al. 2020) 

performed the same experiments in the three different domains, concluding that in the HVY domain the 

V̇O2sc was ascribable to a “metabolic shift” between aerobic and anaerobic metabolisms and an increase, 

even if small, cost of ventilation, rather than an increase cost of locomotion. Contrarily, in the SEV 

domain, the cost of the V̇O2sc minus the ventilatory cost could not completely be explained by a prolonged 

metabolic shift, a possible indication that, in this domain there is a true loss of efficiency as shown in 

the present study. 

 

Conclusion 

For the first time, fatigue was measured throughout the exercise, revealing that the slow component in 

the HVY and SEV domains is not the product of an identical mechanism. Indeed, results suggested 

that its development in the HVY domain is not necessarily related to fatigue, reason why no 

significant changes are observed in the isometric contractile properties (Db100 and MRFD) over 

exercise and no relationship is found with the relative V̇O2sc. 
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Contrarily, in the SEV domain, the significant decrements in the slope of the neuromuscular-time 

relationship (Db100 and MRFD) during the time course of exercise and the diminution in F0, reflected 

fatigue processes that, in addition, were partially correlated with the development of the relative V̇O2sc. 

The literature in the field suggests that degradation of PCr with the consequent accumulation of Pi and 

H+ over a threshold at intensities above CP are behind the origin of muscle fatigue (Korzeniewski and 

Rossiter 2020). Therefore, the former could be one of the explanations for the appearance of V̇O2sc in 

the severe domain.  
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Abstract 

To investigate the influence of different metabolic muscle fiber profiles on the emergence of 

the slow component of oxygen uptake (V̇O2SC),,twelve habitually active males completed four 

sessions of different combinations of work-to-work transition exercises up to severe 

intensity. Each transition was modeled to analyze the different kinetic parameters. Using a new 

approach, combining Henneman's principle and superposition principle, a reconstructed kinetics 

was built by temporally aligning the start of each new transition and summing them. The 

primary phase time constant significantly slowed and the gain at the end (GainEnd) significantly 

increased when transitions started from a higher intensity (p<0.001). Kinetic parameters from 

the reconstructed curve (V̇O2baseline, time delay of primary phase,  V̇O2End and GainEnd) 

were not significantly different from one transition to severe exercise. These results suggest that 

the appearance of the V̇O2SC is at least related to, if not the result of, the different metabolic 

properties of muscle fibers. 

Key words: oxygen consumption kinetics, slow component, muscle fatigue, muscle fibers metabolic 

properties. 
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 Introduction 

The fundamental response of muscle oxygen consumption (V̇O2) kinetics, during moderate transition, 

may closely reflect the kinetics of V̇O2in the contracting muscles(Grassi, Poole et al. 1996). At a constant 

work rate exceeding the gas exchange threshold (GET), this response is characterized by a delayed-

onset of the new metabolic requirements, defined as the ‘V̇O2 slow component’ (V̇O2sc), elevating V̇O2 

above the ‘steady-state’ value predicted for this work rate(Whipp and Wasserman 1972, Linnarsson 

1974, Barstow and Mole 1987). This excess V̇O2 is a reflection of a loss of muscle efficiency(Poole, 

Schaffartzik et al. 1991). To date, the putative mechanisms of V̇O2sc are poorly understood, but several 

hypotheses have been proposed. Among these is the potential influence of the different metabolic 

response profiles of different fiber type populations during the development of the V̇O2SC. Indeed, it has 

been shown that the mammalian skeletal muscle is composed of different cell populations, with different 

metabolic and mechanical characteristics, mitochondrial content, and contractile proteins (Pette and 

Staron 1997). Kushmerick and colleagues (Kushmerick, Meyer et al. 1992) compared the V̇O2 of the 

two different muscle fiber types, demonstrating that the mechanism of control of cellular respiration is 

quantitatively and qualitatively different in fast and slow muscle fibers. Also, Stienen and colleagues 

(Stienen, Kiers et al. 1996) showed in their study using single muscle human fibers during isometric 

contraction, that the ATP consumption depends on the myosin isoform composition. Specifically, the 

ATP consumption in fast IIb fibers was four fold larger than in slow type I. In addition, it’s been shown 

in animals that respiration of mitochondria (Willis and Jackman 1994), the mitochondrial volume 

density(Hoppeler, Hudlicka et al. 1987) and the mitochondrial rate of O2 consumption (Blanchaer 1964) 

are greater in type I compared with type II muscle fibers. These differences between the slow and fast 

switch motor units may have an impact on the kinetics of mitochondrial oxidative phosphorylation 

during exercise above the gas exchange threshold (GET) and thus, contribute to the appearance of the 

V̇O2SC. 

The size principle(Henneman E 1981) posits that skeletal muscle fibers are recruited in a 

hierarchical manner during exercise according to intensity. In order to manipulate motor unit recruitment 

and reveal the metabolic response profiles of different fiber type populations, “work-to-work” step 
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exercise has been used(Hughson and Morrissey 1982, Brittain, Rossiter et al. 2001, DiMenna, Wilkerson 

et al. 2008). For instance, transitions between low work rate intensities would be expected to solicit the 

recruitment of muscle fibers that are positioned lower in the recruitment hierarchy (i.e., slow type fibers), 

whereas a transitions between high work rate intensities would be expected to involve the recruitment 

of muscle fibers positioned higher in the recruitment hierarchy (i.e., fast type fibers)(Krustrup, 

Söderlund et al. 2004). Thus, it should be possible to distinguish the effect of the recruitment of new 

motor units residing higher in the recruitment hierarchy during the V̇O2 kinetics while completing 

transitions between different exercise intensities (moderate, heavy and severe). In addition, because each 

fiber that contributes to tension development is as a unique system unto itself, and because the 

pulmonary V̇O2 signal homogenizes any oxidative response diversity within the activated pool of motor 

unit, the principle of superposition might be applied.  

Therefore, in accordance with the Henneman and the superposition principle, and considering 

that the appearance of the V̇O2SC is due to the difference in mitochondrial oxidative phosphorylation 

kinetics between fibers types, the differences in V̇O2 kinetics between a single work transition and a 

work-to-work transitions of an equal final power, may be due to the temporally shift of MU activation 

residing higher in the recruitment hierarchy. In keeping with this, temporally aligning the beginning of 

each new transition (activation of new fibers positioned higher in the recruitment hierarchy (Henneman 

principle)) and summing them (superposition principle) to form new reconstructed kinetics should not 

give a different V̇O2 kinetics with that measured in a simple transition to equal final power.  

The purpose of this study was to add novel evidence to the debate of the origins of the V̇O2SC, 

specifically, if the different metabolic response profiles of different fiber type populations are one of the 

culprits in the development of the V̇O2SC. 

The hypotheses were: 

The time constant (τ) would be significantly smaller between low intensity work rate transitions 

compared with transitions between high work rate intensities. 

The reconstructed V̇O2 kinetics from multiple transitions would, in fact, have an identical kinetic 

to a simple transition at the same final intensity. 
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 Methods 

Twelve healthy habitually active males aged 18-50 years (mean ± SD: age 24.33 ± 0.72 year, height 

178.41 ± 7.76 cm, weight 76.31 ± 11.62 kg) were recruited to participate in this study. Participants were 

excluded if they, or their family, suffered from any heart or cardiovascular condition, bleeding disorder, 

or were taking prescribed medication. Participants were instructed to refrain from training and other 

vigorous physical activity, alcohol consumption, caffeine intake and tobacco for a minimum of 24h 

before experiments. Participants were advised to arrive at the laboratory in a rested, fully hydrated, and 

at least 3h postprandial state. The research protocol was accepted by local Human Participants Ethics 

Committee, and completed according with the seventh Declaration of Helsinki (2013). Prior to 

participation in the study, the protocol and possible risks involved were explained to all participants 

before written informed consent was collected. All participants were advised of their right to withdraw 

from the study at any time without prejudice.  

The experimentation required five visits to the laboratory. The tests included a first session of a ramp 

incremental test on cycle ergometer (Velotron racemate Inc Spearfish, USA) in order to assess GET and 

peak oxygen uptake (V̇O2peak). The ergometer seat and handlebars were adjusted for comfort, and the 

measurements were recorded to reproduce a consistent set up for the subsequent tests. On subsequent 

days, participants completed an additional four sessions with various combinations of work-to-work 

transitions across a wider range of square wave exercises. Heart rate (RS800, Polar, Finland) and 

pulmonary gas exchange were continuously measured using a computerized system (Metamax 3B, 

Cortex GmbH, Leipzig, Germany) during all sessions. Testing took place at a similar time of the day (± 

2 h), conducted in a temperature-controlled laboratory (maintained at 18 ± 1°C). 

During the ramp incremental test, participants rested for 3min on the cycle ergometer before cycling for 

6min with a load of 60 watts (W) at a comfortable self-selected pedal rate between 70–90 rpm, what 

was reproduced for subsequent tests. The power was then increased in a ramp fashion of 30w/min until 

volitional exhaustion or till one of the American College of Sports Medicine established criteria for 

maximal testing was reached(Medicine 2013). Verbal encouragement was given to the participants 

during the test. GET was determined by 1) the first disproportionate increase in carbon dioxide output 

(V̇CO2) from visual inspection of individual plots of V̇CO2 vs. V̇O2; 2) an increase in ventilatory 
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equivalents for oxygen and not in carbon dioxide; and 3) an increase in end-tidal O2 tension with no fall 

in end-tidal CO2 tension. V̇O2peak was determined as the highest value in a 30s range recorded before the 

participant volitional exhaustion 

On subsequent visits, participants performed a various combinations of work-to-work transitions 

between moderate (M, six minutes at the 80% of the GET), heavy (H, six minutes at 20% of the 

difference in power between GET and the V̇O2peak) and severe (S, six minutes at 60% of the difference 

in power between GET and the V̇O2peak) intensity exercises. After three minutes at rest and three minutes 

“unloaded” baseline cycling, participants started one of the following four protocols: 1) M followed by 

S (M→S); 2) H followed by S (H→S); 3) M followed by H and by S (MH→S); 4) S followed by 3min 

rest (S) followed by 3min “unloaded” baseline and by S (SPost). Note that the last protocol provided 

data for S and SPost.  

During the session, participants completed exercise twice separated by 1h brake in pseudo-randomized 

manner as each exercise was performed once at first place and once in second place. 

V̇O2, pulmonary gas exchange and ventilation were computed breath-by-breath. Prior to each test, the 

calorimeter and turbine were calibrated using ambient air and gases of known concentration 

(O2=14.01%, CO2=6.03%) and 3L calibration Rudolf syringe (cortex, Leipzig, Germany), respectively.  

The breath-by-breath V̇O2 data was initially examined to eliminate errant values caused by coughing, 

swallowing, etc., and values laying more than three 3 SDs from the local mean. Linear interpolation was 

used to provide second-by-second data, and, for each individual, identical repetitions were time aligned 

to the start of exercise and the ensemble averaged. Mono-exponential equation was computed to isolate 

the primary component of the V̇O2 kinetics using the iterative method proposed by Rossiter et 

al(Rossiter, Ward et al. 2002). 

 V̇O2(𝑡) =  V̇O2baseline + Ap (1-exp – (t- TDp)/τp)      Eq 1 

Where V̇O2(𝑡) is the time course of V̇O2, V̇O2baseline is the oxygen consumption at the beginning of 

exercise, Ap is the amplitude, TDp is the time delay, and τp is the time constant of the primary phase, 

respectively. The first 20s of the pulmonary V̇O2 signal were removed from analysis since it has been 

demonstrated that the cardiodynamic phase of the V̇O2 kinetics does not represent an increased muscle 



 

- 115 - 

 

O2 consumption(Whipp, Ward et al. 1982). Identification of the end of the primary phase was made by 

criteria consideration as recommended by Rossiter et al(Rossiter, Ward et al. 2001) and Murgartroyd et 

al(Murgatroyd, Ferguson et al. 2011). The magnitude of the slow component (AS) was defined as the 

difference between the V̇O2 projected primary phase, and the averaged amplitude from the last 30 s of 

the response (termed V̇O2end). The Gain Amplitude (GainAp) was defined as the increase in V̇O2 above 

baseline per unit increase in external work rate above baseline, V̇O2/𝚫WR. The Gain End (GainEnd) as 

the sum of the Ap and AS per unit increase in external work rate above baseline (Ap + As/𝚫WR). The 

mean response time (MRT) was calculated as the sum of the Tdp and τp. 

The superposition principle was applied to build the reconstructed curve. The start of each transition 

was time aligned and baseline was set at zero in order to sum the different kinetics curves as represented 

in Figure 38. The parameters of the reconstructed curve were therefore calculated using the iterative 

method proposed by Rossiter et al(Rossiter, Ward et al. 2002) (see above). Therefore, the reconstructed 

curve of M→S turn into MS; H→S turn into HS and MH→S turn into MHS. 

 

Data statistical analysis  

Analyses were performed using Jamovi ((Version 0.9.5.17) [Computer Software]), retrieved from 

https://www.jamovi.org). Linear mixed model was the statistical test used to compare the V̇O2 kinetics 

parameters between the different conditions. Condition was the fixed effects and participant as the 

random effect. After inspecting residual plots, no obvious deviations from homoscedasticity or 

normality were present.  

Linear mixed model was also used to temporally analyze data of the overall V̇O2 constructed kinetics, 

in order to compare the different conditions. The fit between the V̇O2 constructed kinetics was assessed 

by summing percent of time of V̇O2 constructed kinetics where differences were not significant. For all 

tests, the level of significance was set at 0.05 and dispersion about the mean expressed as SD.  
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  Results 

Relative V̇O2 was 55.77±5.21ml/kg/min. The parameters of the V̇O2 response for each different 

transition are reported in Table 6. V̇O2baseline was significantly different (p<0.001) between conditions 

except between S and Spost, and between H→S and MH→S condition. Concerning Ap, only the 

comparison between H→S or MH→S was not significantly different. All other comparisons had a p 

value below 0.001, other than between S and Spost (p=0.031). GainAp was significantly different 

between conditions (p<0.003), other than between Spost and both S and M→S. TDp was not 

significantly different between any of the conditions. As for V̇O2baseline, τp was significantly different 

(p<0.002) between conditions except between S and Spost, and between H→S and MH→S. Regarding 

MRT, H→S and MH→S were significantly slower (p<0.001) compared with S, Spost, and M→S, 

respectively. As was different between all conditions (p<0.004), apart from between H→S and MH→S. 

Concerning V̇O2End, H→S was significantly different to both M→S (p=0.007) and Spost (p=0.037). 
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Figure 38 Illustration of reconstructed method used to analyze the work-to-work transitions protocol 

kinetics. Letters M, H and S represent the model for Moderate, Heavy and Severe intensities, 

respectively; H' and S' represents model for Heavy and Severe kinetic curves when 𝑉̇𝑂2 baseline was set 

at zero; H” and S” represents Heavy and Severe kinetic curves when time was aligned to zero; 

M+H”+S” represent the reconstructed curve with the sum of the three different intensities. 
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GainEnd was not significantly different between S and Spost, and between H→S and MH→S 

conditions. All others comparison were significantly different (p value range: <0.001 to 0.047).  

The parameters of the results of the reconstructed method reported in Table 7 showed that V̇O2baseline, 

TDp, VO2End, and GainEnd were not significantly different between conditions. Ap was significantly 

different between S and both MS (p=0.011) and MHS (p=0.010). Furthermore, GainAp was significantly 

different between S and both MS (p=0.007) and MHS (p=0.007). Concerning τp, MHS was significantly 

slower compared with S (p=0.011), Spost (p=0.004), MS (p=0.041), and HS (p=0.038). Similarly, MRT 

from MHS was significantly slower compared with S (p<0.001), Spost (p<0.001), MS (p=0.002), and 

HS (p=0.016). Regarding As, S was slightly different (p=0.043) from MS. Reconstructed kinetics of the 

different conditions are depicted at the bottom of figure 39. Fit calculation indicated similarity between 

the reconstructed curve, indeed, the similitude average was 96.38% with a maximum of 100% (MS 

Table 6 Comparation of the parameters of the 𝑽̇𝑶𝟐 response kinetics in the different transitions. S, Severe Intensity; 

S Post, Severe Intensity after Prior Severe Intensity; M, Moderate Intensity; H, Heavy intensity. 𝑉̇𝑂2 baseline, Oxygen 

consumption at the beginning of exercise; Ap, Amplitude of the primary phase; GainAp, increase in 𝑉̇𝑂2 above 

baseline per unit increase in external work rate above baseline; TDp, Time Delay of the primary phase; ; τp, Time 

constant of the primary phase; MRT, the sum of the TDp and τp; As, Amplitude of the secondary phase; 𝑉̇𝑂2 end, 

averaged amplitude from the last 30 s of the response; GainEnd, sum of the Ap and As per unit increase in external 

work rate above baseline. Values are presented as the mean SD. *Significant differences with S; § Significant 

differences with SPost; £ Significant differences with M→S; $ Significant differences with H→S (P < 0.05). 
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vs.Spost). The largest differences were observed only during 11.94% of exercise duration (MHS vs. 

Spost), at the beginning of primary phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Discussion 

The main finding was that the reconstructed V̇O2 kinetics, using a novel approach of combining 

Henneman's principle with the principle of superposition, had a similar kinetic curve (96.4 ± 3.6% of 

similarity between conditions) to a simple transition at the same final severe intensity. 

As hypothesized, when transitions started from a higher intensity, τ and Gain model parameters 

increased while amplitude parameters decreased, although, V̇O2end at the final transition was similar. 

These results are in line with previous studies(Brittain, Rossiter et al. 2001, Wilkerson and Jones 2006), 

which were interpreted as a reflection of metabolic differences in the pool of muscle fibers recruited 

Table 7 Comparison of the parameters of the 𝑽̇𝑶𝟐 response kinetics of the reconstructed curve for the different 

transitions protocols.  

MS, Kinetics sum of M+S; HS, Kinetics sum of H and S; MHS, Kinetics sum of M+H+S. S, Severe Intensity; S Post, 

Severe Intensity after Prior Severe Intensity; M, Moderate Intensity; H, Heavy intensity. 𝑉̇𝑂2 baseline, Oxygen 

consumption at the beginning of exercise; Ap, Amplitude of the primary phase; GainAp, increase in 𝑉̇𝑂2 above baseline 

per unit increase in external work rate above baseline; TDp, Time Delay of the primary phase; ; τp, Time constant of 

the primary phase; MRT, the sum of the TDp and τp; As, Amplitude of the secondary phase; 𝑉̇𝑂2 end, averaged 

amplitude from the last 30 s of the response; GainEnd, sum of the Ap and As per unit increase in external work rate 

above baseline. Values are presented as the mean SD. *Significant differences with S; § Significant differences with 

SPost; £ Significant differences with MS; $ Significant differences with HS (P < 0.05) 
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under these specific circumstances. Indeed, the elevated baseline in the work-to-work protocols implies 

that type I MU are already recruited according to the well-established size principle of MU 

recruitment(Henneman 1957)consequently, only a percentage fibers residing higher in the recruitment 

hierarchy would be activated during the second part of the protocol(Brittain, Rossiter et al. 2001). Type 

II muscle fibers are characterized by reduced mitochondrial content , lower oxidative enzyme 

activity(Meyer, Brown et al. 1985) and greater ATP cost for force production(Han, Proctor et al. 2001), 

therefore, slower V̇O2 kinetics and lower efficiency(Crow and Kushmerick 1982). Consistent with the 

increased contribution of fibers with lower oxidative efficiency, the Gain amplitude of the primary phase 

was progressively increased when exercise was initiated from an elevated baseline(Brittain, Rossiter et 

al. 2001, Wilkerson and Jones 2006). 

The second hypothesis was also validate since there were only scarce differences between the 

reconstructed kinetics and the work-to-work transitions (Figure 39). The disparities were mainly in the 

first 40s of the exercise due to a significant slower τp in MHS compared with the other conditions. 

However, during the time course of V̇O2SC and at the end of exercise, only sporadic differences were 

observed.  

The fact that each severe exercise, preceded by a different modality producing a different fatigue, had 

similar reconstructed kinetics, suggests that: a) fatigue was not the main process involved in the V̇O2sc; 

b) the progressive fiber recruitment, due to fatigue, was consequently not required for the development 

of the V̇O2sc. During work-to-work exercise, new fibers are activated at the beginning of each transition, 

modeling the V̇O2 kinetics response. The result of temporally aligning the kinetics of V̇O2 at the 

beginning of each transition and summing them, seems to be similar to the result of a complete 

stimulation of the different fibers involved in a single transition of severe intensity exercise. This is 

consistent with the fact that the kinetics shape is mainly driven by the metabolic response profiles of 

different fibers populations. Several studies have demonstrate the link between the different profiles of 

fibers and the appearance of the V̇O2sc. The first authors to demonstrate that type I muscle fibers were 

significantly correlated with the V̇O2sc were Barstow and colleagues(Barstow, Jones et al. 1996). They 

exercised participants at 𝚫50% and took muscle biopsies of the vastus lateralis for determination of fiber 
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type. Participants with a higher percentage of type I muscle fibers had a higher primary phase and this 

was significantly correlated with the amplitude of the V̇O2sc (r=-0.83). Previous findings indicate 

significant correlations between the percentage of type II muscle fibers and markers of aerobic fitness 

and the relative magnitude of the V̇O2sc (r=0.60; P<0.01) and (r=−0.73; P<0.01), respectively)(Russell, 

Wadley et al. 2002). These findings are in line with other studies relating to the percentage of type I 

muscle fibers with an improved efficiency, or reduced V̇O2, for the same work rate in cycling(Coyle, 

Sidossis et al. 1992) or running(Bosco, Montanari et al. 1987). Pringle et al.(Pringle, Doust et al. 2003) 

took muscle biopsies from fourteen participants for histochemical determination and made them 

complete square-wave cycling tests at moderate, heavy and severe intensities. Percent of type I muscle 

fibers were correlated with the amplitude of the V̇O2sc for heavy (r=-0.74; P<0.01) and severe (r=-64; 

P<0.05) exercises and with τ of the primary component (r=-68; P<0.01) in heavy intensity. Indeed, after 

a protocol aiming for the depletion of glycogen from type II muscle fibers, there was a decrease in the 

amplitude of the V̇O2sc(Carter, Pringle et al. 2004). Deley and colleagues(Deley, Millet et al. 2006) 

showed that after pre-fatiguing type II muscle fibers, the amplitude of the V̇O2sc was significantly 

reduced, concluding that the recruitment of type II may be involved in the V̇O2sc phenomenon. Krustrup 

and colleagues(Krustrup, Secher et al. 2008) confirmed the idea that the energy turnover and ATP cost, 

was higher for type II fibers when a neuromuscular blockage of type I was performed. Certainly, muscle 

O2 uptake was 20% higher and MRT was longer in type II muscle fibers, supporting the idea that type 

II fibers had slower kinetics and greater ATP cost than type I during dynamic exercise. 

Finally, if the metabolic characteristics of the different fibers shape the V̇O2 kinetic curve and fatigue 

does not play a role in the development of V̇O2SC, neither will the progressive recruitment of these fibers. 

This result has been seen in isolated gastrocnemius dogs(Zoladz, Gladden et al. 2008) and in the vastus 

lateralis in humans(Vanhatalo, Poole et al. 2011) when all muscle fibers were activated or when a 

systematic increase in the cost of O2 per unit of external power was concomitant with no changes in 

iEMG, respectively. Taken together, these results suggest a lack of progressive muscle fiber recruitment 

during V̇O2SC. 
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 Figure 39. Pulmonary oxygen response (𝑽̇𝑶𝟐) of reconstructed curve. Upper panel illustrates time course 

comparison of the different reconstructed curves. Blue thick vertical squares represent the differences between 

protocols. On the right, Fit calculations represent the percentage of equality between protocols. Lower panel shows 

the time course of all reconstructed curves. Light blue color represents MHS; Red color represents HS; Grey color 

represents MS; Yellow color represents SPost; Dark blue color represents S. HS, reconstructed curve for Heavy and 

Severe intensities; MHS, reconstructed curve for Moderate, Heavy and Severe intensities; MS, reconstructed curve for 

Moderate and Severe intensities; S, reconstructed for Severe intensity; SPost, reconstructed curve for Severe intensity 

after prior Severe intensity. 
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 Conclusion 

These results confirm that τ is significantly smaller between low work rate transitions compared with 

transitions between high work rate intensities. In addition, the V̇O2 severe intensity kinetic curve is 

similar to the reconstructed kinetics curve resulting, from combining Henneman's and superposition 

principle’s. These finding are consistent with the appearance of the V̇O2sc and maybe linked to the 

intrinsic differences in metabolic properties of different fiber types.  
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  General discussion 

 Overall, these results suggest that discrepancies regarding the relationship between fatigue 

processes and the V̇O2sc may be because researchers were not intensity-domain-specific in their 

analyses. 

The slow component arises at intensities above the GET in the heavy and severe domains; nevertheless, 

the mechanistic causes of V̇O2sc development may be domain-dependent. Indeed, in exercise 

physiology, there is a clear distinction between exercises performed below and above the CP, although 

the V̇O2sc has been interpreted as an expression of a single phenomenon, when perhaps it is not (Jones, 

Wilkerson et al. 2008, Burnley, Vanhatalo et al. 2012, Burnley and Jones 2018, Colosio, Caen et al. 

2020). 

Recently, several authors have discussed the differences in fatigue development in the heavy and severe 

domains. 

- Heavy domain 

 Below the CP, at heavy intensity, when peripheral fatigue developed during exhaustive exercise 

(1-h duration), the torque, average rectified EMG, and potentiated doublet changed modestly as exercise 

progressed (Burnley, Vanhatalo et al. 2012). 

The origin of this fatigue was not mediated by muscle metabolites, as an SS in PCr and pH was attained 

after 3 min, and Pi was stabilized 1 min after exercise onset with no further significant changes in these 

variables (Jones, Wilkerson et al. 2008). 

The authors suggested that the mechanism after this fatigue in the heavy domain could be the result of 

muscle glycogen depletion (Bergström, Hermansen et al. 1967, Jones, Wilkerson et al. 2008). Indeed, 

with electron microscopy techniques, three different pools of glycogen have been identified: 

subsarcolemmal, intermyofibrillar and intramyofibrillar glycogen stores. Interestingly, intramyofibrillar 

glycogen stores served the triad junctions. In rats (Nielsen, Schrøder et al. 2009) and humans (Nielsen, 

Holmberg et al. 2011) during exercise, intramyofibrillar stores are the first to be depleted, and this 

depletion correlates with a decreased SR Ca2+ release rate. Therefore, when this particular store is 
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depleted, it will cause excitation-contraction coupling failure without the need for a significant impact 

on total myocyte ATP. 

However, the result of muscle glycogen depletion when exercise is extended (1 h) is not the origin of 

the V̇O2sc since the latter starts after approximately 2-3 min, suggesting that other mechanisms are at 

the origin of the slow component in heavy exercise. 

Fatigue has been one of the candidate mechanisms; nevertheless, several studies have found a lack of 

an association between fatigue in the heavy domain and the slow component and therefore its origin. 

For instance, Thistlethwaite and colleagues (Thistlethwaite, Thompson et al. 2008) showed that muscle 

fatigue was not a determining factor for the development of the V̇O2sc after cycling or KE-fatiguing 

exercises; τp, the gain in the primary response, and the amplitude of the V̇O2sc were similar in the 

subsequent bout of heavy exercise. 

Scheuerman and colleagues (Scheuermann, Hoelting et al. 2001) performed their experiments in the 

heavy domain and found a lack of association between the V̇O2SC and the changes in the iEMG or MPF. 

In addition, the results of the first and second studies of this manuscript (chapters 9&10) (Gajanand, 

Alonso et al. 2020) showed that the relationship between the development of the V̇O2sc and the alteration 

in the neuromuscular properties of knee extensor muscles was nonlinear; therefore, these parameters 

were unrelated over time. Similarly, Cannon and colleagues (Cannon, Bimson et al. 2014) observed a 

reduction in velocity-specific peak power that correlated with the V̇O2sc; however, this reduction was 

not temporally related to V̇O2SC development. 

Thus, despite the controversy in the literature, the results suggest that fatigue is not the main process 

involved in the development of the  V̇O2sc, and, if it is involved, the time course of fatigue and V̇O2SC  

development is unrelated over time in the heavy domain. 

However, the fundamental mechanism involved in  V̇O2sc appearance is still obscure. 

 Very recently, Colosio and colleagues (Colosio, Caen et al. 2020), in an attempt to answer this 

question, tested whether and to what extent a true loss of efficiency during cycling explains the 

emergence of the slow component of V̇O2 in different intensity domains. They answered these questions 

by calculating the energy cost of ventilation and the glycolytic contribution to exercise and directly 
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measuring the aerobic cost of locomotion over time. The results showed that in the heavy domain, the 

emergence of the slow component was attributable to a metabolic shift between aerobic and anaerobic 

metabolism and a significant increase in the V̇O2 cost of ventilation. There was no increase in the cost 

of locomotion. 

Taken together, regarding the heavy domain, recent publications do not provide evidence of an increase 

in O2 cost and explain its increase as a metabolic shift. Therefore, the slow component in this domain 

could be illustrated by the speculation put forward by Colosio et al. (Colosio, Caen et al. 2020); that is, 

the emergence of the slow component is attributable to a metabolic shift between aerobic and anaerobic 

metabolism and a significant increase in the V̇O2 cost of ventilation. An imaginary model reflecting 

these results is constructed in figure 40. 

 

 

 

 

  

Figure 40 Hypothetical model of the VO2sc in the heavy domain. The gray line represents the energy cost of the anaerobic alactic 

metabolism; the yellow line represents the energy cost of anaerobic lactate metabolism; the blue line represents the aerobic 

energy cost of ventilation; and the black line represents the aerobic muscular energy cost + the cost of ventilation. The blue and 

green zones represent an increase in the VO2 cost of ventilation and the metabolic shift from anaerobic to aerobic metabolism, 

respectively, explaining the appearance of the VO2Sc. 
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- Severe domain 

 When the CP is exceeded, the rate of fatigue development has been shown to increase suddenly 

rather than being proportional to the torque required (Burnley, Vanhatalo et al. 2012). Certainly, during 

KE exercises executed above the CP, pH and Pi changed precipitously during the first 3-6 min, and PCr 

dropped progressively until the subjects were no longer able to sustain the WR (Jones, Wilkerson et al. 

2008). These observations highlight the metabolic instability characteristic of exercises above the CP 

and the acute stress that the body experiences at these intensities, leading to the development of fatigue. 

Indeed, in an attempt to prevent the imminent drop in pH, the respiratory system dramatically increases 

its respiratory rate. This rise in the frequency of breathing could consequently cause an increase in the 

O2 cost of ventilation and respiratory muscle fatigue, both contributing to the development of the 

V̇O2sc (Cross, Sabapathy et al. 2010). 

In line with this latter study, in a very interesting paper, O’Connell and colleagues (O’connell, Weir et 

al. 2017) showed that the extra O2 cost of a CP cycling ride at Δ60% could be explained as the O2 cost 

required to maintain the progressive increase in ventilation (figure 41). 

They also argued that if the  V̇O2sc is associated 

with fatigue processes and a decrease in 

exercise efficiency, then it would be 

represented by an increase in lactate 

accumulation, since the V̇O2sc develops above 

the GET. They therefore measured lactate 

accumulation at 3, 6 and 9 min of constant 

severe cycling exercise, observing that the 

lactate concentration diminished and the 

aerobic contribution increased. The overall cost 

of locomotion did not increase over time. The authors concluded that approximately 20% of the V̇O2sc 

could be explained by the increased cost of ventilation, while the remaining 80% could be due to an 

Figure 41 Mean (± SD) oxygen consumption (black) and oxygen 

consumption allocated to the work of breathing (gray) during 9 

min of cycling exercise at Δ60%. The VO2SC is indicated by the 

area between the horizontal black line and the data indicated by the 

black symbols. From O’Connell 2017. 
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increase in O2 uptake to compensate for the decrease in anaerobic contribution refuting the loss of 

efficiency. Additionally, they argued that as humans have a finite anaerobic system capacity, decreasing 

the energy rate provided by this system could prolong the duration of exercise. 

These results are in accord with those of Colosio (Colosio, Caen et al. 2020), who reported no increase 

in the cost of locomotion in the heavy domain. 

In contrast, in the severe domain 

(which they delimited by methods 

other than lactate measures), they 

(Colosio, Caen et al. 2020) found that 

the V̇O2sc deprived of its ventilatory 

cost could not be explained totally by 

a prolonged metabolic shift, a possible 

indication that could exhibit a true loss 

of efficiency. They speculated that as intensity increases, the recruitment of higher-order, type II 

glycolytic fibers could explain the higher contribution of glycolysis and the true loss of efficiency 

manifested over time in the severe domain (figure 42). 

Indeed, several studies have demonstrated the link between the V̇O2sc rise and the different fiber 

profiles. Authors such as Barstow (Barstow, Jones et al. 1996), Pringle (Pringle, Doust et al. 2003) and 

Deley (Deley, Millet et al. 2006) have shown that type I muscle fibers are significantly positively 

correlated with the amplitude of the primary phase, while type II muscle fibers are related to the V̇O2sc. 

The proposed hypothesis is that the potential influence of the different metabolic response profiles of 

different fiber-type populations may have an impact on the kinetics of mitochondrial oxidative 

phosphorylation during exercise above the GET and thus contribute to the appearance of the V̇O2sc. The 

results of chapter 11 of this manuscript (Conde Alonso, Gajanand et al. 2020) strongly agree with this 

hypothesis, as the reconstructed V̇O2sc kinetic curve (the result of summing each transition) had similar 

kinetics to a simple transition at the same final severe intensity. Further, when transitions started from 

higher intensity, τp and gain model parameters increased while amplitude parameters decreased, 

Figure 42 Overview of the energetic contribution to exercise at severe 

intensity. The white columns represent directly measured VO2. The gray 

columns indicate the O2 cost required by ventilation. The black dashed line 

displays the energy provided by glycolytic sources over 3-min segments and 

the black solid line represents the adjusted cost of exercise accounting for 

both aerobic and glycolytic energy sources. Modified from Colosio, Caen et 

al.2020. 
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although the end V̇O2 at the final transition was similar, reflecting the metabolic differences in the pool 

of muscle fibers recruited (Brittain, Rossiter et al. 2001, Wilkerson and Jones 2006). 

Additionally, Saunders and colleagues (Saunders, Evans et al. 2003) published a paper showing the link 

between the diminution of V̇O2sc magnitude and a smaller reliance on fast-twitch MUs during severe 

constant-load cycling. After training subjects for 4 weeks with severe cycling exercise, the authors 

observed a reduction in end-exercise V̇O2 of 58 ± 172 ml/min in parallel with a significant reduction in 

the T2 of the vastus lateralis. Saunders and colleagues explained this finding by considering the 

possibility that reductions in end-exercise V̇O2 and therefore the V̇O2sc after training were due to a 

reduced reliance on fast-twitch muscle fiber MUs. Training would have improved the muscle 

mitochondrial content and oxidative capacity of type I muscle fibers; therefore, they would be more 

efficient, resulting in fewer additional fast-twitch muscle fibers recruited over time to replace fatigued 

fibers. 

Regarding the relation between fatigue and the V̇O2sc, it is worth showing that most of the studies that 

related V̇O2sc development to fatigue parameters were performed in the severe domain. For instance, 

Borrani et al. (Borrani, Candau et al. 2001) found in subjects exercising at 95% of V̇O2max a 

concomitance between the beginning of the V̇O2SC and the increase in the MPF. Vanhatalo et al. 

(Vanhatalo, Poole et al. 2011) performed experiments during all-out exercises, considering a dramatic 

increase in the O2 cost of power production to be a slow-component-like phenomenon. Zoladz et al. 

(Zoladz, Gladden et al. 2008) fully activated dog gastrocnemius muscle fibers. During this maximal 

activation, the metabolic environment could be interpreted as being similar to that during severe-

intensity exercise. They observed a constant V̇O2 value in the presence of a diminution of force output 

reflected in the increase in the V̇O2/force, calling that a “slow-component-like response”. Keir et al. 

(Keir, Benson et al. 2016) also performed their experiments in the severe domain. The finding of a strong 

association between peripheral fatigue and V̇O2sc  amplitude suggests that the fatigued muscle fiber 

pool remained capable of generating the required power to continue exercise but with a greater O2 cost. 

Although the aforementioned evidence suggests a link between fatigue and the V̇O2sc, others have found 

different outcomes in the severe domain. For instance, Hopker and colleagues prefatigued the locomotor 
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muscles used during subsequent severe-intensity exercise. Participants completed either a 

nonmetabolically stressful 100 intermittent drop-jump protocol (prefatigue condition) or rested (control) 

for 33 min, and the results showed that locomotor muscle fatigue (reduction in power in the maximal 

voluntary cycling power test) was not associated with the development of the V̇O2sc (Hopker, Caporaso 

et al. 2016). Furthermore, the magnitude of the V̇O2sc was not significantly different between the two 

conditions despite significant differences in locomotor muscle fatigue. Looking for the cause-effect 

relationship between the V̇O2sc and fatigue, Dos Nascimento and colleagues (do Nascimento Salvador, 

Souza et al. 2018) switched from constant-WR to isokinetic pedaling to quantify reductions in Pt at 3 

and 8 min, with and without priming exercise. The results showed that the V̇O2sc after priming was 

reduced, but there were no significant differences between conditions regarding the magnitude of the 

reduction in the maximal isokinetic force and power at 3 and 8 min. The authors concluded that this 

observation refutes a cause-effect relationship between fatigue and V̇O2sc development (do Nascimento 

Salvador, Souza et al. 2018). The same group (do Nascimento Salvador, Schäfer et al. 2019) found 

similar results one year later. In their study, subjects performed transitions to severe intensity after 

unloaded or moderate-intensity cycling exercises. Maximal kinetic efforts were performed before and 

after both conditions. The results showed that the elevated WR led to significantly lower values of V̇O2sc 

amplitude and slower values of τ in both sexes, reflecting type II muscle fiber characteristics. However, 

these alterations in VO2 kinetics did not reflect alterations in muscle force production, challenging a 

cause-effect relationship between the V̇O2sc and muscle fatigue. 

 Hence, although there is still controversy regarding the severe domain, the data redundantly 

show that when the CP threshold is surpassed, the rate of fatigue development increases suddenly. This 

fatigue appears to be the product of metabolic instability, especially the accumulation of Pi and its role 

in SR precipitation with Ca2+ and the limitation of Ca2+ release after excitation (Allen, Lamb et al. 2008). 

Further, the data suggest that this fatigue evolves in accordance with the  V̇O2sc and represents an 

increased cost of locomotion. 

In line with these assumptions are the results of the second study of this thesis (chapter 10). During 

exercise performed in the severe domain, a significant relationship with PT (r = -0.70) and MRFD (r 
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=-0.61) was observed, showing a partial link with the V̇O2sc. The alteration of these parameters 

suggested that alterations of excitation-contraction failure were expressed in the severe domain. 

Taking into account that Pi is considered the largest contributor to fatigue and that the rate-limiting step 

for a power stroke to occur is the detachment of Pi from the myosin head, an increase in the Pi 

concentration could therefore enable a decrease in force production or MRFD per cross-bridge (Fitts 

2008). 

Certainly, the effect of the accumulation of metabolites, in particular the accumulation of Pi, has been 

very recently illustrated by the theoretical study of Korzeniewsky and Rossiter (Korzeniewski and 

Rossiter 2020). The “Pi double threshold hypothesis” established Pi accumulation as the major factor 

involved in fatigue processes. But also for the beginning, the magnitude and the evolution of the V̇O2sc 

and the extra ATP usage. The logic of the theory is that the additional ATP usage (P/ATP ratio) that 

underlies the V̇O2sc and muscle inefficiency is initiated when Pi exceeds a certain critical Pi 

concentration termed Picritic. Exercise intolerance results when another, larger, peak value is reached, 

termed Pipeak. Finally, mutual stimulation gives rise to the additional ATP that elevates Picritic to Pipeak 

through self-driving feedback as a function of Pi-Picritic. In other words, when a certain critical value of 

Pi is exceeded, a series of metabolic events occur that determine fatigue and with it the end of muscular 

activity. The sooner this threshold is reached, the earlier the exercise will be compromised and the larger 

the V̇O2sc magnitude will be (Korzeniewski and Rossiter 2020). The same authors also demonstrated 

through computer simulations that changes such as increases in the V̇O2max and CP, reductions in Tao, 

V̇O2sc and Pi peak accumulations induced by long-term endurance training can be caused by an increase 

in oxidative phosphorylation and a decrease in the Pi peak (Korzeniewski and Rossiter). This theory 

justifies the development of fatigue and partly the slow component in the severe domain. 

According to the results of Rossiter (Korzeniewski and Rossiter 2020), the accumulation of Pi would be 

one of the final perpetrators of VO2sc development. Type II muscle fibers have a higher concentration 

of Cp at rest (Meyer, Brown et al. 1985, Kushmerick, Moerland et al. 1992), and as previously 

mentioned, other authors (Barstow, Jones et al. 1996, Pringle, Doust et al. 2003, Deley, Millet et al. 
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2006, Conde Alonso, Gajanand et al. 2020) have proposed a link between the V̇O2sc rise and glycolytic 

type II muscle fibers. 

 

 Thus, taking all results together, studies show that the V̇O2sc in the severe domain is the 

superimposition of three quite distinct phenomena. That is, the emergence of the slow component is 

attributable to a significant increase in the V̇O2 of ventilation to keep homeostasis as stable as possible; 

a metabolic shift between anaerobic and aerobic metabolism; and finally the accumulation of 

Pi above a critical threshold (Pi critic) increases the rise in ATP demand, possibly under the influence 

of type II muscle fiber metabolism. This scenario is illustrated in figure 43. 

 

 

 

 

 

Figure 43 Hypothetical model of VO2sc in the severe domain. The gray line represents the energy cost of the anaerobic 

alactic metabolism; the yellow line represents the energy cost of the anaerobic lactic metabolism; the blue line represents 

the aerobic energy cost of ventilation and the black line represents the aerobic muscular energy cost + the cost of 

ventilation. The blue, green and red zones represent an increase in the VO2 cost of ventilation, the metabolic shift from 

anaerobic to aerobic metabolism and the Pi accumulation, respectively, explaining the appearance of the VO2Sc. 
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 Conclusion  

 Based on the findings of the original studies included in this manuscript and in view of what has 

been published in the literature, fatigue in the heavy domain does not appear to be the cause of the 

appearance and development of the V̇O2sc. Further, even if there is fatigue in the heavy domain, a 

temporal relationship between V̇O2sc development and fatigue does not appear to exist. In the severe 

domain, there is still controversy, even though significant correlations have been found between fatigue 

processes, such as diminution in Pt and MRFD, and the progress of the V̇O2sc. The largest contributors 

seem to be alterations in the metabolic environment at these severe intensities, especially the 

accumulation of Pi and its role in entering the SR to bind with Ca2+-insoluble compounds. 

The latest publications point to a new hypothesis, suggesting that the slow component in the heavy and 

severe domains is not the product of an identical mechanism and therefore must be evaluated by taking 

into account the intensities at which it emerges. For instance, in the heavy domain, an increase in the 

V̇O2sc has been ascribed to a metabolic shift rather than an increase in the O2 cost of locomotion. In 

contrast, in the severe domain, an increase in the V̇O2sc could not be explained totally by a prolonged 

metabolic shift, a possible indication that a true loss of efficiency may exist. Indeed, several publications 

point towards the role that type II muscle fibers (characterized by greater O2 cost, PCr content and lower 

efficiency) play in the kinetics of V̇O2 and therefore in the increase in the V̇O2sc. This thesis provides 

additional evidence supporting the idea that the kinetics of V̇O2 are mainly driven by the metabolic 

response profiles of different fiber-type populations. 
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  Perspectives  

 

 

 Future research should expand the current knowledge obtained by combining high-density 

surface integrated electromyography (HDEMG) and work-to-work protocols to unveil the MU 

recruitment pattern in the different domains of exercise.   

As mentioned in this manuscript, one of the most prevalent hypotheses explaining the appearance of the 

V̇O2sc is the progressive increase in MU recruitment during supra-LT exercise (Whipp 1994).  

This increase in recruitment would be necessary to compensate for the deficiency of type I slow-twitch 

fibers during heavy-intensity exercise and maintain force production to counter this muscle fatigue 

(Gaesser and poole 1996). Some authors have found fatigue as a candidate for the appearance of the 

V̇O2SC when the decrease in efficiency, reflected as an increase in V̇O2 during constant power output, 

was correlated with an increase in the iEMG (Moritani, Sherman et al. 1992). However, others have 

found different results  with V̇O2SC evident with no corresponding changes in the iEMG or MPF 

(Scheuermann, Hoelting et al. 2001). 

Therefore, a manner to decipher if there is or not increase in MU recruitment above the GET reflecting 

fatigue, would be indeed, the combination of the work-to-work protocols and a technique to unveil MU 

recruitment.  

The final iEMG signal is no other thing than the summation and time-course of the pool of MUAP, and 

gives global and rarely individual information about MUs activity (Cavalcanti Garcia and Vieira 2011). 

The advantage of the HDEMG is that it gives information of each MU. 

 Figure 44, illustrate how when a motoneurons discharge an axonal action potential, it arrives to 

the muscle and the MU (composed with that motoneurons axon and the fibers that innervates) generates 

an action potential in the muscle. The action potential of each MU discharge is unique! (Del Vecchio, 

Holobar et al. 2020). 
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 HDEMG, based on blind source separation methods, allows decomposing from the pull of the 

iEMG each one of the action potentials, going back to the spinal cord and identifying unique discharge 

patterns of each MU. With this technology is possible to identify the discharge times of individual MU 

during voluntary contractions and therefore compare the MU properties through subjects and time (Del 

Vecchio, Holobar et al. 2020). More important in this case, it is possible to direct estimate the neural 

drive to the muscle. i.e, neural drive would increase in presence of fatigue. 

For instance, as illustrated in figure 45, and following with the hypothesis of this thesis, with HDEMG 

it would be possible to unveil the MU implicated in each domain. 
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Figure 44 The one-to-one correspondence between axonal action potentials and MUAP. Adapted from del Vecchio 2020. 

Figure 45 Hypothetical description of the experimentation. 
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That it to say, scenario 45A shows a constant work rate exercise in the heavy intensity domain with no 

fatigue, the recruited MU are the correspondent to the intensity following Henneman principle. Scenario 

45B shows a constant work rate exercise in the heavy intensity domain with fatigue, and therefore with 

an increase in the number of the MU recruited during the course of the exercise. Finally, scenario 45C 

shows a constant work rate exercise in the severe domain in presence of fatigue, i.e, with an increase of 

MU recruited.  

 From this experimentation could rise another question: Which is the real cause of the appearance 

of this fatigue in severe domain?  

Using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) it could be possible to measure de 

decrease and resynthesis of PCr during the exercise performed in the severe domain (Bartlett, Fitzgerald 

et al. 2021). In this way, it could be possible to confirm the fatigue hypothesis based on Korzeniewski 

publication stablished on the “Pi double threshold hypothesis” (Korzeniewski and Rossiter 2020). 

 Furthermore, other hypothesis trying to explain the phenomenon of the V̇O2sc is the increase in 

ATP cost of force production for a given increase in muscle workload (Rossiter, Ward et al. 2002, 

Whipp, Rossiter et al. 2002). Therefore with these techniques it could be also possible to decipher if 

there is a real increase in ATP cost of force production during heavy and severe intensities concomitant 

with the appearance or development of the V̇O2sc (Valkovič, Chmelík et al. 2017). 
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SHORT COMMUNICATION

The metabolic profiles of different fiber type 
populations under the emergence of the slow 
component of oxygen uptake
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Abstract 

To investigate the influence of different metabolic muscle fiber profiles on the emergence of the slow component of 
oxygen uptake ( ̇VO2 SC), 12 habitually active males completed four sessions of different combinations of work-to-work 
transition exercises up to severe intensity. Each transition was modeled to analyze the different kinetic parameters. 
Using a new approach, combining Henneman’s principle and superposition principle, a reconstructed kinetics was 
built by temporally aligning the start of each new transition and summing them. The primary phase time constant 
significantly slowed and the gain at the end (GainEnd) significantly increased when transitions started from a higher 
intensity (p < 0.001). Kinetic parameters from the reconstructed curve ( ̇VO2baseline , time delay of primary phase, V̇O2

End and GainEnd) were not significantly different from one transition to severe exercise. These results suggest that the 
appearance of the V̇O2SC is at least related to, if not the result of, the different metabolic properties of muscle fibers.

Keywords:  Oxygen consumption kinetics, Slow component, Muscle fatigue, Muscle fibers’ metabolic properties
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Background
The fundamental response of muscle oxygen consump-
tion ( V̇O2 ) kinetics, during moderate transition, may 
closely reflect the kinetics of V̇O2 in the contracting 
muscles [1]. At a constant work rate exceeding the gas 
exchange threshold (GET), this response is character-
ized by a delayed-onset of the new metabolic require-
ments, defined as the ‘ V̇O2 slow component’ ( V̇O2SC), 
elevating V̇O2 above the ‘steady-state’ value predicted 
for this work rate [2–4]. This excess V̇O2 is a reflec-
tion of a loss of muscle efficiency [5]. To date, the 
putative mechanisms of V̇O2SC are poorly understood, 
but several hypotheses have been proposed. Among 
these is the potential influence of the different meta-
bolic response profiles of different fiber type popula-
tions during the development of the V̇O2SC. Indeed, it 

has been shown that the mammalian skeletal muscle is 
composed of different cell populations, with different 
metabolic and mechanical characteristics, mitochon-
drial content, and contractile proteins [6]. Kushm-
erick et  al. [7] compared the V̇O2 of the two different 
muscle fiber types, demonstrating that the mechanism 
of control of cellular respiration is quantitatively and 
qualitatively different in fast and slow muscle fibers. 
Also, Stienen et al. [8] showed in their study using sin-
gle muscle human fibers during isometric contraction, 
that the ATP consumption depends on the myosin iso-
form composition. In specific, the ATP consumption in 
fast IIb fibers was fourfold larger than in slow type I. In 
addition, it has been shown in animals that respiration 
of mitochondria [9], the mitochondrial volume den-
sity [10] and the mitochondrial rate of O2 consumption 
[11] are greater in type I compared with type II mus-
cle fibers. These differences between the slow and fast 
switch motor units may have an impact on the kinet-
ics of mitochondrial oxidative phosphorylation during 
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exercise above the gas exchange threshold (GET) and 
thus, contribute to the appearance of the V̇O2SC.

The size principle [12] posits that skeletal muscle fib-
ers are recruited in a hierarchical manner during exer-
cise according to intensity. To manipulate motor unit 
recruitment and reveal the metabolic response profiles 
of different fiber type populations, “work-to-work” 
step exercise has been used [13–15]. For instance, 
transitions between low work rate intensities would 
be expected to solicit the recruitment of muscle fibers 
that are positioned lower in the recruitment hierarchy 
(i.e., slow type fibers), whereas a transition between 
high work rate intensities would be expected to involve 
the recruitment of muscle fibers positioned higher in 
the recruitment hierarchy (i.e., fast type fibers) [16]. 
Thus, it should be possible to distinguish the effect of 
the recruitment of new motor units residing higher 
in the recruitment hierarchy during the V̇O2 kinetics 
while completing transitions between different exercise 
intensities (moderate, heavy and severe). In addition, 
because each fiber that contributes to tension devel-
opment is as a unique system unto itself, and because 
the pulmonary V̇O2 signal homogenizes any oxidative 
response diversity within the activated pool of motor 
unit, the principle of superposition might be applied.

Therefore, in accordance with the Henneman and 
the superposition principle, and considering that the 
appearance of the V̇O2SC is due to the difference in 
mitochondrial oxidative phosphorylation kinetics 
between fibers’ types, the differences in V̇O2 kinetics 
between a single work transition and a work-to-work 
transition of an equal final power may be due to the 
temporally shift of MU activation residing higher in the 
recruitment hierarchy. In keeping with this, temporally 
aligning the beginning of each new transition [activa-
tion of new fibers positioned higher in the recruitment 
hierarchy (Henneman principle)] and summing them 
(superposition principle) to form new reconstructed 
kinetics should not give a different V̇O2 kinetics with 
that measured in a simple transition to equal final 
power.

The purpose of this study was to add novel evidence 
to the debate of the origins of the V̇O2SC, specifically, if 
the different metabolic response profiles of different fiber 
type populations are one of the culprits in the develop-
ment of the V̇O2SC.

The hypotheses were
The time constant (τ) would be significantly smaller 

between low-intensity work rate transitions compared 
with transitions between high work rate intensities.

The reconstructed V̇O2 kinetics from multiple transi-
tions would, in fact, have an identical kinetic to a simple 
transition at the same final intensity.

Methods
Twelve healthy habitually active males aged 
18–50  years (mean ± SD: age 24.33 ± 0.72  years, height 
178.41 ± 7.76 cm, weight 76.31 ± 11.62 kg) were recruited 
to participate in this study. Participants were excluded 
if they, or their family, suffered from any heart or car-
diovascular condition, bleeding disorder, or were taking 
prescribed medication. Participants were instructed to 
refrain from training and other vigorous physical activi-
ties, alcohol consumption, caffeine intake and tobacco 
for a minimum of 24 h before experiments. Participants 
were advised to arrive at the laboratory in a rested, fully 
hydrated, and at least 3 h postprandial state. The research 
protocol was accepted by local Human Participants Eth-
ics Committee, and completed according with the sev-
enth Declaration of Helsinki (2013). Prior to participation 
in the study, the protocol and possible risks involved were 
explained to all participants before written informed 
consent was collected. All participants were advised of 
their right to withdraw from the study at any time with-
out prejudice.

The experimentation required five visits to the labora-
tory. The tests included a first session of a ramp incre-
mental test on cycle ergometer (Velotron racemate 
Inc Spearfish, USA) to assess GET and peak oxygen 
uptake ( V̇O2peak ). The ergometer seat and handlebars 
were adjusted for comfort, and the measurements were 
recorded to reproduce a consistent setup for the subse-
quent tests. On subsequent days, participants completed 
an additional four sessions with various combinations of 
work-to-work transitions across a wider range of square-
wave exercises. Heart rate (RS800, Polar, Finland) and 
pulmonary gas exchange were continuously measured 
using a computerized system (Metamax 3B, Cortex 
GmbH, Leipzig, Germany) during all sessions. Testing 
took place at a similar time of the day (± 2 h), conducted 
in a temperature-controlled laboratory (maintained at 
18 ± 1 °C).

During the ramp incremental test, participants rested for 
3 min on the cycle ergometer before cycling for 6 min with 
a load of 60 W at a comfortable self-selected pedal rate 
between 70 and 90 rpm, what was reproduced for subse-
quent tests. The power was then increased in a ramp fash-
ion of 30 W/min until volitional exhaustion or till one of 
the American College of Sports Medicine established cri-
teria for maximal testing was reached [17]. Verbal encour-
agement was given to the participants during the test. GET 
was determined by (1) the first disproportionate increase 
in carbon dioxide output ( V̇O2 ) from visual inspection of 
individual plots of V̇CO2 vs. V̇O2; (2) an increase in ventila-
tory equivalents for oxygen and not in carbon dioxide; and 
(3) an increase in end-tidal O2 tension with no fall in end-
tidal CO2 tension. V̇O2peak was determined as the highest 
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value in a 30-s range recorded before the participant voli-
tional exhaustion.

On subsequent visits, participants performed a various 
combinations of work-to-work transitions between moder-
ate (M, 6 min at the 80% of the GET), heavy (H, 6 min at 
20% of the difference in power between GET and the V̇O2

peak) and severe (S, 6 min at 60% of the difference in power 
between GET and the V̇O2peak) intensity exercises. After 
3 min at rest and 3-min “unloaded” baseline cycling, par-
ticipants started one of the following four protocols: (1) M 
followed by S (M → S); (2) H followed by S (H → S); (3) M 
followed by H and by S (MH → S); (4) S followed by 3-min 
rest (S) followed by 3-min “unloaded” baseline and by S 
(SPost). Note that the last protocol provided data for S and 
SPost.

During the session, participants completed exercise twice 
separated by 1-h break in pseudo-randomized manner as 
each exercise was performed once at first place and once in 
second place.
V̇O2 , pulmonary gas exchange and ventilation were com-

puted breath-by-breath. Prior to each test, the calorimeter 
and turbine were calibrated using ambient air and gases 
of known concentration (O2 = 14.01%, CO2 = 6.03%) and 
3-L calibration Rudolf syringe (cortex, Leipzig, Germany), 
respectively.

The breath-by-breath V̇O2 data were initially examined 
to eliminate errant values caused by coughing, swallowing, 
etc., and values laying more than three 3 SDs from the local 
mean. Linear interpolation was used to provide second-by-
second data, and for each individual, identical repetitions 
were time aligned to the start of exercise and the ensem-
ble averaged. Mono-exponential equation was computed 
to isolate the primary component of the V̇O2 kinetics using 
the iterative method proposed by Rossiter et al. [18]

where V̇O2(t) is the time course of V̇O2 , V̇O2baseline is 
the oxygen consumption at the beginning of exercise, Ap 
is the amplitude, TDp is the time delay, and τp is the time 
constant of the primary phase, respectively. The first 20 s 
of the pulmonary V̇O2 signal was removed from analysis 
since it has been demonstrated that the cardiodynamic 
phase of the V̇O2 kinetics does not represent an increased 
muscle O2 consumption [19]. Identification of the end of 
the primary phase was made by criteria consideration as 
recommended by Rossiter et  al. [20] and Murgartroyd 
et  al. [21]. The magnitude of the slow component (As) 
was defined as the difference between the V̇O2 projected 
primary phase and the averaged amplitude from the last 
30 s of the response (termed V̇O2end). The Gain Ampli-
tude (GainAp) was defined as the increase in V̇O2 above 
baseline per unit increase in external work rate above 

V̇O2(t) = V̇O2baseline + Ap

(

1− exp− (t−TDp)/τp
)

baseline, V̇O2/∆WR. The Gain End (GainEnd) as the sum 
of the Ap and As per unit increase in external work rate 
above baseline (Ap + As/∆WR). The mean response time 
(MRT) was calculated as the sum of the Tdp and τp.

The superposition principle was applied to build the 
reconstructed curve. The start of each transition was 
time aligned and baseline was set at zero to sum the 
different kinetics curves as represented in Fig.  1. The 
parameters of the reconstructed curve were therefore 
calculated using the iterative method proposed by Ros-
siter et al. [18] (see above). Therefore, the reconstructed 
curve of M → S turns into MS; H → S turns into HS and 
MH → S turns into MHS.

Data statistical analysis
Analyses were performed using Jamovi (Version 0.9.5.17 
[Computer Software], retrieved from https​://www.jamov​
i.org). Linear mixed model was the statistical test used to 
compare the V̇O2 kinetics parameters between the differ-
ent conditions. Condition was the fixed effects and par-
ticipant as the random effect. After inspecting residual 
plots, no obvious deviations from homoscedasticity or 
normality were present.

Linear mixed model was also used to temporally ana-
lyze data of the overall V̇O2 constructed kinetics, to com-
pare the different conditions. The fit between the V̇O2 
constructed kinetics was assessed by summing percent of 
time of V̇O2 constructed kinetics where differences were 
not significant. For all tests, the level of significance was 
set at 0.05 and dispersion about the mean expressed as 
SD.
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Results
Relative V̇O2 was 55.77 ± 5.21  mL kg−1 min−1. The 
parameters of the V̇O2 response for each different transi-
tion are reported in Table 1. V̇O2baseline was significantly 
different (p < 0.001) between conditions except between S 
and Spost, and between H → S and MH → S conditions. 
Concerning Ap, only the comparison between H → S or 
MH → S was not significantly different. All other com-
parisons had a p value below 0.001, other than between 
S and Spost (p = 0.031). GainAp was significantly differ-
ent between conditions (p < 0.003), other than between 
SPost and both S and M → S. TDp was not significantly 
different between any of the conditions. As for V̇O2 base-
line, τp was significantly different (p < 0.002) between 

conditions except between S and SPost, and between 
H → S and MH → S. Regarding MRT, H → S and MH → S 
were significantly slower (p < 0.001) compared with S, 
SPost, and M → S, respectively. As was different between 
all conditions (p < 0.004), apart from between H → S and 
MH → S. Concerning V̇O2End, H → S was significantly 
different to both M → S (p = 0.007) and SPost (p = 0.037). 
GainEnd was not significantly different between S and 
SPost, and between H → S and MH → S conditions. All 
other comparisons were significantly different (p value 
range < 0.001 to 0.047).

The parameters of the results of the reconstructed 
method reported in Table  2 showed that V̇O2baseline , 
TDp, VO2 End, and GainEnd were not significantly 

Table 1  Comparison of the parameters of the V̇O2 response kinetics in the different transitions

S: severe intensity; SPost: severe intensity after prior severe intensity; M: moderate intensity; H: heavy intensity. V̇O2 baseline: oxygen consumption at the beginning 
of exercise; Ap: amplitude of the primary phase; GainAp: increase in V̇O2 above baseline per unit increase in external work rate above baseline; TDp: time delay of the 
primary phase; τp: time constant of the primary phase; MRT: the sum of the TDp and τp; As: amplitude of the secondary phase; V̇O2 end, averaged amplitude from the 
last 30 s of the response; GainEnd: sum of the Ap and As per unit increase in external work rate above baseline. Values are presented as the mean SD

*Significant differences with S; §significant differences with SPost; £significant differences with M → S; $significant differences with H → S (p < 0.05)

S SPost M → S H → S MH → S

V̇O2 Baseline (L min−1) 1.07 ± 0.16 1.04 ± 0.21 1.85 ± 0.21*§ 2.89 ± 0.23*§£ 2.90 ± 0.25*§£

Ap (L min−1) 2.02 ± 0.27 2.16 ± 0.30* 1.43 ± 0.26*§ 0.77 ± 0.15*§£ 0.70 ± 0.15*§£

Gain Ap (mL min−1 W−1) 8.96 ± 0.73 9.56 ± 0.78 10.23 ± 0.60* 13.70 ± 1.50*§£ 12.27 ± 1.16*§£$

TDp (s) 10.21 ± 5.54 11.76 ± 4.72 6.17 ± 5.37 6.06 ± 8.81 7.16 ± 9.83

τp (s) 29.31 ± 9.46 28.27 ± 6.79 46.51 ± 11.00*§ 95.94 ± 19.61*§£ 93.43 ± 13.83*§£

MRT (s) 39.52 ± 5.28 40.03 ± 4.21 52.67 ± 12.46 102.00 ± 27.57*§£ 100.59 ± 18.17*§£

As (L min−1) 0.56 ± 0.13 0.44 ± 0.10* 0.33 ± 0.10*§ 0.07 ± 0.07*§£ 0.10 ± 0.07*§£

V̇O2 End (L min−1) 3.65 ± 0.38 3.63 ± 0.35 3.61 ± 0.37 3.73 ± 0.33§£ 3.70 ± 0.37

GainEnd (mL min−1 W−1) 11.47 ± 0.78 11.56 ± 0.67 12.62 ± 0.78*§ 15.00 ± 1.96*§£ 14.11 ± 1.55*§£

Table 2  Comparison of  the  parameters of  the  V̇O2 response kinetics of  the  reconstructed curve for  the  different 
transitions’ protocols

MS: kinetics sum of M + S; HS: Kinetics sum of H and S; MHS: kinetics sum of M + H+S. S: severe intensity; SPost: severe intensity after prior severe intensity; M: 
moderate intensity; H: heavy intensity. V̇O2 baseline: oxygen consumption at the beginning of exercise; Ap: amplitude of the primary phase; GainAp: increase in V̇O2 
above baseline per unit increase in external work rate above baseline; TDp: time delay of the primary phase; τp: Time constant of the primary phase; MRT: the sum 
of the TDp and τp; As: amplitude of the secondary phase; V̇O2 end: averaged amplitude from the last 30 s of the response; GainEnd: sum of the Ap and As per unit 
increase in external work rate above baseline. Values are presented as the mean SD

*Significant differences with S; §significant differences with SPost; £significant differences with MS; $significant differences with HS (p < 0.05)

S SPost MS HS MHS

V̇O2 Baseline (L min−1) 1.07 ± 0.16 1.04 ± 0.21 0.97 ± 0.19 1.02 ± 0.23 1.01 ± 0.21

Ap (L min−1) 2.02 ± 0.27 2.16 ± 0.30 2.24 ± 0.29* 2.15 ± 0.30 2.24 ± 0.30*

Gain Ap (mL min−1 W−1) 8.96 ± 0.73 9.56 ± 0.78 9.95 ± 1.02* 9.55 ± 1.20 9.95 ± 1.12*

TDp (s) 10.21 ± 5.54 11.76 ± 4.72 11.41 ± 6.34 13.19 ± 4.73 10.64 ± 5.69

τp (s) 29.31 ± 9.46 28.27 ± 6.79 31.25 ± 7.51 31.00 ± 6.69 40.58 ± 11.68*§£$

MRT (s) 39.52 ± 5.28 40.03 ± 4.21 42.65 ± 5.86 44.19 ± 4.25 51.22 ± 7.07*§£$

As (L min−1) 0.56 ± 0.13 0.44 ± 0.10 0.41 ± 0.15* 0.53 ± 0.11 0.46 ± 0.17

V̇O2 End (L min−1) 3.65 ± 0.38 3.63 ± 0.35 3.62 ± 0.41 3.70 ± 0.34 3.71 ± 0.38

Gain End (mL min−1 W−1) 11.47 ± 0.78 11.56 ± 0.67 11.77 ± 0.92 11.90 ± 1.20 11.99 ± 0.84
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different between conditions. Ap was significantly dif-
ferent between S and both MS (p = 0.011) and MHS 
(p = 0.010). Furthermore, GainAp was significantly dif-
ferent between S and both MS (p = 0.007) and MHS 
(p = 0.007). Concerning τp, MHS was significantly 
slower compared with S (p = 0.011), SPost (p = 0.004), 
MS (p = 0.041), and HS (p = 0.038). Similarly, MRT 
from MHS was significantly slower compared with 
S (p < 0.001), SPost (p < 0.001), MS (p = 0.002), and 
HS (p = 0.016). Regarding As, S was slightly different 
(p = 0.043) from MS. Reconstructed kinetics of the differ-
ent conditions are depicted at the bottom of Fig. 2. Fit cal-
culation indicated similarity between the reconstructed 
curves; indeed, the similitude average was 96.38% with a 
maximum of 100% (MS vs. SPost). The largest differences 
were observed only during 11.94% of exercise duration 
(MHS vs. SPost), at the beginning of primary phase.

Discussion
The main finding was that the reconstructed V̇O2 kinet-
ics, using a novel approach of combining Henneman’s 
principle with the principle of superposition, had a simi-
lar kinetic curve (96.4 ± 3.6% of similarity between con-
ditions) to a simple transition at the same final severe 
intensity.

As hypothesized, when transitions started from a 
higher intensity, τ and Gain model parameters increased 
while amplitude parameters decreased, although V̇O2 
end at the final transition was similar. These results are 
in line with previous studies [13, 22], which were inter-
preted as a reflection of metabolic differences in the 
pool of muscle fibers recruited under these specific cir-
cumstances. Indeed, the elevated baseline in the work-
to-work protocols implies that type I MU are already 
recruited according to the well-established size principle 
of MU recruitment [23]; consequently, only a percentage 
fibers residing higher in the recruitment hierarchy would 
be activated during the second part of the protocol [13]. 
Type II muscle fibers are characterized by reduced mito-
chondrial content [24], lower oxidative enzyme activ-
ity [25] and greater ATP cost for force production [26]; 
therefore, slower V̇O2 kinetics and lower efficiency [27]. 
Consistent with the increased contribution of fibers with 
lower oxidative efficiency, the Gain amplitude of the 

primary phase was progressively increased when exercise 
was initiated from an elevated baseline [13, 22].

The second hypothesis was also validated since there 
were only scarce differences between the reconstructed 
kinetics and the work-to-work transitions (Fig.  2). The 
disparities were mainly in the first 40  s of the exercise 
due to a significant slower τp in MHS compared with 
the other conditions. However, during the time course 
of V̇O2SC and at the end of exercise, only sporadic differ-
ences were observed.

The fact that each severe exercise, preceded by a dif-
ferent modality producing a different fatigue, had similar 
reconstructed kinetics, suggesting that (a) fatigue was not 
the main process involved in the V̇O2SC; (b) the progres-
sive fiber recruitment, due to fatigue, was consequently 
not required for the development of the V̇O2SC. During 
work-to-work exercise, new fibers are activated at the 
beginning of each transition, modeling the V̇O2 kinetics 
response. The result of temporally aligning the kinetics 
of V̇O2 at the beginning of each transition and summing 
them seems to be similar to the result of a complete 
stimulation of the different fibers involved in a single 
transition of severe intensity exercise. This is consist-
ent with the fact that the kinetics shape is mainly driven 
by the metabolic response profiles of different fibers 
populations. Several studies have demonstrated the link 
between the different profiles of fibers and the appear-
ance of the V̇O2SC. The first authors to demonstrate that 
type I muscle fibers were significantly correlated with the 
V̇O2SC were Barstow and colleagues [28]. They exercised 
participants at ∆50% and took muscle biopsies of the vas-
tus lateralis for determination of fiber type. Participants 
with a higher percentage of type I muscle fibers had a 
higher primary phase and this was significantly corre-
lated with the amplitude of the V̇O2SC (r = − 0.83). Pre-
vious findings indicate significant correlations between 
the percentage of type II muscle fibers and markers of 
aerobic fitness and the relative magnitude of the V̇O2SC 
(r = 0.60; p < 0.01) and (r = −0.73; p < 0.01), respectively 
[29]. These findings are in line with other studies relat-
ing to the percentage of type I muscle fibers with an 
improved efficiency, or reduced V̇O2 , for the same work 
rate in cycling [30] or running [31]. Pringle et  al. [32] 
took muscle biopsies from 14 participants for histochem-
ical determination and made them complete square-wave 

Fig. 2  Pulmonary oxygen response ( ̇VO2 ) of reconstructed curve. Upper panel illustrates time course comparison of the different reconstructed 
curves. Blue thick vertical squares represent the differences between protocols. On the right, fit calculations represent the percentage of equality 
between protocols. Lower panel shows the time course of all reconstructed curves. Light blue color represents MHS; red color represents HS; grey 
color represents MS; yellow color represents SPost; and dark blue color represents S. HS: reconstructed curve for Heavy and Severe intensities; MHS: 
reconstructed curve for moderate, heavy and severe intensities; MS: reconstructed curve for moderate and severe intensities; S, reconstructed for 
Severe intensity; SPost, reconstructed curve for severe intensity after prior severe intensity

(See figure on next page.)
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cycling tests at moderate, heavy and severe intensities. 
Percent of type I muscle fibers was correlated with the 
amplitude of the V̇O2SC for heavy (r = − 0.74; p < 0.01) 
and severe (r = − 64; p < 0.05) exercises and with τ of the 
primary component (r = − 68; p < 0.01) in heavy intensity. 
Indeed, after a protocol aiming for the depletion of glyco-
gen from type II muscle fibers, there was a decrease in the 
amplitude of the V̇O2SC [33]. Deley et al. [34] showed that 
after pre-fatiguing type II muscle fibers, the amplitude 
of the V̇O2SC was significantly reduced, concluding that 
the recruitment of type II may be involved in the V̇O2SC 
phenomenon. Krustrup et al. [35] confirmed the idea that 
the energy turnover and ATP cost were higher for type 
II fibers when a neuromuscular blockage of type I was 
performed. Certainly, muscle O2 uptake was 20% higher 
and MRT was longer in type II muscle fibers, supporting 
the idea that type II fibers had slower kinetics and greater 
ATP cost than type I during dynamic exercise.

Finally, if the metabolic characteristics of the different 
fibers shape the V̇O2 kinetic curve and fatigue does not 
play a role in the development of V̇O2SC, neither will the 
progressive recruitment of these fibers. This result has 
been seen in isolated gastrocnemius dogs [36] and in 
the vastus lateralis in humans [37] when all muscle fib-
ers were activated or when a systematic increase in the 
cost of O2 per unit of external power was concomitant 
with no changes in iEMG, respectively. Taken together, 
these results suggest a lack of progressive muscle fiber 
recruitment during V̇O2SC.

Conclusion
These results confirm that τ is significantly smaller 
between low work rate transitions compared with tran-
sitions between high work rate intensities. In addition, 
the V̇O2 severe intensity kinetic curve is similar to the 
reconstructed kinetics curve resulting from combining 
Henneman’s and superposition principles. These find-
ings are consistent with the appearance of the V̇O2sc 
and maybe linked to the intrinsic differences in meta-
bolic properties of different fiber types.
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Alterations to neuromuscular 
properties of skeletal muscle are 
temporally dissociated from the 
oxygen uptake slow component
Trishan Gajanand1,5,6, Sonia Conde Alonso2,6 ✉, Joyce S. Ramos3, Jean-Philippe Antonietti4 & 
Fabio Borrani2

To assess if the alteration of neuromuscular properties of knee extensors muscles during heavy exercise 
co-vary with the SCV (VO2 slow component), eleven healthy male participants completed an 
incremental ramp test to exhaustion and five constant heavy intensity cycling bouts of 2, 6, 10, 20 and 
30 minutes. Neuromuscular testing of the knee extensor muscles were completed before and after 
exercise. Results showed a significant decline in maximal voluntary contraction (MVC) torque only after 
30 minutes of exercise (−17.01% ± 13.09%; p < 0.05) while single twitch (PT), 10 Hz (P10), and 100 Hz 
(P100) doublet peak torque amplitudes were reduced after 20 and 30 minutes (p < 0.05). Voluntary 
activation (VA) and M-wave were not affected by exercise, but significant correlation was found 
between the SCV and PT, MVC, VA, P10, P100, and P10/P100 ratio, respectively (p < 0.015). Therefore, 
because the development of the SCV occurred mainly between 2–10 minutes, during which 
neuromuscular properties were relatively stable, and because PT, P10 and P100 were significantly 
reduced only after 20-30 minutes of exercise while SCV is stable, a temporal relationship between them 
does not appear to exist. These results suggest that the development of fatigue due to alterations of 
neuromuscular properties is not an essential requirement to elicit the SCV.

At the onset of constant power exercise, the muscles requirements for ATP re-synthesis increase immediately 
following exercise onset. The same cannot be said about the oxygen uptake ( VO2) response that instead, displays 
a sluggishness to fully activate metabolism1–3. During exercise below the lactate threshold, VO2 rises 
mono-exponentially to a new steady-state3,4 and from unload pedalling, the rise of VO2 increases as a linear func-
tion of work-rate5. However, during constant-load exercise completed at intensities above the lactate threshold, 
the VO2 response becomes more complex with a second rise in VO2, developing slowly, which is superimposed 
onto the initial VO2 response6. This slowly developing rise in VO2, termed the slow component of VO2 (SCV), 
results in a greater end-exercise VO2 than that predicted by the sub-LT VO2-power output relationship. It has 
been proposed that the inefficiency which leads to the SCV originates primarily from the active muscles7. 
However, the reason for this observed inefficiency in the muscle is not clear and may potentially result from 
reduction of ATP production per mole of oxygen (P/O ratio), diminution of the energy yield per unit of hydro-
lysed ATP, alteration of neuromuscular properties of muscle filament to produce force, and/or deterioration of the 
motor pattern of the motion8. However, the potential link between the alteration of neuromuscular properties of 
muscle filament and progressive muscle inefficiency, and therefore the SCV, is not well explored. The capability of 
muscle to produce force progressively declines during high-intensity exercise when fatigue gradually develops9. It 
is widely accepted that alterations of the metabolic milieu of locomotor muscles are mainly responsible for the 
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decline in force. Indeed, neuromuscular properties of knee extensor muscles are sensitive to the accumulation of 
muscle metabolites such as adenosine diphosphate (ADP), inorganic phosphate (Pi), hydrogen ion (H+), and 
magnesium ion (Mg2+). Muscular force production is reduced by increases in [Pi], [Mg2+], and [H+] while aug-
mented by an increase in [ADP]10. Additionally, increased [ADP] reduces cross-bridge cycling rate10.

Since the SCV occurs during high-intensity exercise, and because high-intensity exercise is always associated 
with changes in metabolite concentration that may produce an alteration in neuromuscular properties of muscle 
filament, the latter may be considered a putative mediator of the SCV (in line with current views;11–14).

Standardised investigative methods of neuromuscular function, such as peripheral nerve stimulation (PNS), have 
been extensively used to explore the complex relationship between exercise and fatigue. For instance, using PNS, 
Decorte and colleagues showed that during exhaustive constant-load cycling at 80% of maximum aerobic power 
output, neuromuscular properties were significantly reduced as early as 20% of the total duration of cycling, indi-
cating a potential link with the SCV15. Although, little is known about the possible relationship between the SCV 
and the alteration of neuromuscular properties of knee extensors, Keir and colleagues16 in 2016 showed a significant 
association between the decrements in muscle torque and the SCV, without changes in muscle activation over the 
course of the exercise. Also in an in vivo study using cycle ergometry, Cannon and colleagues have shown that changes 
in velocity-specific peak power generated in the initial minutes of exercise were correlated to the SCV measured 
between three and eight minutes of heavy and severe exercise17. Results from the same working group suggest that the 
SCV during heavy exercise arises from both contractile and mitochondrial sources17. Furthermore, using self-paced 
dynamic concentric extension/flexion of the knee and interleaving voluntary and electrically evoked contractions, 
Froyd and colleagues have shown, even without measuring directly VO2 kinetics, that fatigue progresses with similar 
dynamics to those expected of the SCV during an approximately 6-min time trial18. However, these findings do not 
show the mechanism linking the alteration of neuromuscular properties of knee extensors, per se, and the SCV.

The aim of the present study was to quantify the alteration of neuromuscular properties of knee extensors 
during heavy exercise and to see if these impairments co-vary, as function of time, with the SCV amplitude. The 
hypothesis was that the SCV amplitude correlates with the change in neuromuscular properties of knee extensor 
muscles, depicted by a decrease in evoked peak torque.

Methods
Participants.  Eleven healthy, recreationally active, male participants (mean ± SD, age 27 ± 6.6 years, body 
mass 76 ± 7.6 kg, and height 179 ± 8.1 cm) were recruited for this study. The participants were provided with 
a participant information sheet outlining the procedures involved, time commitment, and requirements of the 
study. Participants were screened using a self-administrated pre-exercise health questionnaire designed to iden-
tify those who may be at risk of an adverse event during exercise. Participants were advised of their right to with-
draw from the study at any time without disadvantage.

Participants were asked to avoid, in the 24 h preceding a testing session, strenuous physical activity, alcohol, 
tobacco, and caffeine. Furthermore, participants were asked not to consume any food for the 3 h preceding a test 
and to arrive fully hydrated. All tests were completed at a similar time of day (±1 h). The study was approved by 
the local humans Ethics Committee and conformed to the latest revision (2013) of the Declaration of Helsinki. 
All participants provided written informed consent prior to participation.

Experimental design.  This study involved each participant attending six separate laboratory sessions, with 
at least a 48 h interval between tests, over a three-week period. All tests were completed in an air-conditioned 

Figure 1.  Description of events completed during experimental testing (A) and during neuromuscular testing 
(B). Neuromuscular tests (dotted box) were completed prior to the rest period (filled box) and after exercise 
(box with diagonal lines). Neuromuscular testing involved three single stimulations (single solid lines) followed 
by three stimulations at 10 Hz (thick-double solid lines) and then three stimulations at 100 Hz (thin-double solid 
lines). Each stimulation had a four second separation. Finally, three MVCs were completed with superimposed 
100 Hz doublets applied (empty box with thin-double solid lines), each separated by a minute rest period.
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(21 °C ± 1 °C) exercise physiology laboratory. The first session involved an incremental ramp test on a cycle 
ergometer (Velotron, RacerMate, Seattle, WA, USA). This test was used to assign a work-rate for the subsequent 
five experimental sessions during which constant work-rate exercise was completed. Following the incremental 
ramp test, participants were familiarised with the procedure to be used to evaluate neuromuscular function. The 
five experimental sessions (Fig. 1A) involved participants cycling for different durations of time in a random 
order at an identical power (heavy domain, see below). Neuromuscular evaluation was performed before exercise, 
and within 1-minute of completing constant work-rate exercise. This was completed to determine the central and 
peripheral fatigue through neural and neuromuscular properties of the knee extensor muscles.

Testing procedures.  Incremental ramp test.  Incremental ramp exercise test was completed in order to 
determine the gas exchange threshold (GET) and peak oxygen consumption ( VO2peak). After a three-minute rest 
period seated on the cycle ergometer, participants performed six minutes of baseline cycling at 60 watts, after 
which, the work rate was increased by the rate of 30 watts each minute until reaching the limit of tolerance. The 
ergometer allows participants to cycle at a constant power output independent of pedal rate, though participants 
were asked to maintain a pedal rate of 85 revolutions per minute (rpm). Verbal encouragement was provided 
throughout the test. The test was terminated when the pedal rate dropped by more than 10 rpm (i.e. 75 rpm). All 
cycle tests were completed on an electromagnetically braked cycle ergometer where the seat and handlebars were 
fully adjustable both vertically and horizontally. The horizontal and vertical direction of both the seat and handle-
bars were adjusted to suit each participant and were recorded following the ramp test and replicated for subse-
quent tests. Pulmonary gas exchange and ventilation were measured from the beginning of the rest period until 
cessation of the test.

Step transition tests.  Each participant attended a total of five experimental sessions during which cycling at a 
constant-load were completed. The test began with a 5-minute rest period before participants completed three 
minutes of unloaded cycling (20 watts). At the end of the three minutes, an immediate transition to the work rate 
equal to 30%∆ (GET plus 30% of the difference between the work rate at the GET and VO2peak; heavy exercise) 
was imposed with the duration altered at each session (2, 6, 10, 20, 30 minutes). Constant power was maintained 
at 85 rpm and was maintained for the duration specified for each of the tests.

Neuromuscular evaluation.  Neuromuscular evaluation (Fig. 1B) consisted of (1) 3 x single supra maximal elec-
trical stimulations, each separated by four seconds, (2) 3 x paired at 10 Hz (two stimulation pulses separated 
by 100 ms) and 3 x paired at 100 Hz (two stimulation pulses separated by 10 ms) electrical stimulations, each 
separated by four seconds, and (3) 3 x five-second isometric maximal voluntary contraction (MVC) tests of the 
knee extensor muscles during which a 100 Hz doublet was superimposed to the MVC. A one-minute rest period 
separated each MVC. Strong, standardised, verbal encouragement was provided throughout the MVC. In order to 
increase the contact between the electrode and the skin during all electrical stimulations, a pressure was applied 
to the cathode electrode using a wooden handle with a rubber end. Note that during post exercise, each sequence 
was repeated only one time in order to diminish the possible effect of recovery time. Less than one minute was 
required to position the participant for testing after exercise.

Measurements.  Pulmonary gas exchange.  During all tests, pulmonary gas exchange was continuously 
measured using a computerised system (MetaMax 3b, Cortex, Leipzig, Germany). The system used an infrared 
sensor and an electrochemical cell to measure fractional concentrations of CO2 and O2 in expired gas. A digital 
transducer turbine assessed inspired and expired gas volume. A capillary line was used to continuously sample 
gas concentration. The transducer and the capillary line were securely attached to the facemask, which was firmly 
fitted to the participants face using Velcro straps. Immediately before each exercise test, the gas analysers were 
calibrated with gases of known concentration (O2 = 14.01%, CO2 = 6.03%), and the turbine volume transducer 
was calibrated using a three-litre Rudolph syringe (Cortex, Leipzig, Germany).

VO2peak was noted as the highest 30-second average value attained during the incremental ramp test. The GET 
was determined using a number of measurements: (1) visual examination for the first disproportionate increase 
in CO2 production ( VCO2) from VCO2 versus VO2 graph, (2) an increase in ventilatory equivalent of oxygen  
( VE/ VO2) without increase in ventilatory equivalent of carbon dioxide ( VE/ VCO2), and (3) increase in partial 
pressure of end-tidal oxygen with no decrease in partial pressure of end-tidal carbon dioxide. Subsequently, the 
work rate that would require 30%∆ was calculated and assigned for the experimental tests after accounting for the 
mean response time for VO2 during ramp exercise (2/3 of the ramp rate was subtracted from the work rate at the 
gas exchange threshold and VO2peak, i.e. 20 watts)19,20.

PNS.  Electrical stimulation was delivered using a high-voltage stimulator (model DS7, Digitimer Stimulator, 
Hertfordshire, UK). Low intensity stimulation (~ 20 mA) was used to locate the femoral nerve by means of a 
cathode ball electrode (0.5 cm diameter) which was manually pressed into the femoral triangle and maneuvered 
until the femoral nerve was properly located (determined by observing contraction of the leg). A 5 cm diameter 
cathode electrode (American Imex, CA, USA) was then placed on the site after it was cleaned with an alcohol 
wipe. The anode, a rectangular electrode (18 × 7 cm, American Imex, CA, USA), was placed opposite the cathode 
in the gluteal fold. Both the cathode and anode electrodes were worn during exercise and therefore both were 
taped to the skin using micropore tape (3 M Micropore, St. Paul, MN, USA) to limit movement. To determine 
maximal stimulation, single electrical stimulations (rectangular pulse, 1 ms duration, 400 V) were delivered to the 
nerve and progressively increased until a plateau in the twitch torque and M-wave amplitude were achieved. The 
current that achieved plateau was increased by 20%, which was then used for subsequent tests.
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Torque measurement.  The evaluation of neuromuscular function was conducted on the right knee extensor 
muscles with participants seated in a Biodex isokinetic dynamometer (Biodex Medical Systems Inc., Shirley, NY, 
USA). The hip and knee angles were fixed at 90° (0° = full knee extension) with the ankle strapped to the lever 
arm of the Biodex. The rotational axis of the dynamometer was aligned with the lateral epicondyle of the femur, 
found after palpation. Two crossover straps were placed firmly across the shoulders to limit upper body move-
ment and one strap was placed midway across the thigh of the right leg. Participants were asked to cross their 
arms across their chest during testing. Adjustments made to the seat position and to the lever arm of the Biodex 
were recorded for each participant during familiarisation and reproduced for subsequent tests.

Electromyography recordings.  Once participants were seated, the right vastus medialis (VM) and vastus lateralis 
(VL) muscles were palpated and prepared for electromyogram signal (EMG) recording. To reduce impedance, the 
skin around the belly of the muscles was shaven, lightly abraded (3 M Red Dot Trace Prep, Ontario, Canada) and 
cleaned using 70% isopropyl alcohol wipes (Kendall Company, Mansfield, MA, USA). One pair of silver-chloride 
electrodes (3 M Red Dot, St. Paul, MN, USA) of 10 mm diameter with an interelectrode (center to center) distance 
of 2 cm were then placed lengthwise over the prepared muscle. The ground electrode was placed over the patella 
of the right leg. EMG and torque signals were recorded through chart software (v. 5.5.6, ADInstruments, Sydney, 
Australia). EMG signals were amplified with a bandwidth frequency ranging from 1.5 Hz to 2 kHz (common 
mode rejection = 90 dB; impedance = 100 MΩ; gain = 1000). The myoelectric and mechanical responses were 
digitised on-line at a sampling frequency of 2000 Hz and stored for off-line analysis.

Data analysis.  Oxygen uptake kinetic analysis.  The breath-by-breath VO2 data from each of the 30%∆ tests 
were initially examined to exclude errant breaths caused by coughing, swallowing, sighing, etc., and those values 
lying more than three standard deviations from the model VO2 were considered outliers and were removed. The 
breath-by-breath data from the different exercise durations were subsequently linearly interpolated to provide 
second-by-second values, and, for each individual, repetitions from different durations were time aligned to the 
start of exercise and the ensemble averaged. The primary component (phase 2) kinetics were isolated to identify 
the mono-exponential region and modelled by the following equation:
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Where VO2(t) represents VO2 at a given time t; U= 0 for t < td1 and U = 1 for t ≥ td1
VO2b is the VO2 during unloaded cycling defined as the mean VO2 measured over the final 90 seconds of 

baseline pedaling; AP is the asymptotic amplitudes for the primary phases; τP is the time constant, and tdP repre-
sents the time delay. Since the focus of this study was the SC, the cardiodynamic phase was removed from analy-
sis21,22, and therefore, not modelled, in order to ensure that the early initial component did not influence the 
results23. Initially, the fitting window extended from 20 seconds (i.e., at the end of phase I) to 80 seconds (only 60 s 
into the exercise). The window was lengthened iteratively in order to attain four series of the initial window 
length. For each window length, the parameters of the model were determined with an iterative procedure by 
minimising the sum of the mean squares of the differences between the model VO2 and actual VO2.

Identification of the end of the primary phase was completed using H.B. Rossiter criteria consideration24,25.
As such, the amplitude of the slow component at time 2, 6, 10, 20, and 30 minutes were assigned the value 

(ASX) and were defined as the difference between the value of VO2 at a given time and the sum of the primary 
phase and the VO2b at the same given time.

SCV was also described as a percentage of the primary component (SCV%) since this ratio would provide 
information regarding the loss of efficiency.

Neuromuscular function analysis.  From the EMG trace of single stimulations, peak-to-peak amplitude 
(M-waves) of the VL (MWVL) and VM (MWVM) were measured. Peak torque (PT) was determined from the 
torque signal of the single twitch. The highest torque achieved during MVC in their respective conditions were 
taken as the MVC torque. The PT of doublet stimulations were quantified and termed P10 and P100 for 10 Hz, 
and 100 Hz, respectively. In addition, the P10-to-P100 ratio (P10/P100) was calculated to assess for the occur-
rence of low or high frequency fatigue.

The voluntary activation (VA) level was calculated by expressing any increment in torque evoked during max-
imal isometric contractions (superimposed twitch) as a fraction of the amplitude of the response evoked by the 
potentiated doublet26.

In agreement with the work by Strojnick and colleagues, the following correction factor (CF, the ratio between 
the torque just before the superimposed doublet divided by MVC peak torque) was used in order to take into 
account the possibility that the superimposed twitch was not necessarily applied when the torque level was at the 
true maximal voluntary force27.
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All data presented are the average of three measurements in pre, and a single measurement on post.
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Data and statistical analysis.  Data were normalised by expressing the measures taken immediately after 
exercise as a percentage change relative to before exercise. This was completed to avoid day-to-day variations in 
measures that may occur. Normality test (Kolmogorov-Smirnov) and F-test of equality of variances were com-
pleted to test for normal distribution and equality of variance. One-way repeated measures analysis of variance 
(ANOVA) was used to test the effect of exercise duration on measurers of neuromuscular function. When a sig-
nificant main effect was found, significant differences were located using Tukey’s post hoc analysis test. Pearson 
correlation coefficient was used to assess relationships between the change of SCV% and changes to neuromuscu-
lar parameters. Analyses were completed with Box and Tidwell tests, and the Theil method (Theil nonparametric 
regression technique). The Box and Tidwell test assesses whether the association between the slow component 
and fatigue is linear or not, and therefore related to time. In contrast, Theil’s regression highlights, in a qualitative 
way, the points that are distant from the linear relationship. For all tests, significance was set at p < 0.05. Data are 
expressed as mean ± SD.

Ethical approval.  The University of Auckland Human Participants Ethics Committee approved this study. 
Written informed consent was provided by all participants prior to participation. All procedures conformed to 
the latest revision (2013) of the Declaration of Helsinki.

Results
Oxygen uptake kinetics.  Mean VO2peak was 3.95 ± 0.18 l.min−1 and the mean power output corresponding 
to 30%∆ was 200 ± 11 watts. During the three minutes of unloaded pedalling at 85 rpm, VO2b reached a value of 
0.85 ± 0.19 l.min−1. Asymptotic amplitudes of the primary phase attained 1.85 ± 0.38 l.min−1 with a time constant 
of 27.1 ± 15.0 s and a time delay of 12.8 ± 2.3 s. Amplitude of the slow component at time 2, 6, 10, 20, and 30 min-
utes are presented in Table 1. Values of SCV as a percentage of the primary component are also described.

Neuromuscular function.  MVC measurement showed alteration over the course of exercise (Table 2). 
Post-hoc test revealed a significant reduction after 30 minutes of cycling compared to before exercise, 2, 6, and 
10 minutes of exercise. After 20 minutes of exercise, a trend towards significance was observed compared to before 
exercise (p = 0.1) No effect of exercise duration was detected for VA (Table 2; p > 0.05).

No effect of exercise duration was detected for the M-wave amplitude of the VM and VL muscles (Table 2).
Twitch amplitude (Fig. 2A) showed a significant reduction at 30 minutes of exercise compared to before, 2, 

6, and 10 minutes of exercise; (p < 0.05). A significant reduction was also observed after 20 minutes of exercise 
compared to before, 2, and 6 minutes of exercise (P < 0.05). Finally, significant differences were observed for 
10 minutes of exercise compared to 2 and 6 minutes of exercise (p < 0.05).

P10 (Fig. 2B) and P100 (Fig. 2C) evolved in a similar manner. Specifically, significant differences were 
observed for 20 and 30 minutes compared to before, 2, 6, and 10 minutes of exercise (p < 0.05). Furthermore, 
significant differences were observed at 10 minutes compared to 2 and 6 minutes (p < 0.05).

Significant differences for the P10/P100 ratio (Fig. 2D) were found for most exercise durations. A signifi-
cantly lower P10/P100 ratio was observed at 30 minutes compared to before, 2, 6, and 10 minutes of exercise 
(P < 0.05). After 20 minutes of exercise, differences were observed compared to before, 2, and 6 minutes of exer-
cise (p < 0.05). Furthermore, significant differences were observed at 10 minutes compared to before and 2 min-
utes of exercise (p < 0.05).

Amplitude (l.min−1) Amplitude (% of Ap)

AS2 0.037 ± 0.056 1.9 ± 2.5

AS6 0.298 ± 0.130* 16.6 ± 8.6*

AS10 0.373 ± 0.150* 20.9 ± 10.2*

AS20 0.450 ± 0.202*& 25.3 ± 13.2*&

AS30 0.452 ± 0.246*& 29.1 ± 16.3*&%

Table 1.  Time course of slow component amplitude in absolute, and in percentage of the primary component. 
AS2, AS6, AS10, AS20, and AS30 are the amplitude of the slow component at time 2, 6, 10, 20, 30 min 
respectively. Ap is the amplitude of primary component. *Significantly different from 2 min. &: Significantly 
different from 6 min. %: Significantly different from 10 min. Data are presented as mean ± SD.

2 min 6 min 10 min 20 min 30 min

MVC [%] −2.81 ± 5.39 −2.32 ± 4.19 −2.87 ± 5.31 −9.26 ± 9.67 −17.01 ± 13.09*

VA [%] −1.81 ± 3.14 0.18 ± 3.90 −1.59 ± 3.4 −2.72 ± 3.92 −4.32 ± 5.66

MWVM [%] −1.17 ± 5.72 −2.86 ± 8.28 −0.52 ± 8.50 −4.21 ± 8.05 −8.23 ± 7.59

MWVL [%] 4.07 ± 10.33 6.91 ± 6.39 5.07 ± 8.43 8.32 ± 15.07 6.9 ± 28.92

Table 2.  Changes in neuromuscular function over the time course of the slow component. MVC: maximal 
voluntary contraction, VA: voluntary activation, MWVM: M-wave amplitude of vastus medialis, and MWVL: 
M-wave amplitude of vastus lateralis. *Different from base line, 2 min, 6 min, and 10 min (p < 0.05). Data are 
presented as mean ± SD.
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The SCV and fatigue.  Correlation analysis was used to investigate relationships between the SCV% and 
neuromuscular parameters (Table 3). Changes in M-wave amplitude for either of VL and VM, VA and MVC did 
not correlate with changes of the SCV relative to the primary phase. However, significant correlations were found 
between the SCV% and PT, P10, P100 (tendency), and P10/P100 ratio. For these neuromuscular parameters, P10/
P100 showed the strongest correlation with SCV% (R2 = 0.88), followed by P10 (R2 = 0.81), PT (R2 = 0.81), and 
P100 ratio (R2 = 0.72). In contrast, the Box and Tidwell’s test was smaller than 0.05 (see Table 3) for correlation 
relationships suggesting that the relationship is non-linear and therefore unrelated over time. In addition, Theil’s 
line (see Fig. 3) showed that during the first phase, only the slow component grew (the points of this phase are 
distant from Theil’s line); while during the second phase, the slow component continued to grow but fatigue also 
grew (the points of this phase then line up with Theil’s line).

Figure 2.  Neuromuscular alterations for peak twitch amplitude (A), 10 Hz paired (P10) stimulation (B), 100 Hz 
paired (P100) stimulation (C), and P10/P100 (D) over the course of exercise. *Significant difference from 
baseline (p < 0.05); §Significant difference from 2 minutes. (p < 0.05). &Significant difference from 6 minutes 
(p < 0.05). $Significant difference from 10 minutes (p < 0.05). Error bars are SE.
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Discussion
The main finding from the present study was that alterations to force production by the knee extensor muscles 
were present during exercise at an intensity of 30%∆, which correlated with the development of the SCV, however, 
a temporal relationship between the development of the SCV and fatigue does not appear to exist.

Origin of fatigue observed during exercise.  With neuromuscular fatigue defined as a reduction in force 
generating capacity28, loss of MVC torque is used as a general index for evaluating the extent of neuromuscu-
lar fatigue. In the present study, MVC torque, compared to the beginning of exercise, was found to be signifi-
cantly reduced only after 30 minutes of cycling at 30%∆. However, while loss of MVC torque is a general index 
of fatigue, it does not provide information regarding the site of alterations (i.e. neuromuscular fatigue etiology). 
To determine the origin of the neuromuscular fatigue caused by various durations of cycling at 30%∆, electrical 
stimulations were delivered at rest, as well as during MVC, allowing for the evaluation of VA, action potential 
transmission and propagation, and neuromuscular properties. VA, which is commonly used to evaluate central 
fatigue29, was not significantly affected by any exercise durations in the present study. The absence of significant 
central fatigue suggests that declines in motivation, afferent feedback, or central drive were not present, or that 
declines in central drive was countered by increased motivation10,30. It subsequently suggests a peripheral origin 
for the induced neuromuscular fatigue. Muscle membrane excitability and neuromuscular propagation appeared 
to be well preserved, as highlighted by the lack of alterations in VL and VM M-wave amplitudes. In contrast, 
reductions in evoked forces suggests the presence of peripheral fatigue. Interestingly, signs of peripheral fatigue 
were observed following shorter exercise durations, suggesting that evoked forces might be more sensitive than 
MVC for detecting fatigue when it is of peripheral origin. Indeed, PT, P10 and P100 were already reduced after 
20 minutes of cycling compared to the beginning of exercise. As M-wave amplitudes were unaltered at all-time 
points, reductions in evoked forces can highlight either alterations in sarcoplasmic reticulum Ca2+ handling8 or 
alterations occurring at the cross-bridge level such as reduced myofibrillar Ca2+ sensitivity, and/or reduced capac-
ity for cross-bridge to produce force31,32. Further supporting excitation-contraction failure, the P10/P100 ratio 
was found to be reduced following 10, 20, and 30 minutes of exercise compared to the start of exercise suggesting 
the presence of low frequency fatigue33. A study completed on rat gastrocnemius muscle ascribed low-frequency 
fatigue to Ca2+ handling alterations rather than to processes occurring at the cross-bridge level34. Indeed, altered 
Ca2+ handling is believed to occur with Pi accumulation during the development of fatigue and its subsequent 
precipitation with Ca2+ within the sarcoplasmic reticulum35. However, the exact mechanisms responsible for 
low-frequency fatigue remain unclear as previous results, also obtained using rodents, showed that the site (i.e. 
Ca2+ handling vs. cross-bridge level) responsible for this low-frequency fatigue is dependent on the antioxidant 
status of the individual36. Therefore, based on the measures in the present study, it is likely that the observed neu-
romuscular fatigue following 20 and 30 minutes of cycling at 30%∆ is a result of peripheral rather than central 
fatigue. Based on the literature, while speculative, it suggests that fatigue it is from either impaired Ca handling or 
reduced cross-bridge kinetics.31,32.

The SCV and fatigue.  Significant correlations were found between the SCV% and PT, P10, P100, and P10/
P100. This finding is supportive of the theory regarding the presence of fatigue required to elicit the SCV. In con-
trast, for these parameters, the Box and Tidwell’s test showed that the relationship between the development of the 
SCV and the alterations of the neuromuscular properties of knee extensor muscles were non-linear and therefore 
unrelated over time. In addition, Theil’s line (see Fig. 3) showed two distinct phases; the first phase where only 
the slow component grew (the points of this phase are away from Theil’s line); while during the second phase, 
the slow component continued to grow but fatigue also grew (the points of this phase then line up with Theil’s 
line). (see Fig. 3). In other words, the development of the SCV, in fact, occurred mainly between 2–10 minutes 
during which neuromuscular properties were relatively stable (only a reduction in the P10/100 ratio was observed 
after 10 minutes of cycling). In contrast, PT, P10 and P100 were significantly reduced only after 20-30 minutes 

Correlation Box-Tidwell test

R P Z P

MWVM −0.69 0.196 −1.70 0.089

MWVL 0.76 0.137 −0.20 0.841

PT −0.90 0.038 −3.06 0.002

MVC −0.72 0.172 −5.57 <0.001

VA −0.52 0.370 −5.48 <0.001

P10 −0.90 0.036 −3.39 <0.001

P100 −0.85 0.065 −3.97 <0.001

P10/P100 −0.94 0.019 −4.50 <0.001

Table 3.  Correlation coefficient and Box-Tidwell test between the slow component amplitude, as a percentage 
of the primary phase, and neuromuscular function. MWVM: M-wave amplitude of vastus medialis, MWVL: 
M-wave amplitude of vastus lateralis, PT: Peak Torque of the single twitch, MVC: maximal voluntary 
contraction, VA: voluntary activation, P10: peak torque at 10 Hz doublet stimulation, P100: peak torque at 
100 Hz doublet stimulation, P10/P100: ratio of peak torque between 10hz and 100hz doublet stimulation, R: 
correlation coefficient, Z score statistic, P: significance.
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of exercise compared to baseline values. These results suggest that the development of fatigue due to alterations 
of neuromuscular properties is not an essential requirement to elicit the SCV at least during the first 10 minutes 
of exercises. This finding is in line with those from Thistlethwaite and colleagues37. They showed that, during 
heavy cycling exercise, when preceded either by heavy exercise or by heavy knee extensions (requiring twofold 
greater muscle activation relative to heavy exercise), τp, gain of the primary response, and the amplitude of the 
SCV were similar between protocols. The authors concluded that muscle fatigue is not a determining factor 
for the development of the SCV. Hopker and colleagues attested similar results. Participants completed either a 
non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest (control) for 
33 minutes. The results of their study showed that locomotor muscle fatigue, tested by the reduction in power in 
the maximal voluntary cycling power test, was not associated with the development of the SCV38. Interestingly, 
the magnitude of the SCV was not significantly different between the two conditions despite significant differ-
ences in locomotor muscle fatigue. Recently, Dos Nascimento Salvador and colleagues published a study looking 
at the cause–effect relationship between the SCV and fatigue. They switched from constant work rate to isoki-
netic pedaling to quantify reductions in peak torque at three and eight minutes, with and without priming exer-
cise. Results showed that the SCV after priming was reduced but there were no significant differences between 

Figure 3.  The relationship between peak twitch amplitude (A), 10 Hz paired (P10) stimulation (B), 100 Hz 
paired (P100) stimulation (C), and P10/P100 (D) and the change in SCV relative to the primary phase.◆ 
2 minutes; ■ 6 minutes; ▲ 10 minutes; ● 20 minutes; and ✶ 30 minutes represent average values. Theil’s line is 
characterised by the dashed line. Error bars are SE. Error bars in the figures are presented as SE for more clarity.
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conditions regarding the magnitude of the reduction of maximal isokinetic force and power at three and eight 
minutes39. This observation refutes a cause-effect relationship between fatigue and the development of the SCV.

However, the findings from this study are in contrast with the results by Keir and colleagues. Correlations were 
shown in both studies between some measures of fatigue and the SCV, however, a temporal association was only 
found in one study9. In one perspective, this difference highlights the importance of exercise intensity. Indeed, in 
the present study, step transition exercise was in the heavy domain, while the study by Keir and colleagues was 
in the severe domain9. In addition, the amplitude and type of fatigue was potentially different, as assessed by the 
difference in reduction of MVC after 18–20 minutes (9% for the present study vs 22% in the study by Keir and 
colleagues). If the SCV is related to fatigue parameters, it should be present in both exercise intensity domains. 
However, this was not the case, which suggests that the SCV may not be related to fatigue parameters.

The results in the present study are in agreement with results from a previous study regarding changes to 
velocity-specific peak power during cycling. Cannon et al.17 observed a reduction in velocity-specific peak power, 
which correlated with the SCV. However, as was observed in the present study, the reduction they observed was 
not temporally related to the development of the SCV. The reduction in velocity-specific peak power occurred 
prior to the SCV in their study, while excitation-contraction coupling was altered after the development of SCV 
in the present study. Nevertheless, both reported no changes during the development of the SCV which suggests 
that those alterations are likely not essential for the development of the SCV. If alterations to neuromuscular 
properties are not involved during the development of the SCV, at least during exercise in the heavy domain, it 
may be possible that the VO2 cost of force production may increase within a given fiber population. A progressive 
inhibition of ATP supply by anaerobic glycolysis, an increase in ATP usage per power output, and/or a reduction 
of ATP production per mole of oxygen (P/O2 ratio) are probably implicated in the SCV40. However, the documen-
tation of a cause-effect relationship during exercise between muscle fatigue and reduced efficiency remains 
unknown.

Experimental consideration.  As with the study by Keir and colleagues (2016), at the end of exercise, the 
time to transfer the subject from the ergometer to the Biodex before the start of neuromuscular testing was less 
than one minute. One could argue that fatigue was already modified, and consequently the interpretation of the 
data in relation to fatigue during exercise is limited. Simply, fatigue is likely to have been underestimated in the 
present study and the measurement of fatigue during exercise would have been more appropriate. However, neu-
romuscular measurements were taken after a similar amount of time after each exercise, for each participant, and 
consequently, the change of the robustness of the relationship between fatigue and the SCV is likely to have been 
marginal, which should not change the general conclusions of the present study. Furthermore, the cause (fatigue) 
has to precede the effect (SCV); however, the data from the present study indicates that this was not the case. A 
further limitation is the fact that fatigue was measured during static contractions whereas cycling is a dynamic 
movement.

Conclusion
Fatigue in the present study was observed during exercise completed at 30%∆ and which was at least 20 minutes 
in duration. Indirectly, these results suggest that the observed fatigue appears to be a result of impaired Ca2+ 
handling and/or reduced capability of cross-bridges to produce force. While significant correlations between the 
SCV relative to the primary phase and neuromuscular parameters were found, a temporal relationship between 
the development of the SCV and fatigue does not appear to exist. Therefore, it would seem that the alteration of 
neuromuscular properties in muscle is not required for the development of the SCV.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

Received: 20 December 2019; Accepted: 13 April 2020;
Published: xx xx xxxx

References
	 1.	 Grassi, B. Oxygen uptake kinetics: old and recent lessons from experiments on isolated muscle in situ. European journal of applied 

physiology 90, 242–249, https://doi.org/10.1007/s00421-003-0994-0 (2003).
	 2.	 Hughson, R. L. Oxygen uptake kinetics: historical perspective and future directions. Applied Physiology Nutrition and Metabolism-

Physiologie Appliquee Nutrition Et Metabolisme 34, 840–850, https://doi.org/10.1139/h09-088 (2009).
	 3.	 Jones, A. M. & Poole, D. C. In Oxygen Uptake Kinetics in Sport, Exercise and Medicine (eds. Jones, A. M. & Poole, D. C.) 3–35 

(Routledge, 2005).
	 4.	 Xu, F. & Rhodes, E. C. Oxygen uptake kinetics during exercise. Sports Medicine 27, 313–327 (1999).
	 5.	 Hansen, J. E., Sue, D. Y., Oren, A. & Wasserman, K. Relation of oxygen uptake to work rate in normal men and men with circulatory 

disorders. The American journal of cardiology 59, 669–674 (1987).
	 6.	 Whipp, B. J. & Wasserman, K. Oxygen uptake kinetics for various intensities of constant-load work. Journal of Applied Physiology 33, 

351–356 (1972).
	 7.	 Poole, D. C. et al. Contribution of excising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol 71, 

1245–1260 (1991).
	 8.	 Allen, D. G., Lamb, G. D. & Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiological Reviews 88, 287–332, https://

doi.org/10.1152/physrev.00015.2007 (2008).
	 9.	 Keir, D. A. et al. The slow component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-intensity 

exercise. Journal of Applied Physiology 121, 493–502, https://doi.org/10.1152/japplphysiol.00249.2016 (2016).
	10.	 Ament, W. & Verkerke, G. J. Exercise and Fatigue. Sports Medicine 39, 389–422 (2009).
	11.	 Cannon, D. T. et al. Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral 

knee extension. J Physiol 592, 5287–5300, https://doi.org/10.1113/jphysiol.2014.279174 (2014).

https://doi.org/10.1038/s41598-020-64395-5
https://doi.org/10.1007/s00421-003-0994-0
https://doi.org/10.1139/h09-088
https://doi.org/10.1152/physrev.00015.2007
https://doi.org/10.1152/physrev.00015.2007
https://doi.org/10.1152/japplphysiol.00249.2016
https://doi.org/10.1113/jphysiol.2014.279174


1 0Scientific Reports |         (2020) 10:7728  | https://doi.org/10.1038/s41598-020-64395-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

	12.	 Grassi, B., Rossiter, H. B. & Zoladz, J. A. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci 
Rev 43, 75–83, https://doi.org/10.1249/JES.0000000000000043 (2015).

	13.	 Poole, D. C. & Jones, A. M. Oxygen uptake kinetics. Comprehensive Physiology 2, 933–996, https://doi.org/10.1002/cphy.c100072 
(2012).

	14.	 Rossiter, H. B. Exercise: Kinetic considerations for gas exchange. Comprehensive Physiology 1, 203–244, https://doi.org/10.1002/
cphy.c090010 (2011).

	15.	 Decorte, N., Lafaix, P. A., Millet, G. Y., Wuyam, B. & Verges, S. Central and peripheral fatigue kinetics during exhaustive constant-
load cycling. Scandinavian Journal of Medicine & Science in Sports, 381–391, https://doi.org/10.1111/j.1600-0838.2010.01167.x 
(2010).

	16.	 Keir, D. A. et al. The slow component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-intensity 
exercise. Journal of applied physiology (Bethesda, Md.: 1985) 121, 493–502, https://doi.org/10.1152/japplphysiol.00249.2016 (2016).

	17.	 Cannon, D. T., White, A. C., Andriano, M. F., Kolkhorst, F. W. & Rossiter, H. B. Skeletal muscle fatigue precedes the slow component 
of oxygen uptake kinetics during exercise in humans. The Journal of physiology 589, 727–739, https://doi.org/10.1113/
jphysiol.2010.197723 (2011).

	18.	 Froyd, C., Millet, G. Y. & Noakes, T. D. The development of peripheral fatigue and short-term recovery during self-paced high-
intensity exercise. J Physiol 591, 1339–1346, https://doi.org/10.1113/jphysiol.2012.245316 (2013).

	19.	 Whipp, B. J., Davis, J. A., Torres, F. & Wasserman, K. A test to determine parameters of aerobic function during exercise. Journal of 
Applied Physiology 50, 217–221 (1981).

	20.	 Bailey, S. J. et al. Inspiratory muscle training enhances pulmonary O-2 uptake kinetics and high-intensity exercise tolerance in 
humans. Journal of Applied Physiology 109, 457–468 (2010).

	21.	 Weissman, M. L. et al. Cardiac output increase and gas exchange at start of exercise. Journal of Applied Physiology 52, 236–244 
(1982).

	22.	 Paterson, D. H. & Whipp, B. J. Asymmetries of oxygen uptake transients at the on- and offset of heavy exercise in humans. Journal 
of Physiology-London 443, 575–586 (1991).

	23.	 Whipp, B. J., Ward, S. A., Lamarra, N., Davis, J. A. & Wasserman, K. Parameters of ventilatory and gas exchange dynamics during 
exercise. Journal of Applied Physiology 52, 1506–1513 (1982).

	24.	 Rossiter, H. B. et al. Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension 
exercise in humans. The Journal of physiology 537, 291–303, https://doi.org/10.1111/j.1469-7793.2001.0291k.x (2001).

	25.	 Murgatroyd, S. R., Ferguson, C., Ward, S. A., Whipp, B. J. & Rossiter, H. B. Pulmonary O2 uptake kinetics as a determinant of high-
intensity exercise tolerance in humans. Journal of applied physiology 110, 1598–1606 (2011).

	26.	 Merton, P. A. Voluntary strength and fatigue. Journal of Physiology-London 123, 553–564 (1954).
	27.	 Strojnik, V. & Komi, P. V. Neuromuscular fatigue after maximal stretch-shortening cycle exercise. Journal of Applied Physiology 84, 

344–350 (1998).
	28.	 Gandevia, S. C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiological Reviews 81, 1725–1789 (2001).
	29.	 Vollestad, N. K. Measurement of human muscle fatigue. Journal of Neuroscience Methods 74, 219–227 (1997).
	30.	 Bigland-Ritchie, B., Dawson, N. J., Johansson, R. S. & Lippold, O. C. J. Reflex origin for the slowing of motoneurone firing rates in 

fatigue of human voluntary contractions. Journal of Physiology-London 379, 451–459 (1986).
	31.	 Metzger, J. M. & Moss, R. L. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal 

muscle fibres. The Journal of Physiology 428, 737–750 (1990).
	32.	 Place, N., Yamada, T., Bruton, J. D. & Westerblad, H. Muscle fatigue: from observations in humans to underlying mechanisms 

studied in intact single muscle fibres. European journal of applied physiology 110, 1–15, https://doi.org/10.1007/s00421-010-1480-0 
(2010).

	33.	 Jones, D. A. High- and low-frequency fatigue revisited. Acta Physiologica Scandinavica 156, 265–270 (1996).
	34.	 Watanabe, D. et al. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force 

depression after in situ stimulation in rat skeletal muscle. J Muscle Res Cell Motil 36, 275–286, https://doi.org/10.1007/s10974-015-
9409-1 (2015).

	35.	 Westerblad, H. & Allen, D. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of 
mouse skeletal muscle. Pflügers Archiv European Journal of Physiology 431, 964–970, https://doi.org/10.1007/s004240050092 (1996).

	36.	 Bruton, J. D. et al. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres 
of rats, mice and SOD2 overexpressing mice. J Physiol 586, 175–184, https://doi.org/10.1113/jphysiol.2007.147470 (2008).

	37.	 Thistlethwaite, J. R., Thompson, B. C., Gonzales, J. U. & Scheuermann, B. W. Prior heavy knee extension exercise does not affect $$\
dot{V}\hbox{O}_{2}$$kinetics during subsequent heavy cycling exercise. European Journal of Applied Physiology 102, 481–491, 
https://doi.org/10.1007/s00421-007-0614-5 (2008).

	38.	 Hopker, J. G., Caporaso, G., Azzalin, A., Carpenter, R. & Marcora, S. M. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake 
Kinetics during High-Intensity Exercise. Frontiers in Physiology 7, https://doi.org/10.3389/fphys.2016.00463 (2016).

	39.	 do Nascimento Salvador, P. C., Souza, K. Md, De Lucas, R. D., Guglielmo, L. G. A. & Denadai, B. S. The effects of priming exercise 
on the V̇ O2 slow component and the time-course of muscle fatigue during very-heavy-intensity exercise in humans. Appl Physiol 
Nutr Metab 43, 909–919, https://doi.org/10.1139/apnm-2017-0769 (2018).

	40.	 Korzeniewski, B. & Zoladz, J. A. Possible mechanisms underlying slow component of V’O2 on-kinetics in skeletal muscle. Journal of 
Applied Physiology, 1240–1249, https://doi.org/10.1152/japplphysiol.00027.2015 (2015).

Acknowledgements
The authors would like to thank all participants who took part in this study and all technical members at The 
Department of Sport and Exercise Science, Faculty of Science, University of Auckland, Auckland, New Zealand.

Author contributions
F.B. conceived and designed the experiments. Data collection was completed by F.B. and T.G. F.B., T.G., S.C.A., 
J.R. and J.A. analysed, interpreted, revisited, and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-020-64395-5
https://doi.org/10.1249/JES.0000000000000043
https://doi.org/10.1002/cphy.c100072
https://doi.org/10.1002/cphy.c090010
https://doi.org/10.1002/cphy.c090010
https://doi.org/10.1111/j.1600-0838.2010.01167.x
https://doi.org/10.1152/japplphysiol.00249.2016
https://doi.org/10.1113/jphysiol.2010.197723
https://doi.org/10.1113/jphysiol.2010.197723
https://doi.org/10.1113/jphysiol.2012.245316
https://doi.org/10.1111/j.1469-7793.2001.0291k.x
https://doi.org/10.1007/s00421-010-1480-0
https://doi.org/10.1007/s10974-015-9409-1
https://doi.org/10.1007/s10974-015-9409-1
https://doi.org/10.1007/s004240050092
https://doi.org/10.1113/jphysiol.2007.147470
https://doi.org/10.1007/s00421-007-0614-5
https://doi.org/10.3389/fphys.2016.00463
https://doi.org/10.1139/apnm-2017-0769
https://doi.org/10.1152/japplphysiol.00027.2015
http://www.nature.com/reprints


1 1Scientific Reports |         (2020) 10:7728  | https://doi.org/10.1038/s41598-020-64395-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64395-5
http://creativecommons.org/licenses/by/4.0/

	BIBLIOGRAFIA.pdf
	16 Appendix.pdf
	Publicacion 2.pdf
	The metabolic profiles of different fiber type populations under the emergence of the slow component of oxygen uptake
	Abstract 
	Background
	Methods
	Data statistical analysis

	Results
	Discussion
	Conclusion
	Acknowledgements
	References


	Publicacion 1.pdf
	Alterations to neuromuscular properties of skeletal muscle are temporally dissociated from the oxygen uptake slow component ...
	Methods

	Participants. 
	Experimental design. 
	Testing procedures. 
	Incremental ramp test. 
	Step transition tests. 
	Neuromuscular evaluation. 

	Measurements. 
	Pulmonary gas exchange. 
	PNS. 
	Torque measurement. 
	Electromyography recordings. 

	Data analysis. 
	Oxygen uptake kinetic analysis. 
	Neuromuscular function analysis. 

	Data and statistical analysis. 
	Ethical approval. 

	Results

	Oxygen uptake kinetics. 
	Neuromuscular function. 
	The SCV and fatigue. 

	Discussion

	Origin of fatigue observed during exercise. 
	The SCV and fatigue. 
	Experimental consideration. 

	Conclusion

	Acknowledgements

	Figure 1 Description of events completed during experimental testing (A) and during neuromuscular testing (B).
	Figure 2 Neuromuscular alterations for peak twitch amplitude (A), 10 Hz paired (P10) stimulation (B), 100 Hz paired (P100) stimulation (C), and P10/P100 (D) over the course of exercise.
	Figure 3 The relationship between peak twitch amplitude (A), 10 Hz paired (P10) stimulation (B), 100 Hz paired (P100) stimulation (C), and P10/P100 (D) and the change in SCV relative to the primary phase.
	Table 1 Time course of slow component amplitude in absolute, and in percentage of the primary component.
	Table 2 Changes in neuromuscular function over the time course of the slow component.
	Table 3 Correlation coefficient and Box-Tidwell test between the slow component amplitude, as a percentage of the primary phase, and neuromuscular function.





