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Abstract 
Genes of the major histocompatibility complex (MHC) have been shown to influence 
social signalling and mate preferences in many species, including humans. First 
observations suggest that MHC signalling may also affect female fertility. To test this 
hypothesis, we exposed 191 female horses (Equus caballus) to either a MHC-similar 
or a MHC-dissimilar stimulus male around the time of ovulation and conception. A 
within-subject experimental design controlled for non-MHC linked male 
characteristics, and instrumental insemination with semen of other males (N=106) 
controlled for potential confounding effects of semen or embryo characteristics. We 
found that females were more likely to become pregnant if exposed to a MHC-
dissimilar than to a MHC-similar male, while overall genetic distance to the stimulus 
males (based on microsatellite markers on 20 chromosomes) had no effect. Our 
results demonstrate that early pregnancy failures can be due to maternal life-history 
decisions (cryptic female choice) influenced by MHC-linked social signalling. 
 
Introduction 
The major histocompatibility complex (MHC) is a group of polymorphic genes that 
play a crucial role in the adaptive immune response of vertebrates [1]. The MHC also 
plays an important role in social signalling, from parent-progeny and other kinds of 
kin recognition to mate choice and further contexts of inter-sexual communication [2, 
1]. Ruff et al. [2] list over 20 species (including humans, see also [3, 4]) where some 
form of MHC social signalling could be identified, and further examples have been 
added since their review, including the horse (Equus caballus) [5, 6]. In the case of 
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MHC-dependent mate choice, the typical observation is that mating with MHC 
similar individuals is avoided and some degree of MHC-dissimilarity is preferred [2, 
1] (see refs [7, 8] for a recent discussion of alternative models). MHC-linked social 
signalling is either based on either volatile chemical signals [e.g. 9] or on non-volatile 
MHC peptide ligands [10, 11]. The signals are recognized in the vomeronasal organ 
[10] and/or in the main olfactory system [12, 3], i.e. there seem to exist several 
independent mechanisms of MHC-linked social signalling, but the full pathways have 
not been solved yet. 

In the context of sexual selection, the MHC may either be used as a marker for 
kinship to avoid inbreeding, or MHC-based mate preferences may serve to enhance 
the frequency of heterozygotes or of rare alleles among offspring [13] (even if MHC 
heterozygotes may not do better against a given infection than the respective 
homozygotes [14], they often show superiority during coinfections [15, 16]).  

Mate choice is only one of several possible levels at which sexual selection 
may influence offspring genotype [2]. Cryptic female choice includes selection 
against certain types of sperm within the female reproductive tract [17, 18], non-
random gamete fusion [19, 20], and non-random second meiotic division in the egg 
after gamete fusion [19, 21]. The possibility that MHC-linked signals affect female 
decisions at the earliest stages of a pregnancy, i.e. before implantation in the 
endometrium, has received little attention despite its potential relevance in mammals 
[22]. The frequency of early pregnancy failure can be high, e.g. around 22% in 
humans when diagnosed on daily urine samples, compared to 9% that happened after 
clinical detection of pregnancy [23]. If some of these early pregnancy failures were 
indeed due to maternal life-history decisions influenced by MHC-linked social 
signalling, human couples sharing MHC alleles would be expected to have longer 
periods of unprotected intercourse until a pregnancy would be diagnosed. This 
prediction was confirmed in studies on Hutterites [24], a group of people whose 
doctrine generally prohibits contraception. Ober et al.’s [24] observations suggest that 
cryptic female rejection of early embryos could be a form of sexual selection that 
contributes to the excess of MHC heterozygotes that is often observed in, for 
example, human populations [25]. Here we test this possibility, using horses (Equus 
caballus) as experimental model, and concentrating on European warmbloods to 
avoid potential breed effects.  
 
Methods  
Experimental procedures 
The experimental infrastructure consisted of a corridor and 8 boxes (Fig. 1a). Over a 
period of five years, in total 191 oestrous mares without foal (only Warmblood, 
including 18 Franches-Montagnes horses, i.e. a Warmblood-related local breed) were 
individually stabled in one of the boxes during 62 hours (after feeding and water 
installations had been cleaned with water, faeces and urinated litter in the boxes had 
been removed, and new straw had been added). The mares were exposed to one of 10 
stimulus stallions (all Franches-Montagnes) who could freely move in his box and the 
corridor for 17 hours/day. These stimulus stallions were all non-related and unfamiliar 
to the mares, and the mares were haphazardly assigned to them. There were usually 
several mares in the same stable (up to seven of the eight boxes were occupied with 
mares). 

Before a mare would be exposed to a stimulus stallion, her cycle activity was 
monitored daily by rectal ultrasonographic examinations. When at least one follicle 
reached a diameter of ≥ 35 mm, a pronounced uterus oedema was present, and the 
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absence of any corpus luteum was confirmed, 1500 IU human chorionic gonadotropin 
(hCG; Chorulon®, Intervet, Boxmeer, Netherlands) were applied intravenously the 
following evening (in order to induce an ovulation approximately 36 - 42 h later [26]). 
The mare was then introduced into the experiment, i.e. exposed to a stimulus stallion. 
Instrumental inseminations were performed 24h and 38h after hCG application with 
fresh or frozen-thawed semen (of one of 106 other breeding stallions). Instrumental 
insemination allowed controlling for potential effects of semen characteristics [5] and 
of embryo genetics. Sixty-two hours after hCG injection, i.e. before blastocysts are 
expected to leave the oviduct [27], mares were stabled elsewhere without contact to 
any stallions. They were examined for pregnancy 14 - 17 days after ovulation by 
transrectal ultrasound [28]. 
 
MHC and microsatellite typing 
Equine leukocyte antigens (ELA) were determined serologically as in Burger et al. [5, 
6] in microcytotoxicity tests with alloantisera detecting 18 internationally recognised 
MHC class I ELA-A alleles (A1 – A10, A14, A15, A19, W11, W16, W17, W18, and 
W20), 5 locally defined specificities belonging to this same locus (Be22, Be25, Be27, 
Be28, Be108), the non-ELA-A class I antigens BeIII and W21, the MHC class II 
alleles DW13, DW22, DW23, DBe200 and DBeVIII, and the antigen W12 that could 
not yet be assigned to class I or II. Briefly, peripheral blood lymphocytes were 
obtained by Ficoll density gradient centrifugation, washed twice in PBS, resuspended 
in RPMI, and diluted to 2 x 106 cells/ml. Two µl of cell suspension were added to 
wells on Terasaki typing plates. After 20 min incubation at room temperature, 2 µl 
rabbit complement was added to each well. Visualisation of the reaction was 
performed 1 h later by adding 5 µl eosin followed by 5 µl formaldehyde for fixation. 
A positive reaction led to killing of more than 50% of target cells. ELA was 
determined in all 191 mares, all 10 stimulus stallions, and 31 of the 106 semen 
donors. MHC sharing to the semen donor could be determined for 80 mares. All MHC 
types were determined after the experiments, i.e. they were not known during 
handling of the animals. Most mares shared either 0 or 1 antigens with the stimulus 
stallion, but sharing of up to 3 antigens could be found. Of the 112 mares that shared 
at least one antigen with the stimulus stallion, 4 shared only one class II antigen, 14 
shared class II and class I antigens, and the rest only class I antigens, i.e. MHC 
sharing refers mostly to sharing of class I antigens here. Franches-Montagnes (FM) 
mares were not more likely than other Warmblood (WB) to share MHC antigens with 
the FM stimulus stallions (there was even a non-significant tendency of lower sharing 
within FM than between WB and FM; FM mares: 39% sharing, WB mares: 61% 
sharing, c2 = 3.1, p > 0.05). 
 Genetic similarity between individuals was estimated from 20 polymorphic 
microsatellite loci located on 20 different chromosomes (Supplementary Table S1). 
Genomic DNA was extracted from blood (EDTA) with the Qiagen BioSprint robotic 
workstation. Markers were amplified with GoTaq® DNA polymerase except AHT36, 
UMNe567 and UD457 which were pooled and amplified with QIAGEN® Multiplex 
PCR Kit. PCR reactions with GoTaq® DNA polymerase were performed in 10 µl 
reaction volume using 1X GoTaq green reaction buffer, 0.5 µl of DNA, 2.5 mM 
MgCl2 in total, a mix of 0.2 mM dNTPs, 0.5 µM of each primer, and 0.25u of GoTaq® 
DNA polymerase. PCR program with varying annealing temperatures and a general 
procedure was used as follows: 4 min of initial denaturation at 94°C, 38 cycles of 30 s 
at 94°C, 60 s at optimal annealing temperature, 40 s at 72°C, then 5 min of final 
extension at 72°C. PCR with QIAGEN® Multiplex PCR Kit was performed in 10 µl 
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reaction volume using 1x QIAGEN Multiplex PCR Master Mix (3mM Mg2+), 1 µl of 
DNA, 0.2 µM of each primer. PCR program was used as follows: 15 min of initial 
denaturation and activation step at 94°C, 38 cycles of 30 s at 94°C, 90 s at 60°C, 30 s 
at 72°C, then 10 min of final extension at 72°C. All amplicons were subsequently 
analysed on an ABI-3100 sequencer and allele sizes scored using the size standards 
ROX-350 (Genemapper 4.0, Applied Biosystems). 
 Typing of microsatellite loci was based on new blood samples taken in some 
cases long after the experiments. Some samples could no more be taken because the 
mare had meanwhile died or because of other constraints. Therefore, the 
microsatellite-related analyses were based on a haphazardly reduced sample of mares. 
Pairwise relatedness was calculated after Wang [29] using the R package Demerelate 
[30] based on all 20 microsatellite loci (we had the full genotypes of all stimulus 
stallions and of 126 mares).  
 We constructed generalized linear models (GLM) and generalized linear 
mixed models (GLMM) on pregnancy (yes/no) as dependent variable, with MHC 
sharing and genetic relatedness based on microsatellite diversity as fixed factors, and 
the identity of the stimulus stallion as random factor. In order to test the significance 
of an effect, a model lacking or including an effect was compared to a reference 
model in likelihood ratio tests. The analyses were performed in R 3.3.3 [31] with the 
lme4 package [32], and in Jmp® 11.2 (www.jmp.com). 
 
Results 
Sharing of at least one MHC antigen between mares and stimulus stallion was 
frequent (58.6%) and significantly reduced the rate of pregnancies after instrumental 
insemination (Table 1a, Fig. 1b). The identity of the stimulus stallion did not seem to 
play role here (Table 1a), and excluding the 18 mares of the Franches-Montagnes 
breed (a Warmblood-related local breed that was included in this study) did not 
change the conclusion that MHC sharing affected pregnancy (Supplementary Table 
S2). As expected, MHC sharing between mares and semen donors did not correlate to 
MHC sharing between mares and stimulus stallions (n= 80 mares; c2 = 0.7, p = 0.40). 
Whether fresh or frozen-thawed semen was used did not significantly affect 
pregnancy rate (likelihood ratio test: c2 = 1.3, p = 0.26) nor did mare age (logistic fit: 
c2 = 0.9, p = 0.35). 

There was no linkage disequilibrium among the 20 microsatellite markers 
(Figure S1; as expected from microsatellites that are located on different 
chromosomes). Table S3 provides the observed and the expected heterozygosity per 
locus. In total 8 of the 20 loci showed an excess of homozygotes (average Fis = 0.078; 
Table S3) that was partly due to a genetic differentiation between Warmblood and 
Franches-Montagnes horses (mean Fst = 0.078; Table S3). Average pairwise 
relatedness r between stimulus stallion and mare was -0.111 (± 0.137 s.d.). This 
indicator of relatedness was no significant predictor of MHC sharing (mean r of 
MHC-dissimilar pairs = -0.09 ± 0.019 (s.e.), of MHC-similar pairs = -0.12 ± 0.016; t 
= -1.2, p = 0.22) and did not predict pregnancy after the instrumental fertilization 
(Table 1b, Fig. 1c). When directly comparing the effects of the MHC and genetic 
distance on microsatellites, we found again MHC sharing to be a significant predictor 
of female fertility, while r showed no effects (Table 1c).  

Figure 2 suggests that the number of shared MHC antigens did not play a role 
on the outcome of the instrumental fertilization. Nevertheless, models that compare 
the effects of MHC and r based on numbers of shared MHC antigens instead of the 
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dichotomous sharing/no sharing still confirm that MHC signalling affects pregnancy 
(Tables S4 and S5). 

 
Discussion 
Feral mares live in, or disperse between, social groups (“bands”) that usually include 
one or two stallions, i.e. male-male dominance is important in this species but female 
choice by dispersal is possible and likely [33, 34]. Moreover, horses have long 
gestation periods (approximately 11 months), and foal condition crucially depends on 
maternal investment for some time after gestation [35]. Differential maternal 
reproductive strategies are therefore expected [36] and have indeed been found at 
early stages of pregnancy [37, 38]. Our findings demonstrate that differential maternal 
reproductive strategies can also depend on MHC-linked signals emitted by stallions. 
There may be other male traits that signal, for example, health and vigour or male-
male dominance and that could potentially influence female reproductive decisions 
[39, 40]. Our experimental design separated these other potential effects from effects 
of MHC sharing. It turned out that no stimulus stallion was significantly superior in 
affecting pregnancy rates. What mattered was whether stimulus stallions and mares 
shared MHC antigens.  
 In mice, post-mating exposure to MHC-linked odours from a male who is not 
the progenitor can induce pregnancy termination [41]. This so-called “Bruce effect” 
[42-44] serves females to avoid costs of embryogenesis if offspring are likely to be 
killed by a new territory holder [45]. Evidence for the Bruce effect has been reported 
in horses [46, 38] and other equids [47], and it is possible that such pregnancy 
terminations are induced via MHC signalling in social communication, too. However, 
the selection mechanism we discovered here is different. A pregnancy termination in 
anticipation of male infanticide would require a stimulus that implies a take-over of a 
territory or band by a new male, i.e. a female would have to compare new male 
stimuli to the ones she received at the time of conception. If MHC-linked signals were 
involved here, the stimulus male’s MHC would have to be different to the MHC of 
the genetic father of the embryo. Whether the stimulus male is similar or dissimilar to 
the female’s MHC would not be expected to matter in such situations, as 
experimentally confirmed in mice [48]. However, the very early pregnancy failures 
that we observed here happened before embryonic implantation and pregnancy can be 
diagnosed by ultrasonography [49]. They were directly dependent on whether the 
mare shared MHC antigens with the stimulus stallion, i.e. they mirrored mate choice 
decisions that have been found in various vertebrates [2].  
 In humans, the prevalence of recurrent spontaneous abortions (of clinically 
diagnosed pregnancies) could frequently be linked to higher than usual MHC sharing 
between couples, but the evidence remains mixed [50, 51]. The kind of selection we 
found here would mostly go unnoticed or only delay menses in humans [23]. Maternal 
life-history decisions could play a role here, because human couples sharing MHC 
alleles have been found to have longer periods of unprotected intercourse between 
diagnosed pregnancies in Hutterites [24]. These first observations in humans [24] and 
our experimental findings in horses suggest that cryptic female acceptance or 
rejection of early embryos is an important further stage at which the MHC influences 
sexual selection.  

In conclusion, cryptic female choice allows females to control male 
reproductive success after mating. In mammals, cryptic female choice may even 
include maternal decisions about survival of early embryos in the endometrium. If so, 
mate preferences are expected to influence female fertility. We tested this hypothesis 
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with horses, controlling for potentially confounding effects of ejaculate 
characteristics, embryo genetics, and genetic distance between mare and stimulus 
stallion. We found that mares are more likely to become pregnant if exposed to MHC-
dissimilar than MHC-similar stallions around the time of instrumental insemination. It 
remains to be shown whether these negative effects of MHC-similar stallions on 
female reproductive decisions have evolved as a means to avoid inbreeding or to 
promote heterozygosity in the MHC region [13]. 
 
Ethics. Ethical clearance was granted by the Vaud canton, Switzerland (Service 
Vétérinaire, permission 2539 and 2227). Daily experimental handling time of mares 
and stallions was minimized. No manipulation resulted in injuries. 
 
Data accessibility. The datasets supporting this article can be accessed at Dryad 
Digital Repository: http://dx.doi.org/10.5061/dryad.04k5q 
 
Authors’ contributions. D.B., H.S., and C.W. designed the study, D.B. supervised 
the experiments, H.A. and M.D. tested the protocols and performed the experiments 
in the first two years, G.F. did the microsatellite genotyping, S.T. and E.M. performed 
the ELA typing, and D.B., M.R., and C.W. analysed the data. D.B. and C.W. wrote 
the manuscript that was then critically revised by all authors. 
 
Competing interests. We have no competing interests. 
 
Funding. This research was supported by the ISMEquine Research and the Swiss 
National Science Foundation (310030-138295, 310030-129837/1, and 31003A-
159579). 
 
Acknowledgments. We thank the horse owners for giving their informed consent, 
and C. Berney, J. Janda, E. Jeannerat, R. Käser, S. Lazary, J. Pannell, M. Walker, B. 
Wespi, the “vet team” of the Swiss Institute of Equine Medicine for discussion and/or 
assistance, and I. Cuthill, T. Pizzari, and the reviewers for comments.  
 
Supplementary Information. Tables S1 – S5; Figure S1. 
 
References 
1. Davies D.M. 2013 The compatibility gene. London, Allen Lane. 
2. Ruff J.S., Nelson A.C., Kubinak J.L., Potts W.K. 2012 MHC signaling during 

social communication. Adv. Exp. Med. Biol. 738, 290-313. (doi:10.1007/978-1-
4614-1680-7_17). 

3. Milinski M., Croy I., Hummel T., Boehm T. 2013 Major histocompatibility 
complex peptide ligands as olfactory cues in human body odour assessment. 
Proc. R. Soc. B Biol. Sci. 280(1755). (doi:10.1098/rspb.2012.2889). 

4. Kromer J., Hummel T., Pietrowski D., Giani A.S., Sauter J., Ehninger G., 
Schmidt A.H., Croy I. 2016 Influence of HLA on human partnership and sexual 
satisfaction. Sci. Rep. 6, 32550. (doi:10.1038/srep32550). 

5. Burger D., Dolivo G., Marti E., Sieme H., Wedekind C. 2015 Female major 
histocompatibility complex type affects male testosterone levels and sperm 
number in the horse (Equus caballus). Proc. R. Soc. B Biol. Sci. 282(1807), 
20150407. (doi:10.1098/rspb.2015.0407). 



	 7	

6. Burger D., Meuwly C., Marti E., Sieme H., Oberthur M., Janda J., Meinecke-
Tillmann S., Wedekind C. 2017 MHC-correlated preferences in diestrous female 
horses (Equus caballus). Theriogenology 89, 318-323 e311. 
(doi:10.1016/j.theriogenology.2016.09.015). 

7. Kamiya T., O'Dwyer K., Westerdahl H., Senior A., Nakagawa S. 2014 A 
quantitative review of MHC-based mating preference: the role of diversity and 
dissimilarity. Mol. Ecol. 23(21), 5151-5163. (doi:10.1111/mec.12934). 

8. Winternitz J., Abbate J.L., Huchard E., Havlicek J., Garamszegi L.Z. 2017 
Patterns of MHC-dependent mate selection in humans and nonhuman primates: a 
meta-analysis. Mol. Ecol. 26(2), 668-688. (doi:10.1111/mec.13920). 

9. Leclaire S., Strandh M., Mardon J., Westerdahl H., Bonadonna F. 2017 Odour-
based discrimination of similarity at the major histocompatibility complex in 
birds. Proc. R. Soc. B Biol. Sci. 284(1846). (doi:10.1098/rspb.2016.2466). 

10. Leinders-Zufall T., Brennan P., Widmayer P., Chandramani P., Maul-Pavicic A., 
Jager M., Li X.H., Breer H., Zufall F., Boehm T. 2004 MHC class I peptides as 
chemosensory signals in the vomeronasal organ. Science 306(5698), 1033-1037. 
(doi:10.1126/science.1102818). 

11. Milinski M., Griffiths S., Wegner K.M., Reusch T.B.H., Haas-Assenbaum A., 
Boehm T. 2005 Mate choice decisions of stickleback females predictably 
modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA 102(12), 4414-
4418. (doi:10.1073/pnas.0408264102). 

12. Spehr M., Kelliher K.R., Li X.H., Boehm T., Leinders-Zufall T., Zufall F. 2006 
Essential role of the main olfactory system in social recognition of major 
histocompatibility complex peptide ligands. Journal of Neuroscience 26(7), 
1961-1970. (doi:10.1523/jneurosci.4939-05.2006). 

13. Penn D.J., Potts W.K. 1999 The evolution of mating preferences and major 
histocompatibility complex genes. Am. Nat. 153(2), 145-164. 
(doi:10.1086/303166). 

14. Wedekind C., Walker M., Little T.J. 2005 The course of malaria in mice: major 
histocompatibility complex (MHC) effects, but no general MHC heterozygote 
advantage in single-strain infections. Genetics 170(3), 1427-1430. 
(doi:10.1534/genetics.105.040683). 

15. Penn D.J., Damjanovich K., Potts W.K. 2002 MHC heterozygosity confers a 
selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. USA 
99(17), 11260-11264. (doi:10.1073/pnas.162006499). 

16. McClelland E.E., Penn D., Potts W.K. 2003 Major histocompatibility complex 
heterozygote superiority during coinfection. Infect. Immun. 71, 2079-2086. 
(doi:10.1128/IAI.71.4.2079-2086.2003). 

17. Lovlie H., Gillingham M.A.F., Worley K., Pizzari T., Richardson D.S. 2013 
Cryptic female choice favours sperm from major histocompatibility complex-
dissimilar males. Proc. R. Soc. B Biol. Sci. 280(1769). 
(doi:10.1098/rspb.2013.1296). 

18. Firman R.C., Gasparini C., Manier M.K., Pizzari T. 2017 Postmating female 
control: 20 years of cryptic female choice. Trends Ecol. Evol. 32(5), 368-382. 
(doi:10.1016/j.tree.2017.02.010). 

19. Wedekind C., Chapuisat M., Macas E., Rülicke T. 1996 Non-random fertilization 
in mice correlates with the MHC and something else. Heredity 77, 400-409. 
(doi:10.1038/hdy.1996.160). 

20. Firman R.C., Simmons L.W. 2015 Gametic interactions promote inbreeding 
avoidance in house mice. Ecol. Lett. 18(9), 937-943. (doi:10.1111/ele.12471). 



	 8	

21. Rülicke T., Chapuisat M., Homberger F.R., Macas E., Wedekind C. 1998 MHC-
genotype of progeny influenced by parental infection. Proc. R. Soc. B Biol. Sci. 
265(1397), 711-716. (doi:10.1098/rspb.1998.0351). 

22. Stearns S.C. 2012 Evolutionary medicine: its scope, interest and potential. Proc. 
R. Soc. B Biol. Sci. 279(1746), 4305-4321. (doi:10.1098/rspb.2012.1326). 

23. Wilcox A.J., Weinberg C.R., Oconnor J.F., Baird D.D., Schlatterer J.P., Canfield 
R.E., Armstrong E.G., Nisula B.C. 1988 Incidence of early loss of pregnancy. N. 
Engl. J. Med. 319(4), 189-194. (doi:10.1056/nejm198807283190401). 

24. Ober C., Elias S., Kostyu D.D., Hauck W.W. 1992 Decreased fecundability in 
Hutterite couples sharing HLA-DR. Am. J. Hum. Genet. 50(1), 6-14. 

25. Hedrick P.W., Thomson G. 1983 Evidence for balancing selection at HLA. 
Genetics 104, 449-456. 

26. Newcombe J. 2011 Human chorionic gonadotropin. In Equine reproduction, 2nd 
edition (eds. McKinnon A.O., Squires E.L., Vaala W.E., Varner D.D.), pp. 1804-
1810. West Sussex, Wiley-Blackwell. 

27. Betteridge K.J. 2007 Equine embryology: An inventory of unanswered questions. 
Theriogenology 68, S9-S21. (doi:10.1016/j.theriogenology.2007.04.037). 

28. McCue P.M., McKinnon A.O. 2011 Pregnancy examination. In Equine 
reproduction, 2nd edition (eds. McKinnon A.O., Squires E.L., Vaala W.E., 
Varner D.D.), pp. 2245-2261. West Sussex, Wiley-Blackwell. 

29. Wang J. 2002 An estimator for pairwise relatedness using molecular markers. 
Genetics 160, 1203-1215. 

30. Kraemer P., Gerlach G. 2017 Demerelate: calculating interindividual relatedness 
for kinship analysis based on codominant diploid genetic markers using R. Mol 
Ecol Resour. (doi:10.1111/1755-0998.12666). 

31. R Development Core Team. 2011 R: A language and environment for statistical 
computing.  (Vienna, Austria, R Foundation for Statistical Computing; 
http://www.r-project.org/. 

32. Bates D., Maechler M., Bolker B. 2011 lme4: Linear mixed-effects models using 
S4 classes. In R package version 0.999375-39 ( 

33. Bowling A.T., Touchberry R.W. 1990 Parentage of Great-Basin feral horses. J. 
Wildl. Manag. 54(3), 424-429. (doi:10.2307/3809652). 

34. Linklater W.L., Cameron E.Z. 2009 Social dispersal but with philopatry reveals 
incest avoidance in a polygynous ungulate. Anim. Behav. 77, 1085-1093. 
(doi:10.1006/anbe.1999.1155). 

35. Boyd L., Keiper R. 2005 Behavioral ecology of feral horses. In The domestic 
horse: the origins, development, and management of its behaviour (eds. Mills 
D.S., McDonnell S.M.), pp. 55-82. Cambridge, Cambridge University Press. 

36. Pischedda A., Rice W.R. 2012 Partitioning sexual selection into its mating 
success and fertilization success components. Proc. Natl. Acad. Sci. USA 109(6), 
2049-2053. (doi:10.1073/pnas.1110841109). 

37. Cameron E.Z., Linklater W.L. 2007 Extreme sex ratio variation in relation to 
change in condition around conception. Biol. Lett. 3(4), 395-397. 
(doi:10.1098/rsbl.2007.0089). 

38. Bartos L., Bartosova J., Pluhacek J., Sindelarova J. 2011 Promiscuous behaviour 
disrupts pregnancy block in domestic horse mares. Behav. Ecol. Sociobiol. 65(8), 
1567-1572. (doi:10.1007/s00265-011-1166-6). 

39. Roberts S.C., Gosling L.M. 2003 Genetic similarity and quality interact in mate 
choice decisions by female mice. Nat. Genet. 35(1), 103-106. 
(doi:10.1038/ng1231). 



	 9	

40. Sherborne A.L., Thom M.D., Paterson S., Jury F., Ollier W.E.R., Stockley P., 
Beynon R.J., Hurst J.L. 2007 The genetic basis of inbreeding avoidance in house 
mice. Curr. Biol. 17(23), 2061-2066. (doi:10.1016/j.cub.2007.10.041). 

41. Yamazaki K., Beauchamp G.K., Wysocki C.J., Bard J., Thomas L., Boyse E.A. 
1983 Recognition of H-2 types in relation to the blocking of pregnancy in mice. 
Science 221, 186-188. (doi:10.1126/science.6857281). 

42. Bruce H.M. 1959 Exteroceptive block to pregnancy in the mouse. Nature 184, 
105-105. (doi:10.1038/184105a0). 

43. Marashi V., Rülicke T. 2012 The Bruce effect in Norway rats. Biol. Reprod. 
86(1). (doi:10.1095/biolreprod.111.093104). 

44. Roberts E.K., Lu A., Bergman T.J., Beehner J.C. 2012 A Bruce effect in wild 
geladas. Science 335(6073), 1222-1225. (doi:10.1126/science.1213600). 

45. Hausfater G., Hrdy S.B. 2008 Infanticide: comparative and evolutionary 
perspectives. New York, Aldine. 

46. Berger J. 1983 Induced abortion and social factors in wild horses. Nature 303, 
59-61. (doi:10.1038/303059a0). 

47. Pluhacek J., Bartos L. 2000 Male infanticide in captive plains zebra, Equus 
burchelli. Anim. Behav. 59, 689-694. (doi:10.1006/anbe.1999.1371). 

48. Rülicke T., Guncz N., Wedekind C. 2006 Early maternal investment in mice: no 
evidence for compatible-genes sexual selection despite hybrid vigor. J. Evol. 
Biol. 19, 922-928. (doi:10.1111/j.1420-9101.2005.01039.x). 

49. Vanderwall D.K. 2008 Early embryonic loss in the mare. J. Equine Vet. Sci. 
28(11), 691-702. (doi:10.1016/j.jevs.2008.10.001). 

50. Beydoun H., Saftlas A.F. 2005 Association of human leucocyte antigen sharing 
with recurrent spontaneous abortions. Tissue Antigens 65(2), 123-135. 
(doi:10.1111/j.1399-0039.2005.00367.x). 

51. Meuleman T., Lashley L., Dekkers O.M., van Lith J.M.M., Claas F.H.J., 
Bloemenkamp K.W.M. 2015 HLA associations and HLA sharing in recurrent 
miscarriage: A systematic review and meta-analysis. Human Immunology 76(5), 
362-373. (doi:10.1016/j.humimm.2015.02.004). 

52. Mittmann E.H., Lampe V., Mömke S., Zeitz A., Distl O. 2010 Characterization of 
a minimal microsatellite set for whole genome scans informative in warmblood 
and coldblood horse breeds. J. Hered. 101(2), 246–250. 
(doi:10.1093/jhered/esp091). 

  



	 10	

Table 1. Effects of genetic similarity on female fertility (pregnant yes/no). 
Likelihood ratio tests comparing GLMMs and GLMs with genetic markers (fixed 
factors) and/or stallion identity (“ID”, random factor) and reference models (indicated 
in italics) to test the effects of (A) MHC antigen sharing (“MHC”, yes/no), and (B) 
pairwise genetic relatedness “r” based on 20 polymorphic microsatellite loci. (C) 
Direct comparison of effects of MHC and r in the subsample of 126 mares that allow 
for such a test. Significant p-values are emphasized in bold. 

 

 Model Effect tested d.f. logL c2 P 

(A) MHC effects (191 mares)     

 MHC + ID 3 -126.4   

 ID MHC sharing 2 -129.2 5.47 0.019 

 MHC Stallion ID 2 -126.5 0.14 0.71 

 MHC + ID + IDxMHC Stallion ID x MHC  4 -126.4 0.12 0.73 

(B) Diversity on microsatellites (126 mares)    

 r + ID  3 -85.5   

 ID r 2 -85.7 0.54 0.46 

 r Stallion ID 2 -85.5 0 1.0 

 r + ID + ID x r Stallion ID x r  4 -85.5 0 1.0 

(C) MHC vs microsatellites (126 mares)    

 MHC + r + ID  4 -79.9   

 r + ID MHC sharing 3 -85.5 11.2 <0.001 

 MHC + ID r 3 -80.0 0.1 0.70 

 MHC + r Stallion ID  3 -79.9 0 1.0 
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Figure Legends 
 
Fig. 1.  Experimental set-up and female fertility in response to the sharing of 
MHC or microsatellite alleles. (A) Exposure of oestrous mares (in boxes) to one of 
the 10 stimulus stallions. (B) Pregnancy rate per stimulus stallion (means ± 95% CI) 
in response to MHC sharing between mares (N=191) and stimulus stallions. (C) 
Logistic plot illustrating that pairwise relatedness r is a poor predictor of pregnancy. 
To improve visibility, points are jittered randomly along the y axis within the range 
that corresponds to pregnant or not pregnant. See Table 1 for statistics.  
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Fig. 2.  Pregnancy rates relative to number of MHC antigens shared between 
stimulus stallion and mare. The numbers in the boxes give the number of mares.  

 

 



Supplementary Table S1. The 20 microsatellite markers used to determine overall genetic similarity 
The name of the markers, their chromosomal location, their primer sequences [52], the annealing temperature, and the fluorophores we used, the 
number of alleles found in the present sample (N = 148), and the number of alleles previously observed in 311 world-wide distributed 
Hanoverian warmblood horses. 
 

Name 
(chromosome) 

Primer sequence (5'- 3') Annealing 
temperature 

Fluorophore Number of 
alleles in 

present study  

Number of alleles in 
Mittmann et al. [52] 

VIAS-H34 (1) GCTTTTGTTTCTCAATCCTAGC     58°C HEX 11 7 

TGAAGTCAAATCCCTGCTTC         

UMNe448 (2) CCATTCTGCCCTGATTGG        55°C FAM 6 6 

TTCAAGACCCCTCAATCTGC        

AHT36 (3) TGCTGCTCCAGTGTCCT  60°C AT550 9 8 

TAGATTTCACAGGCGGGTG    

UMNe567 (5) GGTGCAGCTGCTAGCTCAG 60°C FAM 6 4 

AGACCCAGTCATTGGGAGG   

LEX065 (6) GAAGGCACAATTCAATCTACT      60°C ATTO550 6 5 

GCCCAGTCCCATTCTAAC           
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HTG4 (9) CTATCTCAGTCTTCATTGCAGGAC  55°C AT550 6 6 

CTCCCTCCCTCCCTCTGTTCTC    

COR048 (10) GATTGGGATGCAAAGATGAG  58°C FAM 8 6 

CAAGAGGATTGGGAACAAAGG    

UCD457 (11) GGGGCGTGAGCATAAAGG  60°C FAM 12 10 

CGCTGGATGAGTGAGGGA    

COR069 (13) AGGCAGCTTGACTACCCTGA       58°C ATTO550 8 7 

AAAGTCTCCCCTGCGTGTT          

UM010 (14) TACAGCCATTGGAAATCTAC      55°C FAM 7 7 

CACCATTACATTTTCCCAG         

HMS20 (16) TGAGTGTTTGCGTGTGTGTG       58°C FAM 6 5 

TCCCGTCTCCTCTCTTGTTC         

TKY924 (17) TTCACCTATGAGTTTGAGGTA 55°C HEX 5 4 

CGTCATAATGCAGACTCTTTG   

TKY101 (18) TCTGAAATACCGTGTGCCT  55°C FAM 9 8 

TTCTGCCTCCCTCCAACTTT    
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TKY582 (22) AGCCACCAGTCTGTTCTCTG       58°C HEX 6 7 

AATGTCCTTTGGTGGATGAAC        

UCD405 (25) ACCTCGTCTGGCTGTTGTAAG      60°C HEX 9 9 

ACTTGCTGTGCGACTCTG           

UM005 (26) CCCTACCTGAAATGAGAATTG  55°C HEX 7 7 

GGCAAAAGATCAGGCCAT    

TKY315 (27) GATGCCTCGAACTAGCTTG 55°C FAM 8 8 

GATCTTCCATGTTTTTGTTTGG   

TKY333 (28) CCTTCACTAGCCTTCAAATG 55°C FAM 11 8 

TTGTGTTTAGACAGTGCTGC   

COR082 (29) TGGGAGAGGTACCTGAAATGTAC    55°C ATTO550 9 7 

GTTGCTATAAAAAATTGTCTCCCTAC   

AHT34 (31) CTCAGGGCGAATGTTCCTC        60°C FAM 9 7 

CCCCACCATGAGTCAAAAAC         

 



Supplementary Table S2. Effects of genetic similarity on female fertility 

(pregnant yes/no), restricting the analyses to only warmblood mares (N=173). 

Likelihood ratio tests comparing GLMMs and GLMs with genetic markers (fixed 

factors) and/or stallion identity (“ID”, random factor) and reference models (indicated 

in italics) to test the effects of (A) MHC antigen sharing (“MHC”, yes/no), and (B) 

pairwise genetic relatedness “r” based on 20 polymorphic microsatellite loci. (C) 

Direct comparison of effects of MHC and r in the subsample of 113 mares that allow 

for such a test. Significant p-values are emphasized in bold. 

  

 Model Effect tested d.f. logL c2 P 

(A) MHC effects (173 mares)     

 MHC + ID 3 -113.8   

 ID MHC sharing 2 -115.5 3.3 0.071 

 MHC Stallion ID 2 -113.9 0.02 0.90 

 MHC + ID + ID x MHC Stallion ID x MHC  4 -133.7 0.3 0.58 

(B) Diversity on microsatellites (113 mares)    

 r + ID  3 -75.0   

 ID r 2 -75.1 0.24 0.63 

 r Stallion ID 2 -75.0 0 1.0 

 r + ID + ID x r Stallion ID x r 4 -75.0 0 1.0 

(C) MHC vs microsatellites (113 mares)    

 MHC + r+ ID  4 -70.4   

 r + ID MHC sharing 3 -75.0 9.1 0.003 

 MHC + ID r 3 -70.7 0.6 0.44 

 MHC + r Stallion ID  3 -70.4 0 1 

 1 p = 0.04 if tested directed (Rice and Gaines 1994 PNAS. 91, 225-226) based on the 
a priori expectancy that MHC-dissimilar stallions are more attractive than MHC-
similar stallions 
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Supplementary Table S3. Diversity of the 20 microsatellite loci.  

Observed (Hobs) and expected (Hexp) heterozygosity, test for deviation from Hardy-

Weinberg equilibrium (c2, d.f., p), heterozygosity deficiency coefficient (Fis), and 

differentiation between Warmblood and Franches-Montagnes horses (Fst).  

 

Name Hobs Hexp c2 d.f. p Fis Fst 

AHT36 0.749 0.770 179.7 45 0* 0.047 0.044 

UCD457 0.682 0.740 220.2 78 0.014 0.097 0.074 

UMNe567 0.538 0.657 49.1 15 0* 0.181 0.009 

HTG4 0.610 0.651 158.3 21 0.135 -0.027 0.099 

TKY101 0.528 0.696 200.4 45 0* 0.212 0.001 

TKY315 0.585 0.641 26.1 28 0.107 0.104 0.051 

COR082 0.728 0.769 181.3 45 0.086 0.008 0.071 

UCD405 0.677 0.739 57.5 36 0.084 0.088 0.055 

UMO10 0.790 0.755 22.3 21 0.291 -0.076 0.009 

COR069 0.703 0.743 84.1 28 0* 0.030 0.086 

HMS20 0.631 0.679 163.5 15 0.002* -0.016 0.263 

LEX065 0.713 0.675 7.4 15 0.947 -0.051 0.008 

TKY582 0.641 0.772 172.2 21 0* 0.127 0.229 

AHT34 0.790 0.804 63.1 36 0.049 0.007 0.116 

UMNe448 0.672 0.743 24.5 15 0.015 0.155 0.023 

COR048 0.641 0.690 18.4 28 0.218 0.098 0.115 

TKY333 0.779 0.830 72.9 55 0.289 0.035 0.055 

UM005 0.697 0.772 177.6 21 0.002* 0.098 0.120 

TKY924 0.764 0.731 6.4 10 0.693 -0.060 0.054 

VIAS.H34 0.379 0.732 688.1 55 0* 0.499 0.027 

*significant after Holm-Bonferroni correction 
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Supplementary Table S4. Effects of genetic similarity on female fertility 

(pregnant yes/no) based on numbers of shared MHC antigens instead of the 

dichotomous sharing/no sharing. Likelihood ratio tests comparing GLMMs and 

GLMs with genetic markers (fixed factors) and/or stallion identity (“ID”, random 

factor) and reference models (indicated in italics) to test the effects of (A) number of 

shared MHC antigens (“MHC”, range 0 to 3), and (B) direct comparison of effects of 

number of shared MHC antigens and pairwise relatedness r in the subsample of 126 

mares that allow for such a test. Significant p-values are emphasized in bold. 

 

 Model Effect tested d.f. logL c2 P 

(A) MHC effects (191 mares)     

 MHC + ID 3 -127.6   

 ID MHC sharing 2 -129.2 3.2 0.07 

 MHC Stallion ID 2 -127.6 0.1 0.80 

 MHC + ID + IDxMHC Stallion ID x MHC  4 -127.6 0.1 0.81 

(B) MHC vs microsatellites (126 mares)    

 MHC + r + ID  4 -80.0   

 r + ID MHC sharing 3 -85.5 10.9 0.001 

 MHC + ID r 3 -80.1 0.03 0.86 

 MHC + r Stallion ID  3 -80.0 0 1.0 
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Supplementary Table S5. Effects of genetic similarity on female fertility 

(pregnant yes/no), based on numbers of shared MHC antigens instead of the 

dichotomous sharing/no sharing and restricting the analyses to only warmblood 

mares (N=173). Likelihood ratio tests comparing GLMMs and GLMs with genetic 

markers (fixed factors) and/or stallion identity (“ID”, random factor) and reference 

models (indicated in italics) to test the effects of (A) number of shared MHC antigens 

(“MHC”, range 0 to 3), and (B) the effects of the number of shared MHC antigens and 

r in the subsample of 113 mares that allow for a direct comparison. Significant p-

values are emphasized in bold. 

 

 Model Effect tested d.f. logL c2 P 

(A) MHC effects (173 mares)     

 MHC + ID 3 -114.7   

 ID MHC sharing 2 -115.5 1.6 0.20 

 MHC Stallion ID 2 -114.7 0 1.0 

 MHC + ID + ID x MHC Stallion ID x MHC  4 -114.6 0.1 0.78 

(B) MHC vs microsatellites (113 mares)    

 MHC + r+ ID  4 -70.6   

 r + ID MHC sharing 3 -75.0 8.8 0.003 

 MHC + ID r 3 -71.0 0.9 0.35 

 MHC + r Stallion ID  3 -70.6 0 1 
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Supplementary Figure S1. Testing for linkage disequilibrium between the 20 

microsatellite loci. There was no linkage disequilibrium among the 20 microsatellite 

markers. 

 
 

 

 


