
Feasibility of an alternative method to estimate glenohumeral joint center
from videogrammetry measurements and CT/MRI of patients

Ehsan Sarsharia,b, Matteo Mancusoc, Alexandre Terrierb, Alain Farrond, Philippe Mullhaupta and
Dominique Piolettib

aAutomatic Control Laboratory, Ecole Polytechnique F�ed�erale de Lausanne (EPFL), Lausanne, Switzerland; bLaboratory of
Biomechanical Orthopedics, Ecole Polytechnique F�ed�erale de Lausanne (EPFL), Lausanne, Switzerland; cLaboratory of Movement
Analysis and Measurement, Ecole Polytechnique F�ed�erale de Lausanne (EPFL), Lausanne, Switzerland; dService of Orthopaedic
Surgery and Traumatology, Lausanne University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland

ABSTRACT
Videogrammetry is commonly used to record upper limb motions. However, it cannot track the
glenohumeral joint center (GH). GH is required to reconstruct upper limb motions. Therefore, it
is often estimated by separately measuring scapular motions using scapular kinematics measure-
ments devices (SKMD). Applications of SKMD are neither straightforward nor always noninvasive.
Therefore, this work investigates the feasibility of an alternative method to estimate GH from
videogrammetry using a CT/MRI image of subject’s glenohumeral joint and without requiring
SKMD. In order to evaluate the method’s accuracy, its GH estimations were compared to refer-
ence GH trajectories. The method was also applied to estimate scapular configurations and
reconstruct an abduction motion measured by videogrammetry. The accuracy of GH estimations
were within 5mm, and the reconstructed motion was in good agreement with reported in vivo
measurements.
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1. Introduction

Videogrammetry tracks trajectories of skin-fixed
markers placed on palpable bony landmarks (Winter
2009). It is not possible to palpate and measure GH
using videogrammetry. However, GH is required to
reconstruct upper-limb motions (Lu and O’Connor
1999; Roux et al. 2002).

Several methods have been developed to estimate
GH, namely: formal (Woltring et al. 1985; Gamage
and Lasenby 2002; Halvorsen 2003; Schwartz and
Rozumalski 2005; Camomilla et al. 2006; Ehrig et al.
2006) and predictive methods (Meskers et al. 1997;
Schmidt et al. 1999; Lloyd et al. 2000; Campbell et al.
2009). Formal methods estimate GH by finding either
the closest point to all humerus instantaneous helical
axes (Woltring et al. 1985; Schwartz and Rozumalski
2005; Camomilla et al. 2006; Ehrig et al. 2006) or the
center of a sphere passing through humerus markers
(Gamage and Lasenby 2002; Halvorsen 2003).
Predictive methods estimate GH either through
regressive equations between scapula markers and GH
(Meskers et al. 1997; Lloyd et al. 2000; Campbell et al.
2009) or generic offsets from scapula markers

(Schmidt et al. 1999; Campbell et al. 2009). Formal
methods estimate GH more accurately and are pre-
ferred over predictive methods whose accuracy drops
significantly during arm motions (Ehrig et al. 2006;
Campbell et al. 2009). The main limitation of formal
methods is, however, their dependency on SKMD.

Due to soft tissue artifacts, only two landmarks—
angulus acromialis (AA) and acromioclavicular
(AC)—of the scapula can be practically tracked by
videogrammetry (Matsui et al. 2006; Lempereur et al.
2010). SKMD is therefore used to measure scapular
motions. Several SKMD have been proposed, includ-
ing intracortical bone-fixed pins (Karduna et al.
2001), regressive equations (H€ogfors et al. 1991; De
Groot and Brand 2001; Holzbaur et al. 2005;
Dickerson et al. 2007; Grewal and Dickerson 2013),
scapula locator fixtures (McQuade and Smidt 1998;
Prinold et al. 2011), and acromion markers-tree (van
Andel et al. 2009). Applications of SKMD are, how-
ever, neither straightforward nor always non-invasive.

Therefore, this study aims at investigating the feasi-
bility of an alternative method to estimate GH from
videogrammetry using a CT/MRI of subject’s gleno-
humeral joint and without requiring SKMD. Provided
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GH estimations, trigonum scapulae (TS) and angulus
inferior (AI) of the scapula are consequently esti-
mated defining the scapular configurations. The
method’s accuracy is evaluated by comparing its GH
estimations to reference GH trajectories. The method
is then applied to reconstruct an abduction motion
measured by videogrammetry and compare the recon-
structed motion to reported in vivo measurements.

2. Methods

2.1. Kinematic model

A kinematic model of the upper limb is developed
from MRI scans (T1-weighted sequences, 3-T, 0.9mm
isotropic spatial resolution) of the hemi-thorax of a
healthy male subject (29 year, 186 cm, 85.5 kg) (Figure
1(a)). It consists of six rigid bodies: thorax, clavicle,

Figure 1. (a) Subject’s MRI was used to develop the kinematic model. (b) Fourteen landmarks are considered. (c) Eleven general-
ized coordinates are considered (q ¼ ½q1 . . . q11�T ). (d) VICON videogrammetry is used to track eleven skin-fixed markers.

34 E. SARSHARI ET AL.



scapula, humerus, ulna, and radius (rigidly tied with
hand). It has five joints, including three ball-and-
socket joints for sternoclavicular (SC), acromioclavic-
ular (AC), and glenohumeral (GH) joints and two
hinge joints for humeroulnar (HU) and radioulnar
(RU) joints (Figure 1(b,c)). Two holonomic con-
straints restrict TS and AI to glide over the ribcage.
This results in nine degrees of freedom. Fourteen
bony landmarks are identified from the MRI scans to
define bone-fixed frames and joint coordinates follow-
ing ISB recommendations (International Society of
Biomechanics 2005). The landmarks are: incisura jug-
ularis (IJ), processus xiphoideus (PX), 7th cervical
vertebra (C7), 8th thoracic vertebra (T8), SC, AC,
AA, TS, AI, GH, humerus medial epicondyle (EM),
humerus lateral epicondyle (EL), radial styloid (RS),
and ulnar styloid (US). Given that the GH is not a
bony landmark, its position is defined as the center of
a sphere fitting the glenoid fossa (Veeger 2000). To
this end, a MATLAB (The MathWorks, Natick, MA,
USA) routine (Terrier et al. 2014) is used to fit a
sphere on the fossa surface obtained by segmentation
of MRI in Amira (FEI Visualization Sciences Group,
Bordeaux, France). The thorax is the inertial frame.
Eleven generalized coordinates (q ¼ ½q1 . . . q11�T)
are considered to uniquely define each joint configur-
ation. The forward kinematic map (n) of the kine-
matic model defines the inertial coordinates of the jth
landmark (xj) for given joint configurations

n : Cs � R11 7!Ws � R3

nðqðtÞÞ ¼ xjðtÞ, j ¼ fC7, . . . , RSg1�14
UTSðqðtÞÞ ¼ 0
UAIðqðtÞÞ ¼ 0

(1)

where Cs and Ws are coordinate and work spaces
(Siciliano and Khatib 2008). The holonomic con-
straints (UTS ¼ 0 and UAI ¼ 0) represent kinematic
relationships between the scapula and the thorax
(Equation 2). The constraints restrict TS and AI to
always lie on two different ellipsoids approximating
the ribcage and the underlying soft tissues of each
one of TS and AI

UTSðqðtÞÞ ¼ ðtTSðtÞ�te0ÞTETSðtTSðtÞ�te0Þ�1 ¼ 0
UAIðqðtÞÞ ¼ ðtAIðtÞ�te0ÞTEAIðtAIðtÞ�te0Þ �1 ¼ 0

(2)

where the left-hand side subscript t denotes that the
landmarks are in the thorax frame. The centers of the
two ellipsoids coincide and are at te0: A single ellips-
oid centered at te0 is first fitted to the ribcage. Then,
starting from this ellipsoid, adjustments are made to
fit one ellipsoid to AI and another ellipsoid to TS.

The ellipsoids including TS and AI have matrices ETS
and EAI, respectively (Levin 1979).

2.2. Estimation of GH

Ball-and-socket approximation of the glenohumeral
joint implies that GH is a point shared between the
scapula and the humerus (Figure 2). Therefore, its
positions as a point either on the scapula or the
humerus should result in the same point in the thorax
frame (tGH). This can be concisely written as

t
hRðaÞ hGHþtEM|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

tGH as a point on humerus

¼ t
sRðbÞ sGHþtAC|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

tGH as a point on scapula

(3)

where t
hRðaÞ and t

sRðbÞ are the rotation matrices from
the humerus frame and the scapular frame to the
thorax frame, respectively. The rotation matrices
t
hRðaÞ and t

sRðbÞ are defined in Equation (4) using
Rodrigues’ rotation formula (Baruh 1999). The left-
hand side subscripts h and s specify that the land-
marks are in the humerus and the scapular frames,
respectively. Constants hGH and sGH are obtained
from the subject’s CT/MRI. From a CT of the subject
to be studied CTGH, CTEM, CTEL that are the land-
marks in the CT or MRI coordinate system can be
obtained for a single arm configuration. Then, hGH is
defined as hGH ¼h

CT R CTGH: The rotation matrix
h
CTR from the CT or MRI coordinate system to the
humeral coordinate system is obtained following the
ISB recommendations (International Society of
Biomechanics 2005). Similarly, sGH is obtained as

sGH ¼s
CT R ðCTGH�CTACÞ: The rotation matrix s

CTR
from the CT or MRI coordinate system to the scapu-
lar coordinate system is obtained following the ISB
recommendations.

t
hRðaÞ ¼ dhdhT þ cos aðI�dhdhTÞ þ sin a dh½ �
t
sRðbÞ ¼ dsdsT þ cosbðI�dsdsTÞ þ sin b ds½ � (4)

where dh¼tEM�tEL and ds¼tAC�tAA, and a and b
are unknown rotation angles of the humerus and the
scapula around dh and ds: The cross product matrices
of dh and ds are denoted by ½dh� and ½ds�,
respectively.

Equation (3) can be solved for a and b for each
frame of measurements using nonlinear root-search
methods (e.g. Matlab fminsearch). The resulting a
and b provide two estimations for GH in thorax
frame (tGH). Given that the measured positions of
AC, AA, EM, and EL are subject to soft-tissue arti-
facts, the resulting two estimations of tGH might
come apart. Therefore, the following optimization is
set to minimize the distance between the resulting
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two estimations by compensating the effects of soft-
tissue artifacts on EM and EL

min
l

: tGHehða, lÞ�tGHesðbÞ
� �2

s:t: jlj � C
(5)

where tGHeh and tGHes are the resulting estimations
obtained through the humerus and the scapular
frames, respectively. The decision variable l is a 3� 1
vector added to dh to compensate soft-tissue artifacts.
It is bounded by C to vary according to reported val-
ues for EM and EL soft-tissue artifacts [C¼ 3 cm
(Klop�car and Lenar�ci�c 2006)].

The estimated GH together with the measured AC
and AA provide three points on the scapula.
Therefore, TS and AI are readily estimated, given that

they also belong to the same bone segment. The
resulting GH, TS, and AI estimations are used in
Section 2.3 to reconstruct the shoulder kinematics
including scapular configuration.

It is worth noting that Equation (3) has an intui-
tive geometrical interpretation. It estimates GH by
intersecting four spheres centered at AC, AA, EM,
and EL. Their radii can be defined from a single CT/
MRI scan of the glenohumeral joint of the subject to
be studied. This intersection can be defined using the
intersection theory of quadric surfaces (Levin 1979).

2.3. Multi-segment optimization

Multi-segment optimization finds joint angles (qi) for
each frame of measurement (i) such that the overall
distance between the measured markers (xej) and their
associated landmarks (xmj) is minimized, while satis-
fying the forward kinematics map (Equation 6).
Estimations of GH, TS, and AI are considered
through their missing measured trajectories.

min
qi

:
X
j

ðxmj, iðqiÞ�xej, iÞTWðxmj, iðqiÞ � xej, iÞ

s:t: UTSðqiÞ ¼ 0
UAIðqiÞ ¼ 0

(6)

where j ¼ fC7, . . . , RSg1�14, and W is a positive-
definite weighting matrix that can be used to account
for different amounts of soft-tissue artifacts occur at
each marker (Begon et al. 2015). For simplicity, W is
set to the identity matrix here. This optimization is a
nonlinear programming problem (Boyd and
Vandenberghe 2004) that can be solved using iterative
methods (e.g. Matlab fmincon).

2.4. Accuracy

A numerical method (Ingram et al. 2016)—called
minimal coordinate approach—is used to virtually
generate trajectories for all fourteen model’s land-
marks during forward flexion. The minimal coordin-
ate approach is indeed the only available method that
can plan the upper limb motions from a limited
amount of measurement data (Ingram et al. 2016). In
the minimal coordinate approach, the shoulder girdle
contact constraint is replaced by a novel parallel
mechanism that results in a minimal set of general-
ized coordinates. The resulting minimal coordinates
are independent and considerably simplify motion
planning. The accuracy of the minimal coordinate
approach has been already investigated in (Ingram
2015) against in vivo measurements of El Habachi
et al. (2015). An arm motion from the arm neutral

Figure 2. GH belongs to both humerus and scapula. The esti-
mated tGH lies on the intersection of two line segments in
planes perpendicular to dh and ds: These two line segments
form two angles (a and b) with respect to reference axes that
can be found by solving Equation (3).
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position to 150� flexion is simulated using the min-
imal coordinate approach. To this end, the scapular
minimal coordinates corresponding to the beginning
and the end of the motion are chosen as per Ingram
(2015), such that the model bony landmarks match
the bony landmarks reported by El Habachi et al.
(2015), only for the beginning and the end of the
motion. Until 30� of arm elevation, the scapular min-
imal coordinates are maintained at their initial values
and thereafter are linearly changed with time to reach
the end-motion values. The definition of the arm
minimal coordinates are trivial using a linear function
of time until 150� of flexion. Eventually, GH of the
virtually generated trajectories is considered as the
reference GH (tGHr). Soft-tissue artifacts are numer-
ically produced and added to the trajectories. Soft-tis-
sue artifacts are defined according to Cheze et al.
(1995), Taylor et al. (2005) as a sin ðxt þ /Þ, where a
lies between 1 cm and 3 cm, and x and / are smaller
than 4Hz and 2p rad, respectively. The resulting tra-
jectories are considered as pseudo-measurements. The
method is used to estimate GH from the pseudo-
measurements.

The accuracy results are presented in terms of the
distance d between estimated GH (tGHe) and tGHr

for each frame of data.

2.5. Motion reconstruction from videogrammetry

Eleven bony landmarks are palpated using skin-fixed
markers on the same subject, including IJ, PX, C7,
T8, SC, AC, AA, EM, EL, RS, and US (Figure 1(d)).
The marker trajectories are recorded for 10 trials
using an 8-camera VICON videogrammetry at
100Hz, while the subject is performing an abduction
motion in the scapular plane with a fully extended
forearm. The recorded data of each trial is low-pass
filtered (Winter 2009). Then, the means and the
standard deviations (r) of the filtered trajectories for
the 10 trials are obtained.

The method is used to estimate GH and conse-
quently TS and AI. Then, multi-segment optimization
is used to reconstruct the motion in terms of the joint
angles. Sensitivity of the joint angles (qðDxÞ) to
marker variations around their means (Dx) are also
approximated by a first-order approximation
(Equation 7) (Fiacco 1976)

qðDxÞ ¼ q? þM�1NDx þ OðjDxjÞ (7)

where q? is solution of the multi-segment optimiza-
tion associated with measurement means. The matri-
ces M and N are defined as follows

M ¼
r2L rUTS rUAI

rUTS 0 0
rUAI 0 0

2
4

3
5 ,

N ¼ � o
oDx ðrLÞ � oUTS

oDx � oUAI
oDx

h iT
(8)

where L is the Lagrangian of the multi-segment opti-
mization (Equation 6).

The results consist of eleven joints angles, includ-
ing axial rotation, depression/elevation, protraction/
retraction of SC, posterior/anterior tilt, downward/
upward rotation, protraction/retroaction of AC, axial
rotation, adduction/abduction, flexion/extension of
GH, extension/flexion of HU, and pronation/supin-
ation of RU joints. Joint angles are presented in the
thorax frame along the arm abduction angle, except
for HU and RU joints, which are given with respect
to their proximal joints. Angles sensitivities to 61r
marker variations are also illustrated.

3. Results

3.1. Accuracy

The distance d was <1mm until 20% of arm flexion
and reached 5mm at 60% of the movement
(Figure 3).

Figure 3. Method accuracy, distance d of the estimated GH to
its reference position during arm flexion. The model developed
in Campbell et al. (2009) was directly applied in this study to
the same pseudo-measurements, and the corresponding
results were presented.
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Figure 4. Motion reconstruction, the measured abduction motion was reconstructed in terms of 11 joint angles. The angle sensi-
tivities to 61r landmark variations were presented as the shaded area. The AC joint angles measured in vivo by Ludewig et al.
(2009), Warner et al. (2012) were also presented, given the importance of the scapular kinematics.
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3.2. Motion reconstruction from videogrammetry

The clavicular elevation and retraction increased by
16� and 26� during the arm elevation, despite its axial
rotation, and were equally (about 13�) affected by
landmark variations (Figure 4).

The scapular posterior tilt increased by 5� from an
anteriorly tilted configuration. The scapular upward
rotation increased from a neutral position to 30�. The
scapular protraction decreased by 7�. The landmark
variations affected posterior/anterior tilt by 5�, down-
ward/upward rotation by 13�, and protraction/retrac-
tion by 6�.

The humerus rotated externally by 49� from an
internally orientated position. Abduction increased by
68�, and flexion increased by 30�. Axial rotation and
adduction/abduction were almost 250% more sensitive
to landmarks variations than flexion/extension angle.

The forearm flexed 6� from full extension, and RU
supination increased by 9� (palm of the hand faced
anteriorly). Compared to other joint angles, the fore-
arm illustrated the highest sensitivities to landmarks
variations: (17� and 22� for HU and RU joints,
respectively).

4. Discussion

The aim of this study was to develop a method to
estimate GH from videogrammetry using a CT/MRI
of subject’s glenohumeral joint and without requiring
SKMD. The method accuracy was verified, and the
method was applied to reconstruct a videogrammetry-
based measured motion.

The accuracy decreased towards the end of the
motion that could be associated with the increase in
simulated soft-tissue artifacts. The increasing trend
considered for soft-tissue artifacts was consistent with
previous in vivo observations (Cheze et al. 1995;
Taylor et al. 2005). Compared to the application of a
reported predictive method (Campbell et al. 2009) on
the same pseudo-measurements, GH estimation was
improved around 85% with our method. The choice
of the predictive method (Campbell et al. 2009),
among the available predictive methods in the litera-
ture, could be justified by the following main reasons.
First, contrary to most of the predictive methods
(Meskers et al. 1997; International Society of
Biomechanics 2005), it did not require trajectories of
TS or AI. Trajectories of TS and AI could only be
either measured using SKMD or estimated based on
GH trajectories. Second, it was indeed among the few
predictive methods whose accuracy and inter-individ-
ual reliability have been assessed against other

established predictive methods (Meskers et al. 1997;
Schmidt et al. 1999; Lloyd et al. 2000; International
Society of Biomechanics 2005), as well as in vivo GH
measurements.

Application of the method to videogrammetry
measurements followed by the multi-segment opti-
mization provided joint angles that were consistent
with reported in vivo (Ludewig et al. 2009; Warner
et al. 2012) and numerical studies (Seth et al. 2016;
Naaim et al. 2017).

The clavicular axial rotation was overlooked in our
motion reconstruction, whereas several in vivo studies
reported 0� to 30� variations (Sahara et al. 2007;
Ludewig et al. 2009). The clavicular axial rotation
could be enforced using an extra constraint on q1 in
Equation (6) (van der Helm and Pronk 1995).
However, given few weak muscles attached to the
clavicle, underestimating its axial rotation has only
negligible effects on musculoskeletal model outcomes
(Prinold et al. 2013).

AC joint angles were in good agreement with
in vivo measurements (Ludewig et al. 2009; Warner
et al. 2012). Normalized root-mean-square error
(NRMSE) (Matlab Documentation 2012) between the
estimated scapular posterior/anterior tilt and the
measurements of Warner et al. (2012) and Ludewig
et al. (2009) were 0.99 and 0.91, respectively. The
NRMSE between the estimated scapular downward/
upward rotation and the measurements was consistent
with the results of Warner et al. (2012) (NRMSE
above 0.77). The zero downward rotation estimated
by our model placed the scapula in a rest position for
the beginning of motion and was commonly reported
(MacLean et al. 2014; Naaim et al. 2017), although
the angle reported in Ludewig et al. (2009) was �16�.
The estimated scapular protraction/retraction was
consistent with both in vivo measurements of
Ludewig et al. (2009), Warner et al. (2012) (NRMSE
above 0.81).

The forearm joint angles had the highest sensitiv-
ities to variations in marker trajectories. This could
be explained by propagation of errors introduced
through proximal bone segments. The sensitivity ana-
lysis investigated the sensitivity of the resulting joint
angles to the recorded variations in marker trajecto-
ries. Although this provided valuable information
about the reliability of the resulting joint angles, a
more detailed sensitivity study would be required to
investigate influences of positioning each individual
marker. With such a detailed sensitivity study, special
attention could be paid to capture more robustly the
trajectories of the influential markers.
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The effects of soft-tissue artifacts on GH estima-
tions were compensated by an optimization. The opti-
mization accounted for merely EM and EL soft-tissue
artifacts, since AC and AA were subject to relatively
negligible amount of soft-tissue artifacts (Blache et al.
2017; Duprey et al. 2017; Naaim et al. 2017). In add-
ition, from a mathematical point of view, it would be
possible to introduce a second decision variable into
the optimization for AC and AA soft-tissue artifacts.
However, this would result in an indeterminate opti-
mization with infinite solutions. In order to obtain a
unique solution, complementary information on the
ratio of EM-EL to AC-AA soft-tissue artifacts would
be required. Application of a marker cluster attached
to the humerus could potentially reduce the amount
of soft-tissue artifacts, requiring less correction from
the optimization.

A major limitation of this study was that only one
subject was recorded. A larger number of subjects
would allow a better evaluation of the method, par-
ticularly its performance in dealing with inter-individ-
ual differences. Nevertheless, the method already took
into account, to a certain extent, inter-individual dif-
ferences. Indeed, it required patient-specific data from
a CT/MRI scan of the subject’s glenohumeral joint as
explained in Section 2.2. Another limitation was the
dependency of the method on subject’s CT/MRI. The
CT/MRI is often performed during subjects’ routine
clinical examinations. Therefore, it would not widely
affect practical applications of the method for subject-
specific modeling. Another potential limitation of the
method was due to the high error sensitivity of the
direction connecting EL and EM and/or AC and AA,
given the short distances between them. Therefore,
special care was taken in placing the markers on these
bony landmarks. In addition, an additional marker on
the Capitulum could help in compensating the error
in direction connecting EL and EM.

The resulting GH estimations and scapular kine-
matics were compared to those of a commonly used
predictive method and in vivo measurements, respect-
ively. These partially confirmed the feasibility of the
present method as an alternative approach to estimate
the GH and the scapular kinematics without SKMD.
Indeed, direct comparisons of the method estimations
with measurements from SKMD such as scapula loca-
tor and acromion cluster could enrich the confidence
into the method estimations.

In conclusion, the method provided estimations for
GH, TS, and AI with sufficient accuracy using a CT/
MRI scan of subject’s glenohumeral joint and without
requiring SKMD. Provided GH, TS, and AI

estimations, a videogrammetry-based measured
motion was reconstructed using multi-segment opti-
mization which resulted in scapula configurations that
were in good agreement with reported in vivo meas-
urements. The developed method could be used to
retrospectively study kinematics of patients using a
scaled-generic shoulder musculoskeletal model. A
generic motion data could be scaled to each patient
whose CT/MRI is available as a part of a routine clin-
ical examination.
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