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The fatty acid oxygenation up-regulated 2 (fou2) mutant

in Arabidopsis thaliana creates a gain-of-function allele in a

non-selective cation channel encoded by the Two Pore

Channel 1 (TPC1) gene. This mutant genetically implicates

cation fluxes in the control of the positive feedback loop

whereby jasmonic acid (JA) stimulates its own synthesis.

In this study we observed extensive transcriptome reprogram-

ming in healthy fou2 leaves closely resembling that induced by

treatment with methyl jasmonate, biotic stresses and the

potassium starvation response. Proteomic analysis of fou2

leaves identified increased levels of seven biotic stress- and

JA-inducible proteins. In agreement with these analyses,

epistasis studies performed by crossing fou2 with aos

indicated that elevated levels of JA in fou2 are the major

determinant of the mutant phenotype. In addition, generation

of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants

showed that the fou2 phenotype was only weakly affected by

ABA levels and unaffected by mutations in NPR1 and ETR1.

The results now suggest possible mechanisms whereby fou2

could induce JA synthesis/signaling early in the wound

response. In contrast to fou2, transcriptome analysis of a

loss-of-function allele of TPC1, tpc1-2, revealed no differ-

ential expression of JA biosynthesis genes in resting leaves.

However, the analysis disclosed reduced mRNA levels of

the pathogenesis-related genes PDF1.2a and THI2.1 in

healthy and diseased tpc1-2 leaves. The results suggest that

wild-type TPC1 contributes to their expression by mechan-

isms somewhat different from those affecting their expression

in fou2.
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The nucleotide sequences reported in this paper have been
submitted to GenBank under the folllowing accession numbers:
TPC1 (At4g03560), LOX1 (At1g55020), LOX2 (At3g45140),
eIF4A1a (At3g13920), PDF1.2a (At5g44420), THI2.1
(At1g72260).

Introduction

Jasmonic acid (JA) is one of the key mediators in plant

responses to wounding, herbivory and diverse biotic stresses

including pathogenesis. Attack stimulates the production

of JA through a mechanism that involves a positive

feedback loop where JA signaling activates the expression

of JA synthesis genes. The two processes, JA synthesis and

JA signaling, are thus intimately related (Sasaki et al. 2001,

Schaller et al. 2005). Significant advances have been

achieved in the identification of genes involved in JA

biosynthesis in different plant species (Turner et al. 2002,

Schilmiller and Howe 2005). The same can be said of JA

signaling which leads to the control of diverse physiological

processes (in addition to direct defense responses) such

as growth, development and metabolic homeostasis

(Ellis et al. 2002, Armengaud et al. 2004, Devoto et al.

2005, Ko et al. 2006, Mandaokar et al. 2006, Zavala and

Baldwin 2006, Beveridge et al. 2007). It is known that most

if not all JA-mediated cellular responses depend on

signaling through CORONATINE INSENSITIVE 1

(COI1), an F-box protein that associates with other

components to form an E3-ubiquitin ligase complex

(Xie et al. 1998). The feedback loop to JA synthesis is no

exception, being largely dependent on COI1. Attempts are

now being made to understand other genetic elements con-

trolling the positive feedback regulation of JA biosynthesis

which is apparently essential for both basal and

induced expression of JA biosynthesis genes. Mechanisms
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regulating this process are expected to be complex and

could, theoretically, be exerted at all levels of gene

expression.

With this in mind, we recently isolated the fatty acid

oxygenation up-regulated 2 (fou2) mutant which was

identified based on its elevated lipoxygenase (LOX) and

allene oxide synthase (AOS) activities in leaves. As a result,

fou2 has an increased capacity to accumulate jasmonates

after leaf wounding and increased resistance to the

necrotrophic pathogen Botrytis cinerea (Bonaventure et al.

2007). One of the most interesting features of the mutant is

that its phenotype only becomes apparent at a vegetative

phase transition state where the activity of the JA pathway

in wild-type (WT) plants is naturally up-regulated

(Bonaventure et al. 2007). The mutation in fou2 was

mapped to the Two Pore Channel 1 (TPC1) gene. This

gene is described as encoding a Ca2þ-regulated non-specific

cation channel that forms part of the slow-vacuolar (SV)

channel in the tonoplast of Arabidopsis (Furuichi et al.,

2001, Peiter et al. 2005). fou2 carries an amino acid

substitution in the TPC1 protein where an aspartate is

replaced by an asparagine at residue 454 of the protein

(TPC1D454N). This substitution generates a functional

version of the TPC1 channel that has electrophysiological

properties different from those of the WT channel

(Bonaventure et al. 2007).

Whereas fou2 showed elevated LOX activity levels and

was more resistant than the WT to the fungus B. cinerea, a

loss-of-function mutant of TPC1 (tpc1-2) showed no

elevated LOX activity, no elevated LOX2 and AOS

mRNA expression, no increased resistance to B. cinerea

compared with WT, and a similar morphology to WT

plants. These results suggested that the fou2 mutation

conferred a new function to the TPC1 channel different

from its physiological function (Bonaventure et al. 2007).

The tpc1-2 mutant is, however, affected in its stomatal

response to external calcium, and its seeds show a reduced

sensitivity to ABA compared with the WT (Peiter et al.

2005). In other plant species, several studies have recently

linked TPC1 to a diverse group of cellular responses related

to defense, such as programmed cell death and expression

of defense genes and antioxidant enzymes. For example,

co-suppresion of TPC1 in tobacco causes inhibition of

cryptogein-induced cell death and defense-related gene

expression (Kadota et al. 2004). Kurusu et al. (2005)

showed that TPC1 contributes to the regulation of

elicitor-induced defense responses and cell death in rice.

These diverse cellular responses, ranging from the regula-

tion of defense-related processes in tobacco and rice cells

to the control of germination and stomatal dynamics

in Arabidopsis, suggest that TPC1 may have a broad

action in plants, contributing to the regulation of different

cellular events.

Although the fou2 mutation most probably generates

a TPC1 channel with a novel function, we reasoned that

the cellular mechanisms that act downstream of and become

activated by the mutated channel (e.g. activation of cation

responses) may represent physiological mechanisms

acting early in the activation of oxylipin biosynthesis after

wounding or biotic stresses in WT plants. Thus, to begin to

understand the cellular mechanisms that are activated

by the fou2 allele of TPC1, we performed transcriptome

and proteome analyses of healthy fou2 leaves together

with genetic studies utilizing fou2 and several mutants

implicated in hormone biosynthesis and signaling.

In addition, to explore a potential role for WT TPC1 in

the expression of biotic stress-responsive genes, transcrip-

tome analysis was also performed with healthy tpc1-2

leaves. The results demonstrated that the fou2 allele induces

a biotic stress response largely mediated by JA and similar

to that induced by diverse pathogens and potassium

starvation. In contrast, analysis of gene expression in

tpc1-2 suggests that WT TPC1 either does not or only

weakly affects JA signaling in resting leaves and contributes

to the expression of two defense genes (PDF1.2a and

THI2.1) after pathogen infection.

Results

Transcriptome analysis of fou2 leaves

To investigate further the role of TPC1D454N in

Arabidopsis, gene expression profiling analyses were

conducted with the fou2 mutant. For these experiments,

gene expression was evaluated in rosette leaves of 4-week-

old plants. This developmental stage was chosen because it

coincides with the time-specific appearance of the fou2

morphological and biochemical phenotypes (Bonaventure

et al. 2007). Before 3 weeks of growth, fou2 resembles WT

plants both morphologically and at the level of LOX and

AOS activities. Just at the beginning of the fourth week,

the fou2 phenotype becomes slowly apparent and is marked

at the end of the same week. Because of this stage-specific

onset of both the biochemical and morphological pheno-

types in fou2, the developmental program of the mutant is

not altered compared with the WT (Bonaventure et al.

2007) and ensures that most if not all changes in gene

expression are the result of the specific genetic lesions

rather than differences in the developmental stages of

the genotypes used. For microarray analysis, we used the

CATMA array containing 22,473 gene-specific tags

(Hilson et al. 2004, Little et al. 2007). Differentially

expressed genes in the mutant vs. the WT were obtained

from three independent biological replicates, and significant

changes were considered when: (i) the gene expression

ratios of mutant vs. WT were �2 or �0.5; and (ii) the

changes in expression were statistically significant when
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independently analyzed by two different methods (Student’s

t-test and the q-value method; see Materials and Methods

for further details).

Results from gene expression analysis of healthy fou2

leaves vs. healthy WT are summarized in Table 1,

Supplementary Table SI and Fig. 1. A total of 273 genes

were identified as differentially expressed in fou2 compared

with the WT. Transcripts corresponding to 246 genes were

up-regulated, whereas 27 were down-regulated in this

mutant. Differentially expressed genes were classified

Table 1 List of selected genes up-regulated in leaves of fou2 compared with the wild type

Description Symbol AGI Log2(FC)
a P-valueb

Defense-related

Myrosinase-binding protein, putative F-ATMBP At1g52030 3.4 0.011

Pathogenesis-related protein 1 PR-1 At2g19990 3.1 0.022

Plant defensin protein PDF1.2a At5g44420 2.9 0.019

Plant defensin fusion protein PDF1.1 At1g75830 4.5 0.040

Plant defensin fusion protein PDF1.4 At1g19610 4.0 0.040

Protease inhibitor DR4 At1g73330 2.9 0.008

Thionin THI2.1 At1g72260 4.5 0.041

Vegetative storage protein 1 VSP1 At5g24780 2.4 0.003

Vegetative storage protein 2 VSP2 At5g24770 7.1 0.050

Hormone biosynthesis/metabolism

12-Oxophytodienoate reductase/delayed dehiscence1 OPR3/DDE1 At2g06050 2.5 0.005

1-Aminocyclopropane-1-carboxylate oxidase ACO At1g05010 2.3 0.019

Allene oxide synthase AOS At5g42650 2.2 0.009

Phenylpropanoid pathway

4-Coumarate–CoA ligase 4CL At3g21230 2.2 0.033

Dihydroflavonol 4-reductase DFR At5g42800 2.8 0.005

Flavonoid 30-hydroxylase F3H At5g07990 2.7 0.019

Phenylalanine ammonia-lyase 1 PAL1 At2g37040 4.4 0.042

5-Hydroxyferulic acid O-methyltransferase (OMT1) OMT1 At5g54160 2.3 0.010

Cinnamic acid 4-hydroxylase C4H At2g30490 2.5 0.020

Cell wall metabolism

Arabinogalactan-protein AGP10 At4g09030 2.8 0.041

Expansin EXP10 At1g26770 2.2 0.038

Polygalacturonase-inhibiting protein 1 PGIP1 At5g06860 4.1 0.014

Polygalacturonase-inhibiting protein 2 PGIP2 At5g06870 2.8 0.009

Polygalacturonase-inhibitor, putative FLR1 At3g12145 2.9 0.011

Peroxidase 21 PER21 At2g37130 2.3 0.021

Peroxidase 64 PER64 At5g42180 2.5 0.003

Transcription

AP2 domain-containing transcription factor ABR1 At5g64750 2.3 0.011

Basic helix–loop–helix (bHLH) protein MYC2 At1g32640 2.5 0.003

Heat shock transcription factor 4 HSTF4 At4g36990 2.5 0.001

WRKY family transcription factor WRKY38 At5g22570 2.6 0.050

WRKY family transcription factor WRKY28 At4g18170 2.4 0.033

WRKY family transcription factor WRKY15 At2g23320 2.5 0.010

WRKY family transcription factor WRKY18 At4g31800 3.0 0.012

WRKY family transcription factor WRKY8 At5g46350 3.0 0.006

WRKY family transcription factor WRKY6 At1g62300 2.7 0.007

WRKY family transcription factor WRKY45 At3g01970 2.5 0.005

Zinc finger (C2H2 type) family protein ZAT10 At1g27730 2.6 0.003

Zinc finger (C2H2 type) family protein ZAT12 At5g59820 2.3 0.036

aFC, fold change.
bThe P-values from the Student’s t-test are shown.
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according to their potential cellular function based on gene

ontology (GO) terms (Provart and Zhu 2003, Berardini

et al. 2004). The distribution of genes in different functional

classes of known biological processes revealed a relatively

high abundance of genes in defense- and stress-related

responses, transcription, transport and cell wall metabolism

(Table 1 and Fig. S1). Differential expression of 24 defense-

related genes was observed in fou2 (Tables 1, SI). Among

the predicted herbivore-related defense genes, six encoded

proteinase inhibitors, seven putative jacalin/lectin proteins,

and three are implicated in glucosinolate metabolism

(Tables 1, SI). All these genes are known JA-inducible

genes in Arabidopsis (Reymond et al. 2004). Additionally,

three plant defensins (PDF1.2a, PDF1.1 and PDF1.4),

two thionins (THI2.1 and At1g66100), two chitinases

(At3g12500 and At2g43590) and PR-1 were also

up-regulated in fou2 (Tables 1, SI). A second group of

17 genes up-regulated in fou2 corresponded to enzymes

involved in phenylpropanoid metabolism and included

chorismate mutase (At5g22630) and tyrosine aminotrans-

ferase (At2g24850). Up-regulated members of the phenyl-

propanoid pathway included phenylalanine ammonia lyase

1 (At2g37040), caffeic acid O-methyl transferase

(At5g54160) and dihydroflavonol 4-reductase (At5g42800;

Tables 1, SI; Rohde et al. 2004). Twenty genes belonging

to different classes of transporters were differentially

expressed in fou2. The two classes more recurrent were

MATE efflux family proteins and proton-dependent oligo-

peptide transport (POT) family proteins, with four and

two members up-regulated, respectively (Table SI).

Additionally, 12 genes in primary metabolism were

up-regulated in fou2 (Tables 1, SI). The latter group

contained, among others, six enzymes involved in amino

acid metabolism and two in starch and sucrose metabolism.

Finally, a total of 44 genes of unknown function were

up-regulated in fou2, with 17 of these genes (39%) being

JA regulated (see below). An interesting and large group of

genes up-regulated in fou2 corresponded to proteins or

enzymes involved in cell wall metabolism. Among them

were six related genes encoding putative pectin methyles-

terases (PMEs; Tables 1, SI).

Transcripts encoding putative regulatory genes were

up-regulated in fou2 and included 17 genes encoding

transcription factors, among which were seven WRKY

(WRKY6, 8, 15, 18, 28, 38 and 45), four AP2 domain-

containing factors, two basic helix–loop–helix (bHLH)

proteins, two C2H2-type proteins (ZAT10 and ZAT12)

and one myb-family protein. MYB28, on the other hand,

was the only transcription factor down-regulated in this

mutant (Tables 1, SI). WRKY6, WRKY15, ZAT10 and

ZAT12 are induced after B. cinerea infection and may

therefore participate in the activation of some defense

genes (AbuQamar et al. 2006). One of the bHLH proteins

up-regulated in fou2, AtMYC2, is a well-characterized

regulator of JA/ethylene (ET)-responsive genes and ABA

signaling in Arabidopsis (Lorenzo and Solano 2005).

In agreement with the increased LOX and AOS

activities in fou2 leaves and their enhanced capacity to

accumulate jasmonates, the transcript levels for some

JA biosynthesis enzymes were �2-fold above WT levels

in fou2. These included AOS and OPR3

(12-OXOPHYTODIENOATE REDUCTASE 3, Table 1).

The mRNA levels for other oxylipin biosynthesis enzymes

were slightly increased in fou2 but with fold changes 52,

including LOX2 (1.7-fold), LOX6 (1.8-fold), allene oxide

cyclase (AOC; 1.5-fold) and LOX1 (1.4-fold, see

Supplementary material). These results were in agreement

with our previous observations based on quantitative

PCR (qPCR), where slight up-regulation of most LOX

transcripts was detected in fou2 (Bonaventure et al. 2007).

Changes in the expression of genes involved in the

biosynthesis of other hormones that participate in biotic

stress responses [e.g. salicylate (SA) and ABA] were not

observed. Only the transcript levels for one enzyme in

the ET biosynthesis pathway, 1-aminocyclopropane-1-

carboxylate oxidase (ACO), were increased by �2-fold

(Table 1). Expression of this enzyme is induced by methyl

jasmonate (MeJA) in Arabidopsis (Reymond et al. 2004).

The levels of 27 transcripts were statistically below WT

−4.00

−3.00

−2.00

−1.00

0.00

1.00

2.00

3.00

4.00

−4.00 −3.00 −2.00 −1.00 0.00 1.00 2.00 3.00 4.00

tpc1-2

fou2

At1g69140
(Putative 
Protein)

At5g44420
(PDF1.2a)

At2g38320
(Expressed 
protein)

At1g72260
(Thi2.1)

Expression ratio (log2)

E
xp

re
ss

io
n 

ra
tio

 (
lo

g 2)

Fig. 1 Transcriptome analysis of fou2 and tpc1-2 leaves. Dot plot
representing the fold change in gene expression (transformed by
log2) in fou2 (x-axis; fou2 vs. WT) and tpc1-2 (y-axis; tpc1-2 vs.
WT). Vertical and horizontal lines (dotted) intersect the axes at 1
and �1. Each dot represents a different gene, and dots with values
�1 or ��1 represent, respectively, genes up- or down-regulated in
the mutants. Some relevant genes for this study are labeled with
their AGI numbers and a short description.
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levels in fou2 (Tables 1, SI). Among these, 10 genes (34%)

corresponded to expressed or putative proteins.

EXPANSIN 11 (EXP11) was one of the most down-regu-

lated mRNAs in this mutant (Table SI).

The fou2 mutation induces a response similar to diverse biotic

stresses and potassium starvation

The changes in expression of the genes differentially

expressed in fou2 were compared with their differential

expression in experiments where WT plants were subjected

to different treatments or stress conditions. For this

purpose, gene expression data were retrieved from the

GENEVESTIGATOR repository using Meta-Analyzer

(www.genevestigator.ethz.ch; Zimmermann et al. 2004).

The set of experiments selected corresponded to 88 different

treatments of WT (Col-0) plants catalogued as stress

responses in this database. In all the experiments selected

for the analysis, green tissue was studied. A subset of the

273 genes differentially regulated in fou2 was selected

based on their signal intensity in the Affymetrix probe

array and their presence on both Affymetrix and CATMA

array platforms (see Materials and Methods). This selection

resulted in 265 genes that fulfilled the criteria and were

used for further analysis. The logarithm in base 2 (log2)

of the expression ratios between treated and untreated

WT plants was used for all comparisons. Hierarchical

cluster analysis showed that regulation of these genes was

very similar in fou2 and in WT plants treated with MeJA or

challenged by diverse biotic stresses (Fig. 2). These results

suggested that the changes in gene expression induced

by the fou2 mutation mimic a biotic-like stress response

similar to that induced during infection by different

pathogens or insect feeding. These results agree with the

induction of a large number of defense-related genes in fou2

leaves and their jasmonate dependence. Furthermore,

the gene response in fou2 also clustered closely with a

potassium (Kþ) starvation gene response (Fig. 2).

Available microarray data from GENEVESTIGA-

TOR were also used to perform comparative analysis of

the transcriptome of fou2 with the trancriptome of WT

plants after 1 h of MeJA treatment. The results showed

that approximately 42% of the genes differentially regulated

in fou2 (0.5� fold changes �2; fou2/WT) changed expres-

sion after MeJA treatment of WT plants (0.5� fold changes

�2; MeJA/control). Importantly, the response for each

gene was similar between fou2 and MeJA treatment, by

either up-regulation or down-regulation in both conditions.

However, the magnitude of the gene response was not

always the same (Table SII). Additionally, the fou2

transcriptome was compared with the transcriptomes of

WT plants after 1 h of ABA, ET and SA treatments.

These comparisons showed that a smaller number of genes

were similar in their induction/repression between fou2

and ABA (16%), ET (15%) and SA (10%) treatments

(Table SII). These results suggested a larger contribution of

jasmonate in the gene response of fou2 leaves, but they also

suggested additional contributions from JA-independent

mechanisms.

Proteomic comparison of soluble proteins in fou2 and

WT leaves

Two-dimensional gel electrophoresis (2-DE) combined

with mass spectrometry analyses was used to evaluate

the differential expression of proteins in resting leaves of

fou2 and WT. For this purpose, soluble proteins from fou2

and WT leaves were extracted, first separated by isoelectric

focusing (IEF) on a non-linear pH range 3–11, further

separated on 12.5% acrylamide SDS–PAGE gels, and

stained with Coomassie G-250. Protein spot intensities

were quantitated by high-resolution densitometric scanning.

The normalized volume of the stained proteins (%Vol) was

used to quantitate changes in protein amounts that were

compared with a two-tailed and paired t-test. Differences

in%Vol between fou2 and WT protein spots with P-values

�0.05 were considered statistically significant. Protein spots

were compared among five independent biological repli-

cates representing for each sample an average of five plants.

Soluble protein extracts of WT and fou2 leaves gave

approximately 800 protein spots under the conditions

used for 2-DE (Fig. S2). Among these 800 spots, seven

were identified as differentially expressed in fou2 leaves

compared with the WT (Figs. S2, S3). For these seven spots,

changes in protein accumulation ranged between 1.4- and

2.5-fold higher in fou2 than in WT leaves (Fig. S3).

P. rapaefou2F. occidentalis

A. brassicicola
P. infestans
K+ starvation

P. syringae
B. cinerea

methyl-JA
ET

ABA
SA

Experiments

ge
ne

s

≥3 ≤3Log2(fold-change)

Fig. 2 Cluster analysis of gene expression responses in fou2.
The expression of 265 genes differentially expressed in fou2 leaves
was clustered with available expression data from different
treatments of WT plants within the GENEVESTIGATOR database
(Zimmermann et al. 2004). Genes (rows) and experiments
(columns) were clustered with the CLUSTER software utilizing
Hierarchical Complete Linkage with an uncentered Pearson
correlation. The cluster was visualized with Java TREEVIEW.
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The ratio for spot 1 could not be reliably calculated because

the corresponding intensity in WT leaves was similar to

background levels. Proteins were extracted from these

seven spots and successfully identified using peptide mass

fingerprints (Table 2). The identity of the differentially

accumulated proteins was consistent with their JA-mediated

induction in fou2 leaves. In this regard, these seven proteins

are induced at the mRNA level by biotic stresses and/or

exogenous JA treatment in WT plants (Reymond et al.

2004, Zimmerman et al. 2004), and most have a defined

role in defense and cell protection responses (see Discus-

sion). Also consistent with the microarray data, most

of these proteins presented up-regulated mRNA levels in

fou2 leaves. The transcript levels for vegetative storage

proteins 1 and 2 (VSP1 and VSP2), a lectin family protein, a

putative cystine lyase and a putative arginase were

approximately 2.5-, 7.0-, 2.3-, 2.3- and 4.6-fold higher in

fou2 than in the WT, respectively (Tables 1, SI). In contrast,

the transcript levels for a putative dehydroascorbate

reductase were not statistically different between fou2 and

WT. Data for the mRNA levels of a putative myrosinase

could not be obtained from our microarray study.

Epistasis studies of fou2, aos, aba1-5, npr1-1 and

etr1-1 alleles

Recently, Peiter et al (2005) reported a link between

TPC1 function and ABA-dependent inhibition of germina-

tion in Arabidopsis. Based on these previous reports and

the present observations, we evaluated the dependence

of the fou2 phenotype on JA and ABA biosynthesis. For

this purpose, fou2 was crossed with the JA-deficient aos

mutant (Park et al. 2002) and the ABA-deficient aba1-5

mutant (Leon-Kloosterziel et al. 1996). This latter mutant

accumulates 10 times less ABA than the WT and has a

strong dwarf phenotype. In contrast, the rosette morphol-

ogy of aos is similar to that of the WT (Fig. 3a; Park et al.

2002). In addition, TPC1 function has been linked to

SA-mediated responses in tobacco cells (Lin et al. 2005).

To assess the dependence of the fou2 phenotype on the

NONEXPRESSER OF PR GENES (NPR1) and the

ETHYLENE RESISTANT 1 (ETR1), signaling compo-

nents of the SA and ET pathways, respectively, fou2 was

crossed with the npr1-1 and etr1-1 mutants (Chang et al.

1993, Cao et al. 1997). Similarly to fou2, all these mutants

are in the Col-0 background.

Elevated LOX activity in fou2 depends completely on

JA biosynthesis

We showed previously that in a fou2 coi1-1 double

mutant the higher rate of LOX activity present in fou2 was

completely suppressed, whereas its growth and epinastic

leaf phenotype were partially suppressed (Bonaventure et al.

2007). Analysis of the fou2 aos double mutant showed that,

similarly to coi1-1, the aos allele partially suppressed the

rosette morphology of fou2 (Fig. 3a). In this regard, the

size of the rosette was intermediate between that of WT and

fou2, the petioles were longer and the degree of leaf

curvature and epinasty was less pronounced than in

fou2 (Fig. 3a). However, in contrast to fou2 coi1-1, the

first 4–6 leaves of fou2 aos were morphologically similar to

those of the WT. Thus, although the suppression of the

fou2 morphological phenotype in fou2 aos was not

complete, it was more extensive than in fou2 coi1-1. The

onset of the morphological phenotypes in fou2 aos still

occurred after 3 weeks of growth. The in vitro oxygenation

of linolenic acid (18 : 3) using fresh tissue extracts has

been established as a reliable method to assess the levels of

LOX and AOS activities (Caldelari and Farmer 1998,

Table 2 Protein spots identified with MALDI-TOF

Spot No. AGI Annotation MALDI score Theorical

mol. wt

Ratioa

(P-value)

1 At5g24780 Vegetative storage protein 1 289 30,399 NDb

2 At5g24770 Vegetative storage protein 2 186 29,824 2.3 (0.036)

3 At3g16530 Lectin family protein 218 30,547 1.5 (0.027)

4 At4g23600 Putative cystine lyase 870 47,408 2.5 (50.01)

5 At5g25980 Myrosinase 329 61,885 1.4 (50.01)

6 At4g08870 Putative arginase 227 37,957 2.0 (0.043)

7 At1g19570 Putative dehydroascorbate reductase 486 23,740 1.9 (50.01)

Mass spectrometric identification of protein spots with differential accumulation in fou2 leaves compared with the WT. Peptide mass
fingerprints were compared with the UniProt protein databases using the Mascot software.
aThe expression ratios were quantitated by calculating the %Vol (normalized expression volume of the stained proteins) in WT and fou2
leaves. The differences (expressed as ratios, fou2/WT) in %Vol were compared with a two-tailed and paired t-test. Differences in %Vol
with P-values �0.05 were considered statistically significant (see Supplementary Figs. S2 and S3 for further details).
bND, not determined. The intensity of the corresponding protein spot in WT samples was similar to the background level.
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Bonaventure et al. 2007). Therefore, 18 : 3 oxygenation

activity was assessed in unwounded and wounded leaves of

fou2 aos and control genotypes. Analysis of extracts from

unwounded leaves showed that the fou2 aos double mutant

presented less basal 18 : 3 oxygenation activity than both the

WT and fou2, and similar levels to those in aos (Fig. 3b). At

6 h after wounding, increased 18 : 3 oxygenation activity

could be detected in both the WT and fou2, but not in aos

and fou2 aos. Thus, the aos allele completely suppressed the

elevated basal and wound-induced levels of 18 : 3 oxygena-

tion activity in fou2. In agreement with these results, qPCR

analysis of LOX2 mRNA showed that control leaves of WT

and fou2 contained higher amounts of this transcript

compared with aos and fou2 aos leaves. Moreover, after

wounding, LOX2 mRNA levels increased in WT and fou2

but remained unchanged in aos and fou2 aos (Fig. 3c).

LOX2 in Arabidopsis plays a defined role in jasmonate

biosynthesis (Bell et al. 1995).

Elevated LOX activity in fou2 depends partially on ABA

biosynthesis but is independent of NPR1 and ETR1 signaling

The morphological analysis of fou2 npr1-1 and fou2

etr1-1 double mutants showed that their rosette morphol-

ogies were similar to that of fou2. In these two double

mutants, the width of the rosettes was smaller than the

width of those of the corresponding single mutants (npr1-1

and etr1-1). The leaves also presented a marked epinasty

with shorter petioles, and anthocyanin accumulation was

heightened at the base of the petioles (Fig. 4a). However,

in the fou2 aba1-5 double mutant, the reduction in size of its

rosette compared with aba1-5 was not apparent. The

presence of epinastic leaves with shorter petioles and

anthocyanin accumulation was however evident in fou2

aba1-5 (Fig. 4a, b). Biochemical analysis of leaves from

4-week-old mutants showed that 18 : 3 oxygenation activity

in npr1-1 and etr1-1 was similar to that in the WT; however,

in fou2 npr1-1 and fou2 etr1-1 double mutants the

activity was increased to levels similar to that in fou2

(Fig. 4c, d). Biochemical analysis of aba1-5 plants revealed

that the 18 : 3 oxygenation activity in this single mutant was

substantially reduced compared with the WT. However,

it was increased in the fou2 aba1-5 double mutant compared

with aba1-5, albeit at levels lower than in fou2 (Fig. 4c, d).

These results suggest that wild-type levels of ABA are

necessary to reach the higher than wild-type levels of LOX

and AOS activities observed in fou2 (Fig. 4c, d).

Gene expression profiling of tpc1-2 leaves

Having established that a TPC1 gain-of-function

mutant (fou2) results in strong effects on the transcription

of defense-related genes, we investigated whether a loss-of-

function TPC1 mutant also presented effects on defense

gene expression. The Arabidopsis tpc1-2 mutant carries a

T-DNA insertion in exon 17 of TPC1 that renders the gene

product inactive (Peiter et al. 2005). Inactivation of TPC1

causes neither obvious morphological phenotypes nor

shifts in the developmental program of the mutant
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Fig. 3 Characterization of a fou2 aos double mutant. (a) Rosette
morphology of 4-week-old plants. (b) Linolenic acid (18 : 3)
oxygenation activity of leaf extracts from different genotypes
before and 6 h after mechanical wounding. Leaf extracts were
incubated for 2min with [1-14C]18 : 3 and products separated by
thin-layer chromatography. Each assay contained 15 mg of total
protein. The data are representative of two independent experi-
ments. Radioactive bands were detected and digitalized with an
optical scanner for radioactively labeled samples (Bonaventure
et al. 2007). 13-OOH-18 : 3, 13-hydroperoxy-18 : 3; 13-OH-18 : 3,
13-hydroxy-18 : 3; 18 : 3-alpha-ketol, 12-oxo-13-hydroxy-18 : 3;
(c) qPCR analysis of LOX2 mRNA in leaves before and 6 h after
mechanical wounding (w). White bars, control leaves; black bars,
6 h after wounding. Data are the average of three biological
replicates (n¼ 3) and bars denote standard deviations (�SD).
Levels of LOX2 mRNA were calculated relative to the abundance
of eIF4A1-a mRNA (reference). �P 50.05 (t-test, WT control vs.
WT wounded); ��P 50.05 (t-test, fou2 control vs. WT control);
���P 50.05 (t-test, aos control vs. WT control; aos fou2 control
vs. WT control).
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(Peiter et al. 2005, Bonaventure et al. 2007). Therefore,

similarly to fou2, transcriptome analysis of tpc1-2 leaves was

conducted on 4-week-old plants. Statistical analysis of

changes in gene expression in tpc1-2 was conducted using

the same criteria as for analysis of fou2 microarray data

(see Materials and Methods for details). The microarray

results showed that a small number of transcripts (33)

had altered levels in tpc1-2 compared with the WT.

Moreover, the fold changes in transcript levels were subtle

(between 2- and 3-fold for most of the genes; Table SIII).

Only the transcript levels for PLANT DEFENSIN 1.2A

(PDF1.2a) and an expressed protein (At2g38320, encoding

a plant-specific protein of unknown function) were reduced

between 5- and 6-fold in this mutant. Five up-regulated

genes were associated with the formation/structure of the

cell wall or the extracellular matrix. These included two

genes encoding glycine-rich proteins (GRPs) and putative

extracellular lipid transfer proteins (LTPs; Table SIII).

Additionally, two MYB family transcription factors were

increased in tpc1-2 compared with the WT. Among the

13 down-regulated genes in tpc1-2 were two defense-related

genes, PDF1.2a and THIONIN 2.1 (THI2.1). In contrast

to their down-regulation in tpc1-2, the transcript levels

for these two genes were elevated in fou2 (�3-fold for

PDF1.2a and �4.5-fold for THI2.1; Fig. 1 and Table 1).

Transcript levels for a putative transcription factor and

a putative kinase were also down-regulated in tpc1-2

(Table SIII).
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Fig. 4 Characterization of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants. (a) Rosette morphology of 4-week-old plants;
(b) Detail of rosette morphology of aba1-5 and fou2 aba1-5. Arrowheads point to epinastic leaves. (c) Linolenic acid (18 : 3) oxygenation
activity of leaf extracts from different genotypes. Leaf extracts were incubated for 2min with [1-14C]18 : 3 and products separated by
thin-layer chromatography. The data shown are representative of two independent experiments. Each assay contained 15mg of total
protein. Refer to the legend of Fig. 3b for chemical nomenclature; (d) Radioactive bands corresponding to fatty acids were quantitated
using an optical scanner and the ImageQuant software. The percentage of oxygenated 18 : 3 corresponds to radiolabeled 13-OOH-18 : 3.
13-OH-18 : 3 and 18 : 3-alpha-ketol formed from the initial 14C-18 : 3 activity (100%). Data are the average of two biological replicates and
bars denote standard deviations (�SD). The conditions used for this experiment allowed the almost complete utilization of 18 : 3 by fou2
and was designed to detect differences between leaves with high, medium and low 18 : 3 oxygenation activity. Activity corresponds to
15 mg of total protein. �P50.05 (t-test, fou2 vs. WT), ��P50.05 (t-test, aba1-5 vs. WT), ���P50.05 (t-test, aba1-5 fou2 vs. fou2).
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Expression of PDF1.2a and THI2.1 mRNAs is compromised

in tpc1-2 leaves after B. cinerea infection

In WT leaves, PDF1.2a and THI2.1 transcripts are

rapidly induced after B. cinerea infection (AbuQamar et al.

2006). To explore the contribution of TPC1 to the

expression of PDF1.2a and THI2.1, qPCR was used to

analyze the mRNA levels of these two genes in leaves of

WT, fou2 and tpc1-2. For this experiment, WT and mutant

plants were spray-inoculated with B. cinerea, and leaf

material was analyzed after 24 h. This time is sufficient to

induce PDF1.2a and THI2.1 mRNA expression in WT

plants with minimal tissue necrosis (AbuQamar et al. 2006).

Control plants were mock-inoculated with dead spores. In

addition, expression of LOX1 and LOX2 mRNAs was

tested as control. These two transcripts are also induced by

B. cinerea infection in the WT (AbuQamar et al. 2006).

First, the results obtained with non-infected leaves corro-

borated the microarray data. In this regard, tpc1-2 leaves

contained significantly lower basal levels of PDF1.2a (4- to

5-fold) and THI2.1 (2- to 3-fold) transcripts than WT,

but similar levels of LOX1 and LOX2 transcripts. The levels

of these four mRNAs were above those of the WT in fou2

leaves (Fig. 5a, Bonaventure et al. 2007). Secondly, in

infected tpc1-2 leaves, the induction of PDF1.2a and THI2.1

mRNAs was significantly attenuated (�3-fold) compared

with the WT, whereas it was accentuated in fou2 (Fig. 5a).

In contrast, the levels of LOX1 and LOX2 mRNAs were

similar in WT and tpc1-2-infected leaves (Fig. 5a, b).

Expression of PDF1.2a, THI2.1, LOX1 and LOX2 mRNAs

was also quantitated in WT and tpc1-2 plants treated

with MeJA. Similar transcript levels were observed for all

transcripts in both genotypes after 6 h of MeJA treatment

(Fig. S4). Likewise, 6 h after treatment of WT and tpc1-2

with ethephon (an ET-releasing agent), similar levels of

PDF1.2a and THI2.1 transcripts were observed (data not

shown).

Discussion

The fou2 mutation triggers a JA-like response

The first important results obtained with transcript

and protein profiling of fou2 leaves were that: (i) the

response induced by TPC1D454N in resting leaves of this

mutant extensively mimics a biotic stress response similar

to that induced by different pathogens or herbivores; and

(ii) this response is largely mediated by JA. In addition,

analysis of soluble protein extracts by 2-DE and MALDI-

TOF MS (matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry) identified seven proteins

up-regulated in mature fou2 leaves compared with the WT.

The mRNAs for these seven proteins are induced after

biotic stress responses and by JA (Reymond et al. 2004,

Zimmermann et al. 2004). Vegetative storage proteins,
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Fig. 5 Analysis of gene expression after Botrytis cinerea infection
of WT, fou2 and tpc1-2. (a) Quantitative real-time PCR (qPCR) was
used to assess PDF1.2a, THI2.1 and LOX1 mRNA levels in leaves
of plants spray-inoculated with B. cinerea. Changes in gene
expression were evaluated 24 h post-infection. Data are the
average of three biological replicates (n¼ 3) and bars denote
standard deviations (�SD). Levels of PDF1.2a, THI2.1 and LOX1
mRNAs were calculated relative to the abundance of eIF4A1-a
mRNA (reference). þ, B. cinerea infection. �P50.05 (t-test, tpc1-2
control vs. WT control), ��P50.05 (t-test, tpc1-2 infected vs. WT
infected). (b) qPCR analysis of LOX2 mRNA levels in WT and tpc1-
2 leaves spray-inoculated with B. cinerea. Changes in gene
expression were evaluated as in (a).
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myrosinases and lectins have anti-insect roles (Kliebenstein

et al. 2005, Liu et al. 2005). GSH-dependent dehydroascor-

bate reductase (GSHDAR) is an enzyme implicated in

cell protection. Indeed, wounding is associated with an

oxidative stress that generates reactive oxygen species

(Fryer 1992). Interestingly, this putative GSHDAR

(At1g19570) was up-regulated at the protein level but not

at the transcript level in fou2, suggesting that expression of

this enzyme is under post-transcriptional regulation.

Cystine lyase [CS; also annotated as tyrosine aminotrans-

ferase-like (TAT-like)] may catalyze the breakdown of

L-cystine to thiocysteine, pyruvate and ammonia. The CS

gene is strongly induced upon JA and wounding treatments

(Sandorf and Hollander-Czytko 2002); however, no defined

role in plant defense or cell protection has been assigned

thus far to this enzyme.

The fou2 phenotype depends predominantly on JA

biosynthesis but it is also affected by ABA

In agreement with the central participation of JA in

the fou2 phenotype, analysis of a fou2 aos double mutant

demonstrated that the elevated LOX activity and levels of

LOX2 mRNA observed in fou2 were completely suppressed

by the aos allele. In contrast, the morphology of fou2 was

only partially suppressed by the aos allele. These results

were similar to those previously reported for the fou2 coi1-1

double mutant; however, the morphological suppression of

the fou2 phenotype in fou2 aos was more extensive

compared with fou2 coi1-1 (Bonaventure et al. 2007).

These results suggest an effect of JA (or its precursors) on

growth-related processes independently of COI1 signaling.

Interestingly, ZAT10 mRNA levels were up-regulated in

fou2. Transcript levels for this putative transcription factor

are transiently induced by wounding and 12-oxophytodie-

noic acid (OPDA) but not by JA (Taki et al. 2005).

Thus, responses activated by OPDA but not by JA (Stintzi

et al. 2001) may also be induced in fou2 leaves.

Only a partial suppression of both the fou2 morpho-

logical and biochemical phenotypes was achieved by

combining the fou2 with the aba1-5 allele. In this regard,

the rosette size of fou2 aba1-5 was not substantially

affected compared with aba1-5, and the leaf epinasty,

shorter petioles and anthocyanin accumulation typical of

fou2 were still evident in this double mutant. In addition,

fou2 aba1-5 contained higher levels of LOX activity than

aba1-5 although the levels were lower than in fou2.

Together, the results indicate that the fou2 phenotype is

weakly affected by ABA levels and suggest that the levels

of this hormone must remain within certain limits for fou2

to manifest its full phenotype. In accordance with

this conclusion, 18 : 3 oxygenation activity in leaves of a

4-week-old aba2-1 mutant (which presents a less severe

phenotype compared with aba1-5; Leon-Kloosterziel et al.

1996) was similar to that in the WT (G.B. and E.E.F.,

unpublished results). The lower LOX activity in aba1-5 is in

agreement with a recent report describing a role for ABA

in modulating the JA response during pathogenesis

(Adie et al. 2007). In contrast to the aba1-5 allele, analysis

of fou2 etr1-1 and fou2 npr1-1 double mutants demonstrated

that the fou2 morphological and biochemical phenotypes

were independent of ETR1 and NPR1 signaling. These two

signaling components play central roles in the ET and

SA signaling pathways, respectively (Chang et al. 1993, Cao

et al. 1997).

How do gene expression data correlate with the

fou2 phenotype?

Analysis of gene expression in fou2 revealed higher

than WT transcript levels for defense genes and transcrip-

tion factors implicated in defense gene regulation and/or

JA signaling. Other groups of genes up-regulated in fou2

may provide information that will, in the future, relate

the morphological phenotype of the mutant to early events

in jasmonate signaling initiated by wounding or

pathogenesis.

In plants, cell expansion is dependent on cell wall

relaxation coupled to water influx into plant vacuolar

compartments to increase cell turgor (McCann et al. 1993).

Recent characterization of Arabidopsis mutants accumulat-

ing higher than wild-type levels of JA has begun to unveil

an intimate connection between regulation of JA biosynth-

esis and cell wall/plasma membrane homeostasis, and

consequently growth (Ellis et al. 2002, Ko et al. 2006).

Perturbation of cell wall/plasma membrane homeostasis by

mutations in either a cellulose synthase or a plasma

membrane glycosylphosphatidylinositol (GPI)-anchored

protein triggers JA biosynthesis and JA-mediated gene

responses. In addition, a well-documented effect of JA

application on WT plants is the arrest of growth and, in

agreement with this phenomenon, a common phenotype

of JA-overaccumulating mutants is their smaller size

compared with the WT (Hilpert et al. 2001, Ellis et al.

2002, Jensen et al. 2002, Ko et al. 2006). Interestingly, six

genes encoding PMEs were strongly up-regulated (44-fold)

in fou2. These enzymes catalyze the de-esterification

of highly methylated homogalacturonans (HGAs) in the

cell wall to facilitate binding of Ca2þ to HGAs, thereby

controlling cell wall rigidity. These enzymes are usually only

expressed in mature but not in rapidly elongating tissue

(Micheli 2001). Some of these PME genes are induced by

JA treatment and biotic stresses including B. cinerea

infection (AbuQamar et al. 2006). In addition, three genes

encoding peroxidases were up-regulated in fou2. MeJA is

known to induce the activity of cell wall-bound peroxidases,

thereby promoting irreversible inhibition of root

growth (Tsai et al. 1997). Genes encoding several other
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cell wall-modifying enzymes were up-regulated in fou2,

including EXPANSIN 10 (EXP10), ARABINOGALAC-

TAN PROTEIN 10 (AGP10), two GLYCINE-RICH

PROTEINS (GRPs) and two POLYGALACTURONASE

INHIBITING PROTEINS (PGIP1 and 2). Among the most

down-regulated genes in fou2 were EXPANSIN 11 (EXP11)

and a pectate lyase family protein (At3g07010). Shorter

petioles than WT is a feature of fou2 and several mutants

that overaccumulate JA (Hilpert et al. 2001, Jensen et al.

2002, Bonaventure et al. 2007). Levels of the EXP11mRNA

might be related to this phenotype. This transcript is

known to be highly expressed in petioles of developing

seedlings and is down-regulated by MeJA treatment and

some biotic stresses including fungi and bacteria

(Zimmermann et al. 2004).

One of the striking features of the transcript profile in

fou2 is its resemblance to the Kþ starvation transcriptome

(Fig. 2). Interestingly, Kþ starvation responses trigger

JA biosynthesis, and it was proposed that JA plays a

central role in the control of Kþ homeostasis in Arabidopsis

(Armengaud et al. 2004). Here, we raise the possibility

that the alternative may also be true and that Kþ home-

ostasis may affect JA responses. While the nature of the

cation(s) responsible for the fou2 phenotype is unknown

and cannot be determined from our study, it is known,

for example, that Ca2þ plays a critical role in the Kþ

starvation response (Xu et al. 2006). One possibility for

the activation of JA biosynthesis in fou2 is that deregulation

of intracellular Kþ fluxes, perhaps indirectly involving Ca2þ

signaling (and maybe resembling those occurring during Kþ

starvation), may occur in fou2. It is possible that the genetic

and physiological characterization of fou2 may help unite

electrophysiology with previous physiological studies of the

wound response. Changes in turgor as a consequence of

wounding have been discussed as contributing to wound

signaling in previous studies (Hause et al. 1996, Stankovic

and Davies 1998). Since Kþ is a major contributor to cell

turgor, a hypothesis that will need to be considered in future

research is that JA synthesis in fou2 is activated by altered

cell turgor status in the mutant.

Wild-type TPC1 contributes to the basal and induced

expression of two pathogenesis-related proteins by

JA-independent mechanisms

Recently, TPC1 function in plants has been linked to

the elicitation of programmed cell death and to the

expression of defense genes and antioxidant enzymes

(Kadota et al. 2004, Kurusu et al. 2005). Leaf gene

expression profiling of the tpc1-2 loss-of-function mutant

indicated that a small number of genes (33, according to

the statistical criteria applied) were differentially expressed

in this mutant compared with the WT. Nineteen genes were

up-regulated; however, no transcript was induced more

than 3-fold compared with the WT. The transcript levels

for 14 genes were down-regulated in tpc1-2 and, among

these, only three, PDF1.2a, an expressed protein

(At2g38320) and THI2.1, were decreased by �3-fold

(Table SIII). Thus, both up- and down-regulation of

transcript levels in tpc1-2 was subtle. The absence of

substantial changes in gene expression in tpc1-2 was

consistent with its normal morphology and development.

Comparison of the changes in the transcriptome of

healthy fou2 and tpc1-2 leaves revealed that transcripts

corresponding to three genes showed opposite regulation

in these two mutants. In this regard, PDF1.2a, THI2.1 and

At2g38320 mRNAs were up-regulated in fou2, whereas

they were down-regulated in tpc1-2 (Fig. 1). In addition,

the results demonstrated that WT TPC1 does not

affect expression of either JA biosynthesis genes or most

JA-responsive genes in resting tissue. Furthermore, the

induction of PDF1.2a and THI2.1 mRNAs was not affected

by MeJA treatment in tpc1-2, indicating that JA perception

and signaling is not altered in this mutant. Based on these

results and on our previous observations showing that

the activity and expression of LOX2 and AOS mRNAs are

not affected in tpc1-2 after wounding (Bonaventure et al.

2007), we conclude that the mechanisms involved in the

differential expression of PDF1.2a and THI2.1 transcripts

in unwounded tpc1-2 is probably independent of JA signal-

ing (however, a weak effect on JA signaling in this mutant

cannot be excluded) and may involve other cellular

mechanisms. Whether these mechanisms are direct (i.e.

cation mediated) or indirect remains to be elucidated.

Importantly, however, the expression of these two genes is

influenced by both loss- and gain-of-function mutants of

TPC1 in Arabidopsis. They will provide useful targets for

the further investigation of cation fluxes in the regulation of

jasmonate and defense responses.

Materials and methods

Plant material and treatments

WT Arabidopsis thaliana (Col-0) and mutant plants

were grown on soil at 228C under white fluorescent light

(100 mEm�2 s�1) in a 16 h light/8 h dark photoperiod. After

sowing, seeds were stratified for 4 d at 48C in the dark.

For all the experiments, plants were grown for 4 weeks from

the beginning of germination (4 weeks old). Conidial spores

of B. cinerea cultures were resuspended in 0.6% (w/v)

potato dextrose broth (Difco, St Louis, MO, USA)

at 1� 104 spores ml�1. The solution was sprayed on the

upper surface of rosette leaves of WT and mutant plants.

For controls, medium with spores was boiled for 10min and

sprayed on leaves as indicated above. Control and chal-

lenged plants were placed in sealed transparent boxes

under a 12 h light/12 h dark photoperiod (100 mEm�2 s�1) at
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228C and 485% humidity. Leaf material was harvested

after 24 h of infection and frozen in liquid nitrogen for

total RNA extraction. For MeJA treatment, pots with

WT and mutant plants were placed in transparent

plexiglass boxes (air volume 15 liters). A cotton tip was

placed in each box and 1ml of 10% (v/v) MeJA (Sigma) in

ethanol was applied on its surface. For controls 1 ml of

ethanol was used. The boxes were closed with hermetic

lids and placed under continuous fluorescent white light

for 6 h at 228C. Leaf material was harvested and frozen in

liquid nitrogen for subsequent RNA extraction. Ethephon

(Sigma) was reconstituted at 1mM in aqueous 40% (v/v)

acetone and 0.02% (v/v) Tween-20, and sprayed on plants

until run-off. Control plants were sprayed with the solvent.

Experimental conditions were the same as for MeJA

treatment. For wounding experiments, all but one leaf

(systemic) from the rosette were wounded. For this purpose,

(‘distal’) from �25% of the leaf area (tip) was mechanically

crushed with sharp forceps. In all the experiments, the distal

leaf was used for analysis.

Microarray experiments and data analysis

The Arabidopsis CATMA microarray was used for

mRNA expression profiling (Hilson et al. 2004, Little et al.

2006). Total RNA isolation, preparation of fluorescent

probes, hybridizations and washes were performed accord-

ing to Reymond et al. (2004; http://www.unil.ch/ibpv/micro

arrays.htm). Microarray experiments were performed in

triplicate with dye-swap design, and slides were scanned

with a ScanArray 4000 (Packard BioScience, Zurich,

Switzerland) using the same conditions as described

(Reymond et al. 2004). The average fluorescence intensity

for each fluor and for each gene was determined using the

ImaGene program (BioDiscovery, Los Angeles, CA, USA).

Data processing and analysis were performed using a

relational database (NOMAD, University of California,

San Francisco, http://ucsf-nomad.sourceforge.net) installed

locally and adapted using custom Perl scripts (Reymond

et al. 2004). To identify differentially expressed genes

between samples, a Student’s t-test (two-sample hypothesis,

equal variance) was conducted between log2-transformed

expression ratios from mutants vs. the WT. Genes with a

P-value �0.05 were considered as differentially regulated

(Reymond et al. 2004). In addition, the q-value method was

used for data analysis. Data were computed with the

QVALUE software as described (Storey and Tibshirani

2003) using the Limma package from Bioconductor

(Gentleman et al. 2004). The q-value method computes a

q-value for each gene using the distribution of P-values of

all measurements and an estimated false discovery rate

(FDR). Based on q-values, P-value cut-offs of 0.033

and 0.018 for an FDR of 5% were calculated and used to

define significant changes in gene expression in fou2 and

tpc1-2, respectively (Storey and Tibshirani 2003, Gentleman

et al. 2004). Functional classes for GO analysis were

created according to the TAIR and MIPS classifications

generated as described (Provart and Zhu 2003, Bernardini

et al. 2004). Hierarchical clustering was performed with

CLUSTER (Eisen et al. 1998) and visualized with Java

TREEVIEW (Saldanha 2004). Complete linkage using

an uncentered Pearson correlation was applied to the log2
of normalized expression ratios (treated/WT). Experimental

data were retrieved from 88 stress response experiments

present in the GENEVESTIGATOR database (the com-

plete list of experiments is available at www.genevestigator.

ethz.ch) and analyzed with the Meta-Analyzer software.

Only experiments where WT plants (Col-0) were tested

and green tissue was analyzed were selected for analysis.

Genes that were both present in the CATMA array

and represented unique genes in the Affymetrix probe

array were selected (Redman et al. 2004). In addition, only

genes with overall signal intensity4200 in the Affymetrix

probe array were used for analysis (Zimmermann et al.

2004).

Soluble protein extraction

Frozen leaf material (500mg) from Arabidopsis WT

and fou2 plants was placed in a mortar chilled with liquid

nitrogen. A 69 ml aliquot of Solution 1 [one tablet of

proteinase inhibitors cocktail (CompleteTM mini, Molecular

Biochemicals Roche, Mannheim, Germany) dissolved in

2ml of 100mM KCl, 20% (v/v) glycerol, 50mM Tris–HCl,

pH 7.1] and 16.8 ml of Solution 2 [1mM pepstatin A, 1.4 mM
phenylmethylsulfonyl fluoride (PMSF) dissolved in ethanol]

were placed onto the surface of the leaves and allowed to

freeze. The leaves were then ground to a fine powder in the

presence of liquid nitrogen. The homogenate was centri-

fuged for 30min (430,000� g at 48C). The supernatant

(0.45ml) was recovered and proteins were precipitated by

the successive addition of 1.8ml of methanol, 0.45ml of

chloroform and 1.35ml of water. The mixture was briefly

agitated and centrifuged for 5min (9,000� g at 48C).
After centrifugation, the proteins were recovered from

the interface of the aqueous and organic phases. Protein

samples were precipitated with methanol (1.35ml) and

centrifuged for 5min at 9,000� g (48C). The supernatant

was removed and the pellet was air dried. The samples were

resuspended in 150ml of DIGE lysis buffer [DLB; 30mM

Tris, 7M urea, 2M thiourea, 4% (w/v) 3-(3-cholamidopro-

pyl)-dimethylammonio-1-propanesulfonate (CHAPS),

pH 8.5] and sonicated on ice five times for 5 s with 1min

intervals. Protein concentrations were quantified using

the 2-D Quant Kit (Amersham Biosciences Corp.,

Piscataway, NJ, USA) according to the manufacturer’s

instructions.
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Two-dimensional gel electrophoresis, gel staining and analysis

For the first dimension, IEF, 24 cm pH3-11 NL

(non-linear) Immobiline DryStrips (GE Healthcare Bio-

sciences AB, Uppsala, Sweden) were used. The strips were

rehydrated overnight in 0.45ml of DeStreak buffer

(De Streak Rehydration Solution, GE Healthcare Bio-

sciences AB) containing 0.5% (v/v) ampholites (IPG buffer

pH 3–11NL, GE Healthcare Bio-sciences AB) and covered

with mineral oil to prevent evaporation. The protein sample

(300 mg) was mixed with 2�DIGE lysis buffer [2�DLB;

8M urea, 130mM 1,4-dithio-DL-threitol (DTT), 4% (w/v)

CHAPS, 2% (v/v) ampholites] to a proportion of 1 : 1

(protein sample : 2�DLB buffer). The sample mixture was

vortexed for 10min, centrifuged for 10min at 9,000� g and

loaded onto the strip according to the manufacturer’s

instructions (GE Healthcare Bio-sciences AB). Samples

were run with an EttanTM IPGphorTM 2 IEF System (GE

Healthcare Bio-sciences AB) using the following conditions:

step 1, 3 h at 150V; step 2, 3 h at 300V; gradient 1, 6 h

at 300–1,000V (rate 117Vh�1); gradient 2, 4 h at

1,000–8,000V (rate 1,750 Vh�1); step 3, 4 h 30min at

8,000V. After the run, the strips were incubated first

for 15min in equilibration buffer 1 [0.5M Tris–HCl,

pH 6.8, 6M urea, 30% (w/v) glycerol, 2% (w/v) SDS, 1%

(w/v) DTT] and secondly in equilibration buffer 2

[2.5% (w/v) iodoacetamide] for 15min. The strips were

soaked in 2� SDS–PAGE running buffer [50mM Tris,

500mM glycine, 0.2% (w/v) SDS], placed on top of 12.5%

polyacrylamide gels and sealed together with warm 0.5%

(w/v) agarose prepared in 2�SDS–PAGE running buffer.

Electrophoresis was performed with an Ettan-DALT-Six-

Gel system (GE Healthcare Bio-sciences AB) at 208C using

the following conditions: 15min at 80V and 17 h 30min at

15mA per gel. After electrophoresis, gels were placed in

fixing solution [50% (v/v) ethanol, 3% (v/v) phosphoric

acid] for 3 h. The gels were washed three times (30min) with

water and placed in equilibration solution [30% (v/v)

methanol, 3% (v/v) phosphoric acid, 17% (v/v) ammonium

sulfate] for 1 h. Gels were stained in equilibration solution

containing 0.35 g l�1 of Coomassie G-250 (Sigma, Buchs,

Switzerland) according to the manufacturer’s instructions.

Gels were scanned with a calibrated densitometer (GS-800,

Bio-Rad, Zurich, Switzerland). Spot detection, indexing,

matching, normalization and quantitation were done with

the Imagemaster Platinium 5.0 software (Amersham

Biosciences, Uppsala, Sweden). For quantitation of protein

spots, the normalized expression volume of the stained

proteins (%Vol¼ [Vol/�N
S¼1VolS]� 100, where VolS repre-

sents the spot volume and N is the total number of spots)

was used. The ratios (fou2/WT) of the relative spot

quantities from fou2 and WT leaves were compared with

a two-tailed and paired t-test. The P-values were calculated

with 2-DE images of five biological replicates (n¼ 5) for

both WT and fou2, and ratios with P-values �0.05 were

considered statistically significant.

Protein digestion and MALDI-TOF analysis

Protein identification was performed as described

by Crettaz et al. (2004). Briefly, gel bands were excised

from the SDS–polyacrylamide gel and transferred to 96-well

plates (Perkin Elmer Life Sciences, Foster City, CA, USA).

In-gel proteolytic cleavage with sequencing-grade trypsin

(Promega, Madison, WI, USA) was performed automati-

cally in the robotic workstation Investigator ProGest

(Perkin Elmer Life Sciences) according to the protocol of

Shevchenko et al. (1996). Digests were evaporated to

dryness and reconstituted in 3ml of a-cyano-hydroxycin-
namic acid matrix [5mgml�1 in 60% (v/v) acetonitrile/

water], of which 0.7 ml were placed in duplicate on a target

plate. MALDI-TOF MS analysis was performed on a 4700

Proteomics Analyser (Applied Biosystems, Framingham,

MA, USA). Internal calibration was performed with trypsin

autolysis peaks and, after subtraction of matrix peaks,

the 10 most intense ion signals were selected for analysis.

Non-interpreted peptide tandem mass spectra were used for

direct interrogation of the Uniprot (Swissprot-TrEMBL)

database using the Mascot 2.0 software (http://www.matrix

science.com). The mass tolerance for database searches was

50 p.p.m. The MASCOT software was set up to report only

peptide matches with a score 414. With the parameters

used, the threshold for statistical significance (P� 0.05)

corresponded to a total (protein) MASCOT score of 33.

Proteins scoring 480 were considered automatically as

valid, while all protein identifications with a total

MASCOT score between 33 and 80 were manually

validated. Validation included examination of the RMS

(root mean square) mass error of individual peptide

matches. MS peptide matches were validated only if at

least an ion series of four consecutive y ions were matched,

in addition to ions belonging to other series. Generally, only

proteins matched by at least two peptides were accepted.

Linolenic acid oxygenation activity

The assay for oxygenation of linolenic acid by fresh

leaf extracts of Arabidopsis was performed as previously

described (Bonaventure et al. 2007).

Quantitative real-time PCR (qPCR)

Plants were mechanically wounded as indicated above

and the distal leaf harvested and frozen in liquid nitrogen

for total RNA extraction. For this purpose, 100mg of

frozen material was extracted using TRIzol� (Invitrogen,

Merelbeke, Belgium) according to commercial instructions.

Total RNA was cleaned up with the RNeasy extraction

kit following commercial instructions (Qiagen, Zurich,

Switzerland). A 5mg aliquot of total RNA was copied to
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cDNA with the SuperScript II First Strand Synthesis

System (Invitrogen) and random hexamers. Prior to

qPCR, the cDNA was treated with RNase H and RNase

A according to the manufacturer’s instructions and the

cDNA purified with the Plant DNA extraction kit (Qiagen).

Specific primers were designed to have a Tm of 608C and

to give amplicons between 200 and 300 bp (Table SIV).

RT-qPCR analysis was performed in a final volume of 25 ml
according to the FullVelocityTM SYBR� Green instruction

manual (Stratagene, La Jolla, CA, USA). The Arabidopsis

eukaryotic translation initiation factor 4A1-a (eIF4A1-a)
was used as the internal control. Quantitation of gene

expression was based on the comparative threshold (CT)

method as described in User Bulletin #2 (Perkin Elmer-

Applied Biosystems, Foster City, CA, USA). PCR and data

analysis were performed, respectively, in an Mx3000PTM

spectrofluorometric thermal cycler and its corresponding

software (Stratagene).

Generation and analysis of double mutants

Pollen from fou2 was used to fertilize male-sterile aos

plants. Pollen from npr1-1, aba1-5 and etr1-1 mutants was

used to fertilize fou2 plants. The presence of npr1-1, aba1-5

or etr1-1 alleles in the double mutants was confirmed

by PCR amplification and CAPS (cleaved amplified

polymorphic sequences) analysis (Chang et al. 1993, Cao

et al. 1997, Audran et al. 2001). For npr1-1, the primers used

were: 50gaagctattggatagatg30 and 50gttgagcaagtgcaact30; for

aba1-5, 50gctgggtgtatcactggtgatcgg30 and 50ccattctcgagtacc

acagtaacc30; and for etr1-1, 50catctccgatttcttcat30 and 50aaga

tcaggaataatatg30. The fou2 allele was confirmed by CAPS

analysis (Bonaventure et al. 2007).

Supplementary material

Supplementary material mentioned in the article is

available to online subscribers at the journal website

www.pcp.oxfordjournals.org.

The complete microarray data are available at the

ArrayExpress database (www.ebi.ac.uk/aerep/login; Experi-

ment accession number E-MEXP-1095).

Funding

Swiss National Science Foundation (3100A0-101711).

Acknowledgments

We thank the Nottingham Arabidopsis Stock Centre for
seeds of mutants and SALK insertion lines. Proteomic support was
provided by Dr. M. Quadroni (Proteomic facility, University of
Lausanne). We also thank P. Reymond (University of Lausanne)
for discussions, and D. Little and C. Darimont for help with
CATMA microarrays and data analysis.

References

AbuQamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S.,
Dietrich, R.A. and Mengiste, T. (2006) Expression profiling and mutant
analysis reveals complex regulatory networks involved in Arabidopsis
response to Botrytis infection. Plant J. 48: 28–44.

Adie, B.A., Perez-Perez, J., Perez-Perez, M.M., Godoy, M., Sanchez-
Serrano, J.J., Schmelz, E.A. and Solano, R. (2007) ABA is an
essential signal for plant resistance to pathogens affecting JA
biosynthesis and the activation of defenses in Arabidopsis. Plant Cell
19: 1665–1681.

Armengaud, P., Breitling, R. and Amtmann, A. (2004) The potassium-
dependent transcriptome of Arabidopsis reveals a prominent role of
jasmonic acid in nutrient signaling. Plant Physiol. 136: 2556–2576.

Audran, C., Liotenberg, S., Gonneau, M., North, H., Frey, A.,
Tap-Waksman, K., Vartanian, N. and Marion-Poll, A. (2001)
Localisation and expression of zeaxanthin epoxidase mRNA in
Arabidopsis in response to drought stress and during seed development.
Aust. J. Plant Physiol. 28: 1161–1173.

Bell, E., Creelman, R.A. and Mullet, J.E. (1995) A chloroplast lipoxygenase
is required for wound-induced jasmonic acid accumulation in
Arabidopsis. Proc. Natl Acad. Sci. USA 92: 8675–8679.

Berardini, T.Z., Mundodi, S., Reiser, L., Huala, E., Garcia-Hernandez, M.,
et al. (2004) Functional annotation of the Arabidopsis genome using
controlled vocabularies. Plant Physiol. 135: 745–755.

Beveridge, C.A., Mathesius, U., Rose, R.J. and Gresshoff, P.M. (2007)
Common regulatory themes in meristem development and whole-plant
homeostasis. Curr. Opin. Plant Biol. 10: 44–51.

Bonaventure, G., Gfeller, A., Proebsting, W.M., Hoerstensteiner, S.,
Chételat, A., Martinoia, E. and Farmer, E.E. (2007) A gain-of-function
allele of TPC1 activates oxylipin biogenesis after leaf wounding in
Arabidopsis. Plant J. 49: 889–898.

Caldelari, D. and Farmer, E.E. (1998) A rapid assay for the coupled cell free
generation of oxylipins. Phytochemistry 47: 599–604.

Cao, H., Glazebrook, J., Clarke, J.D., Volko, S. and Dong, X. (1997)
The Arabidopsis NPR1 gene that controls systemic acquired
resistance encodes a novel protein containing ankyrin repeats. Cell 88:
57–63.

Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993)
Arabidopsis ethylene-response gene ETR1: similarity of product to
two-component regulators. Science 262: 539–544.

Crettaz, D., Sensebe, L., Vu, D.H., Schneider, P., Depasse, F.,
Bienvenut, W.V., Quadroni, M. and Tissot, J.D. (2004) Proteomics of
methylene blue photo-treated plasma before and after removal of the dye
by an absorbent filter. Proteomics 4: 881–891.

Devoto, A., Ellis, C., Magusin, A., Chang, H.S., Chilcott, C., Zhu, T. and
Turner, J.G. (2005) Expression profiling reveals COI1 to be a key
regulator of genes involved in wound- and methyl jasmonate-induced
secondary metabolism, defense, and hormone interactions. Plant Mol.

Biol. 58: 497–513.
Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998)

Cluster analysis and display of genome-wide expression patterns.
Proc. Natl Acad. Sci. USA 95: 14863–1488.

Ellis, C., Karafyllidis, I., Wasternack, C. and Turner, J.G. (2002) The
Arabidopsis mutant cev1 links cell wall signaling to jasmonate
and ethylene responses. Plant Cell 14: 1557–1566.

Fryer, M.J. (1992) The antioxidant effects of thylakoid vitamin-E
(alpha-tocopherol). Plant Cell Environ. 15: 381–392.

Furuichi, T., Cunningham, K.W. and Muto, S. (2001) A putative two pore
channel AtTPC1 mediates Ca2þ flux in Arabidopsis leaf cells. Plant Cell
Physiol. 42: 900–905.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., et al.
(2004) Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5: R80.

Hause, B., Demus, U., Teichmann, C., Parthier, B. and Wasternack, C.
(1996) Developmental and tissue-specific expression of JIP-23,
a jasmonate-inducible protein of barley. Plant Cell Physiol. 37: 641–649.

Hilpert, B., Bohlmann, H., op den Camp, R.O., Przybyla, D., Miersch, O.,
Buchala, A. and Apel, K. (2001) Isolation and characterization of signal

1788 Cation channel in defense gene regulation



transduction mutants of Arabidopsis thaliana that constitutively activate

the octadecanoid pathway and form necrotic microlesions. Plant J. 26:

435–446.
Hilson, P., Allemeersch, J., Altmann, T., Aubourg, S., Avon, A., et al.

(2004) Versatile gene-specific sequence tags for Arabidopsis functional

genomics: transcript profiling and reverse genetics applications. Genome

Res. 14: 2176–2189.
Jensen, A.B., Raventos, D. and Mundy, J. (2002) Fusion genetic analysis of

jasmonate-signaling mutants in Arabidopsis. Plant J. 29: 595–606.
Kadota, Y., Furuichi, T., Ogasawara, Y., Goh, T., Higashi, K., Muto, S.

and Kuchitsu, K. (2004) Identification of putative voltage-dependent

Ca2þ-permeable channels involved in cryptogein-induced Ca2þ transients

and defense responses in tobacco BY-2 cells. Biochem. Biophys. Res.

Commun. 317: 823–830.
Kliebenstein, D.J., Kroymann, J. and Mitchell-Olds, T. (2005) The

glucosinolate–myrosinase system in an ecological and evolutionary
context. Curr. Opin. Plant Biol. 8: 264–271.

Ko, J.H., Kim, J.H., Jayanty, S.S., Howe, G.A. and Han, K.H. (2006) Loss
of function of COBRA, a determinant of oriented cell expansion, invokes

cellular defense responses in Arabidopsis thaliana. J. Exp. Bot. 57:

2923–2936.
Kurusu, T., Yagala, T., Miyao, A., Hirochika, H. and Kuchitsu, K. (2005)

Identification of a putative voltage-gated Ca2þ channel as a key regulator

of elicitor-induced hypersensitive cell death and mitogen-activated

protein kinase activation in rice. Plant J. 42: 798–809.
Leon-Kloosterziel, K.M., Gil, M.A., Ruijs, G.J., Jacobsen, S.E.,

Olszewski, N.E., Schwartz, S.H., Zeevaart, J.A. and Koornneef, M.

(1996) Isolation and characterization of abscisic acid-deficient
Arabidopsis mutants at two new loci. Plant J. 10: 655–661.

Lin, C., Yu, Y., Kadono, T., Iwata, M., Umemura, K., et al. (2005) Action
of aluminum, novel TPC1-type channel inhibitor, against salicylate-

induced and cold-shock-induced calcium influx in tobacco BY-2 cells.

Biochem. Biophys. Res. Commun. 332: 823–830.
Little, D., Darimont, C., Bruessow, F. and Reymond, P. (2007) Oviposition

by pierid butterflies triggers defense responses in Arabidopsis. Plant

Physiol. 143: 784–800.
Liu, Y., Ahn, J.E., Datta, S., Salzman, R.A., Moon, J., Huyghues-

Despointes, B., Pittendrigh, B., Murdock, L.L., Koiwa, H. and

Zhu-Salzman, K. (2005) Arabidopsis vegetative storage protein is an
anti-insect acid phosphatase. Plant Physiol. 139: 1545–1556.

Lorenzo, O. and Solano, R. (2005) Molecular players regulating the
jasmonate signaling network. Curr. Opin. Plant Biol. 8: 532–540.

Mandaokar, A., Thines, B., Shin, B., Lange, B.M., Choi, G., Koo, Y.J.,
Yoo, Y.J., Choi, Y.D. and Browse, J. (2006) Transcriptional regulators

of stamen development in Arabidopsis identified by transcriptional

profiling. Plant J. 46: 984–1008.
McCann, M.C., Stacey, N.J., Wilson, R. and Roberts, K. (1993)

Orientation of macromolecules in the walls of elongating carrot cells.

J. Cell Sci. 106: 1347–1356.
Micheli, F. (2001) Pectin methylesterases: cell wall enzymes with important

roles in plant physiology. Trends Plant Sci. 6: 414–419.
Park, J.H., Halitschke, R., Kim, B.H., Baldwin, I.T., Feldmann, K.A. and

Feyereisen, R. (2002) A knock-out mutation in allene oxide synthase

results in male sterility and defective wound signal transduction in

Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J. 31:
1–12.

Peiter, E., Maathuis, F.J., Mills, L.N., Knight, H., Pelloux, J.,
Hetherington, A.M. and Sanders, D. (2005) The vacuolar Ca2þ-activated

channel TPC1 regulates germination and stomatal movement. Nature

434: 404–408.

Provart, N. and Zhu, T. (2003) A browser-based functional classification
superviewer for Arabidopsis genomics. Curr. Comput. Mol. Biol.
271–272.

Redman, J.C., Haas, B.J., Tanimoto, G. and Town, C.D. (2004)
Development and evaluation of an Arabidopsis whole genome
Affymetrix probe array. Plant J. 38: 545–561.

Reymond, P., Bodenhausen, N., Van Poecke, R.M., Krishnamurthy, V.,
Dicke, M. and Farmer, E.E. (2004) A conserved transcript pattern in
response to a specialist and a generalist herbivore. Plant Cell 16:
3132–3147.

Rohde, A., Morreel, K., Ralph, J., Goeminne, G., Hostyn, V., De
Rycke, R., et al. (2004) Molecular phenotyping of the pal1 and pal2
mutants of Arabidopsis thaliana reveals far-reaching consequences on
phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell
16: 2749–2771.

Saldanha, A.J. (2004) Java Treeview—extensible visualization of micro-
array data. Bioinformatics 20: 3246–3248.

Sandorf, I. and Hollander-Czytko, H. (2002) Jasmonate is involved in the
induction of tyrosine aminotransferase and tocopherol biosynthesis in
Arabidopsis thaliana. Planta 216: 173–179.

Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., et al.
(2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis
by cDNA macroarray: self-activation of jasmonic acid biosynthesis and
crosstalk with other phytohormone signaling pathways. DNA Res. 8:
153–161.

Schaller, F., Schaller, A. and Stintzi, A. (2005) Biosynthesis and metabolism
of jasmonates. J. Plant Growth Regul. 23: 179–199.

Schilmiller, A.L. and Howe, G.A. (2005) Systemic signaling in the wound
response. Curr. Opin. Plant Biol. 8: 369–377.

Shevchenko, A., Chernushevich, I., Wilm, M. and Mann, M. (1996) De
novo peptide sequencing by nanoelectrospray tandem mass spectrometry
using triple quadrupole and quadrupole time-of-flight instruments.
Methods Mol. Biol. 146: 1–16.

Stankovic, B. and Davies, E. (1998) The wound response in tomato involves
rapid growth and electrical responses. Plant Cell Physiol. 39: 268–274.

Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E. (2001)
Plant defense in the absence of jasmonic acid: the role of cyclopente-
nones. Proc. Natl Acad. Sci. USA 98: 12837–12842.

Story, J.D. and Tibshirani, R. (2003) Statistical significance for genome-
wide studies. Proc. Natl Acad. Sci. USA 100: 9440–9445.

Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K.,
et al. (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set
of genes and plays a role in wound-induced gene expression in
Arabidopsis. Plant Physiol. 139: 1268–1283.

Tsai, F.Y., Lin, C.C. and Kao, C.H. (1997) A comparative study of the
effects of abscisic acid and methyl jasmonate on seedlings growth of rice.
Plant Growth Regul 21: 37–42.

Turner, J.G., Ellis, C. and Devoto, A. (2002) The jasmonate signal pathway.
Plant Cell 14: S153–S164.

Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. and Turner, J.G. (1998)
COI1: an Arabidopsis gene required for jasmonate-regulated defense and
fertility. Science 280: 1091–1094.

Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L. and Wu, W.H.
(2006) A protein kinase interacting with two calcineurin B-like proteins,
regulates Kþ transporter AKT1 in Arabidopsis. Cell 125: 1347–1360.

Zavala, J.A. and Baldwin, I.T. (2006) Jasmonic acid signaling and herbivore
resistance traits constrain regrowth after herbivore attack in Nicotiana
attenuata. Plant Cell Environ. 29: 1751–1760.

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W.
(2004) GENEVESTIGATOR. Arabidopsis Microarray Database and
Analysis Toolbox. Plant Physiol. 136: 2621–2632.

(Received August 3, 2007; Accepted October 29, 2007)

Cation channel in defense gene regulation 1789


