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Resumé 

Les micro-organismes ont évolué pour occuper presque toutes les niches écologiques 

imaginables et sont donc impliqués dans un large éventail d'interactions écologiques autant 

entre eux comme avec des formes de vie supérieures. Les communautés microbiennes du sol 

jouent un rôle clé dans de nombreux processus écologiques, notamment les cycles 

biogéochimiques des nutriments, la dégradation des xénobiotiques, la formation d'agrégats du 

sol et la structuration des communautés végétales. Ces processus étant fondamentaux pour 

le fonctionnement des écosystèmes terrestres, le pourquoi les communautés microbiennes du 

sol ont suscité un grand intérêt de la communauté scientifique.  

Au fil des années, diverses approches indépendantes de la culture en laboratoire, comme le 

séquençage non ciblé de tout l'ADN extrait d'un échantillon donné (appelé métagénomique) 

ont été développées et ont généralement été utilisées pour identifier les espèces microbiennes 

et les variables environnementales qui déterminent leur abondance et distribution.  

Cependant, les études utilisant une méthodologie métagénomique se sont, pour la plupart, 

limitées à une approche descriptive. Un prix élevé ainsi que la puissance de computationnelle 

et l'expertise bioinformatique nécessaires pour traiter ce type de données ont limité des 

expériences répliquées et reproductibles. Désormais, avec du séquençage plus abordable et 

avec des outils bioinformatiques plus efficaces, des expériences de manipulation des 

métagénomes peuvent être établies permettant de tester des questions de recherche 

spécifiques sur les facteurs affectant la diversité et la composition métagénomique du sol.  

L'objectif de ce travail était d'étudier comment la manipulation expérimentale par simulation du 

réchauffement climatique ou inoculation avec des microbes bénéfiques affecte le métagénome 

du sol. Les résultats ont fourni des informations précieuses concernant les réponses des 

métagénomes du sol aux changements environnementaux. Cela permettra, à l'avenir, 

d'étudier les métagénomes du sol et la manière dont son fonctionnement et sa résilience 

pourraient être exploités pour potentiellement améliorer la productivité des écosystèmes et 

des agroécosystèmes.  



 

 
 

General abstract 

Microorganisms have evolved to occupy almost every conceivable ecological niche and 

therefore are involved in a wide range of ecological interactions with each other and with higher 

forms of life. Soil microbial communities play key roles in many ecological processes including 

biogeochemical cycling of nutrients, breakdown of xenobiotics, formation of soil aggregates 

and structuring of plant communities. As these processes are fundamental to the functioning 

of terrestrial ecosystems, soil microbial communities have attracted great interest from the 

scientific community.  

Over the years, diverse culture-independent approaches, as the untargeted sequencing of all 

the DNA extracted from a given sample (referred to as metagenomics) have been developed 

and have been typically used to identify microbial species and the environmental variables that 

drive their abundance and distribution. 

However, the studies using a metagenomic methodology have mostly been limited to a 

descriptive approach. The high price, computing power and bioinformatic expertise required to 

process this kind of data have limited thorough and fully replicated experimental investigations. 

Now, with more affordable sequencing and more powerful bioinformatic tools, experiments 

manipulating metagenomes can be established allowing for testing of specific research 

questions into factors affecting soil metagenomic diversity and composition.  

The focus of this work was to investigate how experimental manipulation through either climate 

warming simulation or inoculation of crops with beneficial microbes affect the soil 

metagenome. The results yielded valuable information concerning the responses of soil 

metagenomes to environmental changes. This, in the future will allow investigating soil 

metagenomes and how its functioning and resilience could be harnessed to potentially improve 

ecosystems and agroecosystems productivity.  
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General Introduction and Thesis Outline 

 

Although invisible to the naked eye, microorganisms are an essential component of every 

ecosystem on earth and represent the vast majority of the genetic and metabolic diversity on 

the planet, they are often referred to as the ‘unseen majority’ (Whitman et al., 1998). 

Microorganisms have evolved to occupy almost every conceivable ecological niche and 

therefore are involved in a wide range of ecological interactions with each other and with higher 

forms of life (Gray & Head, 2008). Soil microbial communities play key roles in many ecological 

processes including biogeochemical cycling of nutrients (Crowther et al., 2019), breakdown of 

xenobiotics, formation of soil aggregates (Gattinger et al., 2008) and structuring of plant 

communities (van der Heijden et al., 2008). As these processes are fundamental to the 

functioning of terrestrial ecosystems, soil microbial communities have attracted great interest 

from the scientific community. Over the years, diverse culture-independent approaches (based 

on the extraction of DNA from soil and a subsequent analysis) have been developed and have 

been typically used to identify microbial species and the environmental variables that drive 

their abundance and distribution (Gray & Head, 2008). 

As the soil is a highly heterogeneous environment, soil microbial communities often exhibit 

high taxonomic diversity (Louca et al., 2017). Studies assessing the factors affecting microbial 

community composition have been carried out mainly in terms of taxonomically identifying the 

microbes making up the community and what factors affect this composition (Widder et al., 

2016). Taxonomy DNA-based approaches such as meta-barcoding rely on amplification and 

then sequencing of a variable region (e.g. 16S rRNA gene for bacteria) of the genome 

(informative enough to be used for identification) that is flanked by highly conserved sequences 

that can serve as annealing sites for PCR primers (Bengtsson-Palme, 2017). However, as 

DNA sequences vary, primers do not have equal affinity for all possible DNA molecules in a 

sample and consequently there is an amplification bias during PCR. Additionally, even with 

well optimized primers, the currently used sequencing technologies yield a relatively small 

region which often limits this approach to genus level of resolution (Knight et al., 2018). In the 
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past few years, advances in sequencing technologies and bioinformatic tools enabled the 

studies of soil metagenomes (defined as all microbial genes present in a defined environment). 

One such method to describe the metagenome is the untargeted sequencing of all the DNA 

extracted from a given sample (formally named shotgun metagenomics, here referred to as 

metagenomics). This approach can be used to investigate a broad range of taxonomic aspects 

and functional potential of microbial communities (Quince et al., 2017). These developments 

have allowed the study of complex data sets, such as soil microbiomes. There is now an 

improved understanding of the biogeography (Martiny et al., 2006; Sunagawa et al., 2015; 

Thompson et al., 2017; Ramirez et al., 2018), ecology (Dumbrell et al., 2010; Martiny et al., 

2011; Shade et al., 2012) and functionality (Logue et al., 2016; Louca et al., 2018) of 

microbiomes of diverse environments. Besides providing information about the relative 

abundance of microbial functional genes, shotgun metagenomic studies can also offer 

microbial taxonomic information (Knight et al., 2018). Some studies comparing the accuracy 

of metagenomic and metabarcoding (16S rRNA gene amplicon data) data to depict taxonomic 

composition of microbial communities found that metagenomic data was either consistent with 

16S rRNA gene data (Manichanh et al., 2008) or outperformed it (Shakya et al., 2013; 

Campanaro et al., 2018). However, the studies using a metagenomic methodology have 

mostly been limited to a descriptive approach, in which the microbiomes are studied to, for 

example, identify previously undescribed taxa that can carry specific metabolic processes. 

Besides being comparatively expensive, the depth of sequencing required to obtain meaningful 

conclusions from metagenomic experiments requires also a relatively high computing power 

and bioinformatic expertise (Sczyrba et al., 2017). In the past, these two factors have limited 

thorough and fully replicated experimental investigations into factors affecting soil bacterial 

diversity and gene composition of the metagenome. Such experimental manipulations allow 

for testing of specific research questions yielding valuable information concerning the roles of 

soil metagenomes and their response to environmental changes, for example, climate 

warming, introduction of non-native microbes etc.  
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The focus of this work is to investigate how experimental manipulation through either climate 

warming simulation or inoculation of crops with beneficial microbes affect the soil 

metagenome. This gains relevance as soil microbiomes are key players in soil fertility, 

functioning and resilience, thus, directly affecting ecosystems and agroecosystems 

productivity. 

The use of beneficial microbes was approached by the use of soil inoculants, such as 

arbuscular mycorrhizal fungi (AMF), has increased in the recent years as they have shown 

positive effects on plant productivity (Ceballos et al., 2019; Zhang et al., 2019). As an organism 

without and observed sexual stage, it has ben long debated how this widely distributed 

organisms adapt to diverse environments. One explanation is a high intra-isolate genetic 

diversity (c.f. Chapter 3) which we considered in this study (c.f. Chapter 2).  

Climate warming simulation: studying soil metagenome changes derived from abiotic factors 

manipulation. 

In a scenario of climate warming, species, including soil microbial communities, may migrate 

upwards to track its current climate. High elevation communities could face diverse scenarios 

depending on whether lowland species establish or fail to establish at higher elevations 

(Alexander et al., 2015). Given that microbial species are rarely restricted by geographical 

barriers (Finlay, 2002) it is likely that some microbes will easily have the capacity to move to 

higher elevations. Thus, novel plant - soil microbiome interactions could occur and could 

subsequently have an effect on ecosystem functioning. Studies have been carried out to 

analyze vegetation changes induced by warming but changes in soil microbial communities 

remain relatively less studied. Additionally, studies addressing this topic have been developed 

within a small geographical region with a defined set of biotic and abiotic conditions which 

limits the extrapolation of the results to other habitats. Finding patterns in microbial gene 

diversity across a series of regions could provide valuable information for predicting the 

responses of microbial community functionality to climate change.  
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Inoculation of crops with beneficial microbes: investigating soil metagenome changes resulting 

from introduction of biotic agents.  

Another way in which soil metagenomes may be affected is by human introduction of microbes 

for agricultural purposes. The use of beneficial microbial inoculants in agriculture has gained 

attention because of the capacity of some microbial taxa or microbial communities to provide 

ecological services as promotion of plant growth and protection against pathogens (Berg, 

2009). One of such group of inoculants are arbuscular mycorrhizal fungi (AMF). These fungi 

form one of the commonest plant–microbe mutualisms. The large majority of terrestrial plants, 

including many important crops, form arbuscular mycorrhizas (van der Heijden et al., 2015). 

Their main beneficial effect is uptake and transfer of low-mobility minerals (mainly phosphorus) 

from the soil to plants, thus improving plant nutrition and productivity. It has been shown that 

inoculation with genetically different isolates of the model AMF Rhizophagus irregularis can 

have considerable effects on plant growth (Angelard et al., 2010; Ceballos et al., 2019). 

Furthermore, AMF have been shown to increase plant yield under field conditions with cassava 

(Ceballos et al., 2013, 2019) and cereal crops (Zhang et al., 2019). Cassava is considered a 

food security crop, feeding almost 800 million people in the tropics (Howeler, 2013). Because 

this plant produces starchy roots, changes in yield imply additional carbohydrate allocation 

towards the belowground plant biomass, which in turn could have an effect on the microbiome 

surrounding the roots. How AMF inoculation affects the soil microbial communities has not 

been thoroughly examined. Also, as the use of such inoculants can bring economic benefits to 

the farmer, these inoculants are now being used in many parts of the world without knowledge 

about the potential ecological impacts of such practices (Hart et al., 2017). One of the concerns 

about the use of these inocula include potentially invasive AMF isolates that may directly or 

indirectly be detrimental to local AMF diversity (Schwartz et al., 2006). Only until very recently, 

the impact of introduction of AMF on the root microbial community was studied, using however, 

a metabarcoding approach (Akyol et al., 2019). The effects of AMF inoculation on soil 

metagenomes have not been yet addressed and this is, to our knowledge, the first study 
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investigating this topic. This information is essential to define a framework for developing 

successful application of AM fungi in agriculture. 

Tracking inoculated AMF: developing tools to allow the study of soil metagenome changes 

In the tropics, the inherently low fertility soils are experiencing increasing anthropogenic 

pressure and the effects of climate change (Jiao et al., 2019) which in turn limits the productivity 

of land ecosystems and agroecosystems. As a countermeasure to this situation, the use of 

microbial inoculants, such as AMF, has increased. It is worth noticing that AMF are naturally 

present in soils around the world (Öpik et al., 2010) and yet inoculation generates a plant 

growth response even in the presence of a preestablished AMF community (Janoušková et 

al., 2013; Niwa et al., 2018). A successful management strategy incorporating AMF inoculation 

should include methodology that can verify the persistence of the inoculated strain among the 

native microbial community. Verbruggen et al. (2013) suggested that long-term beneficial 

effects of AMF inoculation can be achieved with persistent introduced AMF species. If the 

introduced AMF fails to establish in the long term, inoculation would be necessary with every 

crop cycle and this can be a limiting factor if such practices are to be applied to promote food 

security in developing countries. Thus, assessment of the persistence of the inoculated AMF 

isolate is an important component for environmentally safe and economically sustainable use 

of these inoculants (Pellegrino et al., 2012). 

Thesis outline 

In chapter 1, using a metagenomic approach the changes of soil metagenome due to 

transplantation treatments (climate warming simulation) were evaluated. This project was 

carried out within a collaborative consortium where many researchers across continents 

(Europe and the US) studied many aspects of biotic changes resulting from community 

transplant of turfs from high to low elevation sites (TransPlant project). Such a large scale 

experimental metagenome study has not yet been conducted and the results provide valuable 

information for predicting the responses of microbial communities to climate change. 
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In chapter 2, a metagenome dataset was generated to assess the impact of AMF inoculation 

and intra-isolate AMF genetic diversity on the taxonomic and metagenomic profile of the soil 

microbial community. Such a study allowed us to identify the soil bacterial metabolic pathways 

affected by the inoculation with AMF and whether this is influenced by genetic variation in the 

fungus. This knowledge contributes to set a baseline to, in the future, study the functional 

changes in the soil microbiome derived from AMF inoculation. 

In chapter 3, I investigated the within fungus genetic variability of AMF species in an attempt 

to develop isolate-specific molecular markers in order to be able to track inoculum persistence 

in the field. As the AMF inoculation effects on the metagenome need to be further studied, 

having such markers would allow researchers to investigate whether the changes of the soil 

bacterial metagenome composition are related to the persistence of the inoculated fungus. 
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Abstract 

 

The key role played by soil microbial communities in some of the most important ecosystem 

processes is undeniable. However, despite their importance for carbon and nutrient cycling, soil 

fertility and structuring of plant communities, the understanding of how soil microbial communities 

and their functioning will be affected by climate warming is still very limited.  

Transplantation of intact turfs moved to lower elevation in a mountain gradient was used to expose 

microbial communities to a warmer climate in combination with a new neighboring community. This 

allowed the investigation of the net effect of both direct (altered climatic conditions) and indirect 

(altered biotic interactions) effects of climate warming on community responses.  

Then, using a metagenomic approach, we investigated whether transplantation showed consistent 

effects on the potential metabolic capabilities of the soil microbial community across different 

geographical regions. Differential gene abundance analyses suggested that the transplantation had 

little effect over the gene composition of the microbial communities. However, this trend was not 

consistent for all the regions. Elevation arose as a component potentially driving the gene 

composition of the observed communities which suggests, in turn, that the main constraining factors 

affecting the metagenome likely remain linked to the climatic variables.  

Later, information related to nutrient cycling and plant communities performance will be integrated 

to the results presented here.  
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Introduction 

The key role played by soil microbial communities in some of the most important ecosystem 

processes is undeniable. However, despite their importance for carbon (Bahram et al., 2018) and 

nutrient cycling (Crowther et al., 2019), soil fertility (Luo et al., 2016) and structuring plant 

communities (Wagg et al., 2014), the understanding of how soil microbial communities and their 

functioning will be affected by climate change is still very limited (de Vries & Griffiths, 2018). 

Alpine ecosystems are particularly vulnerable to climate warming given the particularities such as 

the short plant growth season (Donhauser & Frey, 2018). In a climate warming scenario, species 

may migrate upwards to track its current climate. This is likely to affect plant and animal species but 

also soil microbial communities. Alpine soil microbial communities could face a range of different 

scenarios depending on whether lowland species establish or fail to establish at higher elevations 

(Alexander et al., 2015). 

Given that microbial species are rarely restricted by geographical barriers (Finlay, 2002) the 

movement of microbes to higher elevations as the climate warms could result in novel plant-soil 

microbiome and soil microbe-microbe interactions that could ultimately affect community structure 

and function. Novel interactions among soil organisms can modify carbon fluxes, mineral nutrient 

cycles (van der Putten et al., 2016) and modify host specific interactions with pathogens (Klironomos, 

2002) or mutualists (Wagg et al., 2011). 

Open top chambers represent one of the most used methodologies available for investigating climate 

warming effects on communities. These greenhouse-like structures can increase mean daily air 

temperature (Yang et al., 2018). However, such chambers can limit colonization processes, thus 

restricting the potential novel interactions arising from migrations as well as comprising changes in 

other potentially confounding factors (Alexander et al., 2015). Another approach that overcomes 

some of these limitations is community transplant experiments. In these experiments, intact turfs of 

whole plant communities are moved to a lower elevation exposing them to a warmer climate in 

combination with a new neighboring community. This allows the investigation of the net effect of both 
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direct (altered climatic conditions) and indirect (altered biotic interactions) effects of climate change 

on community responses (Alexander et al., 2015).  

Studies have been carried out to analyze vegetation changes due to climate warming but, at present, 

soil microbial community responses to such warming remain relatively understudied. Researchers 

in biogeography of soil microbial community patterns have studied the effects of several 

environmental factors. Bacterial community composition is known to change in response to elevated 

CO2 (Weber et al., 2011; Hayden et al., 2012) where Acidobacteria was shown to decrease in 

abundance while Actinobacteria and Bacteroidetes increased. Research studying the effect of an 

elevation gradient (which incorporates a number of confounding environmental factors), showed that 

patterns of plant and bacterial diversity in response to elevation gradients were fundamentally 

different. Bacterial taxon richness and phylogenetic diversity decreased monotonically from low to 

high elevations while plants followed a unimodal pattern (Bryant et al., 2009). However, in another 

study bacterial diversity showed no significant trend in response to elevation changes. This was in 

direct contrast to the significant diversity decrease with increased elevation observed in plant and 

animal taxa across the same montane gradient (Fierer et al., 2011). It has also been shown that both 

elevation and microtopography (i.e. ridges, depressions, south-facing, and north-facing slopes) play 

a role in the structuring of soil microbial communities. Bacterial alpha diversity was only affected by 

micro-topography while elevation did not affect richness or evenness of the bacterial communities 

(Frindte et al., 2019). Sheik et al. (2011) found that warming, using infrared heaters, increased total 

microbial abundance but decreased bacterial diversity. Likewise, it was observed that warming 

(induced either via buried resistance heating cables or infrared heaters) increased the abundance of 

bacterial taxa associated with oligotrophic strategies, such as Acidobacteria (DeAngelis et al., 2015) 

and Alphaproteobacteria (Hayden et al., 2012). 

The abovementioned studies were conducted using a meta-barcoding approach describing changes 

in taxonomic abundance and composition of soil microbial communities based on 16S rRNA gene 

sequences. Therefore, these investigations considered the taxonomic composition of the soil 

bacterial communities but did not consider the metabolic capabilities of the bacterial groups that 

could potentially alter how such microbiomes influence important ecosystem processes in the soil 
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(de Vries & Griffiths, 2018). The reason for so many studies adopting a meta-barcoding approach 

was because methodological constraints prevented a detailed exploration of the soil bacterial 

metagenome. With the development of improved molecular techniques, higher computational power 

and better bioinformatic tools, research has made a shift towards the study of the potential functional 

traits of soil microbial communities by sequencing the metagenome of soil microbial communities 

and elucidating the probable metabolic traits existing within the microbiome (Knight et al., 2018). As 

it will be seen in chapter 2, the apparent lack of a taxonomic response of the soil microbiome to an 

environmental perturbation can mask underlying changes in the metabolic capabilities of the genes 

making up the microbiomes metagenome.  

Given the importance of soil microbial communities mediating biogeochemical processes, exploring 

the functional biogeography of the soil microbiome is key for improving accuracy in global 

biogeochemical model predictions (Cavicchioli et al., 2019; Crowther et al., 2019). A few studies 

have investigated the changes in abundance and diversity of genes comprising the soil microbial 

metagenome along elevation gradients (Zhang et al., 2013; Gao et al., 2014; Yang et al., 2014; Shen 

et al., 2016; Qi et al., 2017) and some have studied gene abundance changes of the microbiome in 

other climate change experiments (Zhao et al., 2014; Yue et al., 2015). Notably, these studies were 

all carried out in Chinese mountain ranges, thus, considering a relatively small geographical scale. 

This limits the extrapolation of these results to other habitats around the globe. In these studies, 

changes in functional gene diversity were observed with elevation and implicated a decrease in 

genes involved in C- and N-cycling with warming. This is seemingly inconsistent with observations 

from other areas across the northern hemisphere (Yue et al., 2015).  

So far, the combination of an experimental manipulation of the soil microbial communities through 

turf transplantation, and its replication across multiple regions, has not been addressed and could 

provide valuable information for predicting the responses of microbial gene composition to climate 

change.  

Here, we used a metagenomic approach to characterize whether there were changes in the potential 

metabolic capabilities of the soil microbial community in a climate warming scenario. As the samples 
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used in this study originated from several mountain ranges (central Europe, Scandinavia, USA), this 

would allow us to characterize patterns in microbial gene diversity across a large geographical scale 

and to see whether any effects of elevation gradients on the soil metagenome showed consistent 

patterns across different geographical regions. This work was part of a larger project that took 

advantage of a network of soil transplant experiments across elevation gradients in multiple regions. 

The larger project aimed to investigate ecosystem responses to climate change, more specifically, 

our collaborators aimed to establish broad-scale patterns of the impacts of novel plant-soil 

interactions on ecosystem processes.  

 

Materials and methods 

Field sites  

This study was performed in a series of experimental plots set up by an international group of 

collaborators in which whole plant and soil communities were exposed to new climatic conditions by 

transplanting turfs along altitudinal gradients. This collaborative project is known as the TransPlant 

Project. The TransPlant Project aims to improve the understanding of the ecosystem responses to 

climate warming by simulating the effects of species movement from lower altitudes to higher 

altitudes. There were three treatments per locality. First, communities were transplanted from high 

to low elevation (here denoted “HL”). Second, communities were transplanted from the low site back 

into the same low site, (here denoted “LL” and third, communities were transplanted from the high 

site back into the high site, referred as “HH”. Field site characteristics of the sample plots are 

summarized in Table S1. A total of 10 localities were sampled. The localities are denoted as follows: 

Calanda (CAL) and Lavey (LAV) in Switzerland; Lautaret (LAU) and Villard-Reculas (VR) in France; 

Granau-Hochaml (GH) in Germany; Arizona (ARI), Montana (MON) and the Rocky Mountain 

Biological Laboratory (RMBL) in the U.S. and Skjaelligehaugen (SKJ) and Ulvehaugen (ULV) in 

Norway. 

The project within which this work was developed aims to investigate the community and ecosystem 

consequences of novel plant-soil interactions following climate change. To do so, the project 
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comprised the transplant experiments in which analyses were performed on plant community 

structure and diversity, DNA-based meta-barcoding of soil microbial communities and 

measurements of ecosystem carbon and nutrient cycling.  

Soil sampling 

From each turf, at each site and in each treatment, five soil cores were taken at random within the 

plot and pooled to account for potentially high small-scale heterogeneity in the soil community. Soil 

cores were 10 mm in diameter, to minimize disturbance to the community, and 50 mm in depth, to 

focus sampling solely on the rhizosphere. Soil cores were mixed and stored in RNAlater™, to 

stabilize and protect nucleic acids, then shipped to the University of Lausanne and stored at -80 °C 

until DNA extraction. Up to 8 replicates were taken per treatment per locality (Table S1).  

DNA extraction, library preparation and sequencing. 

The RNAlater™ was removed from the soil samples by centrifugation. Briefly, an equal volume of 

ice cold 1x PBS was added to the sample to reduce the density of the solution. Tubes were then 

centrifuged at 14.000g for 5 min and the supernatant discarded. Subsequently, total soil DNA was 

extracted using a Fast DNA Spin Kit for soil (MP Biomedical) following the protocol of the 

manufacturer. Next, the DNA extractions were equimolarly pooled per treatment to end up with 3 

samples per locality (HH, HL, and LL), for the 10 localities, thus totaling 30 libraries. Sequencing 

libraries were prepared using a TruSeq DNA kit (Illumina). Libraries were validated and quantified 

using the fluorometric protocol of Promega®. Finished libraries were processed with Fragment 

Analyzer to assess their quality. Libraries were sequenced with Illumina HiSeq 4000 150 base pair, 

paired-end multiplexing 10 libraries per lane. 

Data processing 

Raw data of the 30 libraries (3 treatments: HH, HL and LL from each of the 10 localities) were initially 

checked with FastQC v0.11.4 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After 

library quality check, the adaptor sequences were trimmed using TagCleaner (Schmieder et al., 

2010). Reads were then quality-filtered (min_qual_mean 20) and trimmed using Prinseq-lite version 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Chapter 1: Soil metagenome under climate change simulation 

18 
 

0.20.4 (Schmieder & Edwards, 2011). Low quality 3’-ends were trimmed and reads containing 

uncalled bases (N) removed. Only reads of at least 120 bp long were kept for further analyses. 

Metagenome co-assemblies were constructed by locality (10 co-assemblies, each with 3 samples) 

using Megahit v1.1.4 (Li et al., 2015) (--k-list 33,47,63,77,93,117, --min-contig-len 750). 

Metrics of the assemblies were assessed with metaQUAST v5.0.2 (Mikheenko et al., 2016). 

Resulting contigs were processed with cd-hit v4.6.8 (Fu et al., 2012) to reduce redundancy by 

clustering reads using a similarity threshold of 95% over at least 90% of the alignment. The resulting 

file was annotated in parallel by performing an ORF prediction with prodigal v2.6.3 (Hyatt et al., 

2010) and, subsequently, blast-like annotation against the NCBI RefSeq non-redundant (NR) 

sequence database of proteins (Pruitt et al., 2007) and eggNOG v4.5 (Huerta-Cepas et al., 2016) 

using diamond v0.9.18 (Buchfink et al., 2014) with an e-value threshold of 0.001.  

Quality filtered reads were mapped back to the annotated contigs to obtain a count matrix of the 

abundance of each contig with BBMap v37.82 (Bushnell B., https://jgi.doe.gov/data-and-

tools/bbtools/bb-tools-user-guide/bbmap-guide/) using default parameters. These matrices, 

containing the abundance per sample of each annotated contig, were used as input data for the R 

packages and will be referred to hereon as the gene catalogues. Count matrices were also built for 

KEGG orthologs (KO) (Kanehisa et al., 2016). Gene-encoding nucleotide sequences were defined 

as ‘‘genes’’ in this study (Sunagawa et al., 2015). 

Statistical analyses 

Climatic data for the locations, based on GPS coordinates, was obtained by rasterizing and stacking 

the layers of the 19 bioclimatic variables available from the CHELSA (climatologies at high-resolution 

for the earth’s land surface areas) database (Karger et al., 2017). The values of the CHELSA 

database, corresponding to the 10 evaluated localities, are presented in Table S2. A PCA was 

performed on the environmental data to assess the degree of overlapping of the climatic variables 

of the samples. Samples were grouped either by region or by locality (Figure 1) using vegan function 

ordihull (Oksanen, 2013).  

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
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Given the differences in “year range” (time elapsed between transplantation and sampling) and 

vegetation across the localities (Table S2), linear mixed-effects models (LMM) were applied to 

determine the existence of a treatment effect (fixed effect) accounting for variance inflicted in the 

response variable (abundance of each gene) by the “locality” and “elevation” factors (random 

effects). The model including the random effect was compared to the null model using a likelihood 

ratio test (LRT). The genes for which the LRT showed a significant improvement of the model fit (p 

< 0.05) were classified using the clusters of orthologous groups (COGs) system (Tatusov, 2000). 

The 20 most frequent COGs were plotted adding the remaining to an “others” category. 

The R package DESeq2 (Love et al., 2014) was used to identify differentially abundant genes 

between treatments. First, the gene abundance matrix was filtered to remove entries with less than 

25 mapped reads. Abundance of a genes was considered significant if the absolute value of the log2 

fold change was higher than 4 and the FDR Benjamini-Hochberg adjusted p-value lower than 0.01. 

DESeq2 was also used to estimate the differential abundance of KOs. To contextualize the KO 

assignations a series of marker genes for several metabolic processes (Louca et al., 2017; Salazar 

et al., 2019) were contrasted for the three pair-wise comparisons between treatment (i.e. HH vs HL, 

HH vs LL and HL vs LL).  

To explore the dissimilarities of the communities between treatments and their relation with the 

climatic data, a canonical ordination (Redundancy Analysis, RDA) was built on a Bray-Curtis 

dissimilarity matrix using the environmental data from CHELSA as explanatory variables. Variance 

inflation factors (VIF) of the variables were estimated. These measure the proportion by which the 

variance of a regression coefficient is inflated in the presence of other explanatory variables. Strong 

linear dependencies (correlations) were found among the explanatory variables in the RDA model. 

To reduce the complexity of the model, while considering the correlations, forward selection in 

packfor’s forward.sel was applied to explore a potential reduction of the number of explanatory 

variables (Borcard et al., 2011) and a new RDA was constructed with only the retained variables 

after forward selection. 



Chapter 1: Soil metagenome under climate change simulation 

20 
 

To determine the degree of similarity, in terms of gene composition, between HL samples to either 

the HH or LL samples the quotient of the beta diversity between HL and LL and the beta diversity 

between HL and HH was computed (βdiv HL vs LL ÷ βdiv HL vs HH, hereon called dissimilarity ratio). 

With this dissimilarity ratio (which was log transformed), a result above 0 indicates that HL is closer 

in its gene composition to HH at a given locality. A result below 0 indicates that HL is closer in its 

gene composition to LL. Different beta diversity indices were used to estimate the dissimilarity ratio 

as each one weights differently several parameters of the gene composition in each sample. The 

dissimilarity ratio based on the Bray-Curtis index was correlated to the CHELSA variables. 

Correlation coefficients higher than 0.35 were plotted. 

 

Results 

A total of 1098 million reads were obtained with an average of 33 million reads per pooled sample. 

On average, 93% of the reads in each sample were considered of sufficiently high quality after 

filtering and trimming (Table S3).  

After co-assembly, an average of 390K contigs were obtained among sites. Samples from VR and 

LAU (France) had a much larger number of contigs (650K contigs) than most of the other samples. 

Metrics generated by MetaQUAST showed a similar contig length distribution for each of the 

localities. The total number of nucleotides integrated in the assembly showed the same trend with 

VR and LAU (France) exhibiting higher values. Samples from MON (US) presented a smaller than 

average largest contig (29 kb compared to an average of 73 kb). However, the assembly in its totality 

was used in further analyses as neither the N50 value, nor the total length of the assembly, were 

lower than the average (Table S4).  

On average, the number of predicted ORFs represented 766K, with VR and LAU (France) exhibiting 

twice this amount. This matched the trend seen in the amount of contigs obtained after assembly. 

Annotation revealed that 86.29% of the ORFs retrieved a hit to a protein in the NR protein database 

(Table S3).  
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The climate data ordination showed PC1 and PC2 explaining 67.7% of the variance observed. The 

distance between localities reflected how dissimilar their climatic conditions were (Figure 1a). The 

US and Scandinavia-Alps presented distinct climatic conditions and Scandinavia and the Alps 

presented an overlapping of their climatic space. Likewise, the distance between treatments 

indicated the dissimilarity of climate variables and experimental conditions (i.e. elevation and year 

range) between the high and low elevation plots within a locality (Figure 1b). Permutational analysis 

of variance (adonis) showed significant differences (P < 0.001) among regions and among localities. 

  

Figure 1. PCA of the climatic variables from the CHELSA database to represent the “climate space”. a. 
Polygons group samples by “region” Alps (CH, FR and DE), Scandinavia (NO) and USA (US). b. Distance 
between the HH (squares) and LL (triangles) sites per locality reflects the similarity of their climatic patterns.  

 

Once the variance generated by the localities and their elevation was accounted for using the mixed-

effect model approach, 1418 and 911 KOs (out of 5464 KOs evaluated) showed a better model fit 

(Figure 2a), indicating that the abundance of those KOs, in the different samples, was indeed 

affected by the transplantation treatments. Using a fixed effect model (i.e. with the confounding 

variation of “locality” and “elevation”) on the gene abundances, revealed 70 KOs (out of 5464 KOs 

evaluated) that were significantly affected by the treatments (P < 0.05). The KOs significantly 

affected by the treatments were assigned to COG categories (Figure 2b).   

a b 
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A RNA processing and modification M Cell wall/membrane/envelop biogenesis 
B Chromatin Structure and dynamics N Cell motility 
C Energy production and conversion O Post-translational modification 
D Cell cycle control and mitosis P Inorganic ion transport and metabolism 
E Amino acid metabolism and transport Q Secondary Structure 
F Nucleotide metabolism and transport T Signal Transduction 
G Carbohydrate metabolism and transport U Intracellular trafficking and secretion 
H Coenzyme metabolism Y Nuclear structure 
I Lipid metabolism Z Cytoskeleton 
J Translation R General Functional Prediction only 
K Transcription S Function Unknown 
L Replication and repair   

 

Figure 2. Once the variation generated by the localities is accounted for, it is possible to observe an effect of 
the transplantation treatments. a) Histograms of the Likelihood Ratio Test applied to the comparisons of the 
Linear Mixed-effects Model (LMM) vs the null model the model with locality and elevation treated as random 
effects. The red line marks the P < 0.05 threshold. b) Bar plots of the 20 most frequent COG categories for the 
genes that showed a model improvement (LMM vs the null model) as defined by the AIC score.  

  

a 

b 
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A large proportion of the KOs were assigned to the COG categories “R: General Functional 

Prediction only” and “S: Function Unknown”. Around 11% were grouped as “others”, comprising 

categories with low representation (each one below 4%). After “R” and “S”, the most abundant 

categories were “E: Amino Acid metabolism and transport”, “C: Energy production and conversion” 

and “G: Carbohydrate metabolism and transport”. All in all, these 5 COGs categories accounted for 

almost 50% of the KOs classified. 

The differential gene abundance comparisons (using the DESeq2 approach) between treatments, 

when grouping all the localities irrespective of locality, showed no differentially abundant genes for 

the HL vs HH comparison (i.e. comparing changes in gene abundance in the soil of the transplanted 

turfs with the original high elevation site), 3234 for HH vs LL (i.e. comparing the high and low 

elevation sites) and 1143 for HL vs LL (i.e. comparing the transplanted turfs with the receiving low 

elevation site) of a catalogue of 464751 entries (Figure 3a-c). 

 

Figure 3. Log2 fold change and mean abundance of the gene count matrix. Each panel shows a different 
comparison between treatments (bottom right label). Red dots show genes with a significant (P < 0.01) log2 

fold change greater than 4. The axis labels in a) apply to all the graphs. 

HH vs HL HL vs LL 

HH vs LL 

a b 

c 
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Figure 4. Differences in KO abundance of metabolic marker genes across localities. The data points show the 
log2 fold change differences computed using DESeq2. Differences were considered significant if P ≤ 0.01 after 
correction (blue dots). 
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When repeating the DESeq2 approach, but using the KEGG Orthology annotation (which offers 

information about metabolic pathways), the contrast test showed 60 differentially abundant KOs in 

the HL vs HH comparison, 104 in the HH vs LL comparison and 82 in the HL vs LL comparison, from 

a catalogue of 5464 entries. This analysis showed the same trend as that observed in the analysis 

using the whole gene catalogue where HH and HL sites differ the least and HH and LL sites the most 

(Figure S1). 

Differences were observed in log2 fold changes of KO abundances of a series of marker genes that 

were involved in specific metabolic processes in each of the three comparisons (HH vs LL, HL vs LL 

and HH vs HL; Figure 4). Only K00957 (cysD; sulfate adenylyltransferase subunit 2); a marker for 

sulfate reduction, was found to be differentially abundant when comparing HH vs LL and HL vs LL 

treatments.  

 

Figure 5. Redundancy Analysis (RDA) of the beta diversity (Bray-Curtis) of the gene catalog using the 
CHELSA climate data as explanatory variables. Loadings were omitted for clarity. Localities are represented 
by the different colors and treatments within one locality by shape. 
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The ordination of beta diversity dissimilarity of the gene composition matrices using the climatic data 

as explanatory variables (RDA), showed a clustering of samples per locality, indicating higher gene 

composition similarity within a locality than between localities (Figure 5). This was the case in most 

of the localities, with the exception of the Low-to-Low (LL) sample from VR (France) that grouped 

with MON (US) and the LL site from CAL (Switzerland) that grouped with GH (Germany). 

Additionally, the distance in the plot of High-to-Low (HL) samples to either High-to-High (HH) or Low-

to-Low (LL) within a locality depicts a higher similarity of gene composition towards one or another. 

RDA1 and RDA2 explained 35% of the variance. An ANOVA-like permutation test showed a 

significant effect (P < 0.001) of the climate variables used as constrains in this ordination method. 

After forward selection the VIFs of the retained variables were less than 10 [VIF above 10 indicates 

strong collinearity (Blanchet et al., 2008)] and the ANOVA-like permutation test showed a significant 

effect (P < 0.001) of the retained variables on the ordination (Figure S2).  

There was no obvious pattern of HL samples being consistently closer to either HH or LL in terms of 

gene composition (measured as beta diversity). The calculated dissimilarity ratio calculated with five 

different indices of beta diversity showed a relatively consistent trend in which the HL treatment in 

SKJ, ULV (Norway) and GH (Germany) were more similar in terms of gene composition to the LL 

treatment of their respective locality (Figure 6a). The HL treatment in MON (US) was along the line 

defining the threshold at zero. Subsequently, when elevation of the low site per locality was used to 

color the ratio of dissimilarity it was revealed that the gene composition of HL sites tended to 

resemble that of LL sites when the elevation of the locality is at a relative low altitude (< 900 masl). 

Likewise, it showed that the HL sites tend to be more similar to HH sites when the whole locality 

(high and low site per locality) lies at a “high” elevation (>1400 masl) (Figure 6b).  

The dissimilarity ratio calculated with the Bray-Curtis index tended to correlate to mean annual air 

temperature, mean daily air temperature of the driest quarter and precipitation seasonality. Elevation 

mean per locality also showed a relatively high correlation coefficient. However, none of the those 

correlations were statistically significant (Figure S3). 
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Figure 6. A ratio of dissimilarity indices between treatments within localities was calculated (see methods). 
The dashed red line indicates the threshold in which the HL sample resembles more the HH treatment (above 
0) or LL treatment (below 0) in terms of gene composition. Values were log transformed for visualization. a) 
values were colored by locality. b) values were colored by the elevation (in meters above sea level) of the low 
site of the locality. 

a 

b 
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Discussion  

The soil microbiome is extremely diverse and an integral part of every ecosystem. The microbial 

community composition, as well as its functionality, have profound impacts on processes that in turn 

have a direct effect on aboveground functionality. At the same time, changes in plant communities’ 

composition and functioning and alterations on soil chemistry derived from transplantation are likely 

to have an effect on microbial communities. The collaborators on this project collected information 

related to nutrient cycling and plant communities performance which will be later integrated with the 

results presented here.  

The differential gene abundance analyses across the localities suggested that the transplantation 

had little effect over the gene composition of the microbial communities. However, this trend was not 

consistent for all the localities. Values of gene beta diversity of Granau-Hochaml (GH) in Germany 

and Skjaelligehaugen (SKJ) and Ulvehaugen (ULV) in Norway suggested that the treatments had 

an effect, making the transplanted plot more similar in its gene composition to the destination 

community at low elevation. Looking for a factor linked to this finding, the elevation of the destination 

plot arose as a component potentially driving the gene composition of the observed communities 

which suggest, in turn, that the main constraining factors affecting the metagenome likely remain 

linked to the climatic variables.  

The PCA of the climate space showed that there is a low degree of overlapping between the climatic 

variables of the regions, there was also, however, a large climatic variation within regions. When 

modeling the gene composition data with the climatic variables it was clear that gene composition 

grouped by region. This, in turn, indicates that the gene composition was explained, to a certain 

extent, by the environmental variables. As there was a large variation in climatic conditions across 

localities, the use of a LMM, introducing “localities” as random effect, allowed us to estimate variation 

among localities rather than the specific effects of each locality on, in this case, gene abundance 

(Bolker et al., 2009). The results suggested that once the variation among localities is accounted for, 

it is possible to observe an effect of the treatments.  
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The elevation of the destination plot partially explained the observed patterns, independently 

localities, having a wide range of climatic conditions (Figure 1, Tables S1 and S2). This indicates 

that the changes generated by the transplantation itself on the gene composition are not as strong 

as the constraints imposed by environmental variables ‘summarized’ by the elevation (notably 

temperature and precipitation). This agrees with the findings of Shen et al. (2016) who showed 

changes in microbial gene composition along an elevational gradient from 530 to 2200 masl using 

GeoChip microarrays. PCoA revealed a clear distinction in gene composition between samples 

coming from 1600 masl and below and samples from 1900 masl and above. We observed a similar 

trend where gene composition of transplanted plots (HL) changed to resemble the low elevation plots 

(LL) in sites where the elevation was below 1200 masl.  

We found that few genes that were affected by the transplantation treatment were assigned to a 

given function within the COG categories. Of those that were assigned, a large portion corresponded 

to housekeeping functions. It is possible to link differentially abundant COGs to a particular condition 

in microbial populations in intensively studied microbial communities, such as the human gut where 

a diverse range of reference genomes is available (White et al., 2009; Sczyrba et al., 2017; Knight 

et al., 2018). The analysis of more diverse environments, like soil, is often limited by the amount 

reference genomes and gene annotations. This, in turn, might explain why functional traits are often 

consistent across different samples and environments (Quince et al., 2017) as it was found here at 

the several of the localities. Another limiting factor while profiling the metabolic potential of a 

microbial community is the lack of annotations for accessory genes in most microbial species. Thus, 

it was expected that mainly highly conserved pathways would to be detected and quantified in the 

metagenomes of the present study also linked to the relatively shallow sequencing depth obtained. 

Total abundance of genes involved in N cycling respond to increasing temperature derived from 

transplantation (Zhao et al., 2014). Here, a selection of N cycle-related genes were unaffected by 

transplantation (assessed as KO terms in Figure 4). Previous research has shown that broadly 

distributed functions such as respiration, overall carbon catabolism and biomass production often 

seem more resistant to taxonomic changes than narrow functions such as the degradation of specific 

compounds (Louca et al., 2018). Also, soil microbial functional profiles showed greater resilience 
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than taxonomic ones in response to chemical contamination (Jiao et al., 2019). This previously 

observed resilience pattern in soil functionality, and the fact that the metabolic potential of the 

communities assessed in this study corresponds primarily to broad functions, may explain the 

apparent overall lack of an effect of the applied treatments.  

While the majority of studies exploring the impact of elevation or warming on microbial communities 

has focused on taxonomic changes, this study has explicitly determined the influence of 

transplantation on potential microbial functional through the genes comprising the soil microbial 

metagenome. Although the KEGG annotation terms observed were broad, they can be associated 

with diverse environment-specific adaptations. For example, when studying cold adaptation of 

Pseudoalteromonas strains, Mocali et al., (2017) found that features linked to this adaptation 

involved multiple metabolic pathways including “Glutathione metabolism”, “Arginine and Proline 

metabolism”, “Fatty acid biosynthesis” and “Biosynthesis of amino acids” among others. Similarly, 

when studying cold resistance of the food contaminant Vibrio parahaemolyticus, Xie et al., (2019) 

reported that differentially expressed genes were commonly enriched in pathways such as “Carbon 

metabolism”, “Pyruvate metabolism”, “ATP-binding cassette (ABC) transporter” and “Biosynthesis of 

amino acids”. In the present case, the pathways ko00480 Glutathione metabolism and ko02010 ABC 

transporters were found to be more abundant in HH (high elevation sites) when compared to LL (low 

elevation sites) (Table S5). However, experimental validation is needed to directly link the 

differentially abundant features (genes or KOs) found in the present study to specific adaptations of 

the microbial communities following the transplantation treatments. Although a meta-transcriptomic 

approach is also desirable to determine whether these genes were being actively transcribed, recent 

studies have shown that gene abundance generally correlates to transcript abundance (Salazar et 

al., 2019) and to specific ecosystem processes (Zhao et al., 2014). 

The inclusion of microbial gene abundances of key metabolic processes into climate models will 

likely improve accuracy predictions of climate change effects on microbial communities. The large 

geographical scale used in this study coupled with plant community data and soil biochemistry 

measurements here provide valuable insights improving confidence in global biogeochemical 

modelling.  
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Figure S1. Log2 fold change and mean abundance of the KEGG orthology (KO) count matrix. Each panel 
shows a different comparison between treatments (bottom right label). Red dots show genes with a significant 
(P < 0.01) log2 fold change greater than 4. The axis labels in a) apply to all the graphs. 
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Figure S2. RDA of the gene catalog and the CHELSA climate data as explanatory variables after forward 
selection. The loadings presented are those of the retained variables. Regions are represented by the 
different colors and treatments within one region by shape. 
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Figure S3. Bray Curtis based ‘closeness’ index and its relation with CHELSA climatic variables. Spearman 
correlation was calculated and the plots show the variables for which ρ (denoted as R) was higher than 0.35. 
The red dashed line shows the threshold in which a sample is closer in its gene composition to either the high 
site (above 0) or the low site (below 0). MAT: Mean air temperature 
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Supplementary Table 1: Generalities of the different regions sampled. Year range correspond to the time interval between the establishment of the experimental plot 
and the sampling time.  

 

Locality Site Region Country Lat Lon Habitat Plot size Replicates Elevation Year range 

ARI 
high 

USA US 
35.35 -111.73 Subalpine meadow 0.3 x 0.3 m 8 

2620 16 

low 35.42 -111.67 Forest meadow 2344 16 

CAL 
high 

Alps CH 
46.89 9.49 Calcareous grassland 2 x 2 m 8 

2000 6 

low 46.87 9.49 Subalpine pasture 1400 6 

GH 
high 

Alps DE 
47.44 11.06 Subalpine meadow 0.5 x 0.5 m 8 

1714 4 

low 47.48 11.01 Meadow 773 4 

LAU 
high 

Alps FR 
45.05 6.40 Alpine grassland 2 x 2 m 8 

2450 1 

low 45.04 6.42 Subalpine grassland 1950 1 

LAV 
high 

Alps CH 
46.20 7.06 Alpine grassland 1 x 1 m 8 

2200 2 

low 46.22 7.04 Forest pasture 1400 2 

MON 
high 

USA US 
45.31 -111.50 Alpine grassland 0.5 x 0.5 m 8 

2185 2 

low 45.31 -111.50 Grassland 1985 2 

RMBL 
high 

USA US 
38.97 -107.05 Subalpine meadow 0.5 x 0.5 m 8 

3300 1 

low 38.93 -107.01 Meadow 2900 1 

SKJ 
high 

Scandinavia NO 
60.93 6.42 Calcareous grassland 0.25 x 0.25 m 5 

1088 8 

low 60.54 6.51 Calcareous grassland 797 8 

ULV 
high 

Scandinavia NO 
61.02 8.12 Calcareous grassland 0.25 x 0.25 m 5 

1208 8 

low 60.82 8.70 Calcareous grassland 815 8 

VR 
high 

Alps FR 
45.10 6.06 Alpine grassland 0.5 x 0.5 m 8 

2072 4 

low 45.09 6.04 Grassland 1481 4 
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Supplementary Table 2: Climatic data extracted from the CHELSA database based on GPS coordinates. Temperature related variables are expressed in C° times 
10 and precipitation in kg m-2. bio1: mean annual air temperature; bio2: mean diurnal air temperature range; bio3: isothermality; bio4: temperature seasonality; bio5: 
mean daily maximum air temperature of the warmest month; bio6: mean daily minimum air temperature of the coldest month; bio7: annual range of air temperature; 
bio8: mean daily mean air temperatures of the wettest quarter; bio9: mean daily mean air temperatures of the driest quarter bio10: mean daily mean air temperatures 
of the warmest quarter; bio11: mean daily mean air temperatures of the coldest quarter; bio12: annual precipitation amount; bio13: precipitation amount of the wettest 
month; bio14: precipitation amount of the driest month; bio15: precipitation seasonality; bio16: mean monthly precipitation amount of the wettest quarter; bio17: 
mean monthly precipitation amount of the driest quarter; bio18: mean monthly precipitation amount of the warmest quarter; bio19: mean monthly precipitation amount 
of the warmest quarter.  

Locality Site bio 1 bio 2 bio 3 bio 4 bio 5 bio 6 bio 7 bio 8 bio 9 bio 10 bio 11 bio 12 bio 13 bio 14 bio 15 bio 16 bio 17 bio 18 bio 19 

ARI 
high 73 124 358 7831 256 -89 345 179 145 179 -32 589 86 14 40 251 50 251 154 

low 93 123 352 8029 279 -72 351 202 167 202 -15 350 49 9 39 143 30 99 107 

CAL 
high 16 79 300 6383 155 -108 263 106 -40 106 -68 1151 124 73 17 361 220 361 241 

low 44 79 296 6490 184 -82 266 135 -13 135 -42 1010 103 65 16 301 197 301 219 

GH 
high 23 83 307 6513 164 -108 272 108 -61 113 -64 1377 209 67 46 619 204 587 215 

low 79 83 301 6705 222 -54 276 167 -7 171 -10 963 121 56 30 359 172 355 186 

LAU 
high 3 83 304 6438 150 -122 272 -23 89 95 -80 912 98 50 18 292 168 172 251 

low 33 83 301 6547 181 -94 275 6 120 126 -52 799 84 47 17 251 156 159 230 

LAV 
high 7 81 303 6388 151 -116 267 98 -19 98 -76 1448 151 106 12 441 319 441 351 

low 60 81 298 6577 206 -66 272 153 35 153 -26 1236 134 89 15 394 269 394 290 

MON 
high 24 110 309 8238 227 -129 355 89 -72 147 -84 415 64 18 40 190 59 100 69 

low 31 110 307 8297 235 -122 357 96 -66 155 -78 394 61 17 41 182 55 94 63 

RMBL 
high 0 121 344 7677 189 -163 352 -59 66 110 -101 747 76 38 15 221 131 174 207 

low 22 121 340 7809 213 -144 357 -37 90 133 -81 491 49 25 15 142 85 123 138 

SKJ 
high 4 55 236 6263 133 -99 232 -59 24 92 -74 1727 217 69 37 634 220 330 593 

low 24 55 235 6348 155 -81 236 -40 43 113 -55 2083 253 84 33 727 259 434 574 

ULV 
high -3 57 222 7005 141 -117 258 95 -26 96 -92 538 63 24 28 185 82 163 127 

low 19 59 225 7073 166 -95 261 118 -6 119 -70 690 89 30 34 253 96 250 141 

VR 
high 34 82 302 6444 181 -90 271 8 126 126 -49 1369 132 93 9 389 301 301 357 

low 55 82 300 6516 203 -70 273 28 142 148 -29 1209 117 85 9 350 273 273 307 
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Supplementary Table 3: Quality control and annotation metrics of the raw data and the assemblies, 
respectively. Blue highlights the two samples from France with an above-average number of contigs obtained 
after the assembly. 

 Quality control Assembly and annotation 

Sample 
Input 
reads 

After QC %Good 
Total 

contigs 
Predicted 

ORF 
Annotated 

NR 

ARI 

HH 40264876 36999786 91.9% 

318851 603197 519915 HL 37304808 34177023 91.6% 

LL 33942554 31276449 92.1% 

CAL 

HH 26301535 23892448 90.8% 

382282 743911 643322 HL 32425599 29883873 92.2% 

LL 26765139 24767291 92.5% 

LAV 

HH 32646342 30335746 92.9% 

314551 589783 518796 HL 29801175 27509761 92.3% 

LL 28706813 26719839 93.1% 

RMBL 

HH 35639831 32895605 92.3% 

323778 620246 540107 HL 38060119 34945001 91.8% 

LL 32300752 29537676 91.4% 

GH 

HH 24486037 22447599 91.7% 

280605 522960 445897 HL 29567742 27781428 94.0% 

LL 22166868 20731204 93.5% 

VR 

HH 46482708 44131794 94.9% 

645588 1325601 1116308 HL 41849017 38273982 91.5% 

LL 38028592 35483236 93.3% 

MON 

HH 45249004 42606931 94.2% 

292426 529936 468603 HL 34342814 31228450 90.9% 

LL 35856616 32793806 91.5% 

LAU 

HH 35464930 33251712 93.8% 

650550 1421510 1211362 HL 30931612 28704441 92.8% 

LL 43902544 40749159 92.8% 

SKJ 

HH 27217188 25394734 93.3% 

307690 564012 482636 HL 35904614 33257318 92.6% 

LL 27536338 25940272 94.2% 

ULV 

HH 26872576 25152804 93.6% 

386880 742562 642108 HL 31711546 29439649 92.8% 

LL 29093083 26815461 92.2% 
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Supplementary Table 4: Summary of metrics of the assemblies as reported by metaQUAST. 

 

 Locality 

Metric ARI CAL LAV RMBL GH VR MON LAU SKJ ULV 

Input reads 102,453,258 78,543,612 84,565,346 97,378,282 70,960,231 117,889,012 106,629,187 102,705,312 84,592,324 81,407,914 

Total contigs 318,851 382,282 314,551 323,778 280,605 645,588 292,426 650,550 307,690 386,880 

contigs ≥ 750 bp 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

contigs ≥ 1000 bp 46.02% 53.98% 48.61% 48.87% 48.05% 55.00% 45.59% 58.68% 48.98% 52.52% 

contigs ≥ 1500 bp 15.38% 21.37% 16.96% 17.77% 16.44% 23.62% 14.79% 27.42% 17.16% 19.60% 

contigs ≥ 3000 bp 2.44% 3.45% 2.41% 2.86% 2.50% 5.10% 1.98% 6.98% 2.25% 2.68% 

contigs ≥ 5000 bp 0.71% 0.75% 0.49% 0.72% 0.67% 1.52% 0.46% 2.45% 0.45% 0.50% 

contigs ≥ 10000 bp 0.14% 0.07% 0.04% 0.13% 0.12% 0.23% 0.06% 0.53% 0.05% 0.08% 

contigs ≥ 25000 bp 0.01% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.05% 0.00% 0.01% 

Largest contig bp 40634 71369 64258 87543 63582 119577 29801 128328 62575 66902 

Total length bp 382,049,989 493,899,280 379,103,548 400,837,387 340,674,456 891,913,110 341,853,485 991,650,128 370,681,863 484,279,066 

N50 1132 1271 1157 1184 1159 1370 1111 1562 1161 1224 

N75 889 943 901 907 900 966 884 1025 903 928 

L50 105029 120408 104875 103731 92085 184452 99830 164847 103062 126033 

L50 201250 234472 198604 201546 176348 381270 186948 364487 194480 240831 
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Supplementary Table 5. Top 3 differentially abundant KO per comparison and correspondent KEGG pathway assignation. Positive log2 fold change indicates 
higher abundance of the KO in the first term compared to the other (e.g. K01678 was more abundant in HH compared to HL). 

Comparison KO term Mean abundance Log2 fold change Adjusted p-value KEGG pathway 

HH vs HL 

K01678 42.17 5.13 4.00E-03 

ko00020 Citrate cycle (TCA cycle) 
ko00620 Pyruvate metabolism 
ko00720 Carbon fixation pathways in prokaryotes 
ko01100 Metabolic pathways 
ko01110 Biosynthesis of secondary metabolites 
ko01120 Microbial metabolism in diverse environments 
ko01130 Biosynthesis of antibiotics 
ko01200 Carbon metabolism 

K15314 13.81 -4.48 4.84E-03 
ko01059 Biosynthesis of enediyne antibiotics 
ko01100 Metabolic pathways 
ko01130 Biosynthesis of antibiotics 

K00895 8.35 -4.49 9.15E-04 

ko00010 Glycolysis / Gluconeogenesis 
ko00030 Pentose phosphate pathway 
ko00051 Fructose and mannose metabolism 
ko01100 Metabolic pathways 
ko01110 Biosynthesis of secondary metabolites 
ko01120 Microbial metabolism in diverse environments 
ko01130 Biosynthesis of antibiotics 

HL vs LL 

K00957 86.00 6.70 2.20E-05 

ko00230 Purine metabolism 
ko00261 Monobactam biosynthesis 
ko00450 Seleno compound metabolism 
ko00920 Sulfur metabolism 
ko01100 Metabolic pathways 
ko01120 Microbial metabolism in diverse environments 
ko01130 Biosynthesis of antibiotics 

K21166 81.38 7.04 4.88E-05 
ko01059 Biosynthesis of enediyne antibiotics 
ko01100 Metabolic pathways 
ko01130 Biosynthesis of antibiotics 

K13593 74.96 6.63 3.20E-05 ko04112 Cell cycle - Caulobacter 

HH vs LL 

K07232 71.56 6.32 1.65E-04 
ko00480 Glutathione metabolism 
ko01100 Metabolic pathways 

K03430 65.88 6.55 2.22E-04 
ko00440 Phosphonate and phosphinate metabolism 
ko01100 Metabolic pathways 
ko01120 Microbial metabolism in diverse environments 

K15598 64.91 6.04 3.51E-04 ko02010 ABC transporters 
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Abstract  

Soil microbial communities are among the most complex and diverse environments on the 

planet. They play key roles in biogeochemical cycles which are essential to terrestrial 

ecosystems. Seeking benefits from microbial communities to improve crop productivity, has 

increased over the last years, via the use of microbial inoculants, as such as arbuscular 

mycorrhizal fungi (AMF). However, these inoculations have been done without full 

understanding of the ecological impacts of such practices. In a field experiment using the 

globally important crop cassava, a shotgun metagenomic approach (which offers information 

both about taxonomic and genomic composition of the microbial community) was used to study 

the impact of inoculation with two isolates of Rhizophagus irregularis. We characterized the 

effects of inoculation on alpha and beta diversity of taxa and genes in soil microbial 

communities. It was found that the gene composition of the soil microbial metagenome was 

altered by AMF inoculation even though changes in the taxonomic composition were 

undetectable. As very little information currently exists on how inoculation of crops by AMF, or 

other beneficial microbes, influences the pre-existing soil bacterial microbiome, this study 

offers important insights into this topic in agriculture. The possibility of modifying the soil 

metagenome to obtain positive responses (e.g. plant yield) opens the door to research that will 

allow the harnessing of ecological services provided by soil microbial communities towards a 

more sustainable agriculture. 
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Introduction  

Soil microbial communities are considered the most diverse and complex ecosystems on the 

planet (Bardgett & Van Der Putten, 2014) and play a key role in ecological processes. These 

include biogeochemical cycling of nutrients, which in turn is fundamental to the functioning of 

terrestrial ecosystems. In the past few years, advances in sequencing technologies and 

bioinformatic tools have allowed a better understanding of the structure and diversity of soil 

microbial communities and improved the understanding of their biogeography and ecology 

(Chu et al., 2020). However, this knowledge has mostly focused on the microbiome of 

temperate soils and often using a descriptive approach. There are fewer investigations 

adopting an experimental framework where responses of the soil microbiome to experimental 

manipulations of the environment have been studied. The lack of knowledge of tropical soil 

microbiomes hinders our ability to harness their ecological services towards more sustainable 

agriculture. This gains particular relevance in the tropics as their inherently low fertility soils 

are experiencing increasing anthropogenic pressure and the effects of climate change (Jiao et 

al., 2019). 

In an attempt to develop more sustainable agriculture in the tropics the use of microbial 

inoculants, such as arbuscular mycorrhizal fungi (AMF), has increased. Results of field 

experiments with the security crop cassava (a clonally reproduced plant producing a starchy 

tuberous root) have shown higher plant yield as an effect of AMF inoculation (Ceballos et al., 

2013). More recent field experiments conducted in Colombia, Kenya and Tanzania have 

shown that inoculation with genetically different AMF isolates of the fungus Rhizophagus 

irregularis generated differential growth responses in cassava (Ceballos et al., 2019). The 

large differences in cassava productivity led to a higher allocation of carbohydrates to the roots, 

and this could have direct consequences on the surrounding microbial community. However, 

the introduction of AMF inoculants to cassava, and to crops in general, has been done with 

little knowledge about the potential impact of such practices on the soil microbiome, the 
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structure of the microbial community, its diversity or potential functional changes to the soil 

metagenome. 

Several studies have addressed the effects of AMF inoculation on pre-existing local AMF 

communities and have reported contrasting results. Adding an AMF inoculant in a greenhouse 

experiment was shown to have no impact on the structure of the resident AMF community T-

RFLP fingerprint (Antunes et al., 2009). Other studies found that inoculation reduced the 

abundance and diversity of resident AMF communities (Koch et al., 2011; Symanczik et al., 

2015; Thioye et al., 2019). There have been fewer studies on the effect of inoculation with AMF 

on other non-AMF components of the soil microbial community. In an amplicon sequencing 

study it was recently reported that AMF inoculation significantly influenced rhizospheric 

community structure, particularly bacterial taxa (Akyol et al., 2019). Notably, amplicon 

sequencing of a marker gene (i.e. rRNA genes) with the currently used sequencing 

technologies typically has a resolution that is limited to genus level at best and functional 

information is, thus, based on knowledge of metabolic capabilities of given families and genera 

of bacteria (Knight et al., 2018). An alternative, and potentially more informative approach, is 

to analyze the gene composition of the metagenome. This can be used to provide taxonomic 

information about the microbial community but can also be used to reveal the relative 

abundance of the genes making up the metagenome, thus, giving insights into its specific 

metabolic capabilities. Additionally, these data can be interpreted in a qualitative way by 

reconstructing putative metabolic pathways. Such an approach is particularly interesting for 

studies of soil bacterial communities because some genes move horizontally on plasmids 

among bacterial taxa. Because of this, a change in the environment might not necessarily elicit 

observable changes in the taxonomic composition of the bacterial community but could alter 

the diversity and abundance of given groups of genes in the microbial metagenome. This, in 

turn could alter the metabolic and degradation capabilities of the soil microbiome. To date, 

such an approach has not been used to study the response of the microbial metagenome to 

inoculation of a crop with AMF and with different AMF genotypes. 
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In this study, we analyzed the bacterial metagenome in soil taken from around the roots of 

cassava that was inoculated in the field in Colombia with two genetically different R. irregularis 

isolates or non-inoculated. In this way, we were able to experimentally assess the effect of 

inoculation with genetically different AMF isolates on the soil bacterial metagenome. The 

sequences were classified and annotated to create both a taxonomic profile and a catalogue 

of the genes present in the community. We tested whether the inoculation altered the alpha 

and beta diversity profiles of the resident microbial taxa. Also, by comparing gene abundance 

between treatments we identified the potential metabolic pathways affected by inoculation. Soil 

variable data as respiration and aggregation was used to discern potential factors structuring 

the soil microbiome or possible effects of microbial community changes on soil properties. This 

is, to the best of our knowledge, the first work addressing the effect of AMF inoculation on the 

metagenomic profile of soil microbiomes in field conditions. 

The goals of our study were to characterize the potential changes on the soil metagenome due 

to inoculation with AMF and two AMF genotypes. Studying the potential effects generated by 

AMF inoculation would provide much-needed knowledge to contribute to the understanding on 

how to harness ecological services from AMF and soil microbiomes to contribute to plant 

productivity and agroecosystems sustainability. 

 

Materials and methods 

Experimental design  

The experiment was set up in the eastern plains of Colombia (Tauramena, Casanare, 

4°57'32.14"N, 72°34'23.28"W, 220 masl). Cassava (Manihot esculenta Crantz) variety CM 

4574 (from CIAT, Cali, Colombia) planted as stem cuttings at a density of 10,000 plants ha-1 

was inoculated with two genetically different R. irregularis strains originally isolated from a field 

in Tänikon, Switzerland (Koch et al., 2004). The selection of the fungal isolates (called C2 and 

C3) was made having into account their contrasting effects on cassava yield in a previous field 
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experiment (Ceballos et al., 2019). The fungal inoculum was upscaled in an in vitro culture 

system by Symbiom (Lanskroun, Czech Republic) and mixed with a sterile carrier (calcified 

diatomite). Both the in vitro system and the sterile carrier ensured that only AMF are being 

inoculated and that no unknown organism was present in the inoculum. Plants were inoculated 

at planting with one of two fungi with 1g of the inoculum, containing 1,000 R. irregularis spores 

or mock inoculated using 1g of the carrier as a control (hereon referred to as the carrier 

treatment).The experiment was set up as a randomized block design with 6 blocks. Within 

each block each inoculated plant was surrounded by 8 uninoculated plants to avoid cross-

contamination. Plants were fertilized in total with 100 kg ha-1 urea, 100 kg ha-1 di-ammonium 

phosphate, 106 kg ha-1 potassium chloride. Fifty percent of this was applied at 43 days after 

planting date and the other 50% at 61 days after planting date. There was no irrigation and 

conventional crop management for the region was applied depending on pests, diseases and 

weed incidence. 

Variables measured during the experiment 

To determine CO2 efflux, 20 cm diameter, 11 cm height PVC rings were pressed into the soil 

10 cm from the stem of the inoculated plant in each one of the blocks. The rings remained in 

the same position during the entire study period. Measurements of CO2 efflux were made with 

a portable flow measurement chamber equipped with an infrared gas analyzer (IRGA) Licor 

LI-8100A with a volume of 6 186 cm3 (Zhao et al., 2018). Four consecutive measurements 

were made per plant and then averaged. Additionally, at sampling depth three measurements 

of soil humidity content were taken then averaged with the portable measurement system 

(ΔT®) and three soil temperature measurements were taken then averaged with a 12 cm soil 

thermometer (Spectrum®). 

Microbial soil respiration was determined using the alkali absorption method (Alef, 1995) in 

which 25 grams of 2 mm sieved soil were incubated at 25°C for 24h in the dark in tightly sealed 

containers. Each container had a beaker with 15 ml of a 0.1 M NaOH solution and another one 
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with 15 ml of distilled water to keep moisture in the container. After the incubation time, the 

beaker with NaOH was removed and 3 ml of a 0.5 M BaCl2 solution were added to precipitate 

the stored C. The resulting solution was titrated with 0.1 M HCl to give the rate of soil respiration 

in mg of CO2 per dry weight in the incubation time (CO2/g/h). 

Total soil water-stable aggregates were determined at two depths (10 cm and 30 cm) using a 

wet sieving method (Kemper & Rosenau, 1986). Briefly, 100 g of fresh soil were placed on the 

top of a stack of five sieves with the following screen sizes 6.3, 4, 2, 1, 0.5 mm to obtain the 

aggregate classes. The sieve stack was shaken up and down for 30 min with the column 

submerged in water throughout the whole process. The aggregates remaining on each sieve 

were collected and weighed after being oven-dried. In conjunction with the of aggregation 

measurements, soil moisture content was determined by drying 50 g of soil overnight at 105°C 

and calculating the percentage of the soil sample that was water. 

Plants were directly weighed in the field separating the above-ground and below-ground 

biomass. The reported values correspond to fresh weight as it has been shown that fresh and 

dry weight are highly correlated (Ceballos et al., 2019).  

Soil sampling for metagenome sequencing 

Soil was sampled from C2 and C3 treatments as well as the mock-inoculated treatment (as a 

control) in six replicates in different blocks, thus giving 18 samples in total. The sampling was 

performed by taking soil at three points near the same plant at a depth of 10 cm and pooling it 

to have a representative sample. The samples were immediately frozen in liquid nitrogen and 

transferred to -80°C until extraction.  

DNA extraction, library preparation and sequencing 

Total DNA was extracted from 2 g of each of the 18 pooled soil samples using a PowerSoil 

total DNA isolation kit (MoBio Laboratories, Inc.) according to the instructions of the 

manufacturer. Subsequently, libraries were prepared for sequencing with a TruSeq DNA PCR-
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Free kit (Illumina) and validated and quantified with KAPA ROX Low qPCR Master Mix 

(Roche). A Fragment Analyzer was used to assess the quality of the libraries. Libraries were 

sequenced with Illumina HiSeq 4000 150 base pair (bp) paired-end sequencing. 

Data processing 

Raw data of the 18 libraries (C2-1 to C2-6, C3-1 to C3-6 and carrier-1 to carrier-6) were initially 

checked with FastQC v0.11.4 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

After library quality check completion adaptor sequences were trimmed using TagCleaner 

(Schmieder et al., 2010). Reads were then quality-filtered (min_qual_mean 20) and trimmed 

using Prinseq-lite version 0.20.4 (Schmieder & Edwards, 2011). Low quality 3’-ends were 

trimmed and reads containing uncalled bases (N) removed. Only reads at least 120 bp long 

were kept for further analyses.  

Quality filtered reads were taxonomically assigned using kraken 2 (Salzberg & Wood, 2014) 

with a reduced version (24GB) of the preformatted bacterial and fungal database available with 

the sofware. Taxonomic assignation counts were then summarized at the class, order and 

family level using the R package Pavian (Breitwieser & Salzberg, 2016). This constituted the 

taxa classification matrix used for the diversity analyses. 

To construct the gene abundance matrices, co-assemblies of the metagenomes were 

performed by treatment (3 co-assemblies each with 6 replicates) using Megahit v1.1.4 (Li et 

al., 2015) (--k-list 33,47,63,77,93,117, --min-contig-len 750). Metrics of the 

assemblies were assessed with metaQUAST v5.0.2 (Mikheenko et al., 2016). Contigs from 

the three treatments were then concatenated into a single file and processed with cd-hit v4.6.8 

(Fu et al., 2012) to reduce redundancy by clustering reads using a similarity threshold of 95% 

over at least 90% of the alignment. The resulting file was annotated in parallel by performing 

open reading frame (ORF) predictions with prodigal v2.6.3 (Hyatt et al., 2010) (using the -p 

meta option). Subsequently, blast-like annotation was made against the NCBI RefSeq non-

redundant (NR) sequence database of proteins (Pruitt et al., 2007) and eggNOG v4.5 (Huerta-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Cepas et al., 2016) using diamond v0.9.18 (Buchfink et al., 2014) with an e-value threshold of 

0.001.  

Quality filtered reads were mapped back to the annotated contigs to obtain a count matrix of 

the abundance of each contig with BBMap v37.82 (Bushnell B., https://jgi.doe.gov/data-and-

tools/bbtools/bb-tools-user-guide/bbmap-guide/) using default parameters. These matrices, 

containing the abundance per sample of each annotated contig were used as input data for 

the R packages and will be referred to as the gene catalogues. 

Statistical analysis 

Analyses were conducted in R (R Core Team, 2019). Phyloseq (McMurdie & Holmes, 2013) 

was used to estimate richness and alpha diversity indices and the non-parametric Kruskal-

Wallis test was applied to identify differences between treatments. To visualize the level of 

dissimilarity (beta diversity) between the samples non-metric dimensional scaling plots 

(NMDS) of the Bray-Curtis metric were build using Vegan v2.5-5 (Oksanen, 2013). Significant 

differences in beta diversity among treatments were tested with ANOSIM in Vegan. An 

extension of Vegan's bioenv function, implementing a "BVSTEP" routine 

(http://menugget.blogspot.com/2011/06/clarke-and-ainsworths-bioenv-and-bvstep.html) was 

used to overcome the inflexibility of the original function which uses only a similarity matrix 

based on normalized euclidean distance. This routine was used to search for a combination of 

environmental variables with the highest correlation to dissimilarities of the community. The 

result of the routine was then plotted on an NMDS plot. The variables shown in Table S1 were 

not measured in the carrier treatment, therefore, the relationship between any of these 

variables and the bacterial metagenome were only analyzed in treatments C2 and C3.  

DESeq2 (Love et al., 2014) was used to identify differentially abundant genes between the 

samples and treatments. The gene catalogs were filtered to only keep entries with more than 

10 reads mapped in each of at least 3 of the replicates. Genes were considered to have 

significantly different abundance if the absolute value of the log2 fold change was higher than 

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
http://menugget.blogspot.com/2011/06/clarke-and-ainsworths-bioenv-and-bvstep.html
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4 and a FDR Benjamin-Hochberg adjusted p-value less than 0.001. Finally, to contextualize 

gene abundance patterns with known biochemical processes pathway enrichment analysis 

(PEA) was performed using GAGE (Luo et al., 2009) and visualization with Pathview (Luo & 

Brouwer, 2013). KEGG orthologs (KO) (Kanehisa et al., 2016) obtained from the eggNOG 

annotation were compiled into a KO catalogue. This was catalogue was subsequently filtered 

to only keep entries with more than 10 reads mapped in each of at least 5 of the replicates and 

subsequently used to perform the PEA. Significant pathways were considered differentially 

abundant at a cutoff q-value of 0.1. 

 

Results 

Soil variables 

A Wilcoxon rank sum test was applied to the measured soil variables of the AMF inoculated 

samples and no statistically significant differences were found between treatments (Table S1). 

Measurements taken during soil sampling (temperature and humidity) and pH showed minimal 

variation of sampling conditions. Moisture at different depths indicated similar environmental 

conditions needed for accurate respiration measurements comparisons. Plant biomass, total 

aggregation at both depths and respiration variables showed no differences between AMF 

isolates. 

Sequencing data characteristics  

A total of 409 million reads were obtained with an average of 22 million reads per sample. 

Approximately 95% of the reads across all the samples were considered of high enough quality 

after filtering and trimming (Table S2). Only approximately 7 million reads were obtained from 

the two samples, C3-4 and C2-3. However, given that the quality threshold parameters were 

passed, these two samples were kept for the analyses despite the relatively low number of 

reads. 
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Figure 1. Relative abundance of the 20 most abundant bacterial orders obtained using the kraken 
classification algorithm. The remaining orders of lower abundance were grouped into the category called 
“others”.  

 

On average, 23.2% of the reads were successfully assigned to taxa using kraken. Out of the 

classified reads, on average 97.7% of them were tagged as of bacterial origin and the 

remaining 2.3% as of fungal origin (Table S2). The most abundant 20 orders, as determined 

by the kraken classification algorithm, occurred in all samples (Figure 1) and a Kruskal-Wallis 

rank sum test revealed that no order differed significantly in abundance among treatments 

following a family-wise error rate correction at 0.05 (data not shown). 

After co-assembly, 1 608 366, 1 039 875 and 478 561 contigs were obtained from the reads 

of treatments C2, C3 and carrier, respectively. Metrics calculated by MetaQUAST showed a 

similar distribution of contig length in C2 and C3 and slightly lower in carrier. The total number 

of nucleotides integrated in the assembly showed a similar trend with the carrier treatment 

exhibiting a lower total base length than in treatments C2 and C3 (Table S3).  
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There were 2 581 287, 1 784 819 and 682 736 predicted ORFs in the C2, C3 and carrier 

treatments, respectively. Of these, 3 947 533 (78.18%) were annotated using the NR protein 

database. The annotation to the KEGG orthology showed 436 488 ORFs annotated in the C2 

treatment (27.1%), 341 433 in the C3 treatment (32.8%) and 87 160 in carrier treatment 

(18.2%). Gene catalogs were constructed by compiling all the annotated genes and used in 

the subsequent analyses performed. 

Taxa and gene diversity  

No significant differences were found in richness and alpha diversity among inoculation 

treatments when the indices were based on taxa counts at the species level (Figure 2a). In 

contrast, observed and Chao1 richness of genes, as well as and Shannon and Fisher alpha 

diversity indices of gene counts differed significantly among the inoculation treatments (Figure 

2b). The Simpson alpha diversity index showed no differences. Richness indices were 

significantly higher in the C2 treatment than the carrier treatment. Richness and diversity of 

genes in C3 tended to be higher than the carrier treatment. Richness and diversity of genes 

between the treatments with the two genetically different R. irregularis isolates, C2 presented 

higher values than C3. 

There were no discernable differences in taxon beta diversity among treatments when taxa 

counts were used to calculate the Bray-Curtis dissimilarity matrix (ANOSIM R: -0.053, 9 999 

permutations, p = 0.7127) (Figure 3a). Highly significant differences in gene beta diversity 

among treatments were revealed when Bray-Curtis dissimilarities were calculated using gene 

counts (ANOSIM R: 0.814, 9 999 permutations, p= 1e-04) (Figure 3b). Beta diversity of genes 

among all treatments were clearly separated and significantly different (Figure 3b). 
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Figure 2. Estimates of richness and alpha diversity using taxon-based metrics at ‘species’ level and (a) 
and gene count metrics (b). The p values within gray boxes show the non-parametric Kruskal-Wallis test 
comparing all treatments. The pairwise comparisons between treatments were made with the non-
parametric Wilcoxon test. The absence of error bars for the gene count metrics Chao1 index is due to 
the presence of multiple zero-filled columns. 

a 

b 
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Figure 3. Non-metric multi-dimensional scaling (NMDS) of the Bray-Curtis dissimilarity matrix describing 

beta diversity. Results from the taxa classification matrix are shown in panel a, from the gene count 

matrix in panel b. Each point represents a replicate (n =18). Ellipses represent 95% confidence intervals 

around centroids and the colors denote the 3 different inoculation treatments.  

 

 

Figure 4. Non-metric multi-dimensional scaling (NMDS) of the Bray-Curtis distance matrix depicting the 

combination of environmental variables with highest rank correlation to the dissimilarities among 

samples. Results from the taxa classification matrix are shown in (a) and from the gene count matrix in 

(b). Aggregates 30cm: total soil aggregation at 30 cm depth; moisture 30cm: moisture percentage at 30 

cm depth; shoot weight: cassava shoot fresh weight; moisture 10cm: moisture percentage at 10 cm 

depth; root weight: cassava root fresh weight. 

 

b a 
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BVSTEP analyses showed that beta diversity estimated using taxa counts was correlated with 

above ground plant biomass (“shoot weight”) the total soil aggregation at 30 cm depth 

(“Aggregates 30cm”) and moisture at 30 cm depth (“moisture 30cm”) (Figure 4a). On the other 

hand, the beta diversity matrix calculated using the gene counts was correlated with below 

ground plant biomass (root weight) pH and moisture at 10 cm depth (moisture 10cm) (Figure 

4b). 

Differential gene abundance and metabolic pathways 

A contrast test showed that 55 118 genes of the bacterial metagenome were differentially 

abundant between the C2 and C3 treatments, 15 826 genes were differentially abundant 

between the C2 and carrier treatments, 35 224 genes were differentially abundant between 

the C3 and carrier treatments and 6 511 genes differed in abundance when comparing the two 

AMF inoculated treatments versus the carrier treatment (Figure S1). All these comparisons 

were made using an annotated gene catalog of 142 065 entries. 

The PEA showed that several metabolic pathways were differentially represented among 

treatments. Twelve significantly gene sets exhibited higher abundance and 63 gene sets 

exhibited significantly lower abundance in the AMF inoculated treatments compared to the 

carrier treatments (Figure 5). Two pathways were significantly higher and 5 pathways were 

significantly lower in abundance in the C3 treatment compared to the C2 treatment. Thirty-six 

pathways were in lower abundance and 6 were higher in abundance in C3 compared to the 

carrier treatment. Finally, there were 31 pathways revealing lower abundance and 11 pathways 

revealing higher abundance in the C2 treatment compared to the carrier treatment. The greater 

abundance pathways for the inoculated treatments compared to the carrier were related to the 

degradation of aromatic compounds. The lower abundance pathways for the inoculated 

treatments compared to the carrier were related to more general metabolic processes as 

amino acids or protein synthesis. Table S4 shows the top 5 entries generated in the PEA for 

the above-mentioned pair-wise comparisons.  
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Figure 5. Heatmap plotting Generally Applicable Gene-set Enrichment (GAGE) for pathway analysis. 
The analysis shows the AMF inoculation treatments compared to the carrier. Significant KEGG 
pathways up (red) or down (green) regulated at a q value of 0.1 are shown There are 12 significantly 
up-regulated gene sets and green 63 significantly down-regulated gene sets. Color shade indicates the 
log2 fold change according to the color key at the bottom right corner of the figure.  

 

Discussion 

Very little information currently exists on how inoculation of crops by AMF, or other beneficial 

microbes, influences the pre-existing soil bacterial microbiome. In this study, we demonstrated 

that inoculation of cassava with the AMF Rhizophagus irregularis mostly increased gene 

richness and gene alpha diversity of the microbial metagenome compared to the mock-

inoculated treatment while there was not an observable shift in the taxonomic richness and 

alpha diversity of the microbiome. In addition, genetically different R. irregularis isolates also 

induced significant changes in gene richness, gene alpha and beta diversity of the microbial 

metagenome even though these two fungi did not alter the observable taxonomic richness, 
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alpha and beta diversity of the microbiome. Biologically, this means that the gene composition 

of the soil microbial metagenome was altered by inoculation with genetically different AM fungi 

even though taxonomic differences in the composition of the microbial community were 

undetectable. All the effects of AMF inoculation on the gene diversity and composition of the 

microbial metagenome occurred in the absence of an effect of inoculation on plant growth or 

any of the other variables measured in the soil. 

There are remarkably few experimental studies looking at the effects of AMF inoculation on 

the soil microbiome. Recently, the results of a study using 16S and 18S rRNA amplicon data 

revealed that AM fungal inoculation significantly influenced the root microbial community 

structure, changing the abundance of indigenous AMF and other soil taxa, including bacteria 

(Akyol et al., 2019). In the present study, we mostly captured the bacterial metagenome and, 

to date, there are no other such published studies on effects of AMF inoculation on the bacterial 

soil metagenome with which we can directly compare. It is worth noting that in this study the 

inocula were prepared in a sterile in-vitro culture system and put into a sterilized carrier 

(calcified diatomite), that is free of unknown microorganisms. This means that the addition of 

AMF inoculum, or the carrier, has not resulted in adding any other microorganisms and thus, 

the observed effects were AMF mediated. This is important because many AMF inocula are 

produced in non-sterile conditions and contain other unknown microorganisms which would 

make it difficult to be sure the effects are due to AMF and not due to other microbes. 

Due to the results of previous field experiments, conducted in Colombia, where cassava was 

inoculated with several AMF isolates (Ceballos et al., 2019), we expected that the two 

genetically different R. irregularis isolates would induce differential growth responses of 

cassava roots. Because of this, we expected that the alteration in cassava root growth, induced 

by different AMF isolates, would alter the soil environment experienced by soil bacteria and 

that this could then potentially alter the soil bacterial community. It is, therefore, particularly 

surprising that even though we did not observe differential effects of AMF isolates on cassava 

root biomass, or any of the other variable measured in the soil, there was a clear effect of the 
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fungi on the gene diversity and gene composition of the microbial metagenome. This could 

potentially be due to direct effects of the introduced fungus on the bacterial community. For 

example, it is already known that these two isolates exhibit differences in their quantitative 

growth traits (Koch et al., 2004), such as extraradical hyphal growth and sporulation that could 

influence the bacteria living around them. However, the AMF isolate effects on the microbial 

metagenome could also still be due to other indirect effects of inoculation that we did not 

measure, such as effects on the pre-existing local AMF community, or some effects on the 

plants such as alteration of root exudation etc. that could have then indirectly affected the soil 

bacterial community. 

Experimental studies on factors that affect the soil bacterial metagenomes are still in their 

infancy. One of the most exciting results of this study is that changes in gene richness, diversity 

and composition of the microbial metagenome were observed without associated changes in 

the taxonomic diversity and composition of the microbial community. For most ecologists 

working with plants and animals, rather than bacteria, such an observation appears unintuitive 

or impossible. However, we have two explanations for this result. The first is that this is a real 

biological effect that could be due to horizontal gene transfer among bacterial taxa in response 

to a change of environment (in this case inoculation with AMF). Approximately, 55000 genes 

of the bacterial metagenome were differentially abundant in the C2 versus C3 inoculation 

treatments. Given the total number of genes recorded in the soil bacterial metagenome in this 

study, the number of genes that were differentially abundant among treatments represents a 

small enough proportion of the total gene set to possibly represent genes that were mobile 

among taxa within the bacterial community. The second possibility is that, although generally 

recognized as a more robust method (Manichanh et al., 2008; Shakya et al., 2013; Campanaro 

et al., 2018), the resolution of the taxonomic data obtained using the metagenomic approach 

might still not suffice to observe changes in taxonomic diversity of highly diverse and complex 

bacterial communities as those from soil. It is difficult to compare our data with those of studies 

on soil bacterial diversity that have employed a metabarcoding approach as the two methods 
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suffer from different limitations and also by lack of knowledge of the true ecological diversity. 

However, we consider this as a potentially very important result in ecology as almost all 

ecological studies on relationships between soil microbial diversity, plant and animal diversity 

and ecosystem processes focus on taxonomic bacterial diversity. Such taxonomic 

measurements of diversity may well mask more meaningful functional differences in the 

microbial metagenomic metabolic capabilities. In plants and animals where extensive 

horizontal gene transfer among taxa is much less prevalent or likely, measurements of 

taxonomic diversity could be more closely coupled with functional diversity. Louca et al. (2018) 

reported how several studies showed that certain metabolic functions are strongly coupled to 

particular environmental factors rather than to the taxonomic composition of the sample at a 

given time. 

A relatively large number of genes were found to be differentially abundant when comparing 

the C2 and C3 treatments (38.8%) but this only translated into 7 enriched pathways. On the 

other hand, only 4.5% of the genes found to be differentially abundant (when comparing the 

AMF treatments together against the carrier) resulted in 75 differentially enriched pathways. 

Pathway enrichment analysis provided a more informative view (compared to individual gene 

based interpretation) of the potential functional changes that occurred in the bacterial 

metagenome as a result of AMF inoculation. It should be kept in mind that the plants and the 

soil in the carrier treatment still contained an AMF community that existed before inoculation 

so this difference is not due to the absence of AM fungi in the carrier treatment. 

When comparing the AMF treatments together against the carrier, 6 out of the 12 pathways 

found to be more abundant (namely, ko00622 Xylene degradation, ko00362 Benzoate 

degradation, ko00984 Steroid degradation, ko00623 Toluene degradation, ko01220 

Degradation of aromatic compounds and ko02010 ABC transporters) could be linked to 

degradation and metabolism of aromatic compounds. Many microbes present in the 

rhizosphere are able to degrade aromatic compounds and several characteristics of this 

environment favor this process. Firstly, plant secondary metabolites that are part of the 
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exudates are often structurally very similar to organic contaminants (Correa-García et al., 

2018). Additionally, the higher allocation of plant-derived carbon through root exudates 

promotes more active and more abundant microbial communities. Also, microbial communities 

are known for horizontal gene transfer (HGT), and it has been shown that plasmids acquired 

via HGT help microorganisms adapt to contamination stress and degrade organic compounds 

(Sentchilo et al., 2013). In a microcosm experiment measuring biodegradation of aromatic 

compounds and functional gene composition, functionally diverse soil microbiomes had higher 

degrading capabilities than specialized assemblages (Bell et al., 2016). In our study, we found 

an overall higher gene richness and diversity in the AMF inoculated plots and this, added to 

the higher carbon allocation typically observed in the rhizosphere may explain the relationship 

between the AMF inoculation and the upregulation of aromatic compound metabolic pathways. 

A metabolic model of the soil metagenome proposes the use of aromatic compounds derivates 

to be used in the TCA cycle for energy metabolism, thus, utilizing those as sources of carbon 

and energy (Bao et al., 2017). Furthermore, a metaproteomic experiment showed that in 

phosphorus-rich soils, the microbial communities had higher gene abundances for degradation 

of aromatic compounds as the community was driven to switch from the acquisition of 

phosphorus towards the acquisition of carbon, nitrogen and sulfur from more recalcitrant 

substrates as aromatic compounds (Yao et al., 2018). Altogether, this hints that a potential 

AMF-inoculation-derived higher availability of phosphorus stimulates the microbial community 

towards different sources of nutrients, possibly avoiding competition with communities in low-

phosphorus niches.  

It has been reported that abundance of the inoculated AM fungus was the most significant 

factor that determined plant yield responses to the inoculation. This suggests that dominance 

of the inoculated fungus is a necessary condition for positive yield responses (Niwa et al., 

2018). Although this was not measured in this study, non-inoculated plants may have had a 

reduced abundance of hyphal networks. It has been reported that mycorrhizal hyphae act as 

an ecological niche for highly specialized microbial communities (Jansa et al., 2013) and that 
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AMF can recruit specific bacterial taxa (Agnolucci et al., 2015; Iffis et al., 2017; Akyol et al., 

2019). This may partially explain the observed changes in metabolism of amino 

acids/vitamins/nucleic acids, antibiotics biosynthesis and quorum sensing that can be 

interpreted as a modification of the bacterial environment due to a higher abundance of the 

inoculated AM fungus. 

We showed that aggregation was one of the several factors correlated with the microbial 

community structure. It has been reported that exposure to environmental stresses increase 

the production of diverse bacterial exopolysaccharides (EPSs) (Sandhya & Ali, 2015; 

Weathers et al., 2015). Among the enriched pathways when comparing AMF and the non-

inoculated plots we found “ko02025 Biofilm formation”. Biofilm formation is mediated by EPSs 

and as their biosynthesis is energetically expensive, this suggest that the community shifts its 

metagenome, and possibly its functional profile, when carbon availability is not a limitation. 

Microbial EPSs enhance soil aggregation (Deka et al., 2019) and this defines the physical and 

mechanical properties of soil, such as water retention, water movement, aeration, and 

temperature, which in turn affect physical, chemical, and biological processes (Costa et al., 

2018). This indicates a positive feedback loop in which improved soil quality may generate a 

augmentation of plant productivity, which in turn increases the amount of available nutrients in 

the rhizosphere, driving then the microbial community towards further enhancement of the soil 

quality via, for example, EPSs-mediated soil aggregation. 

The observed differences in alpha and beta diversity of the gene content of the metagenome 

as well as in the enriched metabolic pathways showed that the use of a small amount of AMF 

inoculum directly (through recruitment of microbial taxa associated to AMF hyphae) or 

indirectly (through its effects on the rhizosphere) enhances the versatility of the microbial 

community. As AMF inoculation can bring economic benefits to the farmer (Ceballos et al., 

2013) these inoculants are now being used in many parts of the world without knowledge about 

the potential ecological impacts of such practices. These impacts include potentially invasive 

AMF isolates (Schwartz et al., 2006) and the fact that inoculation may directly or indirectly be 
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detrimental to microbial diversity (Koch et al., 2011; Symanczik et al., 2015; Akyol et al., 2019; 

Thioye et al., 2019). Here we showed that the use of AMF induced changes to the soil 

metagenome. The possibility of modifying the soil metagenome to obtain positive responses 

of soil variables and plant yield via AMF inoculation opens the door to research that will allow 

the harnessing of ecological services provided by soil microbial communities towards a more 

sustainable agriculture.  
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Supplementary Table 1. Mean values of 11 variables measured during the experiment. A Wilcoxon rank sum test was applied and no statistically significant 
differences were found between C2 and C3. 
 

Sample 
Soil 

temperature 
(C°) 

Soil 
humidity 

(%) 
pH 

Soil moisture 
(%) 

10cm depth 

Soil moisture 
(%) 

30cm depth 

Shoot 
weight (g) 

Root 
weight (g) 

Microbial 
respiration 

(mg CO2/g/h) 

CO2 efflux 
(CO2/m

-2/h-1) 
Aggregates (%) 

10cm depth 
Aggregates (%) 

30cm depth 

C2-1 25.1 15.1 5.83 16.66 15.44 1 600 1 600 0.391 3.417 68.29 74.93 

C2-2 25.1 14.9 5.14 16.66 18.43 5 940 6 375 0.395 7.048 80.58 72.92 

C2-3 25.1 16.7 5.25 16.21 14.53 6 120 2 020 0.976 14.283 73.11 49.80 

C2-4 26.1 15.2 5.25 21.11 14.90 5 795 5 465 2.059 3.642 66.41 60.54 

C3-1 25.2 18.3 6.09 22.37 16.78 3 620 3 930 0.613 6.429 86.06 88.23 

C3-2 25.4 18.9 5.34 22.41 19.02 8 000 8 888 0.201 4.282 71.87 82.95 

C3-3 25.4 19.3 5.29 24.64 18.64 1 134 4 655 0.175 4.317 78.90 85.37 

C3-4 29.7 13.7 5.65 18.62 16.16 4 600 4 265 0.260 4.436 78.50 67.67 

Wilcoxon 0.1804 0.3428 0.1912 0.0571 0.1142 0.6857 0.6857 0.1142 1.000 0.3428 0.1142 
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Supplementary Table 2. Total read count (number of paired reads) after quality control and summary 
metrics for the results of the kraken classification. Good (%) refers to the percentage of reads passing 
the quality filters and which were, thus kept for the analyses. 

 

 Quality control (QC) Kraken classification 

Sample Raw reads After QC Good (%) Classified Bacterial Fungal 

C3-1 22 978 139 22 409 692 97.53% 25.97% 98.37% 1.22% 

C3-2 19 143 327 18 656 810 97.46% 23.23% 96.42% 2.52% 

C3-3 23 972 462 23 391 092 97.57% 22.37% 98.35% 1.18% 

C3-4 6 663 084 6 560 311 98.46% 26.24% 98.09% 1.27% 

C3-5 11 882 610 11 392 381 95.87% 21.19% 98.00% 1.24% 

C3-6 21 518 885 20 527 883 95.39% 28.79% 99.15% 0.65% 

C2-1 21 216 179 20 741 203 97.76% 20.85% 97.57% 1.62% 

C2-2 34 337 765 33 524 444 97.63% 20.48% 95.67% 2.28% 

C2-3 7 003 900 6 815 313 97.31% 22.71% 97.90% 1.40% 

C2-4 36 182 061 35 363 904 97.74% 21.68% 97.54% 1.62% 

C2-5 28 399 924 27 689 826 97.50% 19.99% 98.15% 1.40% 

C2-6 22 899 433 22 342 430 97.57% 18.69% 98.08% 1.35% 

carrier-1 11 308 452 10 841 016 95.87% 21.02% 97.49% 1.69% 

carrier-2 32 826 479 30 705 695 93.54% 33.33% 97.66% 1.85% 

carrier-3 35 261 123 33 273 514 94.36% 23.17% 97.36% 1.86% 

carrier-4 21 793 458 20 074 205 92.11% 25.76% 98.41% 1.12% 

carrier-5 31 742 712 29 073 410 91.59% 22.25% 97.18% 1.94% 

carrier-6 20 671 151 19 025 884 92.04% 19.45% 97.78% 1.70% 
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Supplementary Table 3. Assembly metrics as assessed by metaQUAST 

 

 Treatment 

Metric C2 C3 carrier 

Input reads 146 477 120 102 938 169 142 993 724 

Total contigs 1 608 366 1 039 875 478 561 

contigs ≥ 500 bp 100.00% 100.00% 100.00% 

contigs ≥ 750 bp 47.27% 49.10% 31.65% 

contigs ≥ 1000 bp 25.24% 28.46% 14.32% 

contigs ≥ 1500 bp 10.32% 13.22% 4.82% 

contigs ≥ 3000 bp 2.26% 3.37% 0.92% 

contigs ≥ 5000 bp 0.78% 1.29% 0.31% 

contigs ≥ 10000 bp 0.18% 0.40% 0.06% 

contigs ≥ 25000 bp 0.02% 0.07% 0.01% 

contigs ≥ 40000 bp 0.01% 0.02% 0.00% 

Largest contig (bp) 196 162 188 274 107 848 

Total length (bp) 1 568 670 520 1 123 536 338 378 215 956 

N50 962 1112 739 

N75 680 710 586 

L50 441 565 242 289 157 513 

L75 933 820 565 999 302 825 
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Supplementary Table 4. Top 5 upregulated and downregulated (increased and decreased pathway 
genes abundance) pathways as detected by the GAGE R package and sorted by q-value. Comparison, 
e.g. “C3 vs carrier” should be read as differentially abundant pathways in C3 considering the level in the 
carrier treatment as the base level. Pathways in bold were not significant.  

Treatment Change KEGG orthology and pathway name q.value 

C3 vs carrier 

D
o
w

n
re

g
u
la

te
d

 
ko03010 Ribosome 5.37E-16 

ko00970 Aminoacyl-tRNA biosynthesis 3.79E-12 

ko01230 Biosynthesis of amino acids 3.55E-09 

ko01130 Biosynthesis of antibiotics 4.16E-07 

ko05200 Pathways in cancer 4.55E-07 

U
p
re

g
u

la
te

d
 ko00622 Xylene degradation 2.27E-05 

ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 0.002595 

ko00440 Phosphonate and phosphinate metabolism 0.005067 

ko00984 Steroid degradation 0.007027 

ko00362 Benzoate degradation 0.016647 

C2 vs carrier 

D
o
w

n
re

g
u
la

te
d

 

ko03010 Ribosome 2.81E-17 

ko00970 Aminoacyl-tRNA biosynthesis 5.48E-12 

ko03440 Homologous recombination 5.48E-12 

ko01230 Biosynthesis of amino acids 3.41E-11 

ko05200 Pathways in cancer 6.06E-10 

U
p
re

g
u

la
te

d
 ko00362 Benzoate degradation 3.58E-08 

ko00622 Xylene degradation 3.58E-08 

ko01220 Degradation of aromatic compounds 6.08E-05 

ko00130 Ubiquinone and other terpenoid-quinone biosynthesis 0.008596 

ko00623 Toluene degradation 0.010636 

C3 vs C2 

D
o
w

n
re

g
u
la

te
d

 

ko01220 Degradation of aromatic compounds 1.26E-07 

ko00562 Inositol phosphate metabolism 7.54E-05 

ko00362 Benzoate degradation 0.002528 

ko03030 DNA replication 0.002528 

ko00680 Methane metabolism 0.016245 

U
p
re

g
u

la
te

d
 ko02040 Flagellar assembly 2.35E-07 

ko00906 Carotenoid biosynthesis 0.074136 

ko00261 Monobactam biosynthesis 0.269983 

ko00780 Biotin metabolism 0.282721 

ko00984 Steroid degradation 0.314481 
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Figure S1. Log2 fold change and mean abundance of the gene counts matrices. Each panel shows a 
different comparison between two treatments as noted with the top right corner of each panel. 
Differentially abundant genes (red dots) were denoted as significant when the log2 fold change was over 
4 and the adjusted p-value below 0.01. 
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Abstract 

The capacity microbial taxa such as arbuscular mycorrhizal fungi (AMF) to provide ecological 

services, such as promotion of plant growth and protection against pathogens, has attracted 

great attention and represent a promising option to help making agriculture more sustainable. 

It has been shown that inoculation with AMF increases plant yield under field conditions, 

particularly cassava and cereal crops.  

Environmentally safe and economically sustainable use of AMF depends on the understanding 

of the establishment and persistence of the inoculated AMF isolate. Concerns have been 

raised about the potential negative effects of AMF inoculations being potentially invasive or 

detrimental to local AMF diversity. Having a tool to determine the persistence of inocula in the 

soil and assess its invasiveness will contribute to investigations to better understand and 

possibly mitigate these processes.  

Using ddRAD-seq data small regions with polymorphism were identified. Subsequently, 

primers were designed to amplify together neighboring small regions into longer sequences 

containing many more variable sites to first characterize within isolate genetic variation and 

posteriorly build strain-specific markers.  

The selected long regions were amplified and sequenced with ultra-high coverage in isolates 

used in field experiments. The results (further confirmed by cloning and Sanger sequencing) 

revealed patterns of within isolate variation inconsistent with current knowledge about the 

genetics of these fungi. Thus, what began as an approach to develop strain specific markers 

for tracking AMF isolates, ended up raising additional questions about the genetic organization 

within these organisms. 
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Introduction  

The capacity of some microbial taxa or microbial communities to provide ecological services, 

such as promotion of plant growth and protection against pathogens (Berg, 2009), has 

attracted great attention as some organisms represent a promising option to help making more 

sustainable agriculture (Backer et al., 2018). One such group of organisms is arbuscular 

mycorrhizal fungi (AMF). These fungi form one of the commonest plant–microbe mutualisms. 

The large majority of terrestrial plants, including many important crops, form arbuscular 

mycorrhizas (van der Heijden et al., 2015). Their main beneficial effect is uptake and transfer 

of low-mobility minerals (mainly phosphorus) from the soil to plants. It has been shown that 

inoculation with AMF increases plant yield under field conditions, particularly cassava 

(Ceballos et al., 2013, 2019) and cereal crops (Zhang et al., 2019).  

Environmentally safe and economically sustainable use of AMF depends on the establishment 

and persistence of the inoculated AMF isolate (Pellegrino et al., 2012). To link plant growth 

responses to a given inoculum it is necessary to assess its establishment. Also, studying the 

effects of the inoculated isolate (on, for example, the resident microbial community) requires 

knowledge of whether and when it establishes and be able to quantify its presence. Being able 

to evaluate the persistence of an introduced microbial inoculant will also be helpful in order to 

know if the positive plant growth response following inoculation would then require re-

inoculation in future years, and if so, how often. Additionally, as concerns have been raised 

about the potential negative effects of invasive inoculations worldwide (Schwartz et al., 2006; 

Hart et al., 2017), having a tool to determine the persistence of inocula in the soil and assess 

its invasiveness will contribute to investigations to better understand and possibly mitigate 

these processes. For this, markers need to be developed that can recognize the fungus added 

as inoculum. 

The development of markers for tracking AMF isolates requires considering their life-cycle 

particularities. Unlike most organisms, there have been no observations of a stage in the AMF 

cycle in which they develop from a single nucleus (Young, 2015). Also, AMF have no observed 
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sexual cycle, and multiple nuclei share a common cytoplasm. The genetic organization of 

coexisting nuclei in the Glomeromycota and the within-fungus genetic diversity have been long 

debated. Recently, the genome organization of AMF was established to be either homokaryotic 

(coexisting nuclei are genetically similar) (Lin et al., 2014) or dikaryotic (the mycelium harbors 

two nuclear genotypes) (Ropars et al., 2016).  

Recently, data generated in several studies, using different techniques and sequencing 

platforms, have been used to describe the haploid genome of the model AMF Rhizophagus 

irregularis and its within and among isolate variation. Lin et al., (2014) was the first group to 

sequence the genome of individual AMF nuclei of the isolate DAOM197198 and reported little 

variability, thus, suggesting a homokaryotic state. Later, Ropars et al. (2016) sequenced the 

genomes of five R. irregularis isolates (A1, A4, A5, B3 and C2) and found heterozygosity in 

two R. irregularis isolates A4 and A5, suggesting the existence of a stable population 

comprising two dominant divergent haploid nucleus genotypes. However, all studies revealed 

a level of polymorphism incoherent with a strict homokaryotic or dikaryotic state, although this 

apparent variation could be due to problems of genome assembly (Masclaux et al., 2019).  

Identification of polymorphic sites relies heavily on the quality of the reference genome and 

depth of coverage and the length of the sequences carrying given polymorphisms that could 

potentially be used to develop strain specific markers. Thus, considering the importance of 

tracking inoculated AMF it the field, the goal of this work was to use ultra-high coverage 

amplicon sequencing to first characterize within isolate genetic variation and posteriorly build 

strain-specific markers. The approach used in this work comprised of identifying regions that 

carry polymorphisms on short reads originating from double-digest restriction site-associated 

sequencing (ddRAD-seq) (Wyss et al., 2016; Savary et al., 2018). The use of ddRAD-seq 

allows for an inexpensive and fast discovery of thousands of markers in many individuals. 

Here, we refer to the regions with mapped reads derived from ddRAD-seq as ‘RAD loci’. 

Primers were then designed to amplify genomic regions containing several adjacent RAD loci.   
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Figure 1. Schematic representation of the methodological approach used. a) Data was compared 
across three biological replicates of ddRADseq data. Pink horizontal bars represent the sequencing 
reads. Gray vertical bars correspond to nucleotide positions and its height to the coverage (coverage 
bar). Indels (blue arrow), SNPs (green arrow) and poly-allelic positions with more than one variant (red 
arrow) can be visualized. The colors in the coverage bar for a poly-allelic position (red arrow) represent 
which base was called and in which proportion. b) When two neighboring loci (< 2kb apart) have reads 
(pink and blue corresponding to forward and reverse reads in paired-end sequencing) showing poly-
alleles, primers were designed to amplify the region   
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The amplification of these regions, containing several RAD loci, in turn containing multiple 

polymorphic sites, was used to obtain sequences more likely to be strain specific markers. 

Secondly, we tried to determine how these variants were organized in the genome. Reads 

from ddRAD-seq are very short (around 100 bp) and ddRAD-seq does not provide information 

on how variants in RAD loci are organized. By sequencing a single much longer DNA molecule 

(Figure 1) we could study the organization of these variants in the genome. Using this 

methodology we were able to identify haplotypes. We define haplotypes as the combination of 

poly-allelic sites at adjacent loci in a defined genomic region. Poly-allelic sites refer to those 

positions in which the difference, when compared to the reference genome, includes more 

than one variant (Figure 1). 

The isolates used in this work are all representatives of the AMF species R. irregularis. This 

fungus is commonly used in field inoculation experiments (Buysens et al., 2017; Akyol et al., 

2019; Ceballos et al., 2019; Thioye et al., 2019) and as it has been shown that it has a very 

wide geographical distribution (Savary et al., 2018). Because of this, there is a high chance 

that different genotypes of the same species as the inoculated strain are already present in the 

soil where the experiments were performed. This makes the development of strain-specific 

markers, rather than just species specific markers, a necessity when trying to track introduced 

AMF strains in the field.  

 

Materials and methods 

Fungal isolates and source of published data  

The species isolates used in this study were DAOM197198, C2, A2 and C3. Those isolates 

were chosen because they have been either used in field experiments (Ceballos et al., 2019) 

or because they have been characterized using population genomics techniques (Savary et 

al., 2018). DAOM197198, A2 and C2 have been characterized as being homokaryotic and C3 

as heterokaryotic (harboring two nuclear genotypes, i.e. a dikaryon) (Ropars et al., 2016). 
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Double-digest restriction site-associated sequencing (ddRAD-seq) was then performed on at 

least three biological replicates of these R. irregularis isolates by Wyss et al. (2016). The 

reference genome used was a single nucleus genome assembly of R. irregularis 

(DAOM197198) named N6 (Lin et al., 2014). 

Identification of target loci in ddRAD-seq data 

The ddRAD-seq datasets were used to generate Variant Call Format (VCF) files that contained 

information about the sequence polymorphisms (indels and SNPs) of the ddRAD-seq 

compared to the reference genome. Since misalignment of repeated regions could lead to 

detection of false within-isolate polymorphism, repeated regions were defined with two 

complementary approaches as proposed by Wyss et al. (2016). First, repetitions were 

predicted and annotated with RepeatModeler Open-1.0 (Smit and Hubley, 2008) and 

RepeatMasker Open-3.0 (Smit et al., 1996). Second, the reference genome was in silico 

digested to predict fragments that could then potentially be amplified by PCR in the laboratory. 

Once these predicted fragments (referred to as RAD loci) were obtained they were subjected 

to pairwise comparisons using fasta-36.3.5e (Pearson & Lipman, 1988) to identify globally 

similar fragments (potential repeats). Predicted fragments tagged as repeated regions were 

then excluded from the data. GeneMark-ES (Ter-hovhannisyan et al., 2008) was used to 

predict coding regions in the reference genome. 

The information about the presence of polymorphism, their position in the genome and the 

“RAD loci” to which they belonged to was extracted from the VCF files using custom bash 

scripts. The intention was to select a group of regions in the genome that were suitable for 

PCR amplification and subsequent amplicon sequencing. The criteria to select those regions 

were: i) the resulting PCR product should be between 300 and 1800 bp; ii) the amplified 

product does not lie within a repeated region, iii) the variants must be contained in adjacent 

predicted RAD loci and iv) the variants should be present in all replicates and isolates. The 

VCF files were parsed to find regions matching the criteria and then those candidate regions 
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were manually verified by visualizing the reference genome together with all the replicates of 

the ddRAD-seq datasets using IGV (Robinson et al., 2017). 

Primer design and amplification testing 

Once the regions were manually validated, their sequences were used for primer design with 

primer3 (Untergasser et al., 2012). Primer design software yields multiple possibilities, then 

each primer pair was tested in silico using the primersearch tool of the EMBOSS package 

(Rice et al., 2000) allowing up to 10% mismatches to verify a unique priming site across the 

genome (thus, a single PCR product).  

Primers were individually tested for PCR amplification. A range of PCR conditions were tested. 

The PCR was performed using Taq DNA Polymerase (New England Biolabs). The reaction 

mix contained 2 U µl−1 of polymerase, 1x PCR buffer, 250 µM dNTP mix, 25mM of MgCl2 and 

0.2 μM of each primer. Cycling conditions were the following: 2 minutes of initial denaturation 

at 94°C; 25 cycles of 1 minute denaturation at 94°C; 1 minute annealing at 50-55°C (primer 

set dependent); 1 minute extension at 72°C; and 10 minutes final extension at 72°C. 

Amplification was verified on 1% agarose gels. Only those primer sets yielding a PCR product 

with DNA from at least 3 out of the 4 isolates were subsequently used for amplicon sequencing 

(Table S1). 

DNA extraction and PCR amplification  

The AMF isolates were maintained in monoxenic plates with Ri T-DNA carrot roots which 

allowed us to have uncontaminated fungal material for DNA extractions. DNA was extracted 

using the DNeasy Plant Mini Kit (Qiagen) following the instructions of the manufacturer. DNA 

was eluted in 50 µl of ddH2O. Quality and quantity of the DNA samples were assessed with a 

NanoDrop Spectrophotometer (Thermo Fisher Scientific). 

PCR was then performed using Q5 High-Fidelity DNA Polymerase (New England Biolabs). 

The reaction mix contained 0.02 U µl−1 of Q5 polymerase (high fidelity enzyme), 1x Q5 PCR 
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buffer, 250 µM dNTP mix and 0.2 μM of each primer. Cycling conditions were the following: 1 

minute of initial denaturation at 98°C; 30 cycles of 10 s denaturation at 98°C, 30 s annealing 

at 55°C; 30 s extension at 72°C; and 2 minutes final extension at 72°C. Amplification was 

verified on 1% agarose gels. 

The forward primer was synthetized with additional nucleotides at the 5’ end as a barcode to 

allow multiplexing of samples in a single library. Those barcodes were generated using a 

Phyton script (http://comailab.genomecenter.ucdavis.edu/index.php/Barcode_generator) with 

the following parameters: 5 as barcode length; a minimum genetic distance between barcodes 

of 3 nucleotides, 10000 cycles of random attempts and GC content between 0 and 50%. 

Library preparation and sequencing 

Each library contained the PCR product of all the target loci from each of the four isolates 

pooled together in equimolar quantities. Two pools of PCR products were prepared into 

independent libraries and sequenced as technical replicates. Table S1 contains a list of the 

regions selected for amplicon sequencing, primer sequences and expected PCR product 

sequences. The libraries were prepared following a standard protocol using the Illumina 

TruSeq™ Nano Sample Preparation Kit but omitting the DNA fragmentation step. The quality 

of the libraries was assessed with a Fragment Analyzer and quantified with Qubit DNA assay 

quantification. The libraries were sequenced on an Illumina MiSeq device (giving up to 300 bp 

paired-end reads). Quality control was made with FastQC (version 0.10.1). 

Sequences processing 

All the computations were performed at the Vital-IT (http://www.vital-it.ch) Center for high-

performance computing of the Swiss Institute of Bioinformatics. A series of custom Perl and R 

scripts were used to re-format, concatenate and analyze all the data. Initially, the raw reads 

were processed with TagCleaner to trim Illumina adapters (Schmieder et al., 2010). Reads 

were quality-filtered and trimmed using Prinseq-lite version 0.20.4 (Schmieder & Edwards, 

http://comailab.genomecenter.ucdavis.edu/index.php/Barcode_generator
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2011). Low quality 3’-ends were trimmed and then reads containing uncalled bases (N) were 

removed. Only reads longer than 250 bp were kept for further analyses. Subsequently, 

“demultiplexing” was carried out to separate samples by barcode. Paired reads were then 

joined either with PEAR v 0.9.6 (Zhang et al., 2014) or with custom awk scripts for regions 

longer than 550bp (as there was no overlapping ends between the forward and reverse reads, 

for these regions the paired reads were simply concatenated after quality trimming) (Table 1). 

Sequences in each sample were clustered removing identical reads using Fastx toolkit v0.0.13 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html). The frequency of redundant sequences 

was recorded to be used for the detection of chimeras.  

Haplotype characterization 

Within each amplified region, we determined the number of haplotypes by identifying variants 

present on individual sequence reads. Because sequence reads contain errors that can be 

misinterpreted as variants (consequently overestimating the number of different haplotypes) a 

threshold filtering method was used. Firstly, an NJ tree was constructed in Jalview (Clamp et 

al., 2004) for each one of the regions with the 20 most frequent haplotypes. If several 

sequences clustered in an unresolved node, those were considered as being the same allele 

variants and were then collapsed into a single haplotype. A relative frequency threshold was 

iteratively applied to obtain the same number of haplotypes as fully resolved tips on the trees. 

After the trials, the selected threshold was 5%, meaning that a sequence was considered a 

true haplotype only if its frequency corresponded to at least 5% of the total number of reads 

per region and per isolate. Once identified, the haplotypes were aligned to the N6 reference 

genome with MAFFT v7.305 (Katoh & Standley, 2013), together with RAD reads, to verify that 

variants detected with amplicon sequencing were consistent with variants found in the RAD 

seq data. To assess the potential of the haplotype to be used as a marker, the phylogenetic 

resolution of the obtained haplotypes was assessed by constructing Maximum Likelihood trees 

using 1000 Rapid Bootstraps as implemented in RAxML v8.2.9 (Stamatakis, 2014).  

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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As a confirmation of the haplotypes obtained, and as an initial approach to the use of the 

haplotypes as markers for field conditions, six regions (Table 1) were amplified as described 

above and cloned using the StrataClone PCR Cloning Kit following the protocol instructions. 

Colony-PCR was performed with the GoTaq DNA Polymerase (Promega) with T7 as vector 

primer. Twenty clones per haplotype were sent for Sanger sequencing at GATC Biotech 

(Germany). 

 

Results  

Twenty-one potential loci conforming to the criteria were identified in the ddRAD-seq dataset. 

Primers were designed, synthetized and tested and only those with successful amplification 

for at least three of the isolates were retained (Table S1). Gel electrophoresis of amplified DNA 

showed a single fragment per genomic region and per isolate for 13 regions, the Scaffold6059 

presented multiple fragments and was then discarded. Only 10 of the regions were finally 

sequenced. Having amplicons with a large difference in length (i.e. 271 vs 1749 bp) might have 

affected the chemistry of the sequencing flow cell, therefore only regions shorter than 1000 bp 

were sequenced (Table 1). 

The sequencing data was deposited at the ENA repository and can be retrieved under the 

accession number PRJEB36796. After demultiplexing and quality control the number of reads 

per locus and per isolate ranged from 25k to 850k (Table S2). Due to low quality base trimming 

at the end of the sequences, their effective length was diminished and loci longer than 550 bp 

had to be manually concatenated using the N6 genome as a reference.  

Out of the 10 regions, 4 regions presented a single haplotype in each isolate (Scaffold1820, 

Scaffold319, Scaffold8233a and Scaffold8233a) whereas the other 6 revealed 2, 3 or 4 

haplotypes in some isolates (Table 1). The observations were consistent among technical 

replicates except for two regions in which one of the replicates showed an additional haplotype 

(Figure 2, Isolate C3 Scaffold 8233a and Scaffold 5277). When multiple haplotypes were 
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present, the proportion of the number of reads assigned to each haplotype also varied. In 

regions with two alleles, each was represented in approximately 50% of the reads. Regions 

comprising three haplotypes had a distribution of approximately 50%, 25% and 25%, 

respectively. Four haplotypes, were detected in one region (isolate A2, Scaffold 5172) with an 

equal distribution of about 25% for each haplotype (Figure 2). In isolate C3 (Scaffold 8434), 

the proportions of the haplotypes were approximately 45%, 40%, 8% and 7%. Haplotypes at 

the different loci were composed of between 4 and 63 variable sites (Table 1). In homokaryotic 

isolates (i.e. DAOM197198, C2, A2) a unique haplotype is expected per marker, a maximum 

of two in a dikaryon (C3), however, for several genomic regions more than the expected 

haplotypes were found. Verification of the found haplotypes was performed with cloning and 

Sanger sequencing. This process yielded between 8 and 19 high quality sequences per region. 

The sequences obtained via Sanger sequencing confirmed multiple haplotypes for the tested 

regions (Table 1, Figure S2).  

Table 1. List of loci used for haplotype identification. GeneMark-ES (Ter-hovhannisyan et al., 2008)was 
used to predict coding regions. The haplotypes in bold denote which loci and in which isolates cloning 
and Sanger sequencing was performed to verify amplicon sequencing data (Figure S2). Variable sites 
were identified as those sites where two or more unique bases were found among the haplotypes. 
DAOM is an abbreviation for isolate DAOM197198. 

Scaffold name 
Predicted 

coding 
region 

PCR product 
size (bp) 

Number of haplotypes Number of variable 
sites A2 C2 C3 DAOM 

Scaffold1820 No 592 1 1 1 1 4 

Scaffold10105 Yes 336 3 2 1 2 63 

Scaffold319 No 991 NA 1 1 1 47 

Scaffold6810 No 499 1 1 2 1 13 

Scaffold8434 No 400 NA 1 4 3 27 

Scaffold5967 Yes 762 3 3 1 1 28 

Scaffold5172 Yes 271 4 NA 1 2 21 

Scaffold5277 Yes 597 2 1 2 1 38 

Scaffold8233a Yes 744 1 1 1 1 50 

Scaffold8233b Yes 699 1 1 1 1 37 
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Figure 2. Proportion of haplotypes found in 10 loci within four isolates of Rhizophagus irregularis. Two 
technical replicates are shown for each locus in each isolate. A different color in a given row corresponds 
to a different haplotype. Numbers in the bars correspond to the total number of observed sequences of 
this haplotype. DA. stands for DAOM 197198. Not all the regions were successfully amplified in all the 
isolates 
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Maximum Likelihood (ML) trees showed relationships between the a given allele coming from 

different genomic regions. The ML trees were transformed to cladograms for visualization 

(Figure 1 and Figure S1). The resulting trees constructed from scaffolds 319, 5172, 8233a and 

8233b showed a topology by which alleles of the same isolate grouped together. The technical 

replicates also clustered together. Each isolate and all its alleles was placed in an independent 

clade (Figure 1). This indicated that the variation in the regions examined was enough to 

distinguish isolates. 

The remaining regions (10105, 1820, 5277, 5967, 6810 and 8434) presented either clades 

harboring alleles from different isolates or technical replicates located in independent clades 

(Figure S1). These characteristics make them unsuitable as strain-specific markers. 

 

Discussion 

The ultra-high coverage approach of this work, which was then confirmed by cloning and 

Sanger sequencing revealed that up to four haplotypes were found in the R. irregularis 

genome, where only one or two haplotypes were expected. This controverts the current 

thinking about these AMF isolates being strict homokaryons or dikaryons. Thus, what began 

as an approach to develop strain specific markers for tracking these AMF isolates in field 

conditions, ended up raising additional questions about the true homokaryotic or heterokaryotic 

nature of these isolates. 

Masclaux et al (2019) found patterns of within-fungus genetic diversity in R. irregularis that 

were not consistent with the strict homokayon/dikaryon model. They compared sequencing 

data sets for several R. irregularis isolates and found discrepancies between methods (i.e. 

ddRAD-seq vs whole genome sequencing). This, highlights how the use of different data sets 

and analysis can bring to different conclusions. This work started using as a base the ddRAD-

seq data generated by Wyss et al. (2016). The variant calling was then performed using N6 

from Lin et al. (2014) as reference genome, as it was the only single nucleus genome assembly 
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of this fungus at that date. However, with the advent of new available genomes re-analyzing 

the present data will likely show discrepancies when the variant calling will be performed using 

a different reference genome. 

 

Figure 3. Cladograms of the regions were assessed to see which isolates grouped into independent 
clades. The notation indicates the isolate (DAOM, C2, C3 and A2), the replicate (R1 and R2), the allele 
and the frequency of this allele in the dataset (e.g. 1-11262) and the span of the aligned sequence (e.g. 
1-547 bp). DAOM stands for DAOM 197198. The reference region from the N6 genome is showed in 
blue.  

In view of this, in a homokaryotic state (e.g. DAOM, C2, A2) a unique haplotype should be 

found per marker and in a dikaryon (C3), a maximum of two haplotypes should be found. 
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However, we showed the presence of more than one haplotype in some regions in C2 and 

DAOM suggesting a heterokaryotic state. Furthermore, several loci, predicted as being in 

coding regions by GeneMark-ES (Table 1) exhibited up to 4 different haplotypes in C3. This 

showed that the observed within-fungus genetic diversity is not only present in regions prone 

to mutation accumulation but also those expected to be under purifying selection. We 

confirmed the existence of these alleles with cloning and Sanger sequencing which means 

they are extremely unlikely to simply be a result of sequencing error introduced in either RAD 

sequencing or amplicon sequencing. 

Observing multiple alleles in coding regions suggests that the polymorphism within R. 

irregularis could potentially be functionally important and could be one of the factors 

contributing to the phenotypic plasticity of these fungi (Angelard et al., 2014) and its broad 

adaptability to different soil types (Savary et al., 2018). Chen et al. (2018b) reported high 

genome diversity and found this variation to have effects on protein domains. Masclaux et al. 

(2019) observed transcripts coming from two co-existing genomes in a heterokaryotic 

(dikaryon) isolate. This variation, and its implications in environmental adaptation and effects 

of AMF on plant host, remains to be studied. Additionally, the quality of the annotation in gene 

databases, remaining in most of the cases at ‘hypothetical proteins’ for the AMF case, hinders 

more precise conclusions about the biological significance of these allelic variants.  

It has been suggested that the variation within one AMF individual is contained within highly 

similar nuclei and that this variation may be the result of genomic duplications. In this work, 

several approaches were used to ensure that the assessed genomic regions were indeed 

single-copy. The predictions with RepeatModeler and RepeatMasker, together with in-silico 

PCR, showed those regions to be predicted as non-repeated. There were no differences in the 

coverage of those regions in the whole genome sequencing (WGS) dataset that could be 

indicative of mis-assemblies of repeated regions. Additionally, WGS studies (Tisserant et al., 

2013; Lin et al., 2014) revealed no evidence for extensive segmental duplications in the haploid 

genome. However, as the reference genome used to perform the variant calling in this study 
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presents gaps, mis-assemblies cannot be ruled out. Wrongly assembled repetitions would 

show the kind of variation observed in this study. The assemblies of Lin et al. (2014), built 

using the typical short reads from Illumina sequencing (~150 bp) could be complimented by 

long read sequencing (e.g. Single Molecule, Real-Time (SMRT) Sequence reads ~10 kb) to 

improve the quality of the genomic assemblies and resolve this. Another potential source of 

variation comes from PCR-induced mutations and sequencing errors, although this is unlikely 

given that cloning and Sanger sequencing was performed. The ultra-high coverage obtained 

through amplicon sequencing and further validation through cloning and Sanger sequencing 

suggest that an artefactual origin of these variants is unlikely. Masclaux et al. (2019) re-

analyzed published data across independent studies (using also different techniques) and 

concluded that the observed within-fungus genetic variation was not an artefact of sequencing 

errors and that such variation possibly exists. Thus, the unexpected within-isolate variation 

found in this study using ultra-high coverage amplicon sequencing remains a credible 

explanation of this variation.  

Our goal was to design potential isolate specific markers of this fungal species. Recently, 

Savary et al. (2018), using a high-resolution population genomics approach, was able to 

classify R. irregularis isolates into 4 genetic groups. DAOM and C2 were placed in group 4 and 

C3 and C2 in group 3. This was achieved by concatenating 6888 SNPs. A high number of 

variants are needed to separate these isolates using molecular data. Finding genomic regions 

able to discriminate between isolates with the relatively short sequences used in this study 

indicates that this approach can potentially be used to develop strain-specific markers. 

However, both the existence and the nature of this variation remain to be confirmed. 

Additionally, the markers designed and tested in this work were performed on a small number 

of isolates. Ensuring that a marker is indeed strain-specific requires validation using a large 

number of isolates. However, these markers look promising. 

Savary et al. (2018) showed that almost-clonal isolates of R. irregularis occurred in distant 

localities up to 4000 km apart. This corroborates the findings of Davison et al. (2015) of low 
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endemism in AMF where “everyone is everywhere”. As R. irregularis likely has a large 

geographical distribution of almost-clonal isolates, it is probable that the alleles characterized 

in the present study, and intended as isolate-specific markers, are already present in the field 

before inoculation because clones or closely related AMF are already present. This, on the 

one hand, dismisses the concerns of R. irregularis being an exotic and potentially invasive 

fungus (Schwartz et al., 2006; Hart et al., 2017) and inoculation as a practice that will introduce 

new alleles in a community. However, on the other hand, the fact that those alleles are most 

likely already present in the field hinders the possibility to use them as tracking markers. The 

alleles already present in the field would most likely be identical to the alleles possessed by 

the inoculated AMF, making them undistinguishable. This still has to be assessed for these 

markers. 

The extent of within-fungus variation in AMF is difficult to study given the particularities of their 

life cycle. Additionally, as an obligate symbiont, the culturing of AMF presents also challenges 

which although surpassed only allow for handful of isolates from few species can be cultured 

in vitro. Thus, investigating within-AMF genetic variation remains restricted to a small portion 

of the species described. Savary et al. (2018) called for isolation and study of isolates from 

agronomic and natural ecosystems from other continents such as Australia, Africa, Asia and 

South America. Independent studies using different techniques have detected within-fungus 

variation which was observed also at the transcriptomic level. Further studies are needed to 

determine the nature of the within-fungus genetic variation, its implications in environmental 

adaptation of AMF and effects of AMF on plant growth. The understanding of the within-fungus 

genetic variation will provide the basis for the development of strain-specific markers needed 

for an economically and ecologically safe use of AMF in agriculture. 

  



Chapter 3: Tracking the persistence of AMF inoculated in crop fields 

92 
 

References 

Akyol TY, Niwa R, Hirakawa H, Maruyama H, Sato T, Suzuki T, Fukunaga A, Sato T, 

Yoshida S, Tawaraya K, et al. 2019. Impact of introduction of arbuscular mycorrhizal fungi on 

the root microbial community in agricultural fields. Microbes and Environments 34: 23–32. 

Angelard C, Tanner CJ, Fontanillas P, Niculita-Hirzel H, Masclaux F, Sanders IR. 2014. 

Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift 

and enhanced by segregation. The ISME Journal 8: 284–294. 

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, 

Smith DL. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and 

roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant 

Science 871: 1–17. 

Berg G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for 

controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84: 

11–18. 

Buysens C, Alaux PL, César V, Huret S, Declerck S, Cranenbrouck S. 2017. Tracing native 

and inoculated Rhizophagus irregularis in three potato cultivars (Charlotte, Nicola and Bintje) 

grown under field conditions. Applied Soil Ecology 115: 1–9. 

Ceballos I, Mateus ID, Peña R, Peña-Quemba DC, Masso C, Vanlauwe B, Rodriguez A, 

Sanders IR. 2019. Using variation in arbuscular mycorrhizal fungi to drive the productivity of 

the food security crop cassava: 1–21. 

Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR. 2013. The in vitro 

mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases 

yields of the globally important food security crop cassava. PLoS ONE 8. 

Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, 

Giorgi J, Krüger M, et al. 2018. High intraspecific genome diversity in the model arbuscular 

mycorrhizal symbiont Rhizophagus irregularis. New Phytologist 220: 1161–1171. 

Clamp M, Cuff J, Searle SM, Barton GJ. 2004. The Jalview Java alignment editor. 

Bioinformatics 20: 426–427. 

Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, 

Hiiesalu I, Jairus T, et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity 

reveals very low endemism. Science 127: 970–973. 

Hart MM, Antunes PM, Abbott LK. 2017. Unknown risks to soil biodiversity from commercial 

fungal inoculants. Nature Ecology and Evolution 1: 1. 

van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and 

evolution: The past, the present, and the future. New Phytologist 205: 1406–1423. 

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: 

Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. 

Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D, Pang E, Cao H, Cha H, Lin 

T, et al. 2014. Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of 

an Endomycorrhizal Fungus. PLoS Genetics 10. 



Chapter 3: Tracking the persistence of AMF inoculated in crop fields 

93 
 

Masclaux FG, Wyss T, Pagni M, Rosikiewicz P, Sanders IR. 2019. Investigating 

unexplained genetic variation and its expression in the arbuscular mycorrhizal fungus 

Rhizophagus irregularis: A comparison of whole genome and RAD sequencing data. PLoS 

ONE 14: 1–20. 

Pearson WR, Lipman DJ. 1988. Improved tools for biological sequence comparison. 

Proceedings of the National Academy of Sciences of the United States of America 85: 2444–

8. 

Pellegrino E, Turrini A, Gamper HA, Cafà G, Bonari E, Young JPW, Giovannetti M. 2012. 

Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in 

the field revealed using molecular genetic tracing and measurement of yield components. New 

Phytologist 194: 810–822. 

Rice P, Longden I, Bleasby A. 2000. EMBOSS: The European Molecular Biology Open 

Software Suite. Trends in Genetics 16: 276–277. 

Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. 2017. Variant review 

with the integrative genomics viewer. Cancer Research 77: e31–e34. 

Ropars J, Toro KS, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Fuchs J, 

Brachmann A, et al. 2016. Evidence for the sexual origin of heterokaryosis in arbuscular 

mycorrhizal fungi. Nature Microbiology: 16033. 

Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J, Machado AP, Morton JB, 

Sanders IR. 2018. A population genomics approach shows widespread geographical 

distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME 

Journal 12: 17–30. 

Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. 

Bioinformatics 27: 863–864. 

Schmieder R, Lim YW, Rohwer F, Edwards R. 2010. TagCleaner: Identification and removal 

of tag sequences from genomic and metagenomic datasets. BMC bioinformatics 11: 341. 

Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, 

Pringle A. 2006. The promise and the potential consequences of the global transport of 

mycorrhizal fungal inoculum. Ecology Letters 9: 501–515. 

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of 

large phylogenies. Bioinformatics 30: 1312–1313. 

Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008. Gene prediction in 

novel fungal genomes using an ab initio algorithm with unsupervised training. Genome 

Research 18: 1979–1990. 

Thioye B, Sanguin H, Kane A, de Faria SM, Fall D, Prin Y, Sanogo D, Ndiaye C, 

Duponnois R, Sylla SN, et al. 2019. Impact of mycorrhiza-based inoculation strategies on 

Ziziphus mauritiana Lam. and its native mycorrhizal communities on the route of the Great 

Green Wall (Senegal). Ecological Engineering 128: 66–76. 

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, 

Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, et al. 2013. Genome of an arbuscular 



Chapter 3: Tracking the persistence of AMF inoculated in crop fields 

94 
 

mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the 

National Academy of Sciences of the United States of America 110: 20117–22. 

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. 

Primer3-new capabilities and interfaces. Nucleic Acids Research 40: 1–12. 

Wyss T, Masclaux FG, Rosikiewicz P, Pagni M, Sanders IR. 2016. Population genomics 

reveals that within-fungus polymorphism is common and maintained in populations of the 

mycorrhizal fungus Rhizophagus irregularis. The ISME journal: 1–13. 

Young JPW. 2015. Genome diversity in arbuscular mycorrhizal fungi. Current Opinion in Plant 

Biology 26: 113–119. 

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: A fast and accurate Illumina Paired-

End reAd mergeR. Bioinformatics 30: 614–620. 

Zhang S, Lehmann A, Zheng W, You Z, Rillig MC. 2019. Arbuscular mycorrhizal fungi 

increase grain yields: a meta-analysis. New Phytologist 222: 543–555. 

 



Chapter 3: Tracking the persistence of AMF inoculated in crop fields 

95 
 

Table S1. List of loci used for haplotype identification. The primer sequences and product size correspond to the output of Pirmer3. The haplotypes in bold denote for 
which genomic regions amplification was obtained for at least 3 of the isolates.Scaffold6059 (underlined) presented unspecific bands after PCR optimization and was 
therefore discarded from the analyses. DAOM is an abbreviation for isolate DAOM197198. 

Region Forward primer (5'-3',without barcode) Reverse primer (5'-3') 
Product 

Size 

Amplification 

DAOM C2 A2 C3 

Scaffold10105 TCAGATGCAGAGCACCTACAG CGAATAAAACAAGTCGGTCCATAG 336 + + + + 

Scaffold10997 GGCAGTCCCCTAATCGAAC TTGCAGAAGTTTCCCTCCTG 998 + - - - 

Scaffold1595 CGTCCTGTGTTCAACTACCC TCGCCATCCACTAGTTTGTC 1580 + + + + 

Scaffold1706 CAGGGAAAAGACGTCTCCAG GGACTATTTCGACCAGTGAGG 1157 + - - - 

Scaffold1820 AATTTCAACGTACGGATCATAGAG TTCGGGGCAAAACTTGTTAG 592 + + + + 

Scaffold248 TCCGTGACTGGGAAGGTATC AACCGTTCCACACATTACCG 1336 + - - + 

Scaffold3025 TCCGATATTGCACTTGAAGC TCAGGTTCTATTTGCCGGTTAC 1749 + + + + 

Scaffold319 CAACGGCTCTTATGTTCTTGT TCACGTAGTTAAAAATTGAATCAGA 991 + + - + 

Scaffold3438 GGATTCACACGGAAACATTC AAATTTGAGTTACCGACGAAAC 1187 + + + + 

Scaffold3546 CCAAAAGTTGAGGTAAGCTTCTAC AACTTTTAAACCAAATTATGTCATACC 1031 + - - - 

Scaffold357 TTGAGATCTATAAATGGACTTTTCAAT CGTATGGGATTACTTGGAGGAA 899 + - - + 

Scaffold374 TTGGAATTTCTCTTGAAAGTATTTG AGCGCAAGTTTTATCGAAAGG 699 + - + - 

Scaffold4559 TTTCGATCATAATTCTGTTCATTG GGTGATGATGAGGGGAACG 464 + - - + 

Scaffold5172 ATCACATCTACCAGTTCTTGGTC AATTGCAGAAGAAGCTTGGAC 271 + - + + 

Scaffold5277 GGCCTTATAATGTAAGTAATAATCCTG AAATATTCTTGACTCATTATCCATTCC 597 + + + + 

Scaffold5967 TGATGTGTAAACCAAATTCCTG GTGGTGGGAATTCTGACTG 762 + + + + 

Scaffold6059 TTTAACAGGTTGGTGAATTG CAATTTATAAAAGATATCAAGTAAAGG 367 + + + + 

Scaffold6810 TGGTCTCTCCATTAACGTATTTC AAATTTTATGAAAACATTCTTTGATCC 499 + + + + 

Scaffold8233a CCAGGTTTTTATGCTGATCG TTCACTAAATGGAGAAACTGAAAATG 744 + + + + 

Scaffold8233b GGTTTTGGTGATAATGTTTTTCC CAACGCTTGTTGCTTAAGATCC 699 + + + + 

Scaffold8434 CGTAGTAAGGTCTTTAACGGGTTG TTTCTTTGACGTTCTTGTTCCAG 400 + + - + 
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Table S2. List of loci used for haplotype identification. The figures correspond to the number of reads 

passing the quality filter. The percentual variation between technical replicates is presented. DAOM is 

an abbreviation for isolate DAOM197198. 

Region Isolate Replicate 1 Replicate 2 Variation 

Scaffold10105 

A2 88,562 88,985 0.48% 

C2 121,865 123,283 1.16% 

C3 74,215 70,476 5.17% 

DAOM 81,705 78,421 4.10% 

Scaffold1820 

A2 433,091 441,626 1.95% 

C2 369,457 398,498 7.56% 

C3 418,857 414,038 1.16% 

DAOM 364,264 366,341 0.57% 

Scaffold319 

C2 141,806 150,495 5.95% 

C3 52,972 53,565 1.11% 

DAOM 85,191 93,248 9.03% 

Scaffold5172 

A2 27,595 26,438 4.28% 

C3 23,829 22,074 7.65% 

DAOM 25,720 23,855 7.52% 

Scaffold5277 

A2 852,197 805,164 5.68% 

C2 647,580 636,214 1.77% 

C3 141,551 127,768 10.24% 

DAOM 187,126 177,457 5.30% 

Scaffold5967 

A2 508,906 503,331 1.10% 

C2 429,525 453,130 5.35% 

C3 427,434 423,794 0.86% 

DAOM 425,190 416,367 2.10% 

Scaffold6810 

A2 449,154 435,393 3.11% 

C2 388,942 399,490 2.68% 

C3 447,733 424,285 5.38% 

DAOM 257,297 267,499 3.89% 

Scaffold8233a 

A2 511,166 504,388 1.33% 

C2 569,564 579,991 1.81% 

C3 441,946 423,933 4.16% 

DAOM 517,279 520,118 0.55% 

Scaffold8233b 

A2 731,306 675,097 7.99% 

C2 763,738 739,508 3.22% 

C3 291,000 266,351 8.85% 

DAOM 565,999 547,700 3.29% 

Scaffold8434 

C2 67,255 81,834 19.56% 

C3 137,569 131,466 4.54% 

DAOM 100,537 105,658 4.97% 
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Figure S1. Cladograms of the regions assessed for which isolated were not grouped in independent 

clades. The notation indicates the isolate (DAOM, C2, C3 and A2), the replicate (R1 and R2), the allele 

and the frequency of this allele in the dataset (e.g. 1-42116) and the span of the aligned sequence (e.g. 

1-394 bp). DAOM stands for DAOM 197198. The reference region from the N6 genome is showed in 

blue.   
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Figure S2 Aligments of haplotypes found in R.irregularis isolates. The alignment includes the sequence 

of N6 as the reference genome (marked with ‘RefRegion’), the haplotypes detected with amplicon 

sequencing (e.g. A2_Scaffold5172_HMS) and sequences derived from cloning and Sanger sequencing 

(e.g. A2_5172_3). Only variable positions respect to the reference are shown. The black bar at the 

bottom shows the conservation percentage. Alignments were built using MAFFT with the G-INS-i preset 

(higher accuracy) and then visualized with Jalview 

a) Scaffold5172 for isolate A2

 
 

b) Scaffold10105 for isolate A2 
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c) Scaffold5967 for isolate A2 
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d) Scaffold5967 for isolate C3 
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e) Scaffold8434 for isolate C3 
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f) Scaffold8434 for isolate DAOM197198 
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General discussion and perspectives 

The main goal of this PhD thesis was to understand the effects of experimental manipulations 

(modifying either biotic or abiotic components) on the soil microbiome. In this work I aimed to 

use the advances in sequencing technologies and bioinformatic algorithms to provide insights 

into the complexity of soil microbiomes.  

In chapter 1, using the framework of the Transplant network, we started a collaboration with 

the group of Jake Alexander (now in Zurich). In this project, we aimed to see whether or not 

there were patterns in the soil metagenome changes induced by transplantation. This, across 

a series of regions in the northern hemisphere with multiple localities within each region. The 

results showed that changes in the soil metagenome were not the same across the different 

regions and localities assessed.  

In chapter 2, an experiment was set in an individual location, meaning the abiotic conditions 

were the same. In this case, the goal was to better understand the changes induced in the soil 

metagenome by the introduction of an organism. This change in a biotic component of the 

community was again studied using metagenomics. We demonstrated that inoculation of 

cassava with the AMF Rhizophagus irregularis mostly increased gene richness and gene alpha 

diversity of the microbial metagenome compared to the mock-inoculated treatment while there 

was not an observable shift in the taxonomic richness and alpha diversity of the microbiome. 

In addition, the observed changes were different depending on the genetics of the R. irregularis 

isolates.  

In chapter 3, as it was shown that inoculation with AMF changes the soil metagenome and that 

it has been shown to also change the abundance of local AM fungi (e.g. Akyol et al., 2019), 

we aimed to develop easy use strain-specific markers to track isolates in the field. Small 

genomic regions containing polymorphisms were identified using ddRAD-seq reads, then, 

neighboring small regions were amplified together into longer sequences containing many 

more variable sites. The amplicon sequencing and posterior validation by cloning and Sanger 
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sequencing revealed patterns of within isolate variation inconsistent with current knowledge 

about the genetics of these fungi.  

In chapter 1, the collaborators of the project aimed understand broad geographic scale 

patterns of the impacts of novel plant-soil interactions on ecosystem processes. These novel 

interaction would arise from low elevation communities migrating upwards to track their current 

climate in a situation of global warming. Among the data collected, there is information about 

the changes in composition of the plant community to assess the pace and predictability of 

plant species establishment in transplanted turfs and measurements of carbon and nitrogen 

reservoirs to estimate the influence of novel plant-soil interactions on ecosystem nutrient 

cycling. Integrating all these data with the results of chapter 1 will provide valuable information 

concerning the interactions between plants and soil microbial communities in a climate 

warming scenario. 

In different studies, along an altitudinal gradients, some of the factors found to be the main 

determinants of abundance and diversity of microbial communities were: pH and C/N (Siles & 

Margesin, 2016); plant diversity and density (Porazinska et al., 2018); micro-topography 

(Frindte et al., 2019); nutrient concentration (Bahram et al., 2018); vegetation diversity (Yang 

et al., 2014). This shows that the influence of climatic conditions and plant communities on soil 

microbial communities are difficult to disentangle.  

Soil metagenome changes were observed in chapter 2 in a clonally propagated crop, thus, 

without alterations of the plant community. Despite this, it is reasonable to expect that in a 

climate warming scenario, soil metagenome will be influenced by changes in the plant 

community (Yang et al., 2014; Porazinska et al., 2018). Plant migration and microbe-mediated 

soil processes develop at different time scales (Ding et al., 2015; Rumpf et al., 2018; Walker 

et al., 2018). It is likely that microbial communities will adapt faster to warmer conditions 

(Graham et al., 2016), meaning that, in conjunction with the potential alteration of nutrient 
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cycling (Walker et al., 2018), it is belowground processes that are more likely to constrain the 

rate of vegetation changes in mountains following climate warming (Hagedorn et al., 2019).  

As mentioned above, microbial communities acclimate to warmer conditions. Notably, this 

acclimatization process is expected to occur without substantial changes in their community 

structure (Hagedorn et al., 2019). However, as seen in chapter 2, the apparent lack of a 

taxonomic changes of the soil microbiome due to an environmental perturbation can mask 

underlying changes in the metabolic capabilities of the soil metagenome. 

The experimental set up in chapter 2, where all the samples shared the climatic conditions, 

was used to study the effects of a change in a biotic element (i.e. effects of AMF inoculation). 

The approach followed in chapter 1, even if seen as a modification of abiotic conditions, 

undeniably implies also changes in the biotic components. In fact, this is one of the advantages 

of transplantation experiments (compared to, for example, open top chambers) as these biotic 

changes are very likely to occur in a global warming scenario. One of the most interesting 

findings in chapter 2 was the fact that gene richness, diversity and composition were observed 

without associated changes in the taxonomic composition of the microbial community.  

We hypothesize that the observed decoupling of taxonomic and gene diversity could be due 

to horizontal movement of genes among bacterial taxa (thus spreading functions across 

taxonomic and phylogenetic barriers) in response to a change of environment (in this case 

inoculation with AMF). It is important to emphasize that non-inoculated treatments in chapter 

2 are still mycorrhizal as this is a wide spread symbiont. It is expected that the abundance of 

the inoculated fungus will increase and it has been shown that this abundance augmentation 

is the most significant factor determining the observed plant responses (Niwa et al., 2018). 

However, this was not measured in chapter 2. Additional to the importance of developing 

strain-specific markers for the inoculated fungus highlighted in chapter 3, the study of 

functional or taxonomic resilience in soil microbial communities has to consider that the 
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responses will vary depending on whether the inoculation imposes a press (long-term) or pulse 

(short-term) disturbance (Shade et al., 2012). 

The time frame in which the disturbance (either abiotic or biotic) is assessed is a key factor as 

it can change the interpretation of the findings. In chapter 1, the time between the 

transplantation and the sampling varied across localities. However, it was mostly locality 

specific, thus when including the locality in the models, the variation in the so-called ‘year 

range’ was indirectly taken into account. In chapter 2, the time between the disturbance (i.e. 

AMF inoculation) and the sampling corresponded to the time in which the symbiotic association 

starts to have a positive effect on plant growth (Ceballos, 2016). The inoculation can constitute 

either a press disturbance (the inoculated AMF establishes and persists generating a long term 

effect) or a pulse disturbance (the inoculated AMF is outcompeted and the community starts a 

recovery process). To understand whether inoculation constitutes a press or pulse 

disturbance, it is necessary to be able to track the inoculated AMF. This will allow to obtain 

ecological insights on community stability and response to perturbations that cannot be gained 

otherwise.  

The development of markers greatly relies on the accuracy of the sequencing information 

available. At the same time, the quality of the genome assembly is crucial for accurately 

identifying the polymorphism intended to be used in the markers. Early work towards a genome 

of the model AMF reported it as being an especially arduous challenge even after 4 years of 

work (Martin et al., 2008). Later, the first published genome of an AMF had more than 12000 

scaffolds (Tisserant et al., 2013). Posterior efforts either using single nuclei sequencing or 

genomic DNA approaches reported about 30000 and 11000 scaffolds respectively (Lin et al., 

2014; Ropars et al., 2016). This amount of scaffold indicates that these drafts are far from 

being complete genome assemblies. The characterization of polymorphism within AMF 

isolated need re-assessing once better genome assemblies become available. The 

development of markers presented in chapter 3 will greatly benefit of this information. 
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Even if strain-specific markers are not yet available, the results of chapter 2 present interesting 

worth developing. Among the enriched metabolic pathways found with the differential gene 

abundance approach, it is possible to find several times pathways related to the degradation 

of xenobiotics. The place where the experiment was set up is an agricultural field in which 

pesticides where used in the past. It has been shown how in the mycorrhizosphere (defined 

here as the zone of soil surrounding both the root and the extraradical mycorrhizal fungal 

hyphae) harbors not only a distinct bacterial community (e.g. Akyol et al., 2019) but also 

stimulates microbial activity by releasing energy-rich organic compounds (Barea et al., 2002). 

This can in turn increase the metabolic capacity of this communities (Uroz et al., 2007). This 

could be developed into potential applications of microbial degradation of persistent soil 

pesticides accelerated using AMF. 
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