
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XXX, NO. XXX, MARCH 2024 1

Pre-Stack Least-Squares Reverse Time Migration
with an Exact Adjoint Operator for

Ground-Penetrating Radar
Linan Xu, James Irving, Klaus Holliger

Abstract—This study develops pre-stack least-squares reverse
time migration (LSRTM) for high-resolution ground-penetrating
radar (GPR) imaging and compares its performance to standard
RTM. We employ the Born approximation to derive the LSRTM
forward operator and we utilize matrix operations to determine
its exact adjoint. Tests on synthetic data confirm that LSRTM
outperforms both pre-stack and post-stack RTM in terms of
resolution and thus significantly improves the visibility of fine-
scale structures. Further, the exact adjoint operator is shown
to facilitate faster convergence and lead to a lower data mis-
fit. Although LSRTM entails higher computational costs than
standard RTM, we demonstrate that accelerated computing with
GPU devices can make it remarkably affordable for 2D GPR
imaging, thereby opening avenues for future applications in 3D.

Index Terms—reverse time migration, discrete adjoint state
method, Born approximation, least-squares migration, ground-
penetrating radar, adjoint simulation.

I. INTRODUCTION

GROUND-penetrating radar (GPR) is a prominent geo-
physical technique that uses high-frequency electromag-

netic (EM) waves to image the shallow subsurface [1], [2].
Applications of GPR prevail in a wide variety of domains,
including civil engineering (e.g., [3]), hydrogeology (e.g., [4]),
glaciology (e.g., [5], [6]), archaeology (e.g., [7]), and sedimen-
tology (e.g., [8]). Most commonly, GPR data are acquired in
the form of surface-based common-offset reflection surveys,
where a single transmitter and receiver antenna, spaced by
some fixed distance, are moved along a profile line. One
critical step in the processing of such data is migration, where
the overall aim is to focus and relocate scattered and reflected
wavefield components, recorded at the surface, back to the
subsurface locations from which the energy was scattered.
This, in turn, provides a map of subsurface reflecting inter-
faces corresponding to vertical contrasts in electromagnetic
impedance. In this regard, the fidelity of the migration process
is primarily determined by the accuracy of the associated wave
propagation modelling. Unfortunately, the wave kinematics
predicted by the most commonly employed migration methods
for common-offset GPR data, notably ray-based Kirchhoff
migration [9] and frequency-wavenumber-based Stolt migra-
tion [10], are accurate for media with smooth spatial velocity
changes. Given that the shallow subsurface environment is
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often strongly heterogeneous, the use of such methods can
result in significant errors. [11], [12].

For complex subsurface environments, reverse time migra-
tion (RTM) allows for a precise mapping of reflectors. RTM
stands as the state-of-the-art imaging algorithm, employing
numerical methods such as finite-differences, to model the EM
wave propagation (e.g. [13], [14]). This does, however, come
at significantly increased computational cost compared to
conventional approaches. In this regard, post-stack RTM stands
out as the most time-efficient implementation of RTM because
it needs to solve the wave propogation problem only once.
The method operates by propagating all-at-once the recorded
data backwards in time at half the velocity of the medium,
and extracting the reconstructed wavefield at time zero as the
migrated image. The underlying physics are conceptualized by
the exploding reflector [15] or superimposed point-diffractor
[16] models. Post-stack RTM has been applied to GPR imag-
ing since the 1990s [17], and has evolved through the adoption
of more advanced forward modelling methods and algorithms
(e.g., [18]–[21]). In principle, it is ideally suited to zero-offset
data. However, the fixed transmitter-receiver antenna spacing
for most GPR datasets means the zero-offset condition is not
precisely satisfied. Further, post-stack migration does not allow
for the preservation of true amplitudes [22], nor does it allow
for analyses to be carried out with regard to resolution or the
effects of inaccuracies in the migration velocity model. [23],
[24].

Pre-stack RTM is a more general migration approach that is
suitable for common- and multi-offset reflection data and can
address many of the aforementioned issues. The corresponding
algorithm consists of three key components: forward time
propagation from the source, backward time propagation from
the receiver, and application of an imaging condition. The
imaging condition is pivotal in pre-stack RTM and has a
strong influence on both the quality and robustness of the re-
sults obtained. The commonly used zero-lag cross-correlation
imaging condition ( [25], [26]) has proven to be particularly
effective with multi-offset GPR data (e.g., [27]). Other more
advanced imaging conditions have been developed within
the exploration seismic industry (e.g., [28], [29]), and recent
research has adapted them for GPR (e.g., [30], [31]). Despite
these merits and advances, there are still challenges associated
with pre-stack RTM, such as the presence of low-frequency
artifacts, side-lobe smearing, and image-space aliasing caused
by incomplete data (e.g., [32]–[34]). Directly attempting to
suppress such artifacts after migration is generally impossible,
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as differentiating between the artifacts and true reflection
events in the image domain is inherently difficult.

In contrast to conventional migration, which essentially
applies a linear operator to the data [35], least-squares migra-
tion (LSM) formulates reflection imaging as a linear inverse
problem, where the aim is to find a migrated image that allows
for satisfactory prediction of the observed data in a least-
squares sense (e.g., [36]–[39]). By minimizing the data misfit,
artifacts are reduced and the overall image quality is improved.
Additionally, posing migration as an inverse problem allows
for integrating a priori information and signal processing tech-
niques into the procedure. The latter aids in achieving images
with balanced amplitudes, reduced acquisition footprints, and
enhanced resolution, while at the same time offering robust-
ness against noise and inaccuracies in the migration velocity
model (e.g., [40]–[47]). Least-squares reverse time migration
(LSRTM) is a particularly prominent and powerful form of
LSM. It has demonstrated a strong capacity for imaging
complex geological scenarios in exploration seismology (e.g.,
[33], [45], [48]), but so far has not been explored in GPR
research. Given the kinematic analogies that exist between
seismic and GPR wave propagation [49], it is reasonable to
assume that the adaptation and application of LSRTM to GPR
data may prove to be as benenficial as it has been for seismic
reflection data.

In this paper, we develop and explore pre-stack LSRTM
for GPR imaging. First, we introduce the governing two-
dimensional (2D) Maxwell equations, which is followed by
a derivation of the forward operator using Born linearization.
Next, utilizing the matrix-based adjoint-state method [50], we
derive the exact adjoint of the forward operator, with a specific
focus on the convolutional perfectly matched layer (CPML)
boundary conditions [51]. Finally, we proceed to evaluate the
efficacy of LSRTM in the context of GPR imaging.

II. GOVERNING EQUATIONS FOR 2D GPR SIMULATION

Following [14], we begin with Maxwell’s curl equations in
the frequency domain

∇×
#»

Ẽ = −iωµ
#»

H̃, (1)

∇×
#»

H̃ = (σ + iωϵ)
#»

Ẽ, (2)

where
#»

Ẽ = Ẽx, Ẽy, Ẽz and
#»

H̃ = H̃x, H̃y, H̃z represent
the electric and magnetic field vectors in three dimensions,
respectively. The symbols µ, σ and ϵ denote the magnetic per-
meability, electrical conductivity, and dielectric permittivity,
respectively. The variable ω stands for the angular frequency
and i denotes the imaginary unit.

To emulate an infinite computational domain, we implement
perfectly matched layer (PML) boundary conditions where we
consider the general case of a complex stretched coordinate
space [51]. In this scenario, the gradient operator ∇ takes the
form

∇ =
x̂

px

∂

∂x
+

ŷ

py

∂

∂y
+

ẑ

pz

∂

∂z
, (3)

where
pk = κk +

σk

αk + iωε0
, k = x, y, z (4)

is a complex coordinate stretching variable that varies solely
in the k-direction. Variable ε0 represents the dielectric permit-
tivity of free space. In the PML region, κk > 1 and σk > 0. In
the non-PML region, κk = 1, σk = 0, and αk = 0, meaning
that (3) reverts to the standard form of the gradient operator.

For 2D modelling, we assume no variation in the y-
dimension. As a result, equations (1) and (2) can be split into
two independent sets of equations referred to as the transverse-
magnetic (TM) and transverse-electric (TE) modes. Here, our
focus is on determining the explicit matrix-based expression
of the TE-mode equations, which are given by

iωµH̃x = − 1

pz

∂Ẽy

∂z
, (5)

iωµH̃z =
1

px

∂Ẽy

∂x
, (6)

σẼy + iωεẼy =
1

px

∂H̃z

∂x
− 1

pz

∂H̃x

∂z
. (7)

The derivation of the TM-mode expressions is similar. For EM
wave propagation simulations over large model domains, the
finite-difference time-domain (FDTD) method outperforms the
finite-difference frequency-domain (FDFD) method in terms of
computational memory efficiency. The reason for this is that
the latter requires the construction of a Helmholtz matrix, the
size of which increases quadratically with the size of model,
whereas the former only demands allocating three snapshots
in memory. We thus move from the frequency domain to
the time domain by taking the inverse Fourier transform of
(5) through (7). The convolutional perfectly matched layer
(CPML) method is employed to prevent the virtual split of
electric and magnetic field components [52]. Following the
derivation in [14], the time-domain expression of TE-mode
equations with CPML boundary conditions is

µ
∂Hx

∂t
=− 1

κz

∂Ey

∂z
− ζz ∗

∂Ey

∂z
, (8)

µ
∂Hz

∂t
=

1

κx

∂Ey

∂x
+ ζx ∗ ∂Ey

∂x
, (9)

σEy + ε
∂Ey

∂t
=

1

κx

∂Hz

∂x
− 1

κz

∂Hx

∂z

+ ζx ∗ ∂Hz

∂x
− ζz ∗

∂Hx

∂z
,

(10)

where

ζk(t) = − σk

ε0κ2
k

exp[− t

ε0
(
σk

κk
+ αk)]u, k = x, y, z. (11)

where u = 0 in the non-PML region and u = 1 within the
PML.

III. BORN APPROXIMATION OPERATOR IN MATRIX FORM

LSRTM requires a linear relationship between defined im-
age and data vectors. This linear operator can be derived using
the Born approximation, which is also employed in gradient-
based full waveform inversion (FWI) algorithms to establish a
linear connection between model and data perturbations [54],
assuming single-order scattering model. LSRTM utilizes the
same operator for its forward problem, but it differentiates
itself from FWI by substituting the data perturbation with
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Fig. 1. Model representations and data: (a) Relative dielectric permittivity
model adapted from the well-established Marmousi model used for bench-
marking seismic migration algorithms [53], (b) corresponding zero-offset GPR
reflection data, and (c) background permittivity model employed for migration.

the primary reflections, which, in turn, results in an image
of the reflections. The physical interpretation of the Born
approximation operator is explored in greater detail in Section
IV.

We focus our development here on the non-PML region of
the simulation domain because the structural features within
the PML region are not of interest and will not be subject to
iterative updates in the LSRTM algorithm. In the non-PML
region (ζk(t) = 0 and κk = 1), we can simplify (8) through
(10) as follows:

µ
∂Hx

∂t
+

∂Ey

∂z
=s1, (12)

µ
∂Hz

∂t
− ∂Ey

∂x
=s2, (13)

σEy + ε
∂Ey

∂t
− ∂Hz

∂x
+

∂Hx

∂z
=s3, (14)

where s1, s2, and s3 denote source functions associated with
the wavefields Hx, Hz , and Ey , respectively.

Let us express electrical properties µ, σ, and ε as the sum
of a background large-scale model and local perturbation,
µ = µb + ∆µ, σ = σb + ∆σ, and ε = εb + ∆ε, where b
and ∆ stand for the background model and perturbation re-
spectively. Similarly, the corresponding electric and magnetic
field components can be decomposed as Hx = Hxb + ∆Hx,
Hz = Hzb +∆Hz , and Ey = Eyb +∆Ey . Substituting these

Fig. 2. Comparison of RTM results obtained using (a) post-stack migration,
(b) pre-stack migration, and (c) LSRTM, along with (d) the true permittivity
model from Fig. 1a for reference. The two regions delineated by red boxes
in (d) are shown in detail in Figs. 3 and 4. The true permittivity model is
displayed in grayscale for ease of comparison.

decompositions into (12) to (14) and assuming that multipli-
cations between model perturbations and field perturbations
(e.g., ∆µ∂∆Hx

∂t , ∆σ∆Ey) are sufficiently small in the vicinity
of the model perturbations such that they can be neglected, we
arrive at two sets of equations. The first is

µb
∂Hxb

∂t
+

∂Eyb

∂z
=s1, (15)

µb
∂Hzb

∂t
− ∂Eyb

∂x
=s2, (16)

σbEyb + εb
∂Eyb

∂t
− ∂Hzb

∂x
+

∂Hxb

∂z
=s3, (17)

where Hxb, Hzb, and Eyb represent source wavefields that are
excited by the source functions s1, s2, and s3. For the purpose
of migration, as the background medium and source function
are provided, these source wavefields can be calculated in
advance and remain constant.
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Fig. 3. Zoom of the left-hand box in Fig. 2 to better illustrate the structures
resolved by (a) post-stack RTM, (b) pre-stack RTM, (c) LSRTM. The true
permittivity modelis presented in grayscale in (d) for ease of comparison. The
red arrows in each figure indicate the same subsurface location, highlighting
the position of the side-lobes.

The second set of equations is

µb
∂∆Hx

∂t
+

∂∆Ey

∂z
=r1, (18)

µb
∂∆Hz

∂t
− ∂∆Ey

∂x
=r2, (19)

σb∆Ey + εb
∂∆Ey

∂t
− ∂∆Hz

∂x
+

∂∆Hx

∂z
=r3, (20)

where

r1 = −∆µ
∂Hxb

∂t
, (21)

r2 = −∆µ
∂Hzb

∂t
, (22)

r3 = −∆σEyb −∆ε
∂Eyb

∂t
. (23)

Fig. 4. Zoom of the right-hand box in Fig. 2 to better illustrate the structures
resolved by (a) post-stack RTM, (b) pre-stack RTM, (c) LSRTM. The true
permittivity modelis presented in grayscale in (d) for ease of comparison. The
green dashed lines are not drawn on the migrated images because they hinder
the interpretation.

Equations (21) through (23) can be interpreted as the sub-
surface responses (r1, r2, and r3) to the modified source
wavefields (∂Hxb

∂t , ∂Hzb

∂t , Eyb, and ∂Eyb

∂t ) at every model
perturbation location (∆µ, ∆σ, and ∆ε) and across all time
samples.

To represent (18) to (23) in matrix form, we discretize the
model domain into nm elements and the time axis into nt
temporal samples. Then, each wavefield has nm×nt elements.
Equations (21) through (23) can then be expressed as

r = KS∆m, (24)

where ∆m = [∆µ,∆σ,∆ε] is a column vector of size 3nm×1
and S is a spray operator in time [55] that duplicates the model
for each time sample and whose size is 3nm·nt×3nm. Matrix
K has the form

K =

−∂Hxb

∂t 0 0
−∂Hzb

∂t 0 0
0 −Eyb −∂Eyb

∂t

 , (25)

where the modified source wavefields, ∂Hxb

∂t , ∂Hzb

∂t , Eyb, and
∂Eyb

∂t are arranged into diagonal sub-matrices having a size of
nm · nt× nm · nt. As mentioned above, these wavefields can
be computed beforehand based on the provided background
medium and source function and thus are assumed to be
known. Hence, K is constant in LSRTM.
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Fig. 5. GPR data predicted by the LSRTM forward operator using (a) the image obtained from pre-stack RTM, (c) the image obtained after 1 iteration
of LSRTM, and (e) the image obtained after 5 iterations of LSRTM. The corresponding differences with the observed data are shown in (b), (d) and (f),
respectively.

The form of (18) through (20) is similar to that of (15)
through (17). The primary distinction is the source function
term. Equations (18) through (20) suggest that the perturbed
wavefields ∆Hx, ∆Hz and ∆Ey are excited by the subsur-
face responses r = [r1, r2, r3]. These equations can also be
expressed in matrix form as

∆w = Gr, (26)

where G represents the FDTD simulation of TE-mode equa-
tions and is of size 3nm · nt × 3nm · nt. The matrix repre-
sentation of G is non-trivial and will be discussed in detail
in section V. This operator takes the subsurface response r as
its source function to generate the perturbed wavefield vector
∆w = [∆Hx,∆Hz,∆Ey].

Lastly, we introduce a sampling operator R to extract the
wavefield at receiver antenna locations along the surface for
all time samples. Then, we have

∆d = R∆w. (27)

The matrix dimension of R is nd× 3 ·nm, where nd denotes
the total number of data samples for all three field components
(∆Hx, ∆Hz , ∆Ey). The resulting vector ∆d contains the
data perturbation in the form of a column vector. Note that, in
practice, most GPR receiver antennas only measure a single
component of the electrical field, such as Ey . In this case,
the sampling operator should only extract information on that

particular component, which is equivalent to removing the
rows related to components Hx and Hz in matrix R.

Combining (24), (26) and (27), a linear relationship between
model perturbations and data perturbations can be established
as follows:

∆d = RGKS∆m (28)
= L∆m, (29)

where L denotes the Born approximation operator, which is
also known as the demigration operator [56]. Note that the
matrices in (28) are used solely for the mathematical deriva-
tion. In our computer code, they are not formed explicitly, but
rather designed as computational operators for the purpose of
memory efficiency.

IV. LEAST-SQUARES REVERSE TIME MIGRATION

Understanding the physical meaning of ∆m and ∆d is
essential to the problem of LSRTM. The linear relationship
∆d = L∆m is also a concept that can be found in the field
of FWI [54] when is solved by gradient-based optimization
algorithms, and it is important to clarify the differences in
interpretation between these two applications. In FWI, ∆d
represents the misfit between the predicted GPR data cor-
responding to the current electrical property model and the
actual recorded data. Hence, ∆m in this scenario reflects the
deviation between the current model and the sought electrical
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property model that can optimally predict all waveforms. In
LSRTM, on the other hand, ∆d represents primary reflections.
The model ∆m in this case represents the corresponding
reflectors.

To gain further clarity, let us consider that the source
wavefields K in LSRTM can be regarded as incident waves
descending into the subsurface. These wavefields are related to
the background model and we can assume that the smoothness
of this model mainly supports downward propagation with
minimal backscattering. Meanwhile, we assume that the reflec-
tions are mainly created by the perturbed model ∆m. Hence,
vector r in (24) can be conceptualized as scattering strength,
and the combined application of (26) and (27) simulates the
journey of the scattered energy to the receiver antennas at
the surface. Thus, the operator L effectively approximates
the physical process of primary reflection in a linear manner.
When ∆d is regarded as the recorded reflections in the
LSRTM problem, ∆m should therefore represent a model of
the reflectors.

Based on the above, we hereby replace ∆d by the observed
GPR reflection data, dobs, and we denote the corresponding
migrated reflection image as m. Depending on the quality
of the observed data dobs, pre-processing may be necessary.
This may involve steps such as data denoising and amplitude
gain adjustment. As LSRTM necessitates that dobs consists
of primary reflection data, removing multiples may also be
required. In our experience, however, the latter are rare in
GPR surveys and only occur with significant amplitudes in
rather pathological settings.

The goal of LSRTM is to find the image that best reproduces
the data. Mathematically, this is done by minimizing the
following cost function with regard to m:

J = ||Lm − dobs||22 + µ2||Wmm||22, (30)

where the weighting operator Wm is designed to be indepen-
dent of m to maintain linearity in the cost function. In its
simplest form, Wm can be an identity matrix I. Alternatively,
Wm may serve as a filter to eliminate artifacts in the image.
For this study, we adopt the approach from [47] to design
Wm for normalizing the spatial sensitivity in the image. To
this end, it is structured as a diagonal matrix, with its diagonal
elements given by

diag(Wm) =
∑
t

(Gs)2. (31)

This ensures that the optimized image has more uniform
amplitudes compared to one produced with Wm = I. Further-
more, as we will demonstrate in Section VIII-A, this method
of sensitivity normalization through Wm can also help to
accelerate the convergence rate.

Parameter µ2 in (30) controls the balance between data
misfit and model regularization in the LSRTM procedure. In
principle, multiple values of µ2 should be tested to find the
optimum trade-off between these two objectives. However, this
approach is computationally too expensive for optimization
problems such as LSRTM. A practical solution is to adopt
an iterative method to optimize m and to use the number
of iterations to implicitly control the damping parameter [57].

To this end, we transform the regularized least-squares inverse
problem (Eq. (30)) into the damped least-squares problem

J =
1

2
||LW−1

m u − dobs||22 +
1

2
µ2||u||22, (32)

where

m = W−1
m u (33)

and u serves as an auxiliary variable to be optimized. In
this form, employing a larger number of iterations results
in a migrated image with a lower data misfit but with less
regularization. Conversely, using fewer iterations can help to
avoid the problem of over-fitting. Note that (33) is equivalent
to the use of the illumination-compensated imaging condition
[58].

The LSRTM problem can be efficiently solved using the
conjugate gradients algorithm [59], [60], which requires the
forward operator L and its adjoint. Obtaining the adjoint
operator is a critical topic for all gradient-based optimization
methods. Given that L in (29) is represented by a real-valued
matrix, the adjoint operator is simply equal to the transpose

LT = ST KT GT RT , (34)

where RT can be interpreted as an operator that injects data
into an initial wavefield containing zeros at each receiver
antenna location and at all times. If, as is normally the case,
only component Ey is recorded as data, then RT should
inject zeros into Hx and Hz . Matrix GT is called the adjoint
simulation operator, and is described in detail in Section VI.
Matrix KT can be easily obtained as its non-zero sub-matrices
are diagonal. Matrix ST is an integration operator over time.

V. DISCRETE SIMULATION OPERATOR: MATRIX
EXPRESSION OF THE FINITE-DIFFERENCE TIME-DOMAIN

METHOD

In this section, we formulate the simulation operator for
Maxwell’s TE-mode equations using matrices. To this end, the
FDTD method is utilized to solve for the electric and magnetic
field components in (8) through (10).

First, we discretize the subsurface distribution of the elec-
trical properties using a staggered grid [61]. A higher-order
finite-difference [62] is adopted to approximate the spatial
derivatives of the field components, whereas the temporal
derivatives are approximated by a second-order-accurate sten-
cil. The convolution terms are computed using a recursive
scheme [63]. The evolution of both fields in time is accom-
plished through a leap-frog approach.
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The expression for the finite-difference update of the afore-
mentioned equations is

Hx|it+0.5
ix,iz+0.5 = Hx|it−0.5

ix,iz+0.5

−Dc|ix,iz+0.5ΨHxz|itix,iz+0.5

−Dbz|ix,iz+0.5

N∑
1

cn(Ey|itix,iz+n − Ey|itix,iz−n+1),

(35)

Hz|it+0.5
ix+0.5,iz = Hz|it−0.5

ix+0.5,iz

−Dc|ix+0.5,izΨHzx|itix+0.5,iz

−Dbx|ix+0.5,iz

N∑
1

cn(Ey|itix+n,iz − Ey|itix−n+1,iz),

(36)

Ey|it+1
ix,iz = Ca|ix,izEy|itix,iz

− Cc|ix,iz(ΨEyx|it+0.5
ix,iz −ΨEyz|it+0.5

ix,iz )

+ Cbx|ix,iz
N∑
1

cn(Hz|it+0.5
ix+n−0.5,iz −Hz|it+0.5

ix−n+0.5,iz)

− Cbz|ix,iz
N∑
1

cn(Hx|it+0.5
ix,iz+n−0.5 −Hx|it+0.5

ix,iz−n+0.5),

(37)

where cn denotes the nth order finite-difference coefficients
in space, and it, ix and iz denote temporal, x-axis and z-axis
indices, respectively. The coefficients Ca, Cbk, Cc, Dbk and
Dc are specified as

Ca = (1− σ∆t

2ε
)(1 +

σ∆t

2ε
)−1, (38)

Cbk =
∆t

ε
(1 +

σ∆t

2ε
)−1(κk∆k)−1, (39)

Cc =
∆t

ε
(1 +

σ∆t

2ε
)−1, (40)

Dbk =
∆t

µ
(κk∆k)−1, (41)

Dc =
∆t

µ
, (42)

where k = x, z. The PML memory variables Ψ(.) are given
by

ΨHxz|itix,iz+0.5 = Bz|ix,iz+0.5ΨHxz|it−1
ix,iz+0.5

+Az|ix,iz+0.5

N∑
1

cn(Ey|itix,iz+n − Ey|itix,iz−n+1),
(43)

ΨHzx|itix+0.5,iz = Bx|ix+0.5,izΨHzx|it−1
ix+0.5,iz

+Ax|ix+0.5,iz

N∑
1

cn(Ey|itix+n,iz − Ey|itix−n+1,iz),
(44)

ΨEyx|it+0.5
ix,iz = Bx|ix,izΨEyx|it−0.5

ix,iz

+Ax|ix,iz
N∑
1

cn(Hz|it+0.5
ix+n−0.5,iz −Hz|it+0.5

ix−n+0.5,iz),
(45)

ΨEyz|it+0.5
ix,iz = Bz|ix,izΨEyz|it−0.5

ix,iz

+Az|ix,iz
N∑
1

cn(Hx|it+0.5
ix,iz+n−0.5 −Hx|it+0.5

ix,iz−n+0.5),
(46)

where

Ak =
σk

σkκk + αkκ2
k

(Bk − 1)∆k−1, (47)

Bk = exp[−∆t

ε0
(
σk

κk
+ αk)]. (48)

Note that, in the above equations, the multiplications between
the coefficients A, B, C and D and the field components are
performed element-wise. If the field components are reshaped
into column vectors, these multiplications can be expressed
as a diagonal matrix multiplying a vector. This allows the
finite-differences to be expressed in the form of matrix-vector
multiplications. Consequently, the updates of the electric and
magnetic fields in (35) to (37) can be fully represented in
matrix form as

Hn+1
x =Hn

x −DbzFzfE
n
y −DcΨ

n
Hxz (49)

Hn+1
z =Hn

z +DbxFxfE
n
y +DcΨ

n
Hzx (50)

En+1
y =CaE

n
y +CbxFxbHz −CbzFzbHx

+Cc[Ψ
n
Eyx −Ψn

Eyz],
(51)

where Ek and Hk are column vectors, and D(.) and C(.) are
diagonal matrices. Likewise, the updates of Ψ(.) can also be
expressed as

Ψn
Hxz = BzΨ

n−1
Hxz +AzFzfE

n
y , (52)

Ψn
Hzx = BxΨ

n−1
Hzx +AxFxfE

n
y , (53)

Ψn
Eyx = BxΨ

n
Eyx +AxFxbHz, (54)

Ψn
Eyz = BzΨ

n
Eyz +AzFzbHx. (55)

Matrices Fzf and Fzb are finite-difference operators along
the z-direction with front-end and back-end zero-padding,
respectively. Given that the field components are situated on a
staggered grid, the zero-padding importantly serves to adjust
the center of the finite-difference stencil in space. Similarly,
Fxf and Fxb are finite-difference operators along the x-
direction, also with front-end and back-end zero-padding.

Note that n in (49) through (55) does not denote the nth

time sample. Instead, it indicates the nth update of the field.
These equations are not solved simultaneously because E(k),
H(k), and Ψ(k) are distributed along a staggered time axis.
For instance, if the simulation starts with E|it=0ix, iz as the
known variable, the finite-difference update at the nth iteration
can be summarized by

1) Update ΨHxz and ΨHzx by solving (52) and (53),
2) Update Hx and Hz by solving (49) and (50),
3) Update ΨEyz and ΨEyx by solving (55) and (54),
4) Update Ey by solving (51).

Alternatively, we can express a single-step finite-difference
update from iteration n to n+ 1 in matrix form as

wn+1 = Twn + sn+1, (56)

where w(.) = [Hx,Hz,Ey,ΨHxz,ΨHzx,ΨEyx,ΨEyz] is a
column vector that contains the wavefield components, and s
is a zero vector having the same dimensions as w. The source
function r(.) is assigned at each source location for all time
samples. Matrix T = T4T3T2T1 is the finite-difference time-
stepping operator whose expression is provided in Appendix
A.
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If the initial condition of the wavefield is given as w0 =
s0 = 0, then for n = 1, 2, 3, equation (56) becomes

w1 = Tw0 + s1 = s1 (57)

w2 = Tw1 + s2 (58)

w3 = Tw2 + s3. (59)

This is equivalent to writing

w1 = s1, (60)

w2 = Ts1 + s2, (61)

w3 = T2s1 + Ts2 + s3. (62)

Equations (60) to (62) can be written in matrix form asw1

w2

w3

 =

 I 0 0
T I 0
T2 T I


︸ ︷︷ ︸

G

s1
s2
s3

 . (63)

In this case, for these three updates only, equation (63)
requires four matrix-vector multiplications with T. In the
general case, computing n wavefield updates requires n(n−1)

2
multiplications with T.

Alternatively, equation (63) can be rewritten asw1

w2

w3

 =

I 0 0
0 I 0
0 T I

 I 0 0
T I 0
0 0 I


︸ ︷︷ ︸

G

s1
s2
s3

 . (64)

In this form, computing three wavefield updates requires only
two multiplications with T, and more generally, computing n
updates requires merely n − 1 multiplications. Equation (64)
is identical to the expression of acoustic FDTD simulation
[50]. Intrinsically, it is the general expression of the temporal
second-order finite-difference method in matrix form.

VI. ADJOINT SIMULATION OPERATOR: EXACT ADJOINT
VERSUS PSEUDO ADJOINT

Identifying the Born approximation in matrix form followed
by taking the matrix transpose (Eq. (34)) is known as the
discrete adjoint-state method [64]. It leads to the formulation
of the adjoint simulation operator as the matrix transpose of
G in (64), which is given by

GT =

I TT 0
0 I 0
0 0 I

I 0 0
0 I TT

0 0 I

 . (65)

Note, however, that the adjoint operator can also be ob-
tained using the so-called discretized adjoint-state method
(e.g., [35]), which employs Lagrange multipliers to derive an
expression for the gradient in the continuous domain, followed
by numerical discretization. Although both the discrete and
discretized adjoint-state methods represent the same gradient
expression, they carry out the adjoint simulation differently.
Specifically, the discretized adjoint-state method uses time-
reversed simulation. In matrix form, this is expressed as

GT
pseudo =

I T 0
0 I 0
0 0 I

I 0 0
0 I T
0 0 I

 . (66)

Fig. 6. Comparison of pre-stack RTM results obtained using (a) the pseudo
adjoint simulation operator and (b) the exact adjoint simulation operator.

Fig. 7. Data misfit as a function of the number of LSTRM iterations,
comparing use of the pseudo versus exact adjoint simulation operators as
well as setting weighting matrix Wm = I versus according to [65].

Compared with the discrete adjoint simulation operator GT in
(65), the discretized adjoint simulation operator GT

pseudo does
not take the transpose of T. In Appendix A, we demonstrate
that T is not a symmetric matrix. Hence, the time-reversed
simulation GT

pseudo is not the exact adjoint of the time-
forward simulation G. Use of the inexact adjoint can cause
the conjugate gradient algorithm to converge suboptimally or
even prevent it from converging. In view of this, RTM and
LSRTM results obtained by both the exact and inexact adjoint
operators are comprehensively compared in Section VIII-A.

VII. NUMERICAL EXAMPLES

We use an adaptation of the extensively investigated Mar-
mousi model [53], developed to benchmark seismic migra-
tion algorithms, to assess the effectiveness of our LSRTM
approach. With its complex structure, this model is ideal for
evaluating the improvement in resolution provided by our
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method. In our study, we adapted it to a relative dielectric
permittivity distribution by linearly scaling the values in the
original model to a range between 1 and 6 (Fig. 1a). For our
test, we assume that the electrical conductivity and relative
magnetic permeability are constant throughout the model
domain and equal to 0.01 S/m and 1, respectively.

The electrical properties were discretized on a 234×663 grid
with a spatial sampling interval of 0.05 m. To generate syn-
thetic zero-offset GPR data, we employed the FDTD method
considering 200 measurements evenly spaced by 0.165 m
along the surface. The spatial derivatives were approximated
by an eighth-order operator, whereas the temporal derivatives
were approximated by a second-order operator. A time dis-
cretization of 0.04 ns was used. For each transmitter location,
3500 time steps were evaluated, resulting in a total recording
time of 140 ns per trace. Prior to migration, we applied a top-
mute filter to remove the direct arrival. The resulting synthetic
GPR reflection data are displayed in Fig. 1b.

An inadequate estimation of the velocity model can com-
promise the quality of the migrated image. Indeed, migration
assumes that the background or low-wavenumber velocity
model is reasonably well-known. For our synthetic test, the
dielectric permittivity model assumed for migration is depicted
in Fig. 1c. The model was obtained by twice convolving the
original permittivity distribution with a local averaging filter of
size 30×30 grid cells, in order to create a challenging test case
for LSRTM. After the smoothing process, we see that detailed
structural information in the original permittivity model (Fig.
1a) completely removed. In practice, the large-scale velocity
structure of the probed subsurface region can be constrained
through diffraction focusing analysis (e.g., [66]). Alternatively,
one can acquire a small number of common mid-point (CMP)
gathers along the survey line and interpolate the inferred 1D
velocity-depth profiles (e.g., [67]–[69]).

Typically, GPR imaging aims to resolve the interfaces of
the subsurface velocity model, which is primarily controlled
by the dielectric permittivity. Therefore, our LSRTM focuses
exclusively on inverting for the reflectivity image of the
dielectric permittivity. Although the electrical conductivity
can have a strong influence on GPR data, it largely impacts
attenuation rather than travel time. Hence, the effects of
conductivity on generating reflections are much less important
than the dielectric permittivity. Theoretically, the magnetic
permeability has the potential to influence GPR reflections.
However, typically this parameter is equal to its free-space
value in most non-magnetic materials considered in GPR.

Figures 2a, 2b, and 2c show the migrated images obtained
using post-stack RTM based on the point-diffraction model
[17], pre-stack RTM based on the exact adjoint operator in Eq.
(34), and LSRTM based on (30) and the exact adjoint (34),
respectively. As mentioned earlier, incorporating operator Wm

in (30) can boost the amplitudes in areas of low sensitivity. To
assure a fair comparison across the different RTM algorithms,
the inverse operator W−1

m was applied to both the post-stack
and pre-stack RTM images using(33), where u is replaced by
the image and thus m is the amplitude enhanced image. When
presenting the migrated images, it is important to note that
we have applied amplitude normalization, limiting the range

between -1 and 1. To guarantee a fair comparison, all migrated
images shown in the same figure adhere to the same colour
scale.

We see in Fig. 2 that the major subsurface structures are
effectively recovered by both the post-stack and pre-stack
RTM methods. However, LSRTM provides superior model
resolution. Reflecting interfaces appear to be crisper and
better defined, fine-scale features are accentuated, and the
illumination of deep structures is noticeably improved. For a
more detailed comparison of image resolution, two particular
regions have been selected, as outlined by the red boxes in
Fig. 2d.

Figure 3 depicts the structures outlined by the left-hand box
in Fig. 2d, which is primarily comprised of gently dipping
layers. The key difference between the migration results lies
in the size of the wavelet side lobes. As indicated by the
red arrows, side-lobe suppression in the LSRTM image is
significantly more effective compared to the post-stack and
pre-stack RTM images. This comprehensive suppression of
side lobes leads to a higher-resolution image. Although the
enhancement in resolution may not be decisive in this struc-
turally simple region, it is highly advantageous for complex
areas like the region outlined by the right-hand box in Fig. 2d,
which is presented in Fig. 4. Indeed, in this figure, the three
high permittivity anomalies indicated by the red arrows are
better focused by LSRTM. The ultra-thin layer, denoted by the
magenta arrow, remains undetected in the images produced by
post-stack and pre-stack RTM, but it is clearly discernible in
the LSRTM image. The wedge-shaped feature, delineated by
the green dashed lines, displays improved resolution along its
interfaces. Although identifying the layers within the anticline,
denoted by the blue arrow, proves challenging for all three
imaging methods, LSRTM provides some noticeable improve-
ments compared to the other approaches.

The considerable improvements observed with LSRTM over
post-stack and pre-stack RTM can be predominantly attributed
to the data-fitting term in the cost function (30). Indeed, for
the presented example, pre-stack RTM exhibits a 29.7% data
misfit, whereas LSRTM has a misfit of only 1.2% after ten
iterations of the conjugate gradients method. Figure 5 shows
the predicted data obtained by applying the LSRTM forward
operator to the migrated image from pre-stack RTM, and to
the images from 1 and 5 iterations of LSRTM, along with
the corresponding data misfit. In Figs. 5a and 5b, we see
that the data predicted by pre-stack RTM are overly smooth,
and that significant high-frequency information remains in the
data misfit. Additionally, we see that pre-stack RTM mainly
focuses the data at early times. This is because the Hessian
matrix, LTL, has much greater sensitivity to the shallow
and large-scale subsurface structures [70], [71]. Figures 5c
and 5d, on the other hand, show that, even after a single
iteration, the LSRTM image can adequately predict the later
time data. After five iterations, the LSRTM image faithfully
predicts the data throughout early and late times (Figs. 5e
and 5f), thereby yielding a higher-resolution image and better
illumination enhancement of deep structures.
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Fig. 8. Comparison of LSRTM results: (a) LSRTM with pseudo adjoint,
(b) LSRTM with pseudo adjoint and regularization, (c) LSRTM with exact
adjoint, and (d) LSRTM with exact adjoint and regularization.

VIII. DISCUSSION

A. Pseudo adjoint versus exact adjoint operators

We now investigate the effects of using the pseudo and
exact adjoint simulation operators described in Section VI.
The validity of the exact adjoint property was verified mul-
tiple times in a double-precision environment through the
dot-product test using random numbers as input. We first
employ these two simulation methods to generate pre-stack
RTM images. For a fair comparison between the results, the
weighting operator W−1

m was applied to both images. Figure 6
shows that pre-stack RTM, utilizing either simulation method,
leads to comparable migration outcomes. The exact adjoint
operator seems to provide slightly greater amplitudes in the
deeper regions but the implementation of the exact adjoint
simulation is significantly more difficult than the standard
FDTD simulation. For the LSRTM problem, however, there
is a significant difference between the results obtained using
the pseudo and exact adjoint operators. Figure 7 presents data
misfits of LSRTM with the different adjoints and weighting
matrices. The solid blue and red lines in Fig. 7 show that
employing the pseudo adjoint operator results in a much

Fig. 9. Comparison of LSRTM results with the exact adjoint operator and
regularization after (a) iteration 1, (b) iteration 5, (c) iteration 10, and (d)
iteration 30.

slower convergence compared to the exact adjoint operator.
The dashed blue and red lines indicate that the regularization
by using the operator Wm can accelerate convergence for both
cases. Nevertheless, the pseudo adjoint operator still exhibits
a slower convergence rate than the exact adjoint operator.

Figure 8 shows the effect of using the two types of adjoints
in the image domain. In Fig. 8a we present the LSRTM image
obtained using the pseudo adjoint operator, whereas Fig. 8b
additionally incorporates the weighting operator Wm. The two
images are similar. Even though their resolution can exceed the
resolution of the pre-stack RTM image, the complex structure
enclosed by the red box is still insufficiently resolved for
geological interpretation. In contrast, Figs. 8c and 8d show
that the resolution of LSRTM can be considerably improved
by adopting the exact adjoint operator.

Interestingly, we discovered that LSRTM, using both the
pseudo adjoint operator and the non-identity weighting op-
erator, exhibits a convergence curve remarkably similar to
LSRTM with the exact adjoint operator and the identity
weighting operator. The data misfit of the latter is only
marginally lower. Initially, we anticipated that the LSRTM



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XXX, NO. XXX, MARCH 2024 11

Fig. 10. Point scatterer test with 75 measurements along the surface (left-
hand column) and 30 measurements along the surface (right-hand column):
(a) and (d) pre-stack RTM, (b) and (e) LSRTM, and (c) and (f) point-spread
function.

images produced by both methods could offer a compara-
ble structural resolution. However, in contrast to the image
produced with the pseudo adjoint operator and regularization,
the LSRTM image generated with the exact adjoint operator
demonstrates noticeably higher resolution in complex regions,
as illustrated by the comparison of Figs. 8b and 8c. We suspect
that this difference in image resolution is caused by the lower
sensitivity to fine-scale structures. Large perturbations of low-
sensitivity parameters can contribute only minimal changes
in data. Conversely, even a slightly better data misfit can
lead to much-improved resolution. Hence, this highlights the
importance of reducing data misfits through the use of the
exact adjoint operator in LSRTM.

Meanwhile, it is crucial to emphasize that data overfitting
must be avoided with the LSRTM method. As discussed in
section IV, the damping parameter is controlled by the number
of iterations. An excessive amount of iterations can lead to
poorly constrained artifacts within the null space. As depicted
in Fig. 9, progressively increasing the number of iterations
can introduce a substantial amount of artifacts. The artifacts
are intrinsically caused by the limitations of the experimental
design, meaning that they are the results of poorly resolved
model parameters. Further details on the causes of these
artifacts are explored in Section VIII-B.

B. Artifacts due to limited acquisition aperture

Figure 9d displays an ’X-shaped’ artifact near the edges of
the image. Intuitively, one might assume that this artifact is
associated with the PML boundary condition. However, even
after a comprehensive parameter tuning with regard to the
PML, the artifact persists in the image.

To investigate the origin of this type of artifact, we con-
ducted an additional synthetic test. In this test, a point scatterer
was centrally located within the model. The background’s
relative permittivity was set to one and its conductivity and
and the magnetic permeability were fixed at 10−3 S/m and 1
H/m. The point scatterer shared the same electric properties
as the background, except for an increased permittivity of
20. The model was discretized on a 2D grid with a spatial
sampling interval of 0.05 m. The point scatterer’s dimensions
were 0.05×0.05 m, equivalent to a single pixel in the model
grid. We employed 75 zero-offset GPR measurements along
the Earth’s surface, each even spaced at 0.44 m apart, to
illuminate the scatter. Our tests indicate that utilizing more
than 75 sources does not considerably enhance the migration
image quality.

Figure 10a presents the pre-stack RTM image of the point
scatterer. While the image successfully depicts the scatterer’s
location, its precise position is blurred by side-lobes. To study
blurring effect, we compute the point-spread function (PSF)
of the point scatterer [23]. In our synthetic test, the exact
location of the scatterer is known. This allows us to define
a LSRTM model m as a zero matrix, except at the scatterer’s
exact location, where the value is set to one. Subsequently,
the PSF of the scatterer can be derived by calculating LTLm.
This process essentially is equivalent to extracting a specific
row from the Hessian matrix H = LTL that corresponds to
the scatterer’s location. Fig. 10b depicts the PSF. The high
similarly between Figs. 10a and 10b indicates that the Hessian
matrix can predict the blurring effect, which in turn can be
expected to be removed by applying the inverse Hessian, that
is, by using the LSRTM method.

Figure 10c shows the LSRTM image of the point scatterer.
The side-lobe blurring has been successfully eliminated and
thus the image has higher resolution and clearly depicts the
location of the scatterer. Despite these improvements, the
image is still contaminated by the aforementioned ’X-shaped’
artifact, which can also be observed in least-squares Kirchhoff
migration. Hu’s research [72] explains that the shape of this
artifact is associated with the acquisition geometry and the
location of the scatterer. We additionally attribute this artifact
to ambiguities within the model space. Locations of artifacts
exhibit a significant trade-off with the actual scatterer location.
This type of artifact cannot be entirely eliminated unless more
information, such as a wider acquisition aperture or sparsity
assumptions, that is, more prior information, are incorporated
into the inverse problem. It is crucial to be aware of this type
of artifact when targeting to image small-scale features.

Due to the absence of point scatterers, the ’X-shaped’ arti-
fact is not so obvious in our LSRTM image of the Marmousi
model. Nevertheless, we believe that the ’X-shaped’ artifact
is related to the artifacts appearing near the left- and right-
hand edges of the survey area in Fig. 9d. Layers are cut off
abruptly at the boundaries and thus causing the reflectors at
the boundaries to behave like scatterers. At the boundaries,
the acquisition aperture is limited. Therefore, the ’x-shape’
artifacts appear particularly prominently.
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C. Artifacts due to coarse acquisition spacing

A coarse acquisition spacing can pose a significant con-
cern in 3D surveys. Despite a small spacing between the
measurement points in the inline direction, the trace density
in the cross-line direction can be significantly sparser. To
study the effects of coarse acquisition, we conducted an
additional point-scatterer test, similar to the previous one, but
with the number of sources reduced to 30, resulting in a
spatial sampling interval of 1.1 m. The RTM image, PSF, and
LSRTM image resulting from this test are displayed in Figs.
10 (d)-(f). Coarse acquisition results in artifacts near the point
scatterer, resembling the Gibbs phenomenon. Unfortunately,
these artifacts cannot be suppressed by LSRTM. The artifacts
are prominent in the near-surface region but diminish with
depth. We believe this is due to the fact that the point-sources
can merge their wavefronts to form plane waves at greater
depths. This could possibly explain the near-surface artifacts
along the first layer in Fig. 9d.

In the synthetic test, the artifact can be effortlessly elimi-
nated using a damping filter, given that the first layer is flat. For
models with more complex structures, we anticipate that a data
interpolation algorithm is needed to mitigate these artifacts.

D. Computational cost

With regard to the computational cost, LSRTM is undoubt-
edly more demanding than RTM. Each iteration of LSRTM
requires the execution of both forward and adjoint operations,
which entails two times the wave simulation per source. To
save computing time, we reduce the number of iterations
by using the aforementioned source wavefield illumination-
compensation regularization [65] in addition to using a GPU
cluster and parallelizing the simulations for all sources.

We utilized 28 computing nodes, each equipped with 4
NVIDIA GeForce GTX TITAN X GPU devices, to imple-
ment the simulations. On average, the forward and adjoint
operations took approximately 155 and 230 seconds for 200
sources, respectively. We do not purport that our code is
fully optimized, but we underscore that, while LSRTM has a
higher computational demand than RTM approaches, modern
computational resources have made 2D LSRTM quite afford-
able, which, in turn, opens the perspective of extending the
presented approach to 3D.

IX. CONCLUSION

This study develops and explores pre-stack LSRTM for
GPR imaging, with the goal of enhancing image resolu-
tion. The forward operator of LSRTM is derived using the
Born approximation of Maxwell’s equations, and its exact
adjoint operator is derived via matrix operations. Employing
these two operators, we obtain the LSRTM image using the
conjugate gradients method. Synthetic examples demonstrate
that LSRTM provides superior resolution compared to images
generated by both pre-stack and post-stack RTM methods,
thus, improving the visibility of fine-scale structures. We
conduct a point-scatterer test to evidence that the improved
resolution can be attributed to the elimination of the point-
spreading function.

We put particular emphasis on the derivation of the adjoint
operator, ensuring its ability to pass the dot-product test with
machine precision. Fulfilling this criterion necessitates the use
of an exact adjoint simulation that is not the same as the
pseudo adjoint used for the standard time-reversal simulation.
To establish the correct formulation, it was necessary to
express the FDTD simulation with CPML boundary conditions
in matrix form and subsequently apply a conjugate transpose
to the entire equation. Our synthetic tests demonstrate that the
exact adjoint operator led to significantly faster convergence
and to a lower data misfit.

Two issues can negatively affect LSRTM image quality: lim-
ited acquisition aperture and coarse acquisition spacing. The
former can cause ’X-shaped’ artifacts in the images and the
latter can create artifacts resembling the Gibbs phenomenon.
Unfortunately, both types of artifacts cannot be suppressed by
the least-squares inversion because they are affected by the
poorly resolved model parameters, that is, the so-called null-
space. We expect that the artifacts can be intrinsically reduced
by incorporating more collected or reconstructed data into the
inverse problem.

Finally, although LSRTM has undoubtedly a higher compu-
tational cost compared to RTM, we have shown that modern
computational devices render 2D LSRTM quite affordable,
thus offering the perspective on an eventual extension to 3D.
Implementing 3D LSRTM can pose significant challenges,
primarily due to its immense computational demands that can
exceed the memory capacity of GPUs. Therefore, effective do-
main partitioning for inversion and efficient reconstruction of
source wavefields will be crucial research areas. Additionally,
resolving ill-posedness caused by the poor sampling in the
cross-line direction and optimizing data acquisition design for
3D surveys are highly anticipated research areas.

APPENDIX A
FINITE-DIFFERENCE STEPPING MATRIX WITH CPML

BOUNDARY CONDITION

The matrix T in Eq. (56) can be expressed by the multipli-
cation of the following four matrices

T4 =



I 0 0 0 0 0 0
0 I 0 0 0 0 0

−CbzFzb CbxFxb Ca 0 0 Cc −Cc

0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


, (67)

T3 =



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 AxFxb 0 0 0 Bx 0

AzFzb 0 0 0 0 0 Bz


, (68)
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T2 =



I 0 −DbzFzf −Dc 0 0 0
0 I DbxFxf 0 Dc 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


, (69)

and

T1 =



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 AzFzf Bz 0 0 0
0 0 AxFxf 0 Bx 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I


. (70)

After multipling the four matrices T = T4T3T2T1, we have
a compact form of T that is not a self-adjoint matrix.

T =



I 0 −AzFzfDc − DbzFzf

0 I AxFxfDc + DbxFxf

−CbzFzb CbxFxb

AzFzf DcCbzFzb+AxFxf DcCbxFxb

+DbxFxf CbxFxb

+DbzFzf CbzFzb+Ca

0 0 AzFzf

0 0 AxFxf

0 AxFxb AxFxfDcAxFxb + DbxFxfAxFxb

AzFzb 0 −AzFzfDcAzFzb − DbzFzfAzFzb

−BzDc 0 0 0
0 BxDc 0 0

BzDcCbzFzb BxDcCbxFxb 0 0
Bz 0 0 0
0 Bx 0 0
0 BxDcAxFxb Bx 0

−BzDcAzFzb 0 0 Bz


(71)
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