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1. Introduction

The Hernes model is classically used to analyze marriage across cohorts (Diekmann, 1989;
Goldstein & Kenney, 2001; Hernes, 1972). This model presents a property to clearly distinguish
the quantum effect in the cohort (i.e., the proportion of married people) from the tempo effect (i.e.
the timing of marriage) (Billari & Toulemon, 2006). Unlike other models used to analyze the
marriage processes—for example, the Coale-McNeil model—the fraction of persons in the cohort
that remains unmarried is not considered a subpopulation predetermined from the starting point
process not to wed (Coale & McNeil, 1972). The Hernes model was originally estimated on
aggregated data. It has been incorporated in the corpus of event history analysis models and can
be estimated on individual life course data (Wu, 1990; Rohwer & Potter, 2002).

In his seminal paper, Hernes (1972) formulates his model in terms of diffusion or contagion of the
idea of marriage from people already married to those not yet married. Contagion is determined by
a mechanism of imitation by non-married persons or by a mechanism of persuasion of married
persons on non-married individuals. Whatever the mechanism, the spread in the proportion of
married people in the cohort has an increasing effect on the risk of marriage. Hernes postulates
that an opposing force however slows down this diffusion process because unmarried people
progressively cease to be attractive on the marriage market as they age or because the number of
non-married persons decreases. As a consequence, there is a decreasing effect on the hazard of
marriage. The overall hazard of marriage then results in the following two components: an
increasing component in relation to the diffusion of marriage in the cohort and a decreasing
element as a consequence of the depreciation of marriageability. Later, Dieckmann (1989) proposed
the log-logistic model as an alternative to the Hernes model, with a similar opposing mechanism of

diffusion and depreciation of marriageability.

In his 1972 paper, Hernes mentions that the decreasing force can result from another mechanism;
aging people who remained unmarried are those, for example, who have never held a prestigious
job and, for this reason, are unattractive on the marriage market. The point here is about
individual heterogeneity. In another and more precise paper, Hernes (1976) uses the term
structural heterogeneity, which is defined as “when a capacity is differentially distributed in the
population” (p. 428). The mechanism underlying the distribution of the risk of marriage for the
cohort is different from the precedent described one but is similar to those described with notions
of unobserved heterogeneity or of frailty in unemployment studies and mortality studies,
respectively (Heckman & Singer, 1982; Vaupel, Manton, & Stallard, 1979). In the present case,
those in the cohort who have a better ability to marry will wed earlier, and the weight of people
with unfavorable capacities in the unmarried sub-population will become progressively higher and
higher as time goes on. As a consequence, the differential ability results in a negative effect on the
risk to marry at the level of the population, which slows the increasing effect due to the

mechanism of diffusion. A similar effect could be described if each individual in the cohort differs
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by his or her own “susceptibility” to adopt the behavior when in contact with someone already

married who transmits the idea of marriage (Strang & Tuma, 1993).

As in unemployment or mortality studies, differential ability or susceptibility may be due to
unobserved characteristics of an individual. This unobserved heterogeneity then has to be
incorporated in the models. In this paper, we propose two diffusion models that introduce an
unobserved ability or susceptibility of persons to adopt behavior or an innovation that can be
estimated on individual retrospective data. In the first model, the gamma-logistic model, the
diffusion mechanism is described by the classical logistic curve, while the unobserved ability or
susceptibility of individuals is patterned by a gamma distribution. In the second model, the
gamma-mixed influence diffusion model, the unobserved heterogeneity is previously patterned by
a gamma distribution, while there are two kinds of influence (Coleman, 1964; Bass, 1969): the
first is due to internal influence—that is, influence of persons who already adopted the behavior on
those who have not; the second is due to external influences such as media, advertising, and

institutions that diffuse norms about marriage.

In the first section of the paper, after a recall of the Hernes model specification, we present the
gamma-logistic and the gamma-mixed influence models. In the second section, we apply the
second of these models to the case of marriage of men and women interviewed in the Wisconsin
Longitudinal Study (Hauser, 2009). We are especially interested in comparing the fit of the

gamma-mixed influence model with the fit of the Hernes model.

2. Time Dependency in Diffusion Models

2.1 The general Hernes model

This section discusses a general family of diffusion models proposed by Hernes in his second
influential paper on diffusion models (Hernes, 1976). This general formulation is interesting
because all models evoked in the introduction of the present paper—the Hernes, log-logistic model,
logistic, and mixed influence models—are particular forms of this general formulation. This model
could be formalized for each case where there is a diffusion process, such as the propagation of an
innovation, a behavior, a rumor, and, eventually, a contagious illness. However, in particular, we
have in mind the diffusion of marriage in a cohort or a group of persons. The model can be read as
a general mixed-influence diffusion model (Mahajan & Peterson, 1985) in which transmission
coefficients associated with external and internal influences vary with time. As originally
formulated by Hernes (1976, p 434), this model does not include unobserved susceptibility or the
ability to adopt the behavior, but we will include it later. The model assumes that there are no
social barriers between groups of unmarried and married people. Let F(t), the cumulative

proportion of persons already married between t; and t; f(t), the probability density to get
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married, that is the derivative of F(t); S(t) the complementary of F(t), i.e., the proportion of
people who are not married at time t:

J (@ =pOS©®)+qOF@®)S@) (1)

The product F(t)S(t) represents the probability for two persons, one unmarried the other married,
to interact. q(t) is the rate of diffusion or contagion at time t, given that an unmarried person is in
contact with a married person during a unit of time. In this general formulation, this rate is a
function of time. In the case of marriage, the coefficient of internal diffusion g(t) can be
understood as the rate for a single person to get married, given he or she receives information
about marriage from an already married person in the cohort. The level of this rate at time t can
depend on several elements related to the predisposition of the person to marriage and to his or
her position on the marriage market. As formulated in this model, each person already married,
even for a long time, is considered to have a potential influence on an unmarried person, and this
influence is equal among all already married people. p(t), also a function of time, is the rate of
adoption of the behavior due to external influences such as media or norms on marriage. Strang &
Tuma (1993) suggest another interpretation in which p(t) is no longer related to external influence

but to the effect of individual endogenous characteristics on the behavior adoption rate.

This model can be rewritten as a hazard rate function instead of a probability density function. If
h(t) symbolizes this hazard rate, as h(t)=f(t)/5(t):

h(t) = p(t) + q(OF(2) (2)

In the case of g(t)=0, adoption of diffusion depends only on the intrinsic characteristics of each
individual or on external influence. In this case, p(t) can be shaped by one of the usual functions
applied to a parametric event history model. For example, if p(t) is considered constant, i.e.,
p(t)=p , then an exponential model is estimated. But if p(t) is considered always increasing or

decreasing, it can be estimated by a Weibull or a Gompertz function.

In the case of p(t)=0, the process of adoption of the behavior depends only on internal influences.
In this case, if g(t) is constant, i.e., g(t)=q, the model corresponds to the well-known logistic
growth with g as the coefficient of diffusion (Coleman, 1964; Griliches, 1957; Mahajan & Peterson,

1985). In his first paper on the diffusion of marriage in American cohorts, Hernes (1972) supposes
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that g(t) is a decreasing function of time because unmarried people progressively lose their ability
to attract potential partners as they grow older. This depreciation of the “marriageability” of a
person on the marriage market draws a force opposed to the force that results from the process of
diffusion. An alternative meaning of this decreasing force on the hazard rate of marriage is
proposed by Diekmann (1989), who argues that it corresponds to a process of isolation of single
persons as they get older due to the rarefaction of potential partners on the marriage market. A
third mechanism can be related to the progressive habituation of a person to remain single and to
have one’s one way of doing things incompatible with a life with a partner. The formulation

proposed by Hernes for q(t) is:
q(t) = Ab' (3)

A is the initial average of “"marriageability” (A>0), while b is the constant of deterioration of this
ability (0<b<1). The Hernes model owns the property to be defective—the cumulated proportion
F(t) of married persons does not necessary reach 1 at the end of the marriage process. A fraction
of persons in a cohort is excluded from marriage due to the negative force on the marriage hazard
rate becoming higher in absolute value than the positive force due to the increase of already
married persons. It is to worth noting that a difference between the number of men and women
would not correspond to Hernes hypothesis of a progressive negative force: In this case, if the
interest is on the marriage of men and if there are more men than women in the population, it
would result in a classic cure model in which a fraction of men would be determined to remain
unmarried from the staring point of the marriage process (Box-Stephensmeier & Jones, 2004;
Schmidt & Witte, 1988).

Another decreasing function with time has been proposed by Diekmann (1989), for whom the most
used log-logistic model can be interpreted as a diffusion model with a decreasing coefficient of

diffusion with time. In the case of the log-logistic model:

4(0) =§ @)

Where b>0. The log-logistic model is more parsimonious than the Hernes model as it only has two
parameters to estimate: one related to the initial conditions and the second to the decrease in

time. However, unlike the Hernes model, the log-logistic model is not defective, which means that
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everyone is considered to have adopted the innovation by the end of the process. Immunity can
however be considered with the hypothesis that a fraction of persons in a cohort will never adopt
the innovation (Briederl & Diekmann, 995). This hypothesis, which corresponds also to estimate a
cure model, means that according to unobserved characteristics, some people are determined from
the beginning of the process to remain unmarried. Such a model could work, for example, if there
is a difference between the number of men and women in the cohort. Generalizations of the
Hernes and/or the log-logistic models have been proposed by Banks (1994), Braun & Engelhard
(2004), Diekmann (1992) and Yamaguchi (1994). Whatever these generalizations, the principle of

a diffusion process countered by a loss of abilities remains.

The classic mixed influence diffusion model corresponds to the hypothesis in which in equations (1)
and (2), p(t) and g(t), are constant (p(t)=p,; q(t)=q) (Mahajan & Peterson, 1985). This model was
introduced in mathematical sociology by Coleman (1964), and it has been rather diffused in
marketing research, as a consequence of the work of Bass (1969). In this discipline, the peculiarity
of this model is that it is generally estimated on aggregated data on the diffusion of innovation
products (Mahajan & Peterson, 1985). This model has been less estimated on individual data of
adoption. Its adaptation to the corpus of parametric methods of event history analysis with a
procedure of estimation based on the maximization of a likelihood equation does not present many
difficulties (Bass, Jain, & Krishnan, 2000; Roberts & Lattin, 2000). This model is written:

1) =[p+aF®OB0) (5)

Figure 1 presents the density distribution f(t) of the mixed influence model when p=0.01 and
g=0.03, with the contribution to this density of each influence. The contribution of the external
influence on density is decreasing while the contribution of internal influence first progressively
increases and then decreases. The mixed-influence model has sometimes been interpreted to allow
the distinction between two groups of persons in a cohort: a first fraction of persons, called
innovators, adopt the behavior under external influences, while others, called imitators, adopt it
through channels of internal influences (Bass, 1969). This point of view, however, has been
criticized for the fact that the mixed-influence diffusion model, as specified, does not allow a clear
distinction between two groups with different behaviors of adoption. As it is formalized, this model
means that one person can adopt the innovation either under external influences or internal

influences, the weight of each of these influences varying over time (Tanny & Derzko, 1988).
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Figure 1. Density function f(t) of a mixed-influence diffusion model and contribution of external and

internal influences on density

The mixed-influence model has been much used in marketing research in order to analyze
diffusion of innovation in consumption products. We think that this model is also interesting to
be applied on the analysis of demographic process such as marriage or union formation. In such
cases, external influences can be interpreted as social pressure coming from persons other than
peers who already adopted the behavior, for example, parents or relatives. These social
pressures can also come from institutions or network channels that diffuse social norms on
marriage. Moreover, the distinction between internal and external influences can be related to
the distinction between the two elements of social interactions as theorized in family planning
studies (Bongaarts & Watkins, 1996; Montgomery & Casterline, 1996; Kohler, 2001). The first of
these elements is social learning, which corresponds to the acquisition of information about the
innovation or the behavior through others. In the case of marriage, information is, for example,
about others already married. Social learning can then be assimilated as internal influence. The
second element of social interactions is social influence, which refers to social conformity
pressures. It can be considered as external influence. The mixed influence model, as initially
formulated by Coleman (1964), is not defective; it does not allow that a fraction of individuals in
a cohort remain unmarried. Such a fraction can be introduced by estimating a split-population
model in which, for unknown reasons or characteristics, a portion of individuals is determined to
remain unmarried from the beginning of the process or if there is a difference between the
number of men and women in the population. However, the introduction of general unobserved

heterogeneity can also be envisioned.



2.2 Unobserved Individual Susceptibility

The Hernes and log-logistic models are based on the observation that for most diffusion processes,
the shape of the growth curve is an asymmetric S shape, “with the upper shank of the S being
more extended” (Lekvall & Wahlbin, 1973, p. 364). Such an asymmetric shape is usually observed
in the case of demographic behaviors and events of the transition to the adulthood, such as living
home, birth of the first child, and especially marriage. Hernes (1972) and Diekmann (1989)
hypothesize that this asymmetry corresponds to a decrease in the transmission rate g(t) when
time increases. However, an alternative hypothesis can be proposed. This hypothesis leans on
notions of unobserved heterogeneity or frailty as it is developed in the analysis of unemployment
and mortality (Aalen, Borgan, & Gjessing, 2008; Heckman & Singer, 1982; Vaupel et al., 1979). In
the domain of mortality, frailty models assume that the general shape of the hazard rate is the
same for each individual of a population but that each individual is characterized by his or her own
frailty, which remains invariant as time passes (Vaupel et al., 1979). The hazard rate of death for
an individual corresponds to the product of the general shape of mortality hazard and individual
frailty. Such a model means that at the beginning of the process, most frail people die while less
frail people take more and more weight in the population to survive. As a consequence, the hazard

rate of decease at the level of the population is decreasing.

By analogy with frailty models, the diffusion processes of an innovation or behavior can be
decomposed into the following two elements: first, the general shape of the diffusion, which could
be called—following Strang & Tuma (1993)—the infectiousness from those who have adopted the
behavior or, preferably, the transmissibility of the innovation to persons who have not yet adopted
the behavior; second, the susceptibility or the ability of an individual to adopt the innovation or the
behavior. The susceptibility is the equivalent of the frailty or the unobserved heterogeneity with
the common property to be unobserved. This unobserved susceptibility can be related to the ability
of a person to be in contact with persons who have already adopted the innovation or to a person’s
ability to accept an innovation or a behavior when there is such a contact. By hypothesis, it
remains invariant as time goes on. As in the case of frailty models, we suppose a proportional
effect of individual susceptibility to the risk of adoption of the behavior. A first model incorporating

individual susceptibility that can be envisaged is the simplest model of logistic growth:

h(t|u,) = u,[gF (t)] (6)

Where u; represents the individual unobserved susceptibility to adopt the innovation and

h,(t|u,;)represents the hazard rate for an individual given that he has susceptibility u; to adopt. g

expresses the coefficient of transmissibility from a person who already adopted it. If we suppose
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that u; is distributed such that its mean is equal to 1, then g represents the coefficient of

transmission of the behavior to a person with an average susceptibility of adoption.

The meaning of individual susceptibility has to be better specified. It is important to underline that
this susceptibility is related to a person and not to possible transmitters and their “infectiousness”
(Strang & Tuma, 1993). As in the Hernes or log-logistic models, the model expressed in Eq. (6)
supposes that everyone who adopted the behavior has the same infectiousness, whatever the
moment of the adoption or the social proximity to potential adopters. Susceptibility can be related
to two series of factors: The first factor is related to the level of contact with others and, more
generally, to the openness to receive information or, referring to social interactions approach
(Bongaarts & Watkins, 1996), to learn from others. The second factor is related to the probability
that someone adopts the innovation after he/she has acquired information about it. For example,
in the marketing research tradition, susceptibility is related to the ability of a person to purchase a
given product (Jeuland, 1981, qtd. in Mahajan & Peterson, 1985; Roberts & Lattin, 2000). This
suggests that susceptibility depends on the properties of the innovation, more generally of the
object of diffusion. Individual susceptibility is specific to the innovation and can be different
according to what is diffused. It then can be related to the openness toward the innovation but
also to the context in which the person is living. For example, if the behavior is marriage,
susceptibility can depend on the degree of aversion to the marriage of the person and his/her
attractiveness on the marriage market. The more a person is isolated from others or the more
aversion he/she has toward the behavior—or the less the context is favorable for him/her—the

lower his/her susceptibility toward adopting the behavior.

In Eqg. (6), the transmissibility process follows a logistic growth. Two opposite “forces” play a role
on the process of adoption of the behavior. As before, the first force is related to the increase of
people who have already adopted the innovation with the effect of increasing the hazard rate. The
second force is related to the differentiation of susceptibility among individuals. By analogy with
frailty models, most susceptible persons will first experiment with the event. Consequently, less
susceptible individuals will progressively take more and more weight in populations that did not yet
experiment with the event. For some of them, susceptibility u;can be so low that the hazard rate to
adopt the behavior will approach zero over the time, which means that they will not experiment
with the event. Such a model with a constant rate of transmission from people who already
adopted the behavior to those who did not, and with individual susceptibility to adopt the behavior,
can explain a S growth curve with a more extended upper shank as well as the Hernes or the log-

logistic models.

An individual susceptibility element can also be added to the classic mixed influence model
(Jeuland, 1981, qtd. in Mahajan & Peterson, 1985). The hypothesis here is that an individual’s

susceptibility to adopt is similar whether under external or internal influence.



ho(t|u,)=ulp+qF )] (7)

In this case, p and g represent the average susceptibility of adoption under each of the influences.
As before, the model displays two opposing forces—one related to the increase of the force of
adoption due to increase of persons that already have adopted the behavior, while the second is
related to the increase of the weight of those less susceptible to adopt in the population. Finally,
through similarity with the general model expressed in Eq. (1) and (2), we can write a general
model in which external and internal diffusion coefficients are expressions of time and into which is

introduced unobserved susceptibility:
h(t1u) = u,[p(6) + () F (1)] (8)

2.3 From Individual Hazard to Population Hazard

Equations (6) to (8) are expression of an individual hazard rate that depends on the adoption
susceptibility of i. Following our analogy between the susceptibility to adopt an innovation or
behavior and the frailty in mortality research or unobserved heterogeneity in unemployment
studies, we now assume that vu; is gamma distributed with a mean and a variance equal to 1 and «,
respectively. With the assumption of a gamma distributed unobserved heterogeneity model, it has

been shown that whatever the shape of the underlying or basic hazard rate (Aalen et al., 2008):

a(t)

" =13 xC(1)

(9)
and:

Sy =1+ KC(z))‘i (10)

h(t) and S(t) represent, respectively, the hazard rate at the level of the population and the
probability of not having experienced the event or the behavior at time t, while a(t) represents the

basic hazard rate and C(t) represents the cumulated basic hazard rate from O to t:

C(?) =f0{(u)du (11)



Expressions (9) and (10) mean that:

h(t) = a()(S()) (12)

As S(t) = 1-F(t), and if we consider that a(t) is shaped by the Hernes mixed-influence diffusion
model as expressed in Eq. (2), i.e., a(t) = [p(t)+q(t)]JF(t), then:

h(e) =[p(0) + g F0) |1 - F@))* (13)

The density of adoption then becomes:

1@ =[p©+ g FOJ1- F@))™ (14)

As the Hernes (1976) mixed-influence diffusion model is the more general expression we have,
this property of diffusion models with a gamma-distributed susceptibility remains when g is a
constant and when p is equal to 0 (logistic diffusion model) or is constant (classic mixed-influence
diffusion model).

3. Application to Wisconsin Longitudinal Study Data

In this section, we wish to compare the gamma-mixed-influence model with parameters p and g
constant with the Hernes model. We estimate these models on marriage behaviors of people
interviewed in the Wisconsin Longitudinal Study Sample (WLS) (2006). The first question we wish
to answer is which model fits better with data. The second question is about eventual links

between different parameters of the gamma mixed-influence model.

3.1 Models integration and estimation

After integration (Hernes, 1972) and reparametrization (Wu, 1990), the Hernes model is specified

with three parameters to be estimated:

=10 =



o~ exp(-BA")
1+ 07 exp(-BA") (15)

F(t) =

and:

— 0BA" log Aexp(BA)

he) = 1+ 07 exp(-B1")

(16)

Where A=b, B=-A/log(b).

o is related to the quantum effect of marriage, A to the speed of the decline of marriageability,
while B is inversely related to the initial proportion of persons adopting marriage (Billari &
Toulemon, 2006). As A and B are positive definite and the proportion ¢ is bounded between 0 and
1 included, a better way to fulfill these conditions is to estimate the logarithm of the two first

parameters and the logit of the third:

A =exp(l) (17)
p = exp(m)
o= exp(s)/[l + exp(s)]

Parameters can be estimated by maximizing the logarithm of a likelihood equation; this equation

corresponds to traditional likelihood equations for survival data (Wu, 1990).

The gamma-mixed influence model with parameters p and g constant can be integrated as a

standard mixture model (Rohwer & Pétter, 2002). In this case:

1 (18)
(l+q)exp[—(p+q)t]
F(t)=1-|1-xlog|~—P
1+gexp[—(p+q)t:|
p
pP+tq
1+ Lexpl- (p + )] (19)

h(1) =

(l + q) exp[— (p+ q)t]
p
1-xlog

1+ geXp[— (p+ )]
P
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Where k represents the variance of the gamma distribution of individual susceptibility. As these

three parameters are positive definite, the logarithm of these parameters have to be estimated.

p =exp(a)
g = exp(b)
K = exp(c) (20)

These three parameters can be estimated by the maximum likelihood method. Note that the
likelihood equation (not presented here) is two times derivable which means that variances of

parameters can also be estimated.

Hernes models are often estimated on birth cohort samples at a country level (Billari & Toulemon,
2006; Dieckmann, 1989; Goldstein & Keney, 2001; Hernes, 1972). It is not a problem to estimate
them on such samples with the aim to isolate quantum and tempo effects. However, it seems to us
to be more awkward to estimate these types of models on a whole cohort if the theoretical frame
is related to the analysis of a diffusion process in a behavior. The implicit hypothesis here is that all
persons of the cohort that do not adopt the behavior at time t can be in contact or have
information about those who already adopted the behavior, despite spatial and social distances
between persons. This hypothesis does not seem to be realistic, and it should be better to estimate
models in which weights are given according to distances between persons (Hedstrém, 1994;
Montgomery & Casterline, 1996; Palloni, 2001; Strang & Tuma, 1993) or, like sometimes proposed
in epidemiology, models in which is integrated a “mixing” parameter which measures the average
probability for one person to have contact with others (Garnett, 2000). Models like the Hernes
model and those we propose with the theoretical frame of social diffusion can however be
estimated in the case of groups of people who are living in the same micro-local place or who were
socialized during a period in the same institution, for example, in a school. If the analyzed
behavior, for example, marriage, generally occurs after that all members of the group left school,
we can suppose that, first, all people know one each other, at least superficially, and second, that
all persons can have information about others, even if there is no direct contact between them: the
network of peers, i.e., people socialized in the same school, forms a channel of diffusion (Strang,
1991) in a sense that it is not necessary for someone to be directly in contact with another to learn
that this other adopted the behavior. Such a hypothesis of a diffusion channel is compatible with
models like the Hernes model in which the adoption of the behavior depends on the proportion of
those who already adopted the behavior. It is also compatible in models like the logistic-gamma
and the mixed-influence gamma models in which the adoption of a behavior does not depend on
the proximity to or the infectiousness of a person that already adopted the behavior but from the

ability of a person to be informed about behaviors of others or their ability to imitate them.
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3.2 Wisconsin Longitudinal Study Data

Data of the Wisconsin Longitudinal Study Sample allows distinguishing people according to the high
school they attended (Hauser, 2009; WLS, 2006). The Wisconsin Longitudinal Study is a panel
composed of one-third of men and women who graduated from a Wisconsin high school in 1957 (N
= 10,317). Several interviews were conducted between 1957 and 2005 on this sample, sometimes
with their sibling or marital partner. An interview in 1975 on a subsample of 4,330 men and 4,808
women (N = 9,138) reconstitutes the marital history of each individual, especially the date of the
first marriage. Despite the ancientness of data that may not reflect contemporary behaviors of
union formation, the Wisconsin Longitudinal Study Sample corresponds to our desire to use data

for which the theoretical frame of a diffusion process can be developed.

As there is the possibility to distinguish persons according to the school they followed", we can
suppose that peers that leave a school in the same year form a channel of diffusion. We estimate
the Hernes model and gamma-mixed-influence model in each group in which at least thirty men
and/or women were sampled in the survey with the aim to see which of these two models better
fits marriage processes". It should be noted that the estimation of the diffusion model on each
subsample necessitates the hypothesis that the marriage diffusion process measured with selected
persons in the sample reflects ones in the entire school cohort. A first examination of data shows
that marriages are rare before June 1957 but start to increase at this date, especially in the case
of women. We suppose that this is because most youth left school after their graduate degree. We
decided to consider May 1957 as the starting time (t;) of the marriage process and discounted all
persons who married before this date. Size and numbers of censored persons for each school are

indicated in result tables in the annex.

4. Results

Models were first estimated with the TDA version 6.4 software, especially with the use of the frm/
command, which allows programming likelihood functions for event history models” (Rohwer &
Potter, 2002). However, we used the function mle (maximum likelihood estimation) of the library
stats4 in the R package for definitive estimations (Venable & Ripley, 2002). In the case of the
Hernes and the Gamma-mixed influence model, parameters were estimated with a quasi Newton-
Raphson method of optimization (method BFGCS). Estimates of both models according to gender
and schools are reported in tables in the appendix (tables al to a4). Note that in some cases,
estimations gave inaccurate results, in the sense that a parameter was estimated to be very low
with a large variance. This is the case of 3 schools in 41 with women and 2 in 30 with men. We

removed these schools in our further comments.

There are no formal possibilities to compare the Hernes and the Gamma- mixed influence models

with usual criterions like, for example, the likelihood ratio test, since models are very different
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while they share the same number of parameters. However, if we nevertheless compare the
maximum logarithm of likelihood obtained for each model, it is highest in the case of the gamma
mixed-influence for 35 schools in 38 for women (table 1). Results are more mitigated in the case
of men as estimations show that the maximum of the logarithm of the likelihood for the gamma-
mixed influence model is higher than the one of the Hernes model in 19 out of 28 schools only. The
estimated cumulative function of marriage of each model fit with a non-parametric Kaplan Meier
estimation in the case of the school 1 (55 men and 62 women), as shown in figure 2. Similar
patterns are found in other schools for both men and women. The hypothesis of the diffusion
process of marriage with two mixed influences and individual susceptibility then appears to be very
plausible. The diffusion process thus seems to be an interesting competitor to the Hernes process
in which people lose progressively their attraction on the marriage market with time. But the
results could have another interpretation. Indeed, the model formulated by Hernes in 1972 was
created in a context in which the idea of an individual heterogeneity was not yet introduced in
survival models’. In this perspective, the Hernes model can be then considered as a good

approximation of the hypothesis that there is an individual susceptibility to adopt the behavior.

Hernes model Hernes model
men ‘women

Fit)

o — KM | # — KM
= N s -~ KM confidence interval o I === KM confidence interval
------ Fit i === Fit

0 50 100 150 200 0 50 100 150 200

Time Time

Gamma-mixed influence model Gamma-mixed influence model
men women

Fit)
Fit)

— KM

— KM

--- KM confidence interval En it --- KM confidence interval
"""" Fit iy . === Fit

Figure 2. Fit of the Hernes model and the gamma mixed influence diffusion model in the case of

the school 1

A synthesis of estimations in each school of gamma mixed influence models for men and women is
proposed in Table 1. It is interesting to note that the g parameter of internal influence does not

seem to differ between men and women. This result means that there is no gender difference in

- 14 -



the internal process of diffusion. However, the p parameter of external influence is, on average,
larger for women than for men, which means that there is greater normative pressure on women
to marry quickly after leaving school than for men. If the mean of the k parameter for the variance
of the gamma distribution is similar between men and women, this parameter seems to be more
dispersed for women than for men. The distribution of individual susceptibility appears then to be

more strongly dependent on the school in the case of women.

Table 1. Synthesis of estimated parameters of gamma-mixed influence models

Men Women
Parameter Min Max Mean Var(log(parameter)) Min Max Mean Var(log(parameter))
K 0.2163  2.0375  0.6960 0.3195 0.3835 1.8810 08527 0.1320
p 0.0002 0.0049 0.0018 0.5716 0.0010  0.0251 0.0069 0.5856
q 0.0385 0.1249  0.0611 0.0803 0.0377 02013 00668 0.1226

Q-plots of estimated parameters show a negative correlation between the p and the g parameter,
which is especially strong in the case of men (Figures 3a and 3b). The higher is internal influence
and the lower is external influence. Such a result could indicate that there is a kind of competition
between the two influences or that the lack of one influence, for example, external influence, is
compensated by a surplus of the other influence, for example, internal influence. There is no
strong correlation between parameters of external influence and dispersion of individual
susceptibility. However there is a positive correlation between the external influence and dispersion
parameters. Higher is the external influence in a school and higher is the dispersion of the

individual susceptibility.

0.12

0.10
!

0.06

004
!

T T
0.001 0.002 0.003 0.004 0.005 0.001 0.002 0.002 0.004 0.005

T T T
0.04 0.08 0.08 0.10 0.12

Figure 3a. g-plots of parameters of gamma mixed-influence models-men
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Figure 3b. g-plots of parameters of gamma mixed-influence models-women

5. Conclusion

The Hernes model postulates that a diffusion effect is slowed down by the decrease of the
marriageability of persons as time goes on. The alternative models we propose are based on
another suggestion of Hernes (1972, 1976) in which the diffusion effect is progressively
counterbalanced by heterogeneity in the susceptibility of persons to adopt the behavior. Persons
with higher susceptibility have a higher risk to adopt, and those who have a lower risk take more
and more weight in the population of unmarried persons as time passes. The models are similar to
those with a gamma frailty in mortality studies. Substantially, the gamma-mixed-influence model
also presents the great potential to allow understanding processes of marriage and other
demographic behaviors. As it makes the distinction between an external and an internal influence,
it does not bind the diffusion process only to the influence effect of the cohort or the group.

Moreover, it introduced the idea that susceptibility to be influenced is not the same for all persons.

The estimation of the gamma-mixed influence model on the Wisconsin longitudinal data on
marriage shows that this model seems to fit a little better than the classical Hernes model. But, in
our opinion, both models approximate the data well. The gamma mixed influence can be further
developed by taking into account individual characteristics of persons that can have an influence
on each of the two influence parameters as well as on the individual susceptibility variability. There
are potentially no difficulties in adding fixed covariates. Moreover, we presented a generalization of
the model that can be a basis for investigations in order to introduce time dependant covariates

and to allow the different parameters of internal and external influences to be time dependent.
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Notes

" Joshua R. Goldstein, personal communication.

" Each individuals surveyed was attributed an ID number in which the first three digits was a code
for the school. Note that we do not have information about the school in standards data files (WLS,
2006).

il We chose a limit of 30 because models cannot be estimated if a sample is under this limit.

v Note that an example for the estimation of the Hernes model is proposed in the user’s manual
(Rohwer & Potter, 2002).

vV 1t will be later by Manton, Vaupel & Stallard (1979).
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Appendix

Table al. Results of Hernes models-Men

logit(c) log(A) og(B)
School N Estimate  Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik

1 55 -2.9623 0.4864  18.0422 4.0622 0.4864 328.3602 1.9351 0.0135 276.4662 -265.5252
31 42 -2.6981 0.5146  14.1471 4.1284 0.5146 269.4392 1.9460 0.0175 216.2683 -206.0673
39 31 -1.9502 0.5904 6.4420 4.4311 0.5904 182.0973 1.9050 0.0306 118.4285 -146.6958
52 34 -3.7768 1.6717 8.5328 4.2359 1.6717 151.4941 2.1850 0.0217 219.5848 -165.5805
62 39 -2.1909 0.4062 11.8164 4.1169 0.4062 290.0043 1.9580 0.0224 171.3211 -185.3116
78 44 -3.2293 0.9256  11.2670 4.3371 0.9256 202.1574 1.9768 0.0172 227.6873 -221.7318
133 34 -2.7385 0.5097  14.7120 4.0150 0.5097 242.7974 2.0769 0.0248 173.9497 -167.8940
137 59 -2.8605 0.5106  16.0248 4.2081 0.5106 294.3074 2.1747 0.0137 344.2064 -289.8286
139 54 -4.1064 1.7270 9.7640 4.4819 1.7270 176.8371 2.2458 0.0135 373.4949 -273.1263
151 62 -2.5966 0.3513  19.1931 4.2307 0.3513 369.2866 1.8651 0.0119 293.1979 -308.7135
159 52 -4.2730 1.9184 9.5174 4.2728 1.9184 169.8576 2.2224 0.0169 291.7582 -249.2428
160 33 -3.5377 1.4961 8.3652 4.1547 1.4961 140.2962 2.0721 0.0227 189.1365 -159.7110
190 33 -4.0610 2.9396 5.6102 4.4790 2.9396 108.9641 2.0922 0.0341 128.5254 -164.5614
192 53 -3.1647 0.7118  14.0709 4.1536 0.7118 267.3501 2.1278 0.0139 326.6993 -254.8241
200 34 -3.7006 1.5316 8.9417 4.3238 1.5316 164.6825 2.1126 0.0224 199.3905 -169.4546
230 M -4.7273 4.0626 5.5008 4.5977 4.0626 115.9538 2.1105 0.0491 90.7331 -203.6846
232 63 -1.8521 0.1552  22.1030 3.95%4 0.1552 502.5194 1.8283 0.0145 231.1015 -298.4852
236 49 -2.6010 0.3530  19.1651 3.7790 0.3530 287.8027 2.3990 0.0299 192.5695 -230.2719
243 34 -4.9107 5.3260 4.5278 4.7076 5.3260  99.3948 2.2483 0.0427 118.5163 -170.9186
245 36 -2.0996 0.3445  12.7975 3.9497 0.3445 255.9237 1.8431 0.0222 152.8260 -171.6982
281 31 -7.7316  30.6573 1.9499 4.7176  30.6573  41.3276 2.5409 0.1415  45.6357 -146.0805
323 52 -2.2206 0.2373  20.7807 3.7266 0.2373 397.2853 1.8427 0.0152 223.8423 -239.6428
334 50 -2.3519 0.3469  15.9460 4.1375 0.3469 305.9168 2.0516 0.0182 231.3262 -244.4407
338 34 -6.0748  15.4807 2.3839 5.0155  15.4807  55.0178 2.2132 0.1565  31.3076 -177.8495
340 48 -1.6212 0.1524  17.2413 3.4889 0.1524 418.4141 2.2005 0.0331 146.1286 -208.4452
372 52 -1.7966 0.1906  16.9317 3.9761 0.1906 398.4982 1.9732 0.0217 179.5456 -244.4176
374 42 -4.5064 2.4657 8.2358 4.2610 2.4657 131.1492 2.3711 0.0163 344.1506 -203.9134
389 39 -2.6299 0.5426  12.7460 4.0492 0.5426 245.5586 2.0342 0.0198 209.0440 -187.5621
422 59 -2.8645 0.5148  15.9383 4.2170 0.5148 309.4356 1.9534 0.0126 303.7945 -289.5065
432 44 -2.1076 0.2582 17.2034 4.0062 0.2582 346.4517 1.7420 0.0177 171.8191 -213.5950
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Table a2. Results of gamma-mixed influence models-Men

log (k) log(p) log(a)
School N Estimate Variance Wald test Estimate Variance Wald test Estimate Variance Waldtest Logdik
1 55 -0.3953 0.1678 0.9312 -5.4900 0.2165 139.1940 -2.8578 0.0832 981637 -264.3192
31 42 -0.2049 0.1914 0.2194 -5.8896 0.3342 103.8064 -2.8863 01009 825489 -2053663
39 31 -20.2257 10.6170  38.5303 -5.6938 0.1773  182.8204 -4.4789 0.2217  90.4871 -147.8478
52 34 -04734 0.2954 0.7587 -6.6842 06872 650146 -26047 0.0986 688223 -1652476
62 39 0.0608 0.1565 0.0236 -6.5268 04634 919324 -2.8814 0.0770 1078159 -184.8665
78 44 -0.6976 0.5166 0.9421 -5.6096 0.2835 110.9964 -3.1781 01888 535104 -220.7413
133 34 0.1808 0.1439 0.2272 -7.0066 0.8267 59.3870 -2.3756 0.0956 59.0026 -1665815
137 59 -0.3380 0.1769 0.6456 -6.8566 0.3126 150.4021 -2.8834 0.0539 154.1176 -290.7695
139 54 -0.8102 04203 15616 -6.7288 04005 113.0542 -29192 0.0832 1024810 -2734750
151 62 -0.3225 0.2220 0.4685 -5.5235 0.2020 151.0163 -3.1933 01421  71.7782 -306.9494
159 52 -0.9628 0.3401 27253 -6.2603 0.2862 136.9489 -27295 0.0545 136.7555 -249.2819
160 33 -0.7141 04678 1.0899 -5.7633 0.3856  86.1338 -2.8233 01347 591839 -1595108
190 33 -1.1968 1.0041 14263 -5.7051 03258 99.9136 -3.1675 01509 66,5020 -163.8517
192 53 -0.4618 0.1827 1.1674 -6.4926 0.3145 134.0530 -2.7653 0.0528 144.9481 -255.0187
200 34 -0.5569 0.3167 0.9792 -6.2374 04692 829168 -2.8147 01011 783379 -1688710
230 41 -1.5310 11132 21055 -5.3562 02317 123.8228 -3.2567 01353 783926 -201.7476
232 63 0.3583 0.0905 14178 -5.9709 0.2742 130.0250 -2.7906 0.0880 885282 -297.4653
236 49 0.1440 0.1026 0.2022 -8.3386 1.0126  68.6652 -2.2096 0.0542 90.0048 -230.9734
243 34 -1.0678 0.7133 1.5984 -6.4568 04620 902417 -3.0322 0.0992 927117 -170.3473
245 36 0.0652 0.2163 0.0196 -5.6170 0.3625 87.0411 -29153 01786 475906 -171.4998
281 31 -1.4160 14357 1.3966 -6.7188 0.7907 57.0919 -25738 01075 616247 -1457426
323 52 0.1419 0.1080 0.1864 -5.4808 0.2947 101.9146 -2.5483 0.0990 655944 -2394599
334 50 0.0370 0.1635 0.0084 -6.6837 04325 103.2977 -2.8439 0.0949 851932 -244.7426
338 34 -7.5728 726.6166 0.0789 -5.1221 0.1630 160.9520 -3.8005 0.1292 111.7644 -174.7609
340 48 0.7117 0.0708 7.1563 -7.8292 0.8429 727235 -2.0871 0.0527 827031 -209.0629
372 52 0.4290 0.0979 1.8797 -6.8047 04828 958998 -26939 0.0770 942339 -2443363
374 42 -0.6194 0.3101 1.2371 -7.3694 0.7974 68.1088 -2.4621 0.0763 794199 -204.0764
389 39 -0.1840 0.1889 0.1793 -6.3034 04029 98.6256 -2.7765 0.0791 974621 -187.6983
422 59 -0.5256 0.2096 13177 -5.7331 01915 171.6271 -3.0935 0.0755 126.7576 -288.7924
432 44 0.2029 0.1618 0.2544 -5.3215 03231 87.6380 -29063 02095 403129 -211.3404
Note: In italics problems in estimation
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Table a3. Results of Hernes models-Women

logit(c) log(A) og(B)
School N Estimate  Variance Wald test Estimate Variance Wald test Estimate Variance Wald test Log-lik

1 62  -3.7708 0.8738  16.2733 4.0057 0.8738 241.8952 2.0097 0.0142 285.1032 -292.1862
31 44 -2.8410 0.4062  19.8711 3.5283 0.4062 261.9430 1.9032 0.0159 228.1106 -197.5023
47 34 -4.1348 2.2456 7.6133 4.5423 2.2456  131.6321 1.9504 0.0381  99.7981 -178.2180
52 46  -1.9974 0.2151 18.5438 3.4278 0.2151 317.2360 1.6519 0.0163 167.6227 -201.2647
62 51 -2.9315 0.4270  20.1265 3.9302 0.4270 291.1080 1.6612 0.0169 163.4715 -247.3624
78 54  -2.8034 0.3557  22.0968 3.8534 0.3557 368.0943 1.9079 0.0136 266.8936 -255.6021
81 30  -4.6472 3.3454 6.4556 4.0018 3.3454  94.7500 2.1315 0.0393 115.7189 -137.2257
108 34 -3.6071 1.4204 9.1607 4.0608 1.4204 155.8016 2.0483 0.0239 175.8502 -160.8620
133 53  -2.2146 0.2129  23.0383 3.7575 0.2129 397.0877 1.6912 0.0137 208.2761 -249.3336
134 30 -3.0474 0.6992  13.2828 3.9219 0.6992 194.9441 1.8185 0.0242 136.5619 -146.3294
137 53  -2.2956 0.2451  21.5055 3.6665 0.2451 407.0047 2.0694 0.0174 246.2372 -240.1882
151 67  -2.3721 0.1878  29.9669 3.4286 0.1878 439.0833 1.8492 0.0112 304.1220 -296.1258
153 39 -2.4629 0.3238  18.7309 3.5392 0.3238 285.2757 1.6425 0.0188 143.5372 -176.2331
159 64  -3.1498 0.4840  20.4993 3.9742 0.4840 359.7727 1.9050 0.0128 284.2046 -301.3927
160 42 -3.2386 0.5640  18.5979 3.9801 0.5640 271.9583 1.8199 0.0178 185.8351 -206.9863
163 31 -2.2503 0.3889  13.0204 3.8146 0.3889 254.2428 1.6799 0.0244 115.5470 -145.8473
192 46 -2.9309 0.4483  19.1618 3.7678 0.4483 293.8123 1.8578 0.0157 219.9285 -214.8226
200 38 -3.1188 0.7664  12.6917 3.7549 0.7664 221.7116 1.9888 0.0207 190.8099 -169.8220
201 37 -2.7329 0.4707  15.8689 3.6266 0.4707 234.7586 1.6839 0.0213 133.0239 -168.4411
230 41 -2.5920 0.4393  15.2946 3.9306 0.4393 283.4075 1.8455 0.0181 188.0616 -195.0364
232 66  -2.4672 0.2221  27.4045 3.7131 0.2221 479.0285 1.8132 0.0113 291.7855 -304.3171
236 77 -2.6265 0.2334  29.5614 3.8889 0.2334 506.6553 1.7540 0.0098 315.0224 -366.1275
243 41 -7.5265  32.2251 1.7579 4.6419 32,2251 358345 2.3301 0.2800  19.3892 -189.5062
245 49  -2.1364 0.2113  21.6043 3.4773 0.2113 361.8309 1.6565 0.0153 179.8072 -217.6534
250 42 -2.2247 0.3082  16.0579 3.9662 0.3082 295.9784 1.7361 0.0174 173.3025 -203.3372
255 35  -2.2594 0.3224  15.8360 3.6456 0.3224 253.3644 1.7316 0.0208 144.0652 -162.2680
268 33 -2.5528 0.4972  13.1068 3.5027 0.4972 183.6890 1.6655 0.0236 117.3558 -146.2536
276 49  -2.1231 0.2307  19.5427 3.6375 0.2307 363.5849 1.8541 0.0162 212.2346 -222.3382
281 31 -2.5921 0.5134  13.0872 3.5729 0.5134 201.6333 1.8067 0.0235 138.8726 -139.1441
294 35  -2.3420 0.3976  13.7939 3.7847 0.3976 249.4800 1.8121 0.0210 156.4820 -163.1392
323 51 -2.4433 0.3019  19.7727 3.8573 0.3019 357.5547 1.6932 0.0150 191.3463 -240.8719
338 36 -2.2147 0.2808  17.4669 3.3873 0.2808 228.6359 1.7620 0.0207 149.7724 -160.9695
340 69  -1.9196 0.1396  26.3927 3.6716 0.1396 596.0396 1.8065 0.0124 262.2413 -311.5339
365 33 -2.3413 0.4392  12.4797 3.8446 0.4392 234.0941 2.1453 0.0305 150.6543 -154.7239
372 63  -2.8469 0.3549  22.8402 3.8553 0.3549 424.0568 2.0497 0.0121 347.9914 -291.6180
374 39 -4.4592 2.6750 7.4336 4.3343 2.6750 148.1226 2.1503 0.0318 1452549 -186.5377
389 45  -2.3054 0.2915  18.2317 3.5997 0.2915 327.9196 1.7665 0.0167 186.2961 -201.8213
409 32 -3.4681 1.1734  10.2501 4.2744 1.1734 177.6906 2.0493 0.0230 182.8208 -161.0443
419 35  -2.3046 0.3911 13.5792 3.8475 0.3911 243.7828 1.7212 0.0210 141.1098 -165.7378
422 59  -2.7287 0.2950  25.2381 3.6853 0.2950 364.7411 1.6975 0.0129 223.9121 -273.2600
432 52  -3.2764 0.6880  15.6026 3.8300 0.6880 251.0206 1.8412 0.0189 179.1713 -236.6495
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Table a4. Results of gamma-mixed influence models-Women

log(k) log(p) log@)
School N Estimate  Variance Waldtest Estimate Varance Waldtest Estimate Variance Waldtest Log-lk

1 62 -0.8845 0.3177 2.4632 -4.9957 0.1577 158.2325 -2.7867 0.1072 724209 -290.2438
31 44 0.0197 0.1418 0.0027 -5.0880 0.3333 77.6692 -2.1310 0.1321 34.3691 -196.4451
47 34 -7.0698 9623678 0.0519 -4.5381 0.1285 160.2145 -4.4463 05694 347211 -174.2028
52 46 0.1851 0.1246 0.2748 4.2590 0.1942 93.3971 2.7142 0.2104 35.0180 -200.5035
62 51 -1.0810 0.6989 1.6719 -3.5539 0.0710 177.8649 -7.3904 5132809 0.1064 -236.9257
78 54  -0.0526 0.1176 0.0235 5.5401 0.3191  96.1769 -2.4626 0.0948  63.9377 -253.8089
81 30 -0.9572 0.6249 1.4661 -5.1143 0.4204 62.2110 -2.4689 0.1722 35.4049 -136.0597
108 34 -0.7221 0.3361 1.5512 -5.5291 0.3243 94.2771 -2.7312 0.0962 77.5546 -160.4010
133 53 0.1266 0.1473 0.1088 4.6022 0.1912 110.7860 -2.8410 0.2579 31.2935 -2459989
134 30 -0.1612 0.3302 0.0787 4.7051 04693  47.1680 2.6672 04544 156553 -1435792
137 53 0.2148 0.0874 0.5279 6.6451 04362 101.2391 -2.2810 0.0533 97.6639 -240.9640
151 67 0.1954 0.0719 0.5310 -5.139%4 0.2238 118.0187 2.1484 0.0700 65.9007 -296.1056
153 39 0.0535 0.1772 0.0162 -3.7947 0.2082  69.1548 -2.8612 0.5090 16.0849 -171.7041
159 64 -0.5448 0.1599 1.8565 -5.0255 0.1554 162.5295 -2.8526 0.0833 97.6432 -299.2432
160 42 -0.2983 0.2854 0.3118 4 .4765 0.2618  76.5459 -2.8455 0.4022  20.1303 -202.2420
163 31 0.0303 0.2259 0.0041 4.5545 0.3274 63.3574 -3.0065 0.3657 24.7152 -143.6757
192 46 -0.2443 0.1617 0.3692 4.8128 0.2235 103.6463 2.6120 0.1278  53.4033 -2127647
200 38 -0.3782 0.1839 0.7777 -5.4654 0.3353 89.0793 -2.4395 0.0777 76.5640 -169.7918
201 37 -0.3389 0.2950 0.3894 -3.6966 0.2037 67.0791 -3.2702 0.9419 11.3544 -164.1486
230 a4 -0.1828 0.1866 0.1791 -5.2302 0.2782 98.3188 -2.8389 0.1352 59.6084 -193.9221
232 66 -0.0170 0.0931 0.0031 -5.0186 0.1822 138.2316 -2.6018 0.0860 78.7238 -302.8154
236 77  -0.3420 0.1413 0.8282 4.5409 0.1136 181.5113 -3.1231 0.1634  59.6882 -361.3828
243 41 -8.6727 12724327 0.0591 -4.3373 0.1369 137.4270 -3.2875 0.1459  74.0801 -184.5004
245 49 0.2361 0.1151 0.4843 4.2525 0.2047  88.3421 -2.6034 0.2283 29.6818 -215.1431
250 42 -0.0782 0.2543 0.0241 4.9419 0.2395 101.9805 -3.1414 0.3052 32.3309 -201.4717
255 35 0.2066 0.1943 0.2197 4.7428 0.3604 62.4152 2.5274 0.3188 20.0363 -160.6536
268 33 -0.3367 0.3065 0.3699 -3.6827 0.2216  61.2074 -3.1966 0.8392 121768 -143.4745
276 49 0.1662 0.1091 0.2532 -5.4203 0.2569 114.3543 -2.5416 0.0864 747629 -222.9686
281 31 -0.0787 0.2091 0.0296 4.6765 0.3388  64.5482 -2.5028 0.2071 30.2525 -138.4490
294 35 -0.0405 0.1939 0.0084 5.1115 0.2978 87.7243 -2.7703 0.1577 48.6817 -162.6326
323 51 -0.2686 0.1989 0.3627 4.3632 0.1653 115.1661 -3.2666 0.3149  33.8870 -237.1138
338 36 0.6320 0.1263 3.1623 -5.4025 0.9165 31.8467 -1.5944 0.2568 9.8976 -159.2516
340 69 0.3314 0.0662 1.6579 -5.5763 0.2165 143.6014 -2.5469 0.0578 112.3010 -311.4319
365 33 0.1049 0.1624 0.0678 6.9339 06733 714101 -2.5080 0.0795  79.1630 -1552404
372 63 -0.1905 0.0947 0.3832 6.1790 0.2529 150.9947 -2.4888 0.0378 163.9053 -291.6132
374 39  -0.9583 0.3591 2.5578 5.8281 0.3371 100.7696 -2.7750 0.0738 104.2819 -1855049
389 45 0.0237 0.1262 0.0045 4.7785 0.2316 98.5903 -2.6278 0.1211 57.0045 -201.3019
409 32  -0.1792 0.2369 0.1355 6.4314 0.8250  50.1376 2.5764 0.1464  45.3337 -159.7454
419 35 -0.1619 0.2824 0.0928 4.6571 0.2593 83.6548 -3.1127 0.3595 26.9502 -164.1451
422 59 -0.3939 0.2251 0.6893 -3.8497 0.1250 118.5931 -3.2760 0.5744 18.6832 -266.8423
432 52 -0.7708 0.2493 2.3830 4.2814 0.1553 118.0041 -3.0064 0.1904 47 4699 -233.4154

Note: In italics problems in estimation
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