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SUMMARY1

We consider lithological tomography in which the posterior distribution of (hydro)geological2

parameters of interest is inferred from geophysical data by treating the intermediate geo-3

physical properties as latent variables. In such a latent variable model, one needs to esti-4

mate the intractable likelihood of the (hydro)geological parameters given the geophysical5

data. The pseudo-marginal method is an adaptation of the Metropolis–Hastings algorithm6

in which an unbiased approximation of this likelihood is obtained by Monte Carlo aver-7

aging over samples from, in this setting, the noisy petrophysical relationship linking (hy-8

dro)geological and geophysical properties. To make the method practical in data-rich geo-9

physical settings with low noise levels, we demonstrate that the Monte Carlo sampling must10

rely on importance sampling distributions that well approximate the posterior distribution11

of petrophysical scatter around the sampled (hydro)geological parameter field. To achieve a12

suitable acceptance rate, we rely both on (1) the correlated pseudo-marginal method, which13

correlates the samples used in the proposed and current states of the Markov chain, and (2)14

a model proposal scheme that preserves the prior distribution. As a synthetic test example,15

we infer porosity fields using crosshole ground-penetrating radar (GPR) first-arrival travel16
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times. We use a (50 × 50)-dimensional pixel-based parameterization of the multi-Gaussian17

porosity field with known statistical parameters, resulting in a parameter space of high di-18

mension. We demonstrate that the correlated pseudo-marginal method with our proposed19

importance sampling and prior-preserving proposal scheme outperforms current state-of-20

the-art methods in both linear and non-linear settings by greatly enhancing the posterior21

exploration.22

Key words: Inverse theory, Statistical methods, Hydrogeophysics, Tomography, Ground23

penetrating radar, Porosity.24

1 INTRODUCTION25

Geophysical investigations are rarely performed with the sole aim of inferring distributed sub-26

surface models of geophysical properties. Rather, the underlying motivation is often to gain27

knowledge and constraints on other properties (e.g., permeability, clay fraction or mineral com-28

position) and state variables (e.g., water saturation, salinity, temperature) of interest. Geo-29

physical inverse theory has traditionally focused on assessing the resolution and uncertainty30

of inferred geophysical properties (e.g., Parker 1994; Menke 2018; Tarantola 2005; Aster et31

al. 2018), while interpretation procedures in terms of properties or state variables of interest32

have received less attention. This is changing in hydrogeophysics (Binley et al. 2015), for in-33

stance, where it is now well-established that dedicated inversion approaches are needed when34

using geophysical data to gain knowledge about hydrogeological properties and state variables35

(e.g., Kowalsky et al. 2005). For example, when inferring hydraulic conductivity by observing36

geophysical observables sensitive to water content or salinity during a tracer test experiment37

(Linde & Doetsch 2016). However, these considerations have general validity and relevance for38

exploration and more fundamental geophysical studies. In a mantle context, for instance, one39

example concerns the inference of thermo-chemical constraints from seismological observations40

as reviewed by Zunino et al. (2016).41

42

Multiple inversion frameworks have been proposed that combine hydrogeological and geophys-43

ical data in order to build predictive hydrogeological models (e.g., Ferré et al. 2009; Linde44
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& Doetsch 2016). A critical aspect of such frameworks relates to how geophysical properties45

(sensed by geophysical data) are linked to hydrogeological target properties and variables of46

interest through petrophysical (rock physics) relationships. Brunetti & Linde (2017) distinguish47

between three sources of uncertainty related to petrophysical relationships: model uncertainty,48

parameter uncertainty and prediction uncertainty. While the first two refer to uncertainty in49

the choice of the appropriate petrophysical model and its parameter values, the latter is related50

to scatter and bias around the calibrated petrophysical model. In hydrogeophysical inversion51

studies targeting hydrogeological properties or state variables of interest, we note that the52

petrophysical relationship is often assumed to be perfect (deterministic) with known or un-53

known parameter values (e.g., Lochbühler et al. 2014; Kowalsky et al. 2005). However, ignoring54

petrophysical prediction uncertainty and its spatial correlation patterns results in bias, too55

narrow uncertainty bounds and overly variable hydrogeological parameter estimates (Brunetti56

& Linde 2017). Unfortunately, analytical solutions to such inverse problems are available only57

when considering linear forward models and petrophysical relationships under the assumption58

of Gaussian distributions (Tarantola 2005; Bosch 2004). Geophysical applications, however, of-59

ten involve non-linear physics and non-linear petrophysical relationships (e.g., Mavko et al.60

2009).61

62

Inversion approaches that account for petrophysical prediction uncertainty are often based on63

a two-step procedure: geophysical properties are first estimated using deterministic gradient-64

based inversions and then converted into parameters of interest using uncertain petrophysical re-65

lationships (e.g., Chen et al. 2001; Mukerji et al. 2001; Gonzalez et al. 2008; Grana & Della Rossa66

2010; Shahraeeni & Curtis 2011). The results of such a two-step approach can be misleading if67

neglecting the spatially-varying and typically much lower resolution of smoothness-constrained68

geophysical inversion models compared with the scale at which petrophysical relationships are69

developed (core or borehole logging scale) (Day-Lewis et al. 2005). Furthermore, with such an70

approach it is next to impossible to ensure that the geophysical inversion accounts for the prior71

constraints on the (hydro)geological target variable (Ferré et al. 2009) and physical constraints72

such as conservation of mass, continuity and momentum. Moreover, for a deterministic inver-73

sion setting, Bosch (2004) showed that with a non-linear petrophysical relation, the two-step74
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approach is an inherent approximation (Bosch 2004).75

76

As an alternative to the two-step approach, coupled inversions directly target hydrogeological77

properties by inversion of geophysical data (e.g., Hinnell et al. 2010; Kowalsky et al. 2005).78

They are often formulated within a Bayesian framework whereby one seeks to characterize the79

posterior probability density function (PDF) of hydrogeological parameters θ given geophysical80

data y. Since it is often impossible to sample directly from the posterior PDF p(θ|y) of interest,81

Markov chain Monte Carlo (MCMC) methods, such as the Metropolis–Hastings method (MH;82

Hastings 1970; Metropolis et al. 1953), are used. Since the intermediate variable, the geophysical83

property X, connecting observations and target variables is unobservable (latent), one speaks84

of a latent variable model. In this study, we consider a setup where the latent geophysical prop-85

erty is given by X = F(θ) + εP , with θ 7→ F(θ) representing the deterministic component of86

a petrophysical relationship and εP the petrophysical prediction error. Assuming an integrable87

and centered petrophysical prediction error εP , F(θ) stands for the expected value of the latent88

variable X. The geophysical data is given by Y = G(X) + εO with x 7→ G(x) denoting the89

geophysical forward solver and εO describing the observational noise.90

91

For a latent variable model as the one described above, the likelihood of observing the geo-92

physical data given the proposed hydrogeological parameters, p(y|θ) =
∫
p(y,x|θ)dx, is often93

intractable. In the present context, this implies that the integral has an unknown or non-94

existing analytical form, which makes the direct implementation of the MH and related algo-95

rithms impossible. One way to circumvent this difficulty is to instead infer the joint posterior96

PDF (θ,x) 7→ p(θ,x|y) of the hydrogeological and geophysical parameters from which p(θ|y)97

is readily obtained by marginalization. Lithological tomography as introduced by Bosch (1999)98

pioneered such an approach to estimate the joint posterior by combining geophysical data,99

geological prior knowledge and uncertain petrophysical relationships. Within lithological to-100

mography, pairs of the target and latent variables are proposed using marginal sampling of101

θ and conditional sampling of X. Then, these pairs are accepted or rejected with p(y|θ,x),102

used in the acceptance ratio of the MH algorithm (where p(y|θ,x) = p(y|x) is valid for our103

latent variable model). In Bosch (1999), the conditional PDF p(x|θ) to sample X is given by a104
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multivariate Gaussian distribution based on a suitable petrophysical relationship. In practice,105

this is achieved by adding brute force Monte Carlo realizations of the petrophysical prediction106

error εP to the output of F(θ) at each iteration of the MCMC chain (i.e., Bosch et al. 2007).107

Linde et al. (2017) suggest that such an implementation is inefficient when considering large108

geophysical datasets with high signal-to-noise ratios and significant petrophysical uncertainty.109

The reason is that brute force Monte Carlo sampling of the petrophysical prediction error using110

p(x|θ) induces high variability in the values taken by the likelihood function p(y|θ,x), even111

for the same θ, which could lead to prohibitively low acceptance rates even in the limiting case112

when the MCMC model proposal scale for θ goes to zero.113

114

Brunetti & Linde (2017) proposed an alternative approach to sample from the joint posterior115

PDF p(θ,x|y). In their method referred to herein as full inversion, the petrophysical prediction116

error εP is parameterized and treated as the other unknowns within the MH algorithm. That is,117

the MH proposal mechanism draws new realizations of both the target variable θ and the petro-118

physical prediction error εP , which combined also lead to a realization of the latent variable X119

used to calculate the likelihood function p(y|θ,x). Brunetti & Linde (2017) presented a convinc-120

ing performance of the full inversion approach with clear improvements in efficiency compared121

with the original formulation of lithological tomography by Bosch (1999). Nonetheless, the122

full inversion method suffers from high dimensionality, and the strong (posterior) correlation123

between εP and θ makes standard MCMC inversions inefficient (e.g., Deligiannidis et al. 2018).124

125

In this study, we evaluate an inversion method targeting directly the marginal posterior p(θ|y)126

by approximating the intractable likelihood p(y|θ) =
∫
p(y|θ,x)p(x|θ)dx. In the pseudo-127

marginal (PM) method introduced by Beaumont (2003) and studied by Andrieu & Roberts128

(2009), the true likelihood is replaced with a non-negative unbiased estimator resulting in a129

MH algorithm sampling the same target distribution as when using the true likelihood. In their130

work, Beaumont (2003) and Andrieu & Roberts (2009) use an unbiased likelihood estimator131

based on Monte Carlo averaging over samples of the latent variable. In our setting with the132

latent variable X = F(θ) + εP , we note that the original lithological tomography approach133

of Bosch (1999) is closely related to the pseudo-marginal method. In the original lithological134
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tomography method targeting the joint posterior PDF p(θ,x|y), the MCMC chains store the135

conditional draws of the latent variables together with the target variables, and the target pos-136

terior PDF p(θ|y) is obtained by marginalization. The PM method applied with one draw of137

the latent variable leads to equivalent results in terms of the marginal posterior PDF. In the138

PM method, the draws of the latent variable are not stored but only used to estimate the like-139

lihood p(y|θ). Using only one sample of the latent variable in the PM method typically leads140

to impractically-low acceptance rates due to the high variability of the ratio of log-likelihood141

estimators. To achieve an efficient algorithm, the standard deviation of the log-likelihood es-142

timator needs to be around 1.2-1.5 (Doucet et al. 2015), which is ensured by increasing the143

number of samples and applying importance sampling. schemes. In the context of state-space144

models, the number of Monte Carlo samples used in the likelihood estimator needs to increase145

linearly with the number of observations, which becomes impractical in data-rich applications146

(Deligiannidis et al. 2018). To obtain low-variance log-likelihood ratio approximations with a147

smaller number of Monte Carlo samples, Deligiannidis et al. (2018) introduced the correlated148

pseudo-marginal (CPM) method by which the draws of latent variables used in the denomi-149

nator and numerator in the likelihood ratio are correlated. Both the PM and CPM methods150

are general in that they allow for non-linear and non-Gaussian assumptions, but their imple-151

mentation and applicability in data-rich high-dimensional geophysical settings remain untested.152

153

Inferring hundreds or thousands of parameters with a MH algorithm is challenging as the num-154

ber of iterations needed for convergence grows with the number of target parameters (e.g.,155

Robert et al. 2018). To ensure adequate performance in such settings, it is crucial to equip the156

algorithm with a well-working proposal scheme. In the context of Gaussian random fields with157

high dimension, Cotter et al. (2013) demonstrated that standard random walk MCMC algo-158

rithms leads to strong dependence on the discretization of the target field and highly inefficient159

algorithms. Their proposed solution lies in preserving the prior PDF within the proposal scheme160

such that the acceptance probability of model proposals only depends on the likelihood ratio.161

This type of proposal schemes was explored in geophysics by Mosegaard & Tarantola (1995),162

in what is often referred to as the extended Metropolis algorithm. In a high-dimensional tar-163

get space, the extended Metropolis approach still needs an efficient model proposal scheme164
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(Ruggeri et al. 2015). Following Brunetti & Linde (2017), we use the adaptive multi-chain165

algorithm DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis using an archive of past166

states) by Laloy & Vrugt (2012), which is widely used in various geophysical inversion studies167

(e.g., Bikowski et al. 2012; Rosas-Carbajal et al. 2014; Hunziker et al. 2017). We adapt herein168

the DREAM(ZS)’s formulation in order to accommodate prior-preserving model proposals.169

170

As an exemplary problem, we consider inference of high-dimensional multi-Gaussian poros-171

ity fields using crosshole ground-penetrating radar (GPR) first-arrival travel times. We con-172

sider both a linear straight-ray solver, to enable comparisons with analytical solutions, and a173

more physically-based non-linear eikonal solver. We compare the results obtained by our prior-174

sampling-based proposal and importance-sampling-based implementation of the (correlated)175

pseudo-marginal method with standard model proposals and without importance sampling.176

Furthermore, we compare against the original lithological tomography formulation, full inver-177

sion and MCMC inversions that simply ignore the presence of petrophysical prediction uncer-178

tainty. With these examples, we will demonstrate that our implementation of the CPM method179

is outperforming the other inversion methods by greatly enhancing the posterior exploration.180

181

This paper is structured as follows. Section 2 introduces the methodology by discussing Bayesian182

inference in the context of high-dimensional settings, presenting the inversion approaches con-183

sidered and the tools employed for performance assessment. Section 3 presents the two test184

examples with linear and non-linear physics. The results and wider implications are discussed185

in Section 4, followed by conclusions in Section 5.186

2 METHODOLOGY187

The methodology section starts by introducing the considered latent variable model (Section188

2.1), followed by general considerations concerning Bayesian inference and MCMC in high-189

dimensional settings (Section 2.2). The correlated pseudo-marginal method and our IS proce-190

dure are introduced in Section 2.3 and baseline methods used for comparative purposes are191

presented in Section 2.4. Finally, Section 2.5 presents the performance assessment metrics used192

to evaluate the results.193
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2.1 Latent variable model194

We consider a latent variable model where the unobservable variable X = (X1, X2, ..., XL) is195

related to the d target parameters θ = (θ1, θ2, ...θd) and the T measurements y = (y1, y2, ..., yT ).196

We write197

Y = G(X) + εO = G(F(θ) + εP) + εO, (1)

for G : RL → RT and F : Rd → RL with errors εO and εP . In our setting, x 7→ G(x) de-198

scribes the physical forward solver with εO denoting the observational noise and θ 7→ F(θ)199

represents the petrophysical relationship with εP denoting the petrophysical prediction er-200

ror (PPE). We assume both errors to be Gaussian such that the distribution of X|θ can be201

represented with the PDF p(x|θ) = ϕL(x;F(θ),ΣP ) and the one of Y |θ,X with the PDF202

p(y|θ,x) = ϕT (y;G(x),ΣY ), with the notation ϕM(·;µ,Σ) denoting the PDF of a M -variate203

Normal distribution with mean µ and covariance matrix Σ.204

2.2 Bayesian Inference with Markov Chain Monte Carlo205

In Bayes’ theorem, the posterior probability density function (PDF) p(θ|y) of the model pa-206

rameters θ given the measurements y is specified by207

p(θ|y) =
p(θ)p(y|θ)

p(y)
, (2)

with the prior PDF p(θ) of the model parameters, the likelihood function p(y|θ) and the208

evidence p(y). Generally, there is no analytical form of the posterior PDF. If the posterior209

PDF can be evaluated pointwise up to a normalizing constant, MCMC methods can be used210

to generate posterior samples. The basic idea of MCMC algorithms is to construct a Markov211

chain with the posterior PDF of interest as its stationary distribution (see e.g., Robert &212

Casella 2013). MCMC algorithms iteratively propose new values for the states of the Markov213

chain that are accepted or rejected with a prescribed probability. One foundational MCMC214

algorithm is Metropolis–Hastings (MH; Metropolis et al. 1953; Hastings 1970). It proceeds as215

follows at iteration j: First, using the model proposal density q(·|θ(j−1)), a new set of states216
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θ(j) is proposed. Then, the acceptance probability,217

αMH

(
θ(j−1),θ(j)

)
= min

{
1,

q(θ(j−1)|θ(j))p(θ(j)|y)

q(θ(j)|θ(j−1))p(θ(j−1)|y)

}
= min

{
1,

q(θ(j−1)|θ(j))p(θ(j))p(y|θ(j))
q(θ(j)|θ(j−1))p(θ(j−1))p(y|θ(j−1))

}
,

(3)

is calculated and the proposed θ(j) is accepted (if αMH(θ(j−1),θ(j)) ≥ V ) or rejected218

(if αMH(θ(j−1),θ(j)) < V ) on the basis of a draw of a uniformly distributed random vari-219

able V ∼ Unif([0, 1]). If the proposed θ(j) is rejected, the old state of the chain is kept and220

θ(j) = θ(j−1).221

222

Within the MH algorithm, we need to evaluate the likelihood function θ 7→ p(y|θ) in order to223

compute the acceptance probability. In our latent variable model (see Section 2.1), the likelihood224

is given by,225

p(y|θ) =

∫
p(y|θ,x)p(x|θ)dx, (4)

and the integral has generally no analytical form. In Sections 2.3, 2.4.2 and 2.4.3, we present226

three methods to circumvent the difficulties of an intractable likelihood function.227

2.2.1 Model parameterization and proposal scheme228

We consider test examples targeting a Gaussian random field GRF (µθ(·), Cθ(·, ·)) with known229

mean µθ(·) and covariance function Cθ(·, ·). We parameterize the target field θ using a regular230

2D grid of size D × D (such that d = D2 for the notation introduced in Section 2.1) with231

positions B = {b1, b2, ..., bD2}:232

θ ∼ ND2(µθ,Σθ), with µθ = (µθ(gi))1≤i≤D2 and Σθ = (Cθ(gi, gj))1≤i,j≤D2 , (5)

with ND2(µ,Σ) denoting the D2-variate normal distribution with mean µ and covariance ma-233

trix Σ. We use a high-dimensional pixel-based parameterization of the target field, θ = µθ + Σθ
1/2 Z,234

where Z is a D2-dimensional random vector consisting of i.i.d. standard-normal distributed235

variables. To infer the target field, we need to estimate the Z-variables. Similar to Ruggeri236

et al. (2015), we do not apply any further dimensionality reduction of the parameter space237
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beyond the discretization (in contrast with, for instance, Brunetti & Linde (2017) who used238

the dimensionality reduction approach of Laloy et al. (2015)). This is done to avoid distorted239

posterior PDF estimates that may arise in response to a reduction of the parameter space.240

Furthermore, we seek to evaluate performance in a challenging high-dimensional setting with241

thousands of unknowns.242

243

When inferring model parameters with the MH algorithm, it is crucial to choose the model244

proposal scale well. If the model proposal steps are too large, the acceptance rate is low and245

the Markov chain needs many iterations until convergence. If the step-width is too small, the246

exploration of the parameter space is very slow and the Markov chain will similarly need many247

iterations until convergence (see Section 2.5 for the assessment of convergence). To deal with248

this challenge of tuning the proposal scale of each model parameter, we use the adaptive multi-249

chain algorithm DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis using an archive of250

past states) by Laloy & Vrugt (2012) for which details can be found in Appendix A.251

252

MCMC algorithms generally suffer from the curse of dimensionality as the number of iterations253

needed for convergence increases with the number of target parameters (e.g., Robert et al.254

2018). In the context of Gaussian random fields, Cotter et al. (2013) show that MCMC methods255

based on standard random walk proposals lead to strong dependencies on the discretization of256

the target field and to inefficient algorithms when employed in high dimensions. For a given257

proposal scale, refining the grid representing the random field leads to a decreasing acceptance258

rate with zero as the limiting value for an infinite number of unknowns. To make MCMC259

algorithms robust to discretization and maintain a reasonable stepsize when inferring thousands260

of unknowns, they propose model proposal schemes such as the pCN (preconditioned Crank-261

Nicholson) that preserve the prior PDF. For a target variable Z with a Standard-Normal262

prior, the proposal of a standard random walk method is given by Z(j) = Z(j−1) + γζ, with263

γ being the step size and ζ ∼ N (0, 1), respectively. Instead, the pCN proposal scheme uses264

Z(j) =
√

1− γ2Z(j−1) + γζ, ensuring that Z(j) remains standard-normally distributed. Cotter265

et al. (2013) show that proposal schemes preserving the prior PDF lead to (1) algorithms266

that mix more rapidly and (2) the convergence being insensitive to the discretization of the267
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target field. We note that the idea of defining a model proposal scheme preserving the prior268

distribution was proposed more than 25 years ago in geophysics by Mosegaard & Tarantola269

(1995). This approach is often referred to as the extended Metropolis algorithm and has mainly270

been explored in the context of inversion with complex geostatistical prior models (a detailed271

description of the method can be found in Hansen et al. (2012)). Defining a proposal density272

q(·|θ(j−1)) such that the MCMC algorithm samples the prior PDF in the absence of data implies273

that q(θ(j−1)|θ(j))
q(θ(j)|θ(j−1))

= p(θ(j−1))

p(θ(j))
holds true, with the implication that the MH acceptance-ratio of274

Equation (3) is reduced to the likelihood ratio,275

αMH

(
θ(j−1),θ(j)

)
= min

{
1,

p
(
y|θ(j)

)
p
(
y|θ(j−1)

)}. (6)

The extended Metropolis approach still needs an efficient model proposal scheme (Ruggeri et276

al. 2015), which is why we use DREAM(ZS) in this work. In the case of a Gaussian-distributed277

prior, the standard DREAM(ZS) proposal scheme does not generate samples that preserve278

the prior distribution. In order to adapt extended Metropolis to DREAM(ZS), we rely on a279

transformation of the variables to the Uniform space (details in Appendix A). This transfor-280

mation makes it possible to create a proposal mechanism which unites (1) the efficiency of281

the DREAM(ZS) proposals with (2) the robustness of the prior-preserving proposals. In what282

follows, our proposal scheme using the uniform transform will be referred to as prior-sampling283

DREAM(ZS) proposals, while the the standard proposal scheme of DREAM(ZS) will be referred284

to as standard DREAM(ZS) proposals. We stress that both prior-sampling DREAM(ZS) and285

standard DREAM(ZS) target the same posterior PDF, but the former is expected to be more286

efficient.287

2.3 (Correlated) pseudo-marginal method288

2.3.1 Pseudo-marginal method289

Beaumont (2003) shows that a MH algorithm using a non-negative unbiased estimator of the290

likelihood samples the same target distribution as when using the true likelihood. He exploits291

this property by estimating the likelihood in Equation (4) on the basis of Monte Carlo averaging292

over samples of the latent variable X. Andrieu & Roberts (2009) adopt this approach in their293
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pseudo-marginal (PM) method and provide a theoretical analysis of the scheme. When one brute294

force Monte Carlo sample of the latent variable is drawn in each MCMC iteration without295

importance sampling (c.f., the original lithological tomography by Bosch (1999); see Section296

2.4.2), the algorithm is likely to suffer from a low acceptance rate due to the high variability297

of the log-likelihood estimator. This is due to the fact that a likelihood estimator given by298

p(y|θ,X) takes very different values depending on the draw of the latent variable X, even for299

the same θ. This occurs as the scatter (εP) has a strong effect on the data response, and hence,300

the likelihood. To improve the efficiency, Beaumont (2003) and Andrieu & Roberts (2009) use301

many samples drawn by importance sampling (IS; e.g. Owen & Zhou 2000). Consequently, they302

propose the following unbiased estimator of the likelihood p(y|θ),303

p̂N(y|θ) =
1

N

N∑
n=1

w(y|θ,Xn), with w(y|θ,Xn) =
p(y|θ,Xn)p(Xn|θ)

m(Xn|θ)
, (7)

where Xn
i.i.d∼ m(·|θ) for n = 1, 2, ..., N with m(·|θ) being the importance density function.304

More details about the importance sampling procedure will follow in Section 2.3.3.305

2.3.2 Correlated pseudo-marginal method306

For the PM method to be efficient, the number of samples N used in the likelihood estima-307

tor (Eq. (7)) should be selected such that the variance of the log-likelihood ratio estimator is308

low enough (Doucet et al. 2015). If it is too high, the algorithm will suffer from an impractically309

low acceptance rate. In the state-space model context, this implies that N needs to scale lin-310

early with T leading to a computational cost of order T 2 at every MCMC iteration, which can311

be prohibitively expensive for large T (Deligiannidis et al. 2018). To reduce the computational312

cost, Deligiannidis et al. (2018) introduced the correlated pseudo-marginal (CPM) method by313

which the draws of latent variables used in the denominator and numerator of the likelihood314

ratio estimators are correlated. The underlying idea is that the variance of a ratio of estimators315

is lower if they are positively correlated (Koop 1972). Assuming that the latent variable X is316

standard-normal distributed, the CPM method proposes (in iteration j) a realization of the317

n-th latent variable draw by means of pre-conditioned Crank-Nicholson proposals,318

X(j)
n = ρX(j−1)

n +
√

1− ρ2ε, with ρ ∈ (0, 1) and ε = (ε1, ε2, ..., εL), εi
i.i.d.∼ N (0, 1). (8)
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The assumption that the latent variable has a standard-normal distribution hardly limits the319

general applicability of the CPM method, since there exist transformations from numerous320

distributions that will allow proposals to act on Gaussian distributions (e.g. Chen et al. 2018;321

Section 2.3.3). We stress that if the proposed θ(j) with X(j)
n is rejected by the CPM algorithm,322

we keep X(j)
n = X(j−1)

n as for θ(j) = θ(j−1).323

324

Compared to standard MCMC algorithms, the CPM method requires two additional param-325

eters: the latent variable sample size N and the correlation parameter ρ. To achieve optimal326

performance, the parameters should be chosen such that the variance of the log-likelihood ratio327

estimator for a fixed target variable θ,328

R = log
(
p̂
(j)
N (y|θ)

)
− log

(
p̂
(j−1)
N (y|θ)

)
, (9)

takes values between 1.0 and 2.0 in regions with high probability mass (Deligiannidis et al.329

2018). Here, p̂(j)N (y|θ) and p̂(j−1)N (y|θ) refer to the likelihood estimators (Eq. (7)) obtained with330

the accepted latent variable of iteration j − 1 and the proposed (and not necessarily accepted)331

latent variable of iteration j, that is, the likelihood estimators used in the acceptance ratio of332

the MH algorithm. In order to choose the parameter values, we first fix the number of samples333

N at a value that is smaller than the number of available parallel processors. Then, we evaluate334

different ρ and estimate corresponding values of V ar(R) for a fixed θ in a region with high335

posterior probability mass (e.g., chosen based on initial MCMC runs).336

2.3.3 Importance sampling procedure337

For high-dimensional problems with large data sets exhibiting high signal-to-noise ratios, it338

is necessary to use importance sampling when drawing samples of latent variables to be used339

within the likelihood-estimator (Eq. (7)). This is a consequence of the integrand p(y|θ,x) in340

Equation (4) having a peak in a region ofX having small probability under p(x|θ). Importance341

sampling proceeds by sampling from a so-called importance distribution given by the PDF342

x 7→ m(x|θ) that preferentially generates samples with high p(y|θ,x)p(x|θ). Furthermore, the343

support of the importance distribution must include all values x, for which p(y|θ,x)p(x|θ) > 0344
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(Owen & Zhou 2000). It holds,345

∫
p(y|θ,x)p(x|θ)dx =

∫
p(y|θ,x)p(x|θ)

m(x|θ)
m(x|θ)dx, (10)

leading to the unbiased importance sampling estimate of the likelihood given in Equation (7).346

To ensure minimal variance of the estimator, we seek x 7→ m(x|θ) to be nearly proportional347

to x 7→ p(y|θ,x)p(x|θ) as recalled in Owen & Zhou (2000) referring to the results of Kahn348

et al. (1953). Since p(x|θ,y) ∝ p(y|θ,x)p(x|θ), it is sensible to base the importance density349

on x 7→ p(x|θ,y).350

351

Within a latent variable model with a non-linear physical forward solver (Section 2.1), we352

can not derive the exact expression for p(x|θ,y). Here, we derive local approximations of this353

posterior by relying on linearization. To do so, we use a linearization of the map x 7→ G(x)354

around xlin = F(θlin) + εP lin based on a first-order expansion,355

G(x) = G(xlin + x− xlin) ≈ G(xlin) + Jxlin
(x− xlin), (11)

with Jxlin
being the Jacobian matrix of the forward solver corresponding to xlin. Ideally, xlin356

should be given by a realization of the latent variable similar to the one the algorithm is357

currently exploring. By approximating p(y|θ,x) with p̃(y|θ,x) = ϕT (y;G(xlin) + Jxlin
(x −358

xlin),ΣY ) and, applying p(x|θ) = ϕL(x;F(θ),ΣP ) and the relationships between marginal359

and conditional Gaussians out of Bishop (2006) given in Appendix B, we get,360

p̃(x|θ,y) = ϕL(x;µIS,ΣIS), with (12)

µIS = ΣIS

(
JTxlin

ΣY
−1 (y − (G (xlin)− Jxlin

xlin)) + ΣP
−1F(θ)

)
,

ΣIS = (ΣP
−1 + JTxlin

ΣY
−1Jxlin

)−1,

for an approximation of p(x|θ,y). To incorporate importance sampling within the CPMmethod,361

we need to correlate the draws of latent variables. To achieve this, we rely on the fact that a re-362

alization of the latent variableX can be generated with µIS+ΣIS
1/2ZP , where ZP is standard363

Gaussian distributed in RL. Using this representation, we can correlate the (standard-normal364

distributed) ZP -variables using Equation (8).365
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Table 1. Overview of the inversion methods applied on the latent variable model introduced in Sec-
tion 2.1; a box around a letter indicates that this parameter is saved as a target variable of the MH
algorithm. For the proposal scheme we use both standard and prior-sampling DREAM(ZS) proposals
for all methods.

Method
Proposal
scheme

Latent variable(s) Likelihood p̂(y|θ)

No PPE:
Ignore PPE

θ(j) X(j) = F(θ(j)) ϕT (y;G(X(j)),ΣY )

Full inversion:
Infer PPE

θ(j), εP
(j) X(j) = F(θ(j)) + εP (j) ϕT (y;G(X(j)),ΣY )

LithTom:
Infer PPE

θ(j) X(j) ∼ ϕL(·;F(θ(j)),ΣP ) ϕT (y;G(X(j)),ΣY )

LithTom IS:
Infer PPE

θ(j) X(j) ∼ ϕL(·;µIS ,ΣIS)
ϕT (y;G(X(j)),ΣY )ϕL(X

(j);F(θ(j)),ΣP )

ϕL(X
(j);µIS ,ΣIS)

(C)PM no IS:
Sample out PPE

θ(j)

X(j) = (X
(j)
1 , ...,X

(j)
N )

X
(j)
n

i.i.d∼ ϕL(·;F(θ(j)),ΣP )

CPM: Correlation X(j−1)
n

1
N

N∑
n=1

ϕT (y;G(X(j)
n ),ΣY )

(C)PM IS:
Sample out PPE

θ(j)

X(j) = (X
(j)
1 , ...,X

(j)
N )

X
(j)
n

i.i.d∼ ϕL(·;µIS ,ΣIS)
CPM: Correlation X(j−1)

n

1
N

N∑
n=1

ϕT (y;G(X(j)
n ),ΣY )ϕL(X

(j)
n ;F(θ(j)),ΣP )

ϕL(X
(j)
n ;µIS ,ΣIS)

2.4 Baseline inversion methods366

We present now the inversion approaches used for comparison with the CPM method. These367

include a method ignoring the petrophysical prediction errors and two approaches (original368

formulation of lithological tomography without importance sampling and full inversion) ac-369

counting for the PPEs by inferring the joint posterior PDF p(θ,x|y) of the target and latent370

variables. An overview of all inversion methods (including CPM) is given in Table 1.371

2.4.1 Ignore petrophysical prediction errors372

This inversion method (no PPE) ignores the presence of petrophysical prediction errors in373

the MH algorithm. For the latent variable model introduced in Section 2.1, this results in an374

approximation of the likelihood function with the Gaussian PDF p̂(y|θ) = ϕT (y;G(F(θ)),ΣY ),375

where the forward response G(F(θ)) is simulated without accounting for PPEs. The method376

is included in the comparison as it is commonly used in practice as discussed by Brunetti &377

Linde (2017).378
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2.4.2 Lithological Tomography379

One way to consider PPEs while circumventing the difficulty of an intractable likelihood func-380

tion is to infer the joint posterior PDF (θ,x) 7→ p(θ,x|y) of the hydrogeological and geophysical381

parameters. Lithological tomography (Bosch 1999) pursues this strategy and uses a factoriza-382

tion of the joint posterior PDF as p(θ,x|y) ∝ p(θ)p(x|θ)p(y|θ,x), where p(y|θ,x) = p(y|x) is383

valid for our setting. To sample from this posterior PDF, Bosch (1999) proceeds as follows: First,384

realizations from the joint prior of θ and X are created by marginal sampling of θ and condi-385

tional sampling of X. Then, the pairs of model proposals are accepted or rejected with p(y|x),386

used in the acceptance ratio of the MH algorithm. In practice, this means that brute force387

Monte Carlo realizations (no importance sampling) of the petrophysical prediction error εP388

are added to the output of the petrophysical relationship F(θ). For our latent variable model,389

this results in an approximation of the likelihood function with p̂(y|θ) = ϕT (y;G(x),ΣY ),390

where the latent variable X = F(θ) + εP is obtained with a draw of εP from the multivariate391

Gaussian with PDF ϕL(·; 0,ΣP ).392

2.4.3 Full Inversion393

The full inversion approach infers the joint posterior PDF by treating the latent variables394

analogously to the other unknowns. In the context of our latent variable model (Section 2.1),395

this means that in iteration j of the MH, not only a new θ(j) but also a new εP (j) is proposed396

by the algorithm’s proposal scheme. Then the likelihood function p(y|θ,x) = ϕT (y;G(x),ΣY )397

is calculated using X(j) = F(θ(j)) + εP
(j). Brunetti & Linde (2017) applied full inversion398

to infer porosity fields by inversion of crosshole GPR first-arrival travel times, that is, to a399

setting similar to ours. For the parametrization of the porosity field of interest, they used a400

spectral representation combined with the dimensionality reduction approach of Laloy et al.401

(2015). Brunetti & Linde (2017) achieved convincing results and improvements compared to402

standard lithological tomography without importance sampling (Section 2.4.2). Nevertheless,403

full inversion is expected to suffer from high dimensionality and strong correlation among the404

latent and target variables as the two sets of variables are treated as being independent within405

the proposal scheme (e.g., Deligiannidis et al. 2018).406
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2.5 Performance assessment407

To assess the performance of the different inversion approaches, we primarily focus on the ex-408

ploration of the posterior PDF. The reason for this will become clear in the results section409

(Section 3).410

411

To declare convergence, we use the R̂-statistic of Gelman & Rubin (1992) that compares the412

within-chain variance with the between-chain variance for the second half of the MCMC chains.413

The general convention is that convergence is declared once this statistic is smaller or equal414

to 1.2 for all model parameters. Since we deal with a high-dimensional parameter space with415

thousands of unknowns, we relax this condition slightly and declare convergence if 99 % of the416

parameters satisfy this criterion. When an algorithm is considered convergent, we compare the417

resulting posterior samples with those of the other approaches.418

419

For the test case with linear physics in Section 3.2, we compare the results with the analyt-420

ical solution of the posterior PDF p(θ|y). For these comparisons, we use histograms and the421

Kullback–Leibler divergence (KL - divergence; Kullback & Leibler 1951). The KL - divergence422

between two PDFs p1(·) and p2(·) is defined as,423

KL(p1||p2) =

∫
p1(x) log

(
p1(x)

p2(x)

)
dx. (13)

To obtain the PDF of the estimated posterior, we can use the MCMC samples to either (1) make424

a kernel density estimate or to (2) estimate the mean and variance for a Gaussian approximation425

(Krueger et al. 2016). Here we use the second option since the posterior is Gaussian. If the PDFs426

p1(·) and p2(·) are Gaussians with p1 = N (µ1, σ
2
1) and p2 = N (µ2, σ

2
2), the expression of the427

KL-divergence reduces to,428

KL(p1||p2) = log

(
σ2
σ1

)
+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
. (14)

A KL-divergence of zero indicates that the two PDFs are equal and it increases as the distri-429

butions diverge from each other.430

431
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For the test example with non-linear physics in Section 3.3, there is no analytical solution to432

compare with. Hence, we compare the estimated posterior distribution with a single value (the433

known true porosity at each pixel). We achieve this by applying so-called scoring rules (Gneiting434

& Raftery 2007) assessing the accuracy of a predictive PDF θ 7→ p̂(θ) with respect to a true435

value θ. Scoring rules are functions that assign a numerical score for each prediction-observation436

pair (p̂,θ), with a smaller score indicating a better prediction. They assess both the statistical437

consistency between predictions and observations (calibration) and the sharpness of the predic-438

tion. We use the logarithmic score (logS; Good 1952) defined by logS(p̂,θ) = − log p̂(θ) that is439

related to the Kullback–Leibler divergence (Gneiting & Raftery 2007). As for the linear case, we440

use the MCMC samples to obtain a Gaussian approximation of the estimated posterior PDF.441

The logarithmic score favours predictive PDFs under which the true value has high probability.442

We supplement this measure with two simpler ones: the number of pixels in which the true443

porosity value was in the range of the posterior samples and the standard deviation of the444

estimated posterior PDF.445

446

We also consider the acceptance rates (AR) and the integrated autocorrelation time (IACT).447

We aim for an acceptance rate of 15% - 30% as proposed by Vrugt (2016). The IACT of the448

chain {θ(j); j = 1, 2, ...} is defined as 1 + 2
∞∑
l=0

Corr(θ(1),θ(1+l)). In practice, the estimated449

autocorrelation for large values of l is noisy such that we need to truncate the sum. Following450

Gelman et al. (2004), we truncate the sum when two successive autocorrelation estimates are451

negative. We renounce from discussing the CPU time as it depends strongly on the chosen452

forward model and discretization as well as on other parameters pertaining to the computing453

equipment.454

3 RESULTS455

We consider the problem of inferring the porosity distribution using crosshole GPR first-arrival456

travel times. We first address a test case with linear physics (straight-rays) to allow for compar-457

ison with analytical solutions and then one with non-linear physics (eikonal solver) to address458

a more challenging and physically-based setup. Our examples are synthetic and the water-459

saturated porosity field is described by a multi-Gaussian random field.460
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3.1 Data and inversion setting461

3.1.1 Synthetic data generation462

Our considered subsurface domain is 7.2 m × 7.2 m and we use 25 equidistant GPR trans-463

mitters located on the left side and 25 receivers on the right side of the model domain, result-464

ing in 625 first-arrival travel times. The transmitter-receiver layout is depicted in Figure 1c.465

As introduced in Section 2.2.1, we assume the porosity field to be a Gaussian random field466

GRF (µθ(·), Cθ(·, ·)). We use µθ(·) = 0.39 and an exponential covariance function Cθ(·, ·). For467

the latter, we use a sill of 2e−4 and geometric anisotropy where the main, horizontal direction468

has an integral scale of 4.5 m and the integral scale ratio between the horizontal and vertical469

direction is 0.13. We use a (50 × 50)-dimensional pixel-based parameterization of the porosity470

field; the true synthetically generated field is shown in Figure 1a. Note that porosity is a positive471

quantity bounded between zero and one while a Gaussian prior distribution has a full support.472

The Gaussian prior is used here to ensure an analytical solution in the linear physics case.473

Given the presented mean and the sill, it is extremely unlikely that a porosity value outside the474

physical boundaries is generated. In other settings, one could use a transform of the porosity475

(e.g., as in Bosch 2004) or choose a bounded distribution.476

477

To predict the dielectric constant κ, we use the complex refractive index model (CRIM; Roth478

et al. 1990),479

√
κ =
√
κs + (

√
κw −

√
κs)θ, (15)

where κw and κs are the dielectric constants of water [81] and mineral grains [5], respectively.480

The resulting slowness field (which in our case is the latent variable X) depicted in Figure 1c481

is given by,482

x =
√
c−2κ+ εP =

1

c

(√
κs + (

√
κw −

√
κs)θ

)
+ εP , (16)

where c is the speed of light in vacuum [0.3 m/ns]. This specifies the petrophysical relationship483

to be linear with θ 7→ F(θ) = 1
c

(√
κs + (

√
κw −

√
κs)θ

)
. We add a petrophysical prediction484

error (PPE) εP that is a realization of a centred GRF over a regular 2D grid of size 50 ×485

50. We are assuming that the PPE field (depicted in Figure 1b) has an exponential covariance486
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(a) (b) (c)

(d) (e)

Figure 1. (a) Porosity field θ, (b) PPE field εP , (c) slowness field x with transmitter-receiver layout,
(d) dependency of slowness on porosity obtained without (line) and with (scatter) PPE and (e) noise-
contaminated first-arrival travel times y for the linear and the non-linear forward solver corresponding
to the true synthetic model.

function CP (·, ·) with a sill of 2.1e−2 and the same correlation structure as the porosity field.487

The dependency of the slowness on the value of the porosity and the PPE is indicated in Figure488

1d. Finally, the resulting 625 GPR first - arrival travel times are calculated with (i) a linear489

(straight-ray) forward solver referred to as Gs and (ii) a non-linear (eikonal) forward solver490

referred to as Ge (the time2D solver of Podvin & Lecomte (1991)), such that,491

y = G(x) + εO, (17)

with i.i.d. centered normal observational noise εO with standard deviation of 1 ns. The two492

sets of traveltimes are depicted in Figure 1e.493

3.1.2 Inversion settings and prior assumptions494

All considered inversion methods (Sections 2.3 and 2.4) are implemented with prior-sampling495

and standard DREAM(ZS) proposals using the same parameter settings of the DREAM(ZS)496



Linear physics 21

(a) (b) (c) (d)

Figure 2. (a) Analytical posterior mean of p(θ|y) for the linear test example and (b) - (d) three
realizations of the analytical posterior distribution.

algorithm with four MCMC chains running in parallel. For the prior on porosity, we use the497

Gaussian PDF p(θ) = ϕ2500(θ;µθ,Σθ) assuming the mean µθ and covariance structure Σθ to498

be known (the same values as for the data generation). Using a pixel-based parameterization499

of the field, we infer the 2500-dimensional vector Z defining the porosity by θ = µθ + Σθ
1/2Z,500

with Z having a multivariate standard-normal prior PDF. The full inversion has to estimate501

another 2500 ZP -variables for the PPE field leading to a total of 5000 inferred parameters. For502

the PPE εP we also use a Gaussian prior PDF p(εP) = ϕ2500(θ; 0,ΣP ) with known covariance503

structure ΣP , leading to a Gaussian prior PDF for the slowness field (for fixed porosity) given by504

p(x|θ) = ϕ2500(x;F(θ),ΣP ). For the likelihood function, we assume that the 625-dimensional505

vector describing the observational noise εO has a Gaussian distribution with zero mean and506

diagonal covariance matrix ΣY ; the standard deviation is assumed to be 1 ns as in the data507

generation process.508

3.2 Linear physics509

To enable comparisons of the inferred posterior PDFs with the analytical solution for p(θ|y),510

we first consider the case of linear physics. Then,511

y = Gs(x) + εO = Jsx+ εO, (18)

with Js being the Jacobian (i.e., forward operator) of the linear forward solver. The analytical512

posterior PDF can be derived as detailed in Appendix B. Figure 2a shows the posterior mean513

and Figures 2b - 2d depict three draws from the posterior distribution.514

515
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When employing the PM and CPM method in this setting of large datasets with low noise, it516

is crucial to use a well-chosen importance sampling for the latent variable. As introduced in517

Section 2.3.3, it is sensible to use x 7→ p(x|θ,y) as a basis for the importance density. As long518

as we are in the linear Gaussian case, we can derive the analytical expression for this posterior519

(Appendix B), resulting in a zero-variance importance sampling density (Owen & Zhou 2000).520

Since it then does not make sense to use multiple importance density samples (the importance521

weights are constant), we combine in this linear case importance sampling with PM using N=1522

(original lithological tomography algorithm enhanced with importance sampling that we will523

hereafter refer to as LithTom IS). We note that using the exact formula for the importance524

sampling corresponds to having access to the exact likelihood p(θ|y). The use of larger N is525

considered in Section 3.3 for the case of non-linear physics. This linear setting for which ana-526

lytical solutions are available serves mainly (1) to demonstrate the necessity of a well-working527

importance sampling distribution, (2) to investigate the exploration capabilities of MCMC-528

based inversion approaches that estimate the intractable likelihood using Monte Carlo samples529

(lithological tomography, PM and CPM methods) and (3) to compare the performances of the530

prior-sampling and standard DREAM(ZS) proposal mechanisms.531

532

Figure 3 presents the estimated posterior means of the porosity field obtained when applying533

the no PPE (Fig. 3a), the full inversion (Fig. 3b) and the LithTom IS (Fig. 3c) with standard534

DREAM(ZS) proposals, as well as for LithTom IS with prior-sampling DREAM(ZS) proposals535

(Fig. 3d). These are the cases for which we reached convergence of the chains. The porosity536

field obtained with the inversion ignoring PPEs has, as expected (Brunetti & Linde 2017), a537

higher variance. Visually, all other estimates are very similar in terms of structure and magni-538

tude with respect to the analytical posterior mean in Figure 2a. The estimated posterior mean539

of LithTom IS with the prior-sampling DREAM(ZS) proposals has a slightly lower variance540

than for standard DREAM(ZS) proposals. The ARs (Table 2) for standard DREAM(ZS) pro-541

posals are the highest for LithTom IS, while the method ignoring PPEs and full inversion have542

lower ARs. Classical lithological tomography without importance sampling leads to an AR of543

less than 0.1 % such that, in practice, it unfeasible to reach convergence. Applying the CPM544

method without IS for N=50 and ρ=0.95 also results in an only slightly larger AR (roughly 0.2545
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Estimated posterior means of the porosity field θ obtained for the linear test example
with standard DREAM(ZS) proposals and (a) the algorithm ignoring PPEs, (b) the full inversion,
(c) the LithTom IS method and with prior-sampling DREAM(ZS) proposals and (d) the LithTom
IS method. (e) Corresponding log-likelihood values, black lines represent the values of p(y|θ,x) and
p(y|θ) for the true porosity field θ (and the true X in the former). (f) Logarithmically transformed
prior probabilities for the posterior samples obtained with prior-sampling DREAM(ZS) proposals and
(g) standard DREAM(ZS) proposals; the black lines depict the prior probability of the true porosity
field.

%), thereby, highlighting the need for importance sampling for the considered problem. Since546

less than 5 % of the parameters converged after 200’000 iterations, we renounce from showing547

further results for the CPM and PM method without IS. The method ignoring PPEs and the548

full inversion using prior-sampling DREAM(ZS) proposals suffer from very low ARs and did not549

reach convergence after 200’000 iterations. Table 2 shows the number of iterations needed for550

the 99th percentile of the parameters’ R̂-statics to be below 1.2. It also shows the IACTs of the551

cell in the very middle of the porosity field for all inversion approaches reaching convergence552

within 200’000 MCMC iterations. We observe that the iterations needed for convergence and553

the IACT of the LithTom IS method with prior-sampling DREAM(ZS) proposals are the lowest.554

555

Figure 3e shows the evolving log-likelihood values. When ignoring PPEs or performing the full556

inversion, the chains converge to much higher log-likelihoods than for the LithTom IS method.557

This is expected as they rely on the likelihood p(y|θ,x) (where X = F(θ) + εP , with εP = 0558
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Table 2. Overview of the results obtained for the linear test example with the different inversion
approaches and proposal mechanisms: The acceptance rates (AR), convergence (Conv) showing the
number of iterations needed for the 99th percentile of the parameters’ R̂-statics to be below 1.2 (or
the percentage of parameters with a R̂-statistics below 1.2 if the the inversion did not converge), the
mean KL-divergence (KL-div) and the integrated autocorrelation time (IACT) for the cell in the
very middle of the porosity field θ.

Method Proposal Parameter AR Conv KL-div IACT

No PPE Standard - 10 ↗ 20 % 104’000 1.957 3’850

LithTom Standard N = 1, ρ = 0 < 0.1 % - , 0 % - -

CPM no IS Standard N = 10, ρ = 0.95 0.1 % - , 3 % - -
Standard N = 50, ρ = 0.95 0.2 % - , 4 %

Full inversion Standard - 10 ↗ 20 % 150’000 0.354 6’900

LithTom IS Standard N = 1, ρ = 0 20 ↗ 30 % 78’000 0.063 2’750

no PPE Prior-sampling - 1 - 2 % - , 35 % - -

Full inversion Prior-sampling - 1 - 2 % - , 14 % - -

LithTom IS Prior-sampling N = 1, ρ = 0 13 % 76’000 0.003 1’700

for the algorithm ignoring PPEs), while LithTom IS estimates p(y|θ) =
∫
p(y|θ,x)p(x|θ)dx.559

This example highlights that LithTom IS broadens the likelihood function. Figures 3f and 3g560

show the prior probabilities (logarithmically transformed) for the posterior samples obtained561

with the three different inversion approaches using the two alternative proposal schemes. We562

observe that the LithTom IS method using prior-sampling DREAM(ZS) proposals (Fig. 3f) is563

the only approach for which the prior probability of the true porosity field is sampled. All other564

methods and proposal scheme combinations sample porosity fields with higher prior probabili-565

ties than the true field (black solid line). Practically speaking, this implies for these cases that566

none of the posterior samples are close to the true model. Furthermore, the corresponding prior567

probabilities show a trend of slowly decreasing values raising doubts about the ergodicity of568

the MCMC chains.569

570

To compare the posterior PDFs with the analytical solution, we consider first histograms for571

an exemplary position in the porosity field and the KL-divergences of the whole field. We only572

show the results of the method and proposal-scheme combinations that converged within the573

considered 200’000 iterations. The histograms are depicted in Figure 4 with samples from the574

analytical posterior PDF (light grey) and samples from the respective inversion method (blue)575
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for the pixel in the very middle of the model domain. The corresponding KL-divergences for all576

pixels are shown in Figure 5. The histogram and the KL-divergences of the method ignoring577

PPEs (with standard DREAM(ZS); Figures 4a and 5a) indicate that the approach suffers from578

biased estimates and an underestimation of the posterior variance. The posterior samples ob-579

tained with the full inversion method (with standard DREAM(ZS) proposals; Figures 4b and 5b)580

better represent the analytical posterior PDF, but there is still a significant underestimation of581

the posterior variance. The histogram obtained with the LithTom IS approach using standard582

DREAM(ZS) proposals (Figure 4c) is very similar to the one of the analytical posterior. The583

corresponding six-fold decreases of the KL-divergence (Figure 5c) compared with full inversion584

confirm the significant improvements of the exploration capabilities of this approach. An even585

better representation of the analytical posterior was obtained with the LithTom IS approach586

when using prior-sampling DREAM(ZS) proposals. This is indicated by the histogram in Figure587

4d and by a further two-fold decrease of the KL-divergence in Figure 5d. An overview of the588

mean KL-divergences is given in Table 2.589

590

This linear example has been used to show that importance sampling and prior-preserving591

proposal schemes are essential to obtain meaningful results in our considered high-dimensional592

setting. For this example, one can get accurate results using LithTom IS alone. The next section593

dealing with the non-linear case will serve to demonstrate the benefits of the CPM method in594

non-linear settings.595

596

3.3 Non-linear physics597

We now consider a non-linear test case in which the 625 arrival times are generated with the598

eikonal 2D traveltime solver time2D of Podvin & Lecomte (1991) such that,599

y = Ge(x) + εO. (19)

Given the non-linear physics, the likelihood function p(y|θ) is intractable and there is no an-600

alytical expression for the posterior PDF p(θ|y) to compare with. The same applies for the601

PDF p(x|y,θ) that we previously used for the importance sampling of the latent variable X.602
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(a) (b) (c) (d)

Figure 4. Histograms comparing samples from the analytical posterior PDF p(θ|y) (light grey) for
the linear test example and samples from the respective inversion method (blue), the solid line depicts
the true value of the porosity in the very middle of the model domain and the dashed line indicates
the analytical posterior mean (a) no PPE and standard DREAM(ZS) proposals, (b) full inversion
and standard DREAM(ZS) proposals, (c) LithTom IS and standard DREAM(ZS) proposals and (d)
LithTom IS and prior-sampling DREAM(ZS) proposals.

Hence, as importance sampling distribution we rely on the approximation of the PDF p(x|y,θ)603

introduced in Section 2.3.3. For xlin = F(θlin) + εP lin = 1
c

(√
κs + (

√
κw −

√
κs)θlin

)
+ εP lin,604

we use the last state of the porosity field for θlin and the previous importance sampling mean605

µIS for εP lin. To decrease computational resources, we only update the linearization every 100606

MCMC iterations. Since the expression is approximate, we further inflate the importance sam-607

pling covariance matrix ΣIS by multiplying ΣY with a factor. After initial testing, we found608

that 1.2 yielded the best performance.609

610

Figure 6 depicts the dependence of the variance of the log-likelihood ratio estimator R (Eq. (9))611

on the correlation parameter ρ for N = 1, N = 10 and N = 50 samples of the latent variable612

X (with θ being fixed at a region with high posterior probability mass). Figure 6a depicts613

(a) (b) (c) (d)

Figure 5. KL-divergences with respect to the analytical posterior PDF p(θ|y) for the linear test
example (a) no PPE and standard DREAM(ZS) proposals, (b) full inversion and standard DREAM(ZS)

proposals, (c) LithTom IS and standard DREAM(ZS) proposals and (d) LithTom IS and prior-sampling
DREAM(ZS) proposals.
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estimates when drawing the realizations of the latent variable proportionally to its prior distri-614

bution p(x|θ) and Figure 6b for the case where the latent variable is sampled with importance615

sampling. The two plots highlight three fundamental aspects of the CPM method in our geo-616

physical setting. First, it is crucial to use a well chosen importance sampling for the latent617

variable draws, since for a correlation of, say, ρ = 0, the variance of the log likelihood ratio esti-618

mator can be reduced from values between 10′000 and 1′000′000 (using sampling from prior) to619

values between 3 and 31 (using importance sampling). Second, increasing the number of draws620

of latent variables (N) decreases the variance of the log-likelihood ratio estimator further and,621

third, this is also achieved by increasing the amount of correlation (ρ) used for two subsequent622

draws of latent variables. The variance for ρ = 1 is equal to zero for all parameter settings623

(as we use the same values for X(j−1) and X(j)). Without importance sampling, we could still624

obtain a variance of the log-likelihood ratio estimator between 1 and 2 as recommended by625

Deligiannidis et al. (2018), but with the need of a very high N or a ρ very close to 1. In626

practice, this would either result in excessively high computational costs or slow mixing in the627

draws of the latent variables.628

629

Due to the high variances displayed in Figure 6a and since the pseudo-marginal approaches with-630

out importance sampling have already proven to be highly inefficient in the linear case (Table631

2), we now restrict ourselves only to CPM implementations involving IS. In stark contrast to632

the linear case, the LithTom IS approach (N = 1, ρ = 0) leads to a highly inefficient algorithm,633

as the variance of R around 30 is much higher than the upper recommended threshold of 2.0.634

For the CPM method, we set the number of samples to 10 and the correlation to ρ = 0.95 as635

this values leads to a variance of the log likelihood ratio estimator in-between 1.0 and 2.0. The636

autocorrelation of one cell of the latent variable field is given by Corr(X1, X1+l) = ρl for lag l637

with the correlation mechanism of Equation (8), such that for ρ = 0.95 roughly 100 (accepted)638

iterations are needed to draw an independent realization of the latent variable. In practice, the639

decorrelation will be slower as we only move on with accepted proposals (Section 2.3.2) .640

641

The results for both DREAM(ZS) proposal schemes are shown in Figure 7 and Table 3. For the642

estimates of the posterior mean of the porosity field (Fig. 7a-7d), we observe similar results as in643
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(a) (b)

Figure 6. Variance of the log likelihood ratio estimator R = log
(
p̂
(j)
N (y|θ)

)
− log

(
p̂
(j−1)
N (y|θ)

)
for

the non-linear test example and θ fixed at a region with high posterior probability mass as a function
of ρ (used to correlate the latent variables X(j) and X(j−1) as in Equation (8)) for N = 1, N = 10
and N = 50 samples of the latent variable X; the realizations of the latent variable are drawn (a) from
the prior p(x|θ) and (b) with importance sampling. The black lines delimit the range between 1.0 and
2.0 recommended by Deligiannidis et al. (2018).

the linear case: Using prior-sampling DREAM(ZS) proposals results in a porosity field estimate644

with lower variance and using the method ignoring PPEs (Fig. 7a for standard DREAM(ZS)645

proposals) leads to higher variance. The highest acceptance rate is obtained with applying the646

CPM IS method using standard DREAM(ZS) proposals (Table 3) and the acceptance rates for647

prior-sampling DREAM(ZS) proposals are lower. The LithTom approach with IS has an AR of648

less than 1 % and would, therefore, require far more than 200’000 iterations to converge. Trace649

plots of the evolving log-likelihood values are shown in Figure 7e. As expected and in agreement650

with the linear test case (Fig. 3e), the methods converge to different values. As in the linear651

case, we find that CPM IS with prior-sampling DREAM(ZS) proposals is the only case provid-652

ing posterior samples that match the prior probability of the true porosity field (Fig. 7f and 7g).653

654

Figure 8 depicts the logarithmic scores (see Section 2.5) comparing the true porosity values with655

the inferred posterior PDFs for all 2500 grid cells. We observe that the method ignoring PPEs656

(with standard DREAM(ZS) proposals, Fig. 8a) has the highest scores (indicating the lowest657

accuracy). The values of the full inversion (with standard DREAM(ZS) proposals, Fig. 8b) are658

lower, but still high. The CPM IS method with standard DREAM(ZS) proposals (Figs. 8c) leads659

to reduced logarithmic scores that are further improved when this method is combined with660

prior-sampling DREAM(ZS) proposals (Figs. 8d). The mean values of the logarithmic scores661
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Estimates of the posterior means of the porosity field θ for the non-linear test example
resulting with standard DREAM(ZS) proposals and (a) the algorithm ignoring PPEs, (b) the full in-
version, (c) the CPM IS (N = 10, ρ = 0.95) method. Results for prior-sampling DREAM(ZS) proposals
and (d) the CPM IS (N = 10, ρ = 0.95) method. (e) Log-likelihood functions, black line represents the
value of p(y|θ,x) for the true porosity and latent variable field. (f) Prior probabilities (logarithmically
transformed) of the posterior samples obtained with prior-sampling DREAM(ZS) proposals and (g)
standard DREAM(ZS) proposals; the black lines depict the corresponding value for the true porosity
field.

Table 3. Summary of the results obtained for the non-linear test example with the various inversion
approaches and the two proposal mechanisms: The acceptance rates (AR), the convergence (Conv)
showing the number of iterations needed for the 99th percentile of the parameter’s R̂-statics to be
below 1.2 (or the percentage of parameters with a R̂-statistics below 1.2 if the the algorithm did not
converge), the percentage of pixels in which the true porosity value lies within the range of posterior
samples (θtrue), the mean logarithmic score (logS), posterior standard deviation (Post SD) and the
integrated autocorrelation time (IACT) for the cell in the very middle of the porosity field θ. The
CPM IS method was evaluated with the parameter choice of N = 10 and ρ = 0.95.

Method Proposal AR Conv θtrue logS Post SD IACT

No PPE Standard 11 ↗ 24 % 92’000 87.2 % 3.36 5.4× 10−3 3’800

Full inversion Standard 10 ↗ 23 % 144’000 97.1 % 1.99 6.7× 10−3 5’150

LithTom IS Standard < 1 % - , 43 % - - - -

CPM IS Standard 12 ↗ 24 % 90’000 99.6 % 1.56 8.3× 10−3 3’250

No PPE Prior-samp 1 - 2 % - , 29 % - - - -

Full inversion Prior-samp 1 - 2 % - , 13 % - - - -

CPM IS Prior-samp 11 % 96’000 100.00 % 1.34 10.4× 10−3 3’300
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(a) (b) (c) (d)

Figure 8. The logarithmic scores for the non-linear test case with (a) no PPE and standard
DREAM(ZS) proposals, (b) full inversion and standard DREAM(ZS) proposals, (c) CPM IS and stan-
dard DREAM(ZS) proposals and (d) CPM IS and prior-sampling DREAM(ZS) proposals.

and other performance metrics are shown in Table 3. We find that the method that ignores662

PPEs fails to sample a range of values including the true porosity value in more than 10% of663

the pixels and has a mean estimated posterior standard deviation that is up to 50 % smaller664

than the other methods. The CPM IS method generates posterior samples with ranges that665

include, in more than 99 % of the pixels, the true porosity value with the percentages obtained666

using prior-sampling DREAM(ZS) proposals being even higher. Finally, the full inversion does667

not sample the true porosity value in almost 3% of the pixels and has a reduced mean estimated668

posterior standard deviation by up to 40 % compared to the CPM IS method. We also note669

that the IACT of the CPM methods are the lowest (Table 3).670

671

4 DISCUSSION672

This study showed clearly that the correlated pseudo-marginal (CPM) method, which accounts673

for petrophysical prediction uncertainty within the estimate of the likelihood function p(y|θ),674

combined with importance sampling (IS) and prior-sampling MCMC proposals leads to a675

broader exploration of the target posterior p(θ|y) than the other presented combinations of676

inversion methods and proposal schemes. The CPM method is an exact and general method,677

but it needs in the considered high-dimensional setting an efficient importance sampling and678

prior-sampling proposals to work well even for the case of linear physics.679

680

In the linear setting (with available analytical solutions for the PDFs), the CPM method using681

importance sampling performs well using only one uncorrelated sample of the PPE (LithTom682
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IS). In absence of importance sampling, even a high number of samples N and correlation ρ683

could not prevent the algorithm from being highly inefficient (Table 2). We find that the explo-684

ration of the posterior PDF is much improved when using the LithTom IS approach compared685

with full inversion (Fig. 4 and Fig. 5). Although the R̂-statistic of Gelman & Rubin (1992) sug-686

gests that the full inversion algorithm (using standard DREAM(ZS) proposals) has converged,687

we demonstrate a significant underestimation of the posterior standard deviation and posterior688

samples with far too high prior probabilities compared with the true model (Fig. 3f and 3g).689

Indeed, the full inversion’s high acceptance rate (for standard DREAM(ZS) proposals) may be690

mainly a consequence of local exploration combined with an adaptive MCMC expanding its691

archive. This (1) points out that Gelman-Rubin’s R̂-statistics and the acceptance rate are insuf-692

ficient metrics to assess the performance of an adaptive MCMC algorithm such as DREAM(ZS)693

and (2) highlights issues with over-fitting when using adaptive MCMC. Indeed, Robert et al.694

(2018) warn against using adaptive MCMC methods without due caution as adaptations to695

the proposal scheme can lead to algorithms relying too much on previous iterations, thereby,696

excluding parts of the parameter space that have not yet been explored.697

698

The need for a well-chosen importance sampling distribution is also demonstrated for the non-699

linear setting by analysing the variances of the log-likelihood ratio estimator (Fig. 6). This700

analysis also confirmed the strong influence of N and ρ. Since the importance sampling dis-701

tribution is no longer exact in the non-linear test case, the number of samples N and the702

correlation ρ need to be increased. Consequently, the CPM IS method performs better (in703

terms of computational cost) than the PM IS method as fewer samples have to be used. For704

the non-linear test case, we conclude that the exploration of the posterior with the CPM IS705

method (especially when combined with prior-sampling DREAM(ZS) proposals) is better than706

the full inversion by observing that (1) the range of the posterior samples includes more often707

the true porosity value while (2) the logarithmic score is lower and (3) the mean estimated708

posterior standard deviation is higher (Table 3).709

710

We recommend to work in the full parameter space whenever possible such that any distortions711

in the posterior estimations due to model reductions can be avoided. The presented adaptive712
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prior-preserving proposal scheme (prior-sampling DREAM(ZS) proposal) is developed in the713

spirit of the extended Metropolis algorithm of Mosegaard & Tarantola (1995) and the pCN714

proposal of Cotter et al. (2013). It is a simple correction of the standard DREAM(ZS) proposal715

that (1) makes the algorithm robust to the choice of the discretization of the target field and (2)716

maintains its capabilities to sample efficiently in complex high-dimensional parameter spaces.717

We find that the prior-sampling DREAM(ZS) proposals lead to an enhanced exploration of the718

posterior PDF and a stable AR (Tables 2 and 3). Indeed, the CPM IS approach with prior-719

sampling proposals is the only one generating samples with a prior probability comparable to720

the one of the true porosity field (Figs. 3 and 7). Due to dependencies between latent and tar-721

get variables, the full inversion with prior-sampling DREAM(ZS) proposals suffers from a very722

low acceptance rate as the method does not allow for large proposal steps. This dependency723

is bypassed by the CPM IS, allowing larger steps for a given AR. In general, combinations724

of adaptive Metropolis and pCN-proposals are referred to as DIAM (dimension independent725

adaptive Metropolis) proposals and were introduced by Chen et al. (2016). Another way to726

increase the efficiency of the pCN proposal was proposed by Rudolf & Sprungk (2018) with the727

so-called generalized pCN-proposal (gpCN), in which the proposal scheme is tuned to have the728

same covariance as the target posterior distribution.729

730

We emphasize that this study only considers synthetic data. We demonstrate that all but our731

method of choice (CPM IS with prior-sampling DREAM(ZS) proposals) have severe problems in732

exploring the full posterior distribution even in this well-specified setting. A field demonstration733

of CPM IS with prior-sampling DREAM(ZS) proposals is a natural next step. Furthermore, our734

entire study remains within Gaussian assumptions for the target field, petrophysical prediction735

uncertainty and observational noise. In the presented results, we deal only with weak non-736

linearity in our forward operator and assume the petrophysical relationship to be linear. In the737

future, it would be useful to consider test cases involving stronger non-linearity, be it through738

a higher variance of the slowness field or a non-linear petrophysical relationship. Stronger non-739

linearity would affect the accuracy of the first-order expansion used to derive the importance740

sampling distribution for the CPM method, implying that the approximations would become741

less accurate. This could lead to a decrease of efficiency that could be counter-acted by using742
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larger N or ρ. An important topic for future research would be to develop and assess importance743

sampling schemes that do not rely on Gaussian assumptions. Potential starting points could744

be efficient importance sampling by Richard & Zhang (2007) or multiple importance sampling745

introduced by Veach & Guibas (1995) and popularised by Owen & Zhou (2000).746

747

In agreement with Brunetti & Linde (2017), we find that ignoring petrophysical prediction748

uncertainty leads to biased estimates and too tight uncertainty bounds. While the need for a749

method accounting for PPEs grows with increasing integral scale of the target field (Brunetti750

& Linde 2017), the ratio of the variances of the PPE, the target variable and the observational751

noise also influences the results. The need for a well-working importance sampling for CPM752

grows with increasing petrophysical prediction uncertainty and decreasing observational noise.753

At the same time, large petrophysical prediction uncertainty leads to a flattened likelihood754

function p(y|θ), thereby, decreasing the variance of the likelihood estimators (assuming a well-755

working importance sampling) and, therefore, enhancing the efficiency of the algorithm. Our756

present work focuses on petrophysical prediction uncertainty for a known covariance model, but757

it would be possible to expand this to an unknown covariance model, an uncertain petrophysical758

model or uncertain model parameters.759

5 CONCLUSIONS760

We consider lithological tomography in which geophysical data are used to infer the posterior761

PDF of target (hydro)geological parameters. In such a latent variable model, the geophysi-762

cal properties play the role of latent variables that are linked to the properties of interest763

through petrophysical relationships exhibiting significant scatter. Compared with the original764

formulation of lithological tomography that does not consider importance sampling, we make765

the approach more applicable to high dimensions (thousands of unknowns) and large data766

sets with high signal-to-noise ratios. To account for the intractable likelihood appearing in767

the Metropolis–Hastings algorithm in this setting, we explore the correlated pseudo-marginal768

(CPM) method using an importance sampling distribution and prior-sampling proposals. For769

the latter, we adapt the standard (adaptive) proposal scheme of DREAM(ZS) with a prior-770

sampling approach, leading to a further improvement in exploration compared with standard771
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model proposals when dealing with high-dimensional problems. We find that our implementa-772

tion of the CPM method outperforms standard lithological tomography and the full inversion773

approach, which parameterizes and infers the posterior petrophysical prediction uncertainty.774

For a linear test example, the mean KL-divergence with respect to the analytical posterior can775

be reduced by 99 % by our implementation of the CPM method (even without using corre-776

lations) compared with full inversion. In the case of non-linear physics, we reduce the mean777

logarithmic score with respect to the true porosity field by up to 33 % compared with the full778

inversion method. The CPM method is generally applicable and accurate, but it requires a well-779

working importance sampling distribution (presently based on Gaussian random field theory)780

to be efficient. Future work with the CPM method could consider field data applications, more781

non-linear physics and non-linear petrophysical relationships as well as relaxing the assump-782

tions of Gaussian random fields. Furthermore, the method’s use in coupled hydrogeophysical783

inversions involving hydrogeological flow and transport models would be of interest.784
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APPENDIX A: DREAM ALGORITHMS AND PRIOR-SAMPLING940

PROPOSALS941

To perform a high-dimensional inversion with the MH algorithm, one needs a well-working942

proposal scheme. To deal with this challenge, Ter Braak (2006) introduced an adaptive random943

walk MH algorithm named Differential Evolution Markov chain (DE-MC). This method runs944

C Markov chains in parallel, where at each iteration j, the C different realizations of the945

model parameters define a population {Z(j)
c ; c = 1, 2, ..., C}, which is used to guide new model946

proposals. For chain c, two chains (denoted as a and b) are drawn without replacement from947

the remaining set of chains. Then, the algorithm proposes a new state for the c-th chain with,948

Z(j)
c = Z(j−1)

c + γ(Z(j−1)
a −Z(j−1)

b ) + ζ, c 6= a 6= b (A.1)

where γ denotes the jumping rate and ζ is a draw from N (0, s2) with a small standard devia-949

tion s used to ensure that the resulting Markov chain is irreducible. By accepting or rejecting950

the resulting proposals with the MH-ratio of Equation (3), a Markov chain with the posterior951

PDF as its stationary distribution is obtained (Proof in Vrugt et al. 2008a). This leads to an952

algorithm which is automatically adapting the scale and the orientation of the proposal density953

along the way to the stationary distribution, allowing it to provide efficient sampling on com-954

plex, high-dimensional, and multi-modal target distributions. Based on the DE-MC, Vrugt et955

al. (2008b) introduced the adaptive multi-chain MCMC algorithm called DREAM (DiffeRen-956

tial Evolution Adaptive Metropolis). It enhances the efficiency of DE-MC by applying subspace957

sampling (only randomly selected dimensions of the model parameter are updated) and outlier958

chain correction. An excellent overview of the theory and application of the DREAM algorithm959

is given by Vrugt (2016). For our case study, we use the extended version DREAM(ZS) intro-960

duced by Laloy & Vrugt (2012), as its proposal scheme using an archive of past states leads to961

further improved convergence and posterior exploration.962

963

To adapt extended Metropolis to DREAM(ZS), we rely on a transformation of the variables to964

the Uniform space. In our case study with Gaussian target variable Z(j)
c = (Z

(j)
c;1 , Z

(j)
c;2 , ..., Z

(j)

c;D2)965

sampled in chain c and iteration j, we define U (j)
c;i = Φ(Z

(j)
c;i ), with Φ(·) being the standard-966
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normal cumulative distribution function (CDF), and apply the proposal mechanism of DREAM(ZS)967

on this transform. Assuming that Z(j)
c;i has a standard-normal distribution, U (j)

c;i will be dis-968

tributed uniformly on [0, 1]. The proposal scheme of DREAM(ZS) with so-called fold boundary969

handling (i.e., periodic boundary conditions) ensures that the new state U (j+1)
c;i is a sample from970

the Uniform distribution as well. With the subsequent transformation back to the standard nor-971

mal, Z(j+1)
c;i = Φ−1(U

(j+1)
c;i ), we hence force the algorithm to use a proposal scheme that samples972

from the prior PDF.973

APPENDIX B: ANALYTICAL POSTERIOR PDF AND IMPORTANCE974

DENSITY FOR LINEAR PHYSICS975

Assuming linear physics and petrophysics, it is possible to derive an analytical expression for976

the posterior PDF p(θ|y) of the porosity (or other variable of interest). We consider here both977

relationships being linear without intercept (G(X) = J sX and F(θ) = Jpθ), however, an978

intercept (as the one used for F(θ) in our test case; Section 3.1.1) is easily included. For the979

2D grid of the porosity θ and the latent variable X, we use the following prior PDFs:980

p(θ) = ϕD2(θ;µθ,Σθ), p(x|θ) = ϕL(x;Jpθ,ΣP ). (B.1)

To derive the (in this case) tractable likelihood p(y|θ), we use a standard result about marginal981

and conditional Gaussians (Bishop 2006):982

Lemma 1. Marginal and Conditional Gaussians983

Assume a marginal Gaussian distribution for X ∈ RL and a conditional Gaussian distribution

for Y ∈ RT given X in the form

p(x) = ϕT (x;µ,Λ−1),

p(y|x) = ϕT (y; Ax + b,L−1),

with ϕT (·;µ,K) denoting the PDF of the T -variate Normal distribution with mean µ and984
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covariance matrix K. Then, the marginal distribution of Y and the conditional distribution of985

X given Y are given by986

p(y) = ϕT (y; Aµ+ b,L−1 + AΛ−1AT) (B.2)

p(x|y) = ϕL(x; Σ
(
ATL(y − b) + Λµ

)
,Σ) (B.3)

where

Σ = (Λ + ATLA)−1.

Using the prior on the latent variableX and the Gaussian likelihood p(y|x,θ) = ϕ625(y;J sx,ΣY ),987

we get with Equation (B.2),988

p(y|θ) = ϕT (y;J sJpθ,ΣY + J sΣPJ
T
s ). (B.4)

Subsequently, the analytical form of the posterior p(θ|y) is derived with Equation (B.3), the989

prior on porosity and the expression of the likelihood p(y|θ) from the last equation:990

p(θ|y) = ϕD2

(
θ;µθ|Y ,Σθ|Y

)
, (B.5)

µθ|Y = Σθ|Y
(
(J sJp)

T (ΣY + J sΣPJ
T
s )−1y + Σθ

−1 µθ
)
, (B.6)

Σθ|Y =
(
Σθ
−1 + (J sJp)

T (ΣY + J sΣPJ
T
s )−1(J sJp)

)−1 (B.7)

For the case with linear physics, the importance density p̃(x|θ,y) = ϕL(x;µIS,ΣIS) introduced991

in Section 2.3.3 is an exact expression for p(X|θ,y) and the IS mean and covariance matrix992

reduce to:993

µIS = ΣIS

(
Js

TΣY
−1y + ΣP

−1F(θ)
)
, (B.8)

ΣIS = (ΣP
−1 + Js

TΣY
−1Js)

−1. (B.9)
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