
1.  Introduction
Fractures are ubiquitous in geological formations, and they tend to dominate their mechanical and hydrau-
lic properties (e.g., Jaeger et al., 2009; Liu, 2005). Thus, the characterization of fractures is of great interest 
for wide a variety of applications such as in geothermal energy extraction (e.g., Vidal & Genter, 2018), CO2 
storage (e.g., Ogata et al., 2014), ground water production (e.g., Ofterdinger et al., 2019), oil and gas exploita-
tion (e.g., Gale & Holder, 2010), nuclear waste storage (e.g., Braester, 1999), among others. Reflection seis-
mology is a widely used, non-invasive technique for fracture detection and characterization. The basis for 
the application of this technique for this purpose is generally the higher compliance of fractures compared 
to their embedding background, which causes part of the seismic field to be reflected (e.g., Gu et al., 1996; 
Pyrak-Nolte et al., 1990). Classical methods to characterize fractures using seismic reflectivity are largely 
based on the assumption of elasticity. For instance, the characterization of fractured environments is per-
formed by analyzing the variation of reflectivity with angle and azimuth (e.g., Bakulin et al., 2000; Fang 
et al.,  2017; Rüger, 1998). Similarly, some techniques to characterize isolated fractures are based on the 
interpretation of multiple reflections coming from the fracture surface (e.g., Minato & Ghose, 2013, 2016). 
However, the works of Nakagawa and Schoenberg (2007) and Barbosa et al. (2016), which were performed 
in a poroelastic framework, show that, in permeable media, the hydraulic connectivity between a fracture 
and its background can further enhance the seismic reflectivity of the fracture. This increase in reflectivity is 
a direct consequence of fluid pressure diffusion (FPD) that takes place when seismic waves induce pressure 
gradients due to the fracture-background mechanical contrast (e.g., Müller et al., 2010; White et al., 1975). 
FPD increases the normal compliance of fractures as the stiffening pore fluid exits the fracture to equilibrate 
the pressure (Barbosa et al., 2017; Rubino et al., 2015), which, in turn, leads to an enhancement of fracture 
reflectivity. In this respect, more recent work aims to capture poroelastic effects in the reflectivity analysis 
by considering equivalent viscoelastic models of fractured porous rock (He et al., 2020; Yang et al., 2017).
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However, in many fractured environments of interest, the background is 
largely impermeable for the typical frequencies of seismic surveys (Rubi-
no et al., 2014) and, hence, FPD between the fractures and their embed-
ding background cannot take place. In fact, Barbosa et al.  (2016) show 
that a fracture-embedding background with a permeability of 10−6 D al-
ready behaves as being impermeable in the seismic frequency range. In 
addition, laboratory measurements performed in crystalline background 
rock around fault zones report permeabilities of order of 10−7 D or less 
(Mitchell & Faulkner,  2012; Wibberley & Shimamoto,  2003). Nonethe-
less, the likely presence of damage zones (DZs) surrounding fractures can 
provide adequate conditions for FPD to prevail. Indeed, there is far-reach-
ing evidence indicating the ubiquitous presence of DZs surrounding frac-
tures and faults. In this regard, Kim et al. (2004) present a detailed de-
scription of DZs associated with faults. They define a DZ as the volume 
of deformed rock resulting from the different interactions associated with 
the slip along faults. They further describe the DZ as being comprised 
of different auxiliary fractures and faults, classifying them according to 
their position along a fault. Several other studies show evidence of the 
existence of macro- and micro-fractures within the DZ, generally with 
decaying density as the distance from the fault core increases (Faulkner 
et al., 2011; Mitchell & Faulkner, 2009; Savage & Brodsky, 2011). The ex-
istence of DZs has also been related to naturally occurring hydraulic frac-
turing. For example, there is evidence of rock deformation that includes 
brecciation and focalized fracturing that accompanies the formation of 
magma driven dikes (Brown et al., 2007; Delaney & Pollard, 1981). Sim-
ilarly, Engvik et al. (2005) report the presence of alteration zones com-
prised of healed micro-cracks surrounding veins. Furthermore, studies 
show that there is an increase of permeability in the DZ associated to the 
presence of secondary fractures (Mitchell & Faulkner, 2012) and breccias 

(Sruoga et al., 2004; Sruoga & Rubinstein, 2007). In this respect, laboratory and field measurements per-
formed on DZs and fault zones report enhancements of permeability up to 10−2 D (Brace, 1984; Wibberley 
& Shimamoto, 2003). Although, the existence of healed cracks is not likely to increase permeability, stimu-
lation treatments, such as hydraulic fracturing, which are commonly used in geothermal and hydrocarbon 
applications, have the potential to re-activate such sealed pre-existing fractures (Dahi Taleghani et al., 2013; 
Gale & Holder, 2010). Thus, it is very likely that the existence of a DZ allows hydraulic communication 
with the associated fracture and, hence, promotes FPD between these regions for the frequencies typically 
employed in seismic surveys. However, the likely influence of the presence of a permeable DZ on fracture 
reflectivity remains so far largely unexplored.

In this work, we investigate the effects of FPD on the reflectivity and normal compliance of an isolated 
fracture in the presence of a DZ within an otherwise impermeable background. To capture FPD effects, we 
consider an elastic-poroelastic model that comprises two poroelastic DZ layers embedding a poroelastic 
fracture. For comparison, we also consider the purely elastic model with the same media configuration. In 
both models, elastic half-spaces represent the surrounding impermeable background. We calculate P-wave 
reflectivities at normal incidence at the background-DZ interface for the respective models for various fre-
quencies, DZ permeabilities, thicknesses, and porosities. We also calculate the corresponding normal frac-
ture compliance values. Moreover, we study the effects of a range of pertinent rock and fluid properties on 
FPD and reflectivity.

2.  Theory and Methods
2.1.  1D Models and Governing Equations

To analyze FPD effects between an isolated fracture and its associated DZ, we consider a 1D elastic-poroe-
lastic model (Figure 1). In this model, the thin poroelastic layer Λ3 represents the fracture and its embedding 
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Figure 1.  Layered model considered for both the elastic-poroelastic 
and purely elastic analyses. DP and UP are the downgoing and upgoing 
P-waves, respectively. Λ1 and Λ5 are half-spaces representing the elastic 
impermeable background; Λ3 is the thin layer representing the fracture, 
and Λ2 and Λ4 are the layers representing the DZ. For the elastic-
poroelastic case, the fracture and DZ layers are poroelastic, while for the 
purely elastic case, all media are elastic.
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poroelastic layers Λ2 and Λ4 the associated DZ. This poroelastic DZ-fracture set is enclosed by two elastic 
half-spaces Λ1 and Λ5 that represent the background rock, which is assumed to be elastic and imperme-
able. Additionally, we denote as Π1 and Π4 the respective interfaces between the elastic background and 
poroelastic DZ layers and as Π2 and Π3 the interfaces between the poroelastic fracture and DZ layers. For 
comparison, we also consider a purely elastic model presenting the same configuration as the elastic-poroe-
lastic one. In the methodology and results sections, we shall illustrate that, at high-enough frequencies, the 
reflectivity of the elastic-poroelastic model converges to that of the purely elastic one.

We assume a normally incident P-wave striking at the background-DZ interface Π1. Then, our objective is to 
find the corresponding PP reflection coefficients RPP for both the elastic-poroelastic and purely elastic case, 
respectively. We compute the corresponding reflection coefficients at the DZ-background interface because 
it quantifies the amplitude of the reflected signal from the DZ-fracture system that could be recorded in a 
seismogram. For this computation, we formulate the poroelastic and elastic wave equations in the space-fre-
quency domain, assuming that the medium is isotropic. To formulate the poroelastic wave equation, we let 
us = us(x, ω) and w = w(x, ω) be the solid displacement vector and the relative fluid displacement vector, 
respectively, for any position x and angular frequency ω. Moreover, we let σ, and pf be the total stress tensor 
and pore fluid pressure, respectively, which act upon the poroelastic medium. Then, we express the corre-
sponding equations of motion as (Biot, 1962):
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where ρb and ρf are the bulk density of the saturated porous medium and the density of the pore fluid, re-
spectively, μ is the frame shear modulus, ϕ is the porosity, I is the identity matrix, i is the imaginary unit, λ 
is the undrained Lamé modulus, α is the Biot-Willis effective stress coefficient, M is the Biot's fluid storage 
modulus, and g(ω) and b(ω) are the mass coupling and viscous coefficients, respectively. The required rock 
physical properties are calculated as follows (e.g., Barbosa et al., 2016):
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where ρs is the density of the solid grains, Km, Ks, and Kf are the bulk moduli of the drained solid frame, the 
solid grains, and the pore fluid, respectively. Additionally, η is the viscosity of the pore fluid and κd(ω) is the 
dynamic permeability of the porous rock, which can be expressed as (Johnson et al., 1987):
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Here, κ is the static permeability of the porous medium, ωB is Biot's angular frequency, which can be ex-
pressed as:


 

 ,B
f S� (5)

where S is the tortuosity of the pore space. Finally, nj is a parameter that can be expressed as (Johnson 
et al., 1987):





2Λ ,jn

S
� (6)

where Λ is a parameter proportional to the pore-volume-to-surface ratio and has units of length (John-
son et  al.,  1987). According to numerical and experimental studies (e.g., Charlaix et  al.,  1988; Sheng & 
Zhou, 1988; Smeulders et al., 1992), nj = 8 is a reasonable approximation for most porous media and hence, 
we use this value in the following. In this context, it is, however, important to remark that the prevailing 
range of nj for fractured porous media remains, as of today, unexplored. In spite of this uncertainty, it is 
expected that variations in nj will produce negligible changes on the predicted dynamic permeability κd(ω), 
since its decay is proportional to 2 / jn  (Pride, 2003). Most importantly, nj impacts the behavior of κd(ω) 
only at sufficiently high frequencies, that is ω ≫ ωB. As explained later in section 2.3, this work focuses on 
the poroelastic response at lower frequencies, that is ω ≪ ωB, where κd(ω) approaches the value of the static 
permeability κ.

To formulate the elastic wave equation, we let ue = ue(x, ω) be the displacement vector for any position x in 
the elastic medium and angular frequency ω. We also let σe be the stress tensor field acting upon the medi-
um. Then, we express the corresponding equations of motion as:

   
b

e e2u . .� (7)

The associated constitutive equation is given by:

 e e eT e
u       u u I. .� (8)

2.2.  Solution for Displacements and PP Reflection Coefficients

2.2.1.  Total Displacements

We assume that an incident P-wave propagates downwards, in the ˆ3x  direction (Figure 1), and strikes the 
interface Π1 at normal incidence. Under this condition, for the elastic-poroelastic model, the propagating 
modes present in the elastic half spaces Λ1 and Λ5 are P-waves, while in the poroelastic layers Λ2, Λ3 and 
Λ4, both fast (P1) and slow (P2) P-waves are present. For the purely elastic model, only P-waves are present 
throughout the model. Note as well that the only non-zero component of the displacement vectors is in ˆ3x
. Then, to find the total displacements at each medium Λm, with m = 1, ‥, 5, we sum the corresponding 
displacements produced by the waves traveling in the given medium Λm.

For the elastic-poroelastic model, we need to consider two types of media: elastic and poroelastic. We let nu  
be the total displacement for each elastic medium n, where n refers to the upper half-space Λ1 and lower 
half-space Λ5, respectively. When n corresponds to Λ1 the expression for nu  is given by:

  ,n n D nUP Pu u u  � (9)

where D and U refer to the downgoing and upgoing waves, respectively, and the subscript P refers to the 
P-wave. Since in the lower half-space Λ5 there are no upgoing-waves, nu  simplifies to:

 ,n n DPu u � (10)
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For each poroelastic layer d, with d = Λ2, Λ3, and Λ4, we let s
du  be the total solid displacement and wd the total 

relative fluid displacement, respectively. Then, we express these total displacements as:

   , ,s s
d d q d d q

q q
u u w w� (11)

with  1 2 1 2, , ,P P P Pq D D U U , where the subscripts P1 and P2 indicate the associated fast and slow P-waves, 
respectively.

On the other hand, for the purely elastic model, we let e
nu  be the elastic displacement component for each 

elastic medium n = Λ1, ‥, Λ5. The expression for the total displacement e
nu  for each medium n, except Λ5, 

is then given by Equation 9. For Λ5, the total displacement e
nu  is given by Equation 10. We remark that the 

respective terms in Equations 9 and 10 are replaced by e
nu  and e

n ju , where j can be either DP or UP.

2.2.2.  Solution for Displacements

For the elastic-poroelastic model, we express the corresponding solution n ju  for each elastic medium n = Λ1 
and Λ5, with j = DP or UP, as:

  3exp[ ],n j n j nu E i k x  � (12)

where n jE  is the amplitude of the corresponding elastic displacement and x3 is the position. Negative and 

positive signs in the exponential correspond to downgoing and upgoing waves, respectively. nk  is the elastic 
scalar wavenumber for the P-wave in medium n, calculated as nk  =  / n

PV , where n
PV  is the P-wave velocity 

of medium n. The corresponding n
PV  is:

 






2
.

n n
n

P n
b

V� (13)

Here, λ and ρb are the undrained Lamé modulus and the bulk density, respectively (Equation 3). For the 
poroelastic layers d = Λ2, Λ3, and Λ4, we express the solution for the solid and relative fluid displacement 

s
d qu  and wd q as:

 

 
3

3

exp[ ],
exp[ ],

s
d q d q d j

d q d q d j

u S i k x
w W i k x

� (14)

where Sd q and Wp q are the amplitudes of the solid and relative fluid displacements, respectively. Additional-
ly, kd j is the poroelastic scalar wavenumber for the wave j in layer d, with j = P1 when  1 1,P Pq D U  and j = P2 
when  2 2,P Pq D U . Please note that the scalar wavenumber kd j is complex-valued, frequency-dependent 
and its real part is associated with the phase velocity. To obtain kd j, we follow the procedure employed by 
Barbosa et al. (2016).

For the purely elastic model, the expression for the solution of e
n ju  for each elastic medium n, n = Λ1, ‥, Λ5, 

is the same as the one stated in Equation 12, after replacing the corresponding terms by e
n jE  and e

nk .

2.2.3.  PP Reflection Coefficient

We aim to find the PP reflection coefficients RPP =  PPR  and RPP =  e
PPR  at the interface Π1 of the half-space Λ1 

in both the elastic-poroelastic and purely elastic models, respectively (Figure 1). Without loss of generality, 
we assume that the amplitude of the incident P-wave is one: Λ1 DPE  =  Λ1

e
DPE  = 1. Then, we seek to find the 

amplitudes of the reflected P-waves at the interface Π1 of the upper half-space Λ1: PPR  =  Λ1UPE  and e
PPR  = 

Λ1
e

UPE . To this end, we assemble sets of linear equations, which we find by imposing suitable continuity 
conditions at the corresponding media interfaces.
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For the elastic-poroelastic model, we distinguish two types of interfaces: elastic-poroelastic and purely 
poroelastic ones. At the elastic-poroelastic interfaces Πq, for q = 1, 4, we impose continuity of solid dis-
placements and tractions and we set to zero the relative fluid displacements, respectively (Deresiewicz & 
Skalak, 1963):

 
 

 

 



Π

Π

Π

0,

0,

0.

s
n d

q

n d
q

s
d

q

u u

t t

w



� (15)

For q = 1, the corresponding media are n = Λ1 and d = Λ2; for q = 4, they are n = Λ5 and d = Λ4. We calculate 
the traction component nt

  as nt
  =  . .( ˆ ˆ)3 3σ x x . Then, using Equation 8 to replace σϵ, we express nt

  as:

   
,3

( 2 ) ,n n
n nt u � (16)

where  ,3
.  =     3. / x . Similarly, we calculate the traction component td as td =  . .( ˆ ˆ)3 3σ x x  and, using Equa-

tion 2 to replace σ, we obtain td:

       
,3,3

( 2 ) .d d s d d
d d dt u M w� (17)

At the purely poroelastic interfaces Πq with q = 2, 3, we impose the continuity of solid displacements, rela-
tive fluid displacements, tractions, and fluid pressures, respectively (Deresiewicz & Skalak, 1963):
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q

� (18)

Here, d = Λq and (d + 1) = Λ(q+1). Moreover, we calculate td and t(d+1) using Equation 17. Additionally, using 
Equation 2, we evaluate the pore fluid pressure:

     
,3,3

.d d s d
f d d dp M u M w� (19)

To complete the system of equations, we express the relative fluid displacement in terms of the solid dis-
placement through γd j = Wd j/Sd j where j = P1, P2. This ratio can be obtained from the properties of the 
porous medium (Barbosa et al., 2016).

For the elastic model, we obtain the corresponding system of equations by imposing the continuity of dis-
placements and tractions at each medium interface Πq with q = 1, ‥, 4, respectively:

 
 





 

 

( 1)
Π

( 1)
Π

0,

0.

e e
n n

q
e e
n n

q

u u

t t
� (20)
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Here, n = Λq and (n + 1) = Λ(q+1). We calculate e
nt  and ( 1)

e
nt  using Equation 16 after replacing the correspond-

ing displacement term by e
nu .

2.3.  FPD Frequency Regimes

When seismic waves propagate through heterogeneous materials, pore fluid pressure perturbations arise 
between regions of differing compressibilities. These pressure gradients are equilibrated through FPD, 
which, depending on the size of the underlying heterogeneities, prevails at different scales. Our analysis 
focuses on the mesoscopic scale, which refers to those heterogeneities that are larger than the pore size but 
much smaller than the wavelength of the propagating wave. For the case of compliant fractures embedded 
in a much stiffer DZ, the compressibility contrast allows seismic waves to induce strong fluid pressure gra-
dients and associated fluid flow.

On the other hand, it is important to notice that FPD prevails at frequencies much lower than Biot's char-
acteristic frequency of the medium: f ≪ fB, with fB = ωB/(2π) (Equation 5). At these sufficiently low fre-
quencies, the fluid flow within the pores is viscous-dominated, provided that the thickness of the viscous 
boundary layer remains greater than the characteristic pore size (Johnson et al., 1987). Under this condi-
tion, the imaginary part of the dynamic permeability kd(ω) becomes negligible (Equation  4). Moreover, 
in the low-frequency limit, kd(ω) becomes real-valued and frequency-independent and equal to the static 
permeability κ: 




0
lim ( )dk  = κ. If we additionally constrain the analysis of Biot's equations to the quasi-static 

case, it can be shown that the behavior of the slow P-wave is described by a pressure diffusion equation with 
diffusion coefficient D (Chandler & Johnson, 1981):




 ,dMHD
H� (21)

where the drained and undrained plane-wave moduli Hd and H can be calculated as Hd = Km + 4/3 μ and 
H = λ + 2 μ, respectively. Moreover, we let Ld be the characteristic diffusion length (Norris, 1993):


 .d

DL� (22)

As the frequency varies, distinct FPD regimes can be identified according to the relative magnitudes be-
tween the scale of a heterogeneity and its characteristic diffusion length. For the case of a fracture surround-
ed by DZ, the relevant scales are their respective thicknesses. For simplicity, let us assume that the thickness 
of the fracture hc is negligible compared to that of the DZ and that its diffusion coefficient (Equation 21) is 
very high. In this context, we have c c

dh L  for the frequency range of interest. Here, the superscript c refers 
to the fracture. Conversely, if we consider that the DZ thickness is much larger than that of the fracture but 
its permeability is much lower, then we expect that the relationship between DZ thickness hz and its charac-
teristic diffusion length z

dL  varies from z z
dh L  to z z

dh L  as frequency increases. Thus, for the fracture-DZ 
poroelastic system, we can regard the thickness of the DZ hz as the relevant mesoscopic heterogeneity scale 
controlling FPD. Under this perspective, we distinguish the following two end-member regimes for FPD: 
relaxed and unrelaxed. The relaxed state occurs at sufficiently low frequencies, at which the diffusion length 

z
dL  is larger than the thickness of the DZ hz. Thus, there is enough time for the pressure between the frac-

ture and DZ layers to equilibrate. Conversely, the unrelaxed state occurs at sufficiently high frequencies, at 
which the diffusion length z

dL  is very small compared to thickness of the DZ hz and, consequently, there is 
no time for FPD to take place, and the medium behaves as hydraulically isolated. A transition zone exists at 
intermediate frequencies, at which the diffusion lengths are of comparable size to that of the thickness of 
the DZ hz. This zone is characterized by a transition frequency fc = ωc/2π, which can be estimated as (Bra-
janovski et al., 2006; Müller & Rothert, 2006):

 2
9 .
2 ( )

z

c z
Dw
h

� (23)
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We remark that Brajanovski et al. (2006) and Müller and Rothert (2006) have also pointed to the existence 
of a second characteristic frequency that, depending on the DZ and fracture properties, could be visible in 
the transition zone. However, for the rock and fluid properties we are using in this work, this second char-
acteristic frequency is not visible.

In this work, we consider an open fracture whose permeability is several orders of magnitude greater than 
the DZ. Then, it is expected that c z

B Bf f , meaning that FPD within the fracture is limited to much lower 
frequencies than for the DZ. Particularly, for frequencies greater than c

Bf  but lower than z
Bf , FPD does no 

longer take place within the fracture since fluid flow becomes inertial-dominated, but FPD is still pres-
ent within the DZ. We remark that, the proposed solutions for amplitude displacements, as expressed in 
Equation 12, account for both fluid flow regimes, viscous- and inertial-dominated, since they include the 
dynamic permeability (Equation 4) in the calculation of the poroelastic wavenumbers of the fracture and 
DZ. Therefore, within this frequency band, pressure equilibration will take place under two different flow 
regimes. Nonetheless, due to the greater thickness and lower permeability of the DZ, it is expected that 
the viscous-dominated fluid flow regime in this region controls the reflectivity response of the DZ-fracture 
system. Moreover, hereinafter we use the terms low- and high-frequency limits within the FPD context. 
Meaning that, they signify the relaxed and unrelaxed FPD regimes, respectively.

2.4.  Normal Fracture Compliance

Fracture compliance defines the mechanical behavior of a fracture. The more compliant a fracture is, the 
easier it undergoes deformation and the higher is its seismic reflectivity since the mechanical contrast with 
the background increases. For the case of FPD effects caused by a normally incident P-wave, our interest 
focuses on normal fracture compliance. For the fracture-DZ poroelastic system, FPD allows fluid to flow 
from the more compliant fracture to the stiffer DZ during half of a wave cycle, which, in turn, decreases the 
stiffening effect of the fracture fluid, thus increasing the normal compliance of the fracture and its reflectivi-
ty. However, the extent to which normal fracture compliance and its reflectivity increase is controlled by the 
FPD regimes. Normal compliance is maximal, associated with a maximal increase of reflectivity, when FPD 
is in its relaxed state, that is, when the fracture fluid is allowed to exit until the pressure fully equilibrates. 
In contrast, normal fracture compliance is lowest, with no reflectivity enhancement during the unrelaxed 
FPD regime, in which the fracture behaves as hydraulically isolated. Intermediate values of normal fracture 
compliance are expected as FPD transitions from its relaxed to its unrelaxed regime.

We calculate the normal fracture compliance e
NZ  for the elastic fracture represented as a thin layer using the 

definition introduced by Schoenberg (1980). Then, extending this concept to a poroelastic framework in a 
similar way to Rubino et al. (2015), we also calculate the normal fracture compliance p

NZ  for the poroelastic 
fracture also represented as a thin layer:

Z

u u

t
t

t t

Z

u u

t

N
e

n
e

n
e

n

e n
e

n
e

n
e

N
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d
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







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,

with

wwith t
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d

d d




 2 3

2
,

� (24)

with n = d = Λ3. Here, we do not imply that it is seismically equivalent to represent the 1D poroelastic 
DZ-fracture system by a slip interface characterized by a poroelastic normal compliance equal to p

NZ . But 
the main purpose of calculating p

NZ  is to show the effect of FPD on normal fracture compliance. We refer 
the reader to the first paragraph of the discussion section for further details.

On the other hand, we express the normal fracture compliance in the relaxed and unrelaxed FPD regimes, 
o
NZ  and u

NZ , as (Rubino et al., 2015):
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� (25)

Here, B is the Skempton coefficient, which can be written as B = αM/H. 
Note that, o

NZ  and u
NZ  can also be designated as the low- and high-fre-

quency limits of fracture compliance, respectively. In the context of 
FPD, o

NZ  and u
NZ  are the maximum and minimum values that the nor-

mal compliance of a fracture can assume for a given set of rock and flu-
id properties. In particular, the high frequency-limit of normal fracture 
compliance u

NZ  corresponds to the elastic behavior of the fracture since 
at sufficiently high frequencies there is no time for FPD to take place and 
the fracture behaves as hydraulically isolated. This, in turn, impedes the 
outflow of the stiffening fluid from the fracture causing its compliance to 
decrease to this minimum value. Moreover, as detailed by Equation 25, 
the high-frequency limit of fracture compliance u

NZ  only depends on the 
fracture physical properties. In this work, we use the ratio /o u

N NZ Z  as a 
measure of the maximum increase of normal fracture compliance due to 

FPD with respect to its elastic limit. We remark that Rubino et al. (2015) find the expressions for o
NZ  and 

u
NZ  by considering a 1D periodic system consisting of a relatively thick horizontal layer alternating with a 

thinner layer representing a fracture. They assume a representative elementary volume (REV) comprised 
of the fracture layer as well as the two embedding layers with half of their thicknesses. They also assume 
a no-flow condition at the upper and lower boundaries of the REV, which holds for the entire system giv-
en the symmetry of the problem and its infinite nature. For the fracture-DZ poroelastic system enclosed 
within elastic half-spaces considered in this work, periodicity is no longer required to ensure the no flow 
condition since this is, in fact imposed, by the zero relative fluid displacement boundary condition at the 
the interfaces between the poroelastic DZ and elastic half-spaces representing the impermeable background 
(Equation 15). Thus, the expressions in Equation 25 are applicable for our problem when we consider the 
entire thickness of the DZ.

3.  Results
In this section, we present results of frequency-dependent reflectivity and normal fracture compliance for 
the elastic-poroelastic and elastic models. We analyze the effects of variations of rock properties of the DZ 
and of the fracture, as well as of the pore fluid, on the reflectivity and on the normal compliance. We remark 
that for high-enough frequencies, the results from the elastic-poroelastic models should converge to those 
obtained from the corresponding elastic models. This convergence is expected because in the high-frequen-
cy limit the unrelaxed FPD regime prevails. This effect, as previously explained, prevents fluid exchange 
between the poroelastic fracture and the DZ and, which as a consequence, causes them to behave elastically. 
For these examples, we use rock and fluid properties from Table 1, which shows the reference values of 
the rock and fluid properties for the poroelastic thin layer representing the fracture and the associated DZ 
layers. Most of these values are adopted from Barbosa et al. (2016) and Barbosa et al. (2019), with rock prop-
erties emulating those of a crystalline lithology. Fracture bulk and shear moduli, c

mK  and μc, are estimated 
using the formulas proposed by Nakagawa and Schoenberg (2007):

   / ; / ( 4 / 3 ).d c c d c c c
T N mZ h Z h K� (26)

For the drained tangential d
TZ  and normal d

NZ  compliances, we assume values of 5 × 10−10 and 1.50 × 10−10 m/
Pa, respectively. The magnitude of these values (∼10−10 m/Pa) corresponds to a fracture of around a hundred 
meters long (Hobday & Worthington, 2012). For the elastic media, comprised by the elastic fracture, DZ and 
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Property DZ Fracture

Grain bulk modulus Ks (GPa) 37 37

Grain density ρs (Kg/m3) 2,730 2,730

Porosity ϕ 0.015 0.8

Frame bulk modulus Km (GPa) 33 0.004

Frame shear modulus μ (GPa) 29 0.002

Thickness h (m) 0.2 0.001

Permeability κ (D) 0.1 100

Tortuosity S 3 1

Fluid density ρf (Kg/m3) 1,000 1,000

Fluid bulk modulus Kf (GPa) 2.25 2.25

Fluid viscosity η (Pa.s) 0.001 0.001

Abbreviations: DZ, damage zone; FPD, fluid pressure diffusion.

Table 1 
Reference Values of the Physical Properties for the DZ, Fracture, and Pore 
Fluid
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background, we compute the corresponding elastic moduli using Gassmann's equations (Gassmann, 1951) 
and we take the required rock and fluid properties from Table  1. For calculations corresponding to the 
elastic background and DZ, we take the necessary rock properties from the ones listed for the DZ and, in a 
similar way, for the elastic fracture, we take the required properties from the poroelastic fracture. We indi-
cate that, for the rock and fluid properties listed in Table 1, Biot's frequencies for the poroelastic DZ and the 
fracture are 8.10 × 103 and 1.20 × 103 Hz, respectively.

Notice that, unless stated otherwise, we use the same rock physical properties for the DZ and the back-
ground, except for the permeability, to simplify the interpretation of results, since we want to emphasize 
the FPD effects induced by the presence of the DZ surrounding a fracture. Furthermore, please note that we 
do not include intrinsic attenuation effects in the DZ, although they are expected to take place due to the 
presence of macro- and micro-fractures. Nonetheless, we consider that these simplifications are justified 
since they aim to highlight FPD effects on the reflectivity response.

3.1.  Effect of Permeability of the DZ

In the following example, we show the effect of different DZ permeabilities on reflectivity and normal 
fracture compliance. As previously outlined, it is the permeability of the DZ that allows for the hydraulic 
communication with the adjacent fracture for FPD to take place.

Figure 2 shows the absolute value of the normal-incidence reflection coefficient |RPP| versus frequency for 
the elastic and the elastic-poroelastic models considering different DZ permeabilities κz. These results show 
that there is a maximum increase of reflectivity for the elastic-poroelastic models of approximately one or-
der-of magnitude when compared to the elastic results for frequencies lower than the respective transition 
frequencies fc. This is a consequence of FPD prevailing between the DZ and the fracture, which allows for 
fluid release from the fracture as the pressure equilibrates during a half wave cycle. We observe that the role 
of the DZ permeability κz is to control the transition frequency, at which reflectivity decreases toward its 
undrained values. Here, higher permeabilities shift this transition frequency toward higher values. This is 
expected given that the characteristic transition frequency fc is directly proportional to the permeability κz 
(Equations 21 and 23). We also note that, for all elastic-poroelastic models, there is an upper limit for |RPP| 
regardless of the permeability κz. This is due to the fact that, irrespective of its permeability, the DZ provides 
a limited pore volume for FPD to occur in its relaxed state. We present a detailed analysis regarding this 
subject in the next subsection. Notice as well the presence of reverberations of |RPP| at high frequencies for 
a permeability of 1 D. For this permeability, the corresponding Biot's frequency in the DZ is ∼800 Hz and at 

SOTELO ET AL.

10.1029/2020JB021155

10 of 24

Figure 2.  Absolute value of normal-incidence P-wave reflection coefficient |RPP| as a function of frequency for different 
DZ permeabilities κz.
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this frequency P2 becomes a propagating wave. Then, multiples are expected within the poroelastic DZ layer 
when the wavelength of P2 becomes smaller than the layer thickness. These multiples convert to upgoing 
P1-waves at the background-DZ interface and interfere constructively and destructively with the reflected P1 
at this interface. Furthermore, at frequencies comparable to or larger than Biot's frequency, the relaxation 
mechanism is no longer controlled by viscous diffusion but by inertial forces. In that case, Equations 21–23, 
which assume a pressure diffusion mechanism, no longer apply.

Figures 3a and 3b show the real and imaginary parts of the normal fracture compliance, respectively, as a 
function of frequency for different values of the DZ permeability κz. We use Equation 24 to calculate both 
the elastic normal fracture compliance e

NZ  and the poroelastic normal fracture compliance p
NZ , respective-

ly. As expected, the elastic normal compliance e
NZ  is constant for all frequencies and presents the lowest 

compliance value, thus, indicating the undrained limit. In contrast, the poroelastic normal compliance p
NZ  

becomes complex-valued and frequency-dependent as the FPD regime transitions from the relaxed to the 
unrelaxed states. We point out that experimental support for the frequency-dependence of normal fracture 
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Figure 3.  (a) Real and (b) imaginary parts of normal fracture compliance ZN as functions of frequency for different DZ 
permeabilities κz.
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compliance in poroelastic media has been provided by the work of Nakagawa (2013). This study presents 
results of fracture stiffness (inverse of compliance) as a function of frequency for a fluid-saturated fracture, 
showing curves with similar trends as those in Figure 3a. Notice that at the high-frequency limit, the real 
part of all poroelastic normal compliances Re[ ]p

NZ  (Figure 3a) converges to the value of the elastic normal 
compliance e

NZ . This is because, at this frequency limit, there is not enough time for FPD to take place 
and the fracture behaves as hydraulically isolated. Regarding the behavior of normal fracture compliance 
at the low-frequency limit, Figure 3a shows that, at sufficiently low frequencies, the values of Re[ ]p

NZ  are 
highest since the fracture experiences the maximum deformation while the maximum fluid exchange oc-
curs between the DZ and the fracture. Nonetheless, there is an upper limit for Re[ ]p

NZ  regardless of the 
DZ permeability, which is constrained by the pore volume available in the DZ for FPD. In addition, using 
Equation 25, we obtain the fracture normal compliance for the low-frequency limit, o

NZ  = 3.40 × 10−12 m/
Pa and the high-frequency limit, u

NZ  = 3.60 × 10−13 m/Pa, respectively, which corresponds to a ratio /o u
N NZ Z  

equal to 9.45. To corroborate the accuracy of these results, we also estimate the average normal compliance 
for these frequency limits directly from the plots presented in Figure 3a. To this end, we use the results 
from the curves with kz equal to 10−2 D and 10−1 D at a frequency of 1 Hz for the low-frequency limit and 
at a frequency of 4.50 × 104 Hz for the high-frequency limit. We perform the analysis with those two curves 
since they present both of the regimes relaxed and unrelaxed for the frequencies chosen. Although their 
compliances should be the same at these limits, we can expect minor precision errors due to floating num-
bers used for the computations, thus we report the average of the compliances. We obtain 3.39 × 10−12 and 
3.65 × 10−13 m/Pa for the average compliances in the low- and high-frequency limits, respectively. Compar-
ing these results with the ones obtained using Equation 25, we find that the errors are of the order of 1% 
or less. Moreover, as remarked for Figure 2, the DZ permeability controls the transition frequency toward 
the undrained normal compliance. The estimated values for the respective transition frequencies fc are 
presented in Figure 2. At this transition frequency, the magnitude of the imaginary part of fracture normal 
compliance has a peak (Figure 3b), which indicates that maximum energy dissipation is taking place. This 
is the result of FPD occurring at a characteristic length hz that has a comparable size to that of the diffusion 
length z

dL  (Equation 22). Overall, these results indicate that FPD effects increase the normal fracture com-
pliance as fluid exchange occurs between the fracture and the DZ, which, in turn, increases the reflectivity 
of the poroelastic fracture-DZ system.

3.2.  Effect of Thickness and Porosity of the DZ

The thickness and porosity of the DZ determine the pore volume available for fluid flow due to FPD into the 
DZ. Thus, in the following examples (Figures 4 and 5), we show that, as the thickness and porosity of the DZ 
increase, so do FPD effects and, therefore, the maximum normal fracture compliance and the reflectivity of 
the fracture-DZ system. For the examples, we use the physical properties of Table 1, unless stated otherwise. 
We remark that, for the example in which we analyze the effect of changes in DZ porosity on reflectivity 
and compliance (Figure 5), we have disregarded the impact of porosity variations on the bulk modulus of 
the DZ. Although an increase in porosity is expected to decrease the bulk modulus correspondingly (e.g., 
Pride, 2003), we have neglected this effect to isolate the impact of porosity variations on reflectivity due to 
FPD. We remind the reader that the same consideration also applies to the elastic background since both DZ 
and background are assumed to have the same rock physical properties.

Evidence from field data suggests that the thickness of DZ measured from the fault core can vary from cen-
timeters to kilometers and is likely to scale with fault displacement (Mitchell & Faulkner, 2009; Faulkner 
et al., 2011). In contrast, field measurements and estimations of the thickness of DZ surrounding magma 
driven veins are of the order of centimeters to meters (Engvik et al., 2005). For this example (Figure 4), we 
consider the effect on reflectivity and normal fracture compliance of variations of the DZ thickness of more 
than one order-of-magnitude, from 0.05 m to close to one meter 0.8 m. These thicknesses would correspond 
to fault displacements of less than some tens of a meter (Faulkner et al., 2011; Mitchell & Faulkner, 2009) 
and to fault lengths of less than one kilometer (Cowie & Scholz, 1992). In particular, Figure 4a shows |RPP| 
as a function of frequency for a DZ permeability κz of 0.1 D and varying values of DZ thickness hz. Figure 4b 
shows the real part of ZN for the same DZ parameters. We notice that the maximum values of both |RPP| 
and Re[ZN] increase with increasing thickness hz. This occurs because a wider DZ thickness provides more 
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pore volume for FPD to prevail in its relaxed regime, and, as a consequence, more fluid is allowed to exit 
the fracture, thus, increasing its normal compliance and reflectivity. On the other hand, an increase in DZ 
thickness shifts the characteristic transition frequency fc toward lower values. This is expected since fc is 
inversely proportional to the square of thickness hz as shown by Equation 23. We additionally remark that 
the compliance ratios /o u

N NZ Z  are 32.51 and 3.1 for DZ thicknesses hz of 0.8 and 0.05 m, respectively. These 
results correspond to higher and lower values compared to the reference case (9.45), for which the thickness 
is 0.2 m (Table 1 and Figure 3a).

In Figure 5, we present results considering DZ and background porosities of 0.03 and 0.07, respectively, to 
investigate the corresponding effects on reflectivity and normal fracture compliance. Specifically, Figure 5a 
shows |RPP| as a function of frequency for a DZ permeability κz of 0.1 D and varying values of DZ porosity 
ϕz. Solid lines denote elastic-poroelastic models while dashed lines denote the corresponding elastic mod-
els. Figure 5b shows the real part of ZN for the same DZ parameters. First, notice that results in Figure 5a 
indicate that the variations in porosity do not affect greatly the reflectivity of the respective elastic models. 
These results reveal the minor impact of porosity changes on the impedance ρbVP of the background and 
DZ. Indeed, the decrease in impedance is ∼1% for a porosity increase to 0.03 and of ∼2.4% for a porosity in-
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Figure 4.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal fracture 
compliance ZN as functions of frequency using a DZ permeability of 0.1 D and different DZ thicknesses hz.
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crease to 0.07. The corresponding decrease in bulk density is ∼1% and ∼3.5%, respectively. This is due to the 
very low value of Biot-Willis coefficient α ∼ 0, which prevents a change of porosity to affect significantly the 
undrained Lamé modulus λ (Equation 3) and, therefore, the P-wave velocity. The reason for having α ∼ 0 is 
because the background bulk modulus (33 GPa) has a very similar value to that of the grain bulk modulus 
(37 GPa) (Equation 3). We also remark that it would be expected that the increase of the background poros-
ity is associated with a decrease of the mechanical moduli. However, to be able to analyze the influence on 
reflectivity of variations of porosity only, we disregard its influence on the mechanical moduli. Notice also 
the similar effect that the increase of DZ porosity ϕz has on the results compared to that of the increase of its 
thickness hz: the higher the DZ porosity ϕz, the higher the maximum value of reflectivity (Figure 5a) and of 
normal fracture compliance (Figure 5b). The same trend is reflected in the /o u

N NZ Z  ratio, which presents in-
creasing values of 15.96 and 32.35 that correspond to increasing DZ porosity ϕz of 0.03 and 0.07, respectively. 
As already outlined, this is the effect of the greater pore volume that a higher DZ porosity provides for FPD. 
The transition frequency also presents a similar behavior to the one observed with increasing DZ thickness 
hz: the higher the DZ porosity ϕz, the lower the transition frequency fc. Nonetheless, the relationship of the 
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Figure 5.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal fracture 
compliance ZN as functions of frequency. Solid curves correspond to the elastic-poroelastic models generated using a 
DZ permeability of 0.1 D and various DZ porosities ϕz. For these models, the background has the same rock physical 
properties as the DZ. Dashed lines denote the corresponding elastic models.
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transition frequency fc with porosity is not as evident as with thickness (Equation 23), but the porosity is 
embedded in the relationship M/H, which is part of the formula to calculate the diffusion coefficient D in 
Equation 21.

3.3.  Effect of DZ Mechanical Moduli

In this section, we study the effect of decreasing the drained bulk and shear moduli Km and μ of the DZ on 
reflectivity and normal fracture compliance. The material properties for the reference elastic model and 
elastic-poroelastic model are taken from Table 1. For all models, the background has the same rock proper-
ties of the DZ. For this example (Figure 6), we consider the decrease of the reference z

mK  (Table 1) to 19.8 and 
6.6 GPa, corresponding to 60% and 20% of its original value, respectively, while keeping a fixed /z z

mK  ratio 
of 1.14. This ratio corresponds to that of the reference mechanical moduli. Solid lines in Figure 6a show 
|RPP| as a function of frequency for a DZ permeability κz of 0.1 D and varying values of DZ bulk modulus 
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Figure 6.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal fracture 
compliance ZN as functions of frequency. Solid curves correspond to elastic-poroelastic models generated using a DZ 
permeability of 0.1 D and different DZ z

mK  moduli with /z z
mK  = 1.14. For these models, the background has the same 

rock properties as the DZ. Dashed lines denote the corresponding elastic models.
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z
mK . Dashed lines refer to the results of the corresponding elastic models. Figure 6b shows the real part of ZN 

for the same DZ parameters. Note that the reflectivity of the elastic models decreases with decreasing bulk 
modulus of the background and DZ (Figure 6a). This is the result of the lower impedance contrast between 
the background and the DZ-fracture system produced by the decreasing values of the background and DZ 
mechanical moduli. On the other hand, the maximum increase of reflectivity due to FPD does not present 
such a monotonic trend. For a z

mK  of 19.8 GPa, there is no appreciable difference in the maximum increase 
of reflectivity when compared to the reference case ( z

mK  = 33 GPa). On the contrary, for a z
mK  of 6.6 GPa, it is 

evident that the maximum increase of reflectivity is much lower than for the other two cases. Regarding the 
impact on normal fracture compliance, Figure 6b shows that decreasing the mechanical moduli results in 
a higher maximum increase of normal fracture compliance, which is an opposed effect to that on the maxi-
mum increase of reflectivity (Figure 6a). That is, the decrease of the mechanical moduli, in general, decreas-
es the maximum reflectivity of the DZ-fracture system. These opposed results occur because the decrease of 
the mechanical moduli has opposite effects on the induced FPD between the poroelastic fracture and asso-
ciated DZ compared compared to its effect on the acoustic impedance contrast between the background and 
the DZ-fracture poroelastic system. The aforementioned impedance contrast decreases with decreasing z

mK , 
producing a decrease in the maximum reflectivity of the elastic-poroelastic system. In contrast, Figure 6b 
indicates that the decrease of mechanical moduli promotes FPD, which, in turn, has a positive impact on 
the maximum increase of normal fracture compliance. The latter can be explained by the opposed effects 
between the terms in the numerator and denominator involved in the calculation of the low-frequency limit 
of normal fracture compliance o

NZ  (Equation 25). In the numerator, we have that as the DZ bulk modulus 
z
mK  decreases, the DZ Skempton's coefficient Bz increases, leading to lower values of Bc − Bz. This, in turn, 

decreases o
NZ . However, in the denominator, we have that the term Mz(1 − αzBz) decreases with lower values 

of z
mK , which promotes an increase of o

NZ . For the values of z
mK  used in this example, in combination with 

the particular rock and fluid properties of Table 1, we find that the denominator has a stronger influence on 
o
NZ  and it leads to an increase of the the maximum fracture normal compliance with decreasing z

mK .

3.4.  Effect of Fracture Mechanical Moduli

Figures  7 and  8 show the effect of fracture thickness on reflectivity and normal compliance. However, 
this is equivalent to studying the effect of fracture moduli since both the thickness of the fracture and its 
mechanical moduli are related by Equation 26. Specifically, Figures 7 and 8 show the effect of two frac-
ture thicknesses, 5 × 10−3 and 2 × 10−4 m, respectively, on reflectivity and normal fracture compliance. 
To find the corresponding bulk and shear moduli, we use Equation 26, keeping d

TZ  and d
NZ  constant and 

equal to 5 × 10−10 and 1.50 × 10−10 m/Pa, respectively. For the fracture with a thickness of 5 × 10−3 m, the 
corresponding values for Km and μ are 0.02 and 0.01 GPa. Similarly, for the fracture with a thickness of 
2 × 10−4 m, the corresponding values for Km and μ are 8 × 10−4 and 4 × 10−4 GPa. When comparing the 
corresponding reflectivities |RPP| in Figures 7a and 8a, we find that it is higher for the thicker fracture. How-
ever, the maximum increase of reflectivity due to FPD effects is higher for the thinner fracture. This increase 
for the thinner fracture is more than one order-of magnitude (Figure 8a) compared to only a tenth of that 
increase for the thicker fracture (Figure 7a). A similar trend is also evident from the corresponding normal 
fracture compliance plots in Figures 7b and 8b, with a larger increase of maximum normal compliance for 
the thinner and softer fracture. In fact, we find that the /o u

N NZ Z  ratios are 2.67 and 43.35 for the thicker 
and thinner fractures, respectively. We also remark that the transition frequencies are the same as the ones 
shown in Figure 2 since we have not modified the properties of the DZ.

3.5.  Effect of a More Compressible and Less Viscous Pore Fluid in the DZ and Fracture

Next, we study the effect of a more compressible and less viscous fluid, such as supercritical CO2 (Figure 9), 
filling the pores of the fracture and the associated DZ in both elastic-poroelastic and purely elastic models. 
We set the supercritical CO2 properties Kf, ρf, and η to 0.0229 GPa, 693 Kg/m3, and 1.56 × 10−5 Pa.s, respec-
tively. These values are taken from Rubino and Velis (2011). Figure 9a shows that the elastic reflectivity 
obtained in such scenario is close to two orders-of-magnitude higher than the one obtained using water as 
the saturating fluid (Table 1 and Figure 2). However, the maximum increase of reflectivity due to FPD is 
less than half of that obtained with water as saturating fluid (Figure 2). A similar trend is observed for the 
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normal fracture compliance, with higher values for the elastic normal compliance when using supercritical 
CO2 as the saturating fluid, of order of 1 × 10−11 m/Pa (Figure 9b), than for the case of water as the satu-
rating fluid, order of 1 × 10−12 m/Pa (Figure 3a). Nonetheless, the maximum increase in compliance due 
to FPD effects is less for the case of CO2 as saturating fluid, as indicated by its lower /o u

N NZ Z  ratio of 3.51 
compared to the case of water as saturating fluid, with a higher /o u

N NZ Z  ratio of 9.45. Thus, even though the 
fracture-DZ poroelastic system saturated with CO2 is more seismically visible than its water-saturated coun-
terpart, FPD effects are not as important. This lower increase in normal fracture compliance and reflectivity 
happens because CO2 has a much higher compressibility, of around two orders-of-magnitude, as compared 
to water. This prevents a significant increase of fluid pressure inside the fracture from taking place, even 
though the fracture is being heavily deformed. Therefore, the fluid pressure gradient between the fracture 
and the DZ is smaller, and so are the FPD effects. Another effect of considering supercritical CO2 as the pore 
fluid is the decrease of the transition frequency fc for a given DZ permeability, which is around 10% with 
respect to the water-saturated case. This is the result of the higher impact of the reduction of fluid com-
pressibility compared to the impact of the decrease of its viscosity (Equation 21 and 23). We also observe 
the earlier onset of reverberations in Figure 9 than for the reference case (Figures 2 and 3a) for the curves 
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Figure 7.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal fracture 
compliance ZN as functions of frequency for different DZ permeabilities κz for a fracture with a thickness of 5 × 10−3 m.
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corresponding to DZ permeabilities of 1 D and 1 × 10−1 D, respectively. This is consequence of much lower 
values of Biot's frequency for the DZ of ∼1.80 × 101 and ∼1.80 × 102 Hz for the respective DZ permeabilities, 
caused by the lower fluid viscosity.

3.6.  Sensitivity Analysis of the Maximum Increase of Normal Fracture Compliance

We have shown in the previous examples the effect of discrete variations of rock and fluid properties of the 
DZ and fracture on the maximum increase of normal fracture compliance due to FPD. In this section, we 
investigate in more detail the sensitivity of the maximum increase of normal fracture compliance to the 
changes of rock and fluid properties. These properties are changed one at a time while keeping the other 
ones constant and equal to the values shown in Table 1.

We let the /o u
N NZ Z  ratio be a measure of the maximum increase of normal fracture compliance due to FPD. 

According to Equation 25, o
NZ  is the low-frequency limit of normal compliance of the fracture. This means 

that it is the maximum value that it can take because at this frequency limit FPD is on its relaxed regime, 
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Figure 8.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal fracture 
compliance ZN as functions of frequency for different DZ permeabilities κz for a fracture with a thickness of 2 × 10−4 m.
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causing the largest possible volume of fluid to exit the fracture. This, in turn, decreases to a minimum the 
fluid stiffening effect in the fracture. In contrast, u

NZ  is the high-frequency limit of the normal compliance of 
the fracture, indicating that this is the lowest value that it can take because, at this frequency limit, the un-
relaxed FPD regime prevails, which implies that the fracture behaves as hydraulically isolated. At this stage, 
the normal compliance value is that of an elastic fracture. Therefore, the /o u

N NZ Z  ratio provides a measure 
of the maximum increase of normal fracture compliance due to FPD with respect to its elastic limit. To 
show how this maximum increase is controlled by the rock and fluid properties, we plot the /o u

N NZ Z  ratio 
as a function of dimensionless properties X (Figure 10), where X indicates the factor by which a reference 
property value has increased. Table 2 lists the different dimensionless properties that X represent as well as 
the corresponding reference value. We remark that the response of /o u

N NZ Z  to the variations c
mK  and z

mK  also 
includes the effect of the respective shear moduli changes. Nonetheless, we only show the values that the 
dimensionless bulk moduli take. For the case of the fracture, we find both the bulk and shear modulus by 
means of Equation 26. To this end, we vary the thickness of the fracture from 10−4 to 10−2 m, while keeping 
constant the tangential and drained normal compliance to 5 × 10−10 and 1.50 × 10−10 m/Pa, respectively. 
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Figure 9.  (a) Absolute value of normal-incidence P-wave reflection coefficient |RPP| and (b) real part of normal 
fracture compliance ZN as functions of frequency for different DZ permeabilities κz considering supercritical CO2 as the 
saturating pore fluid for the fracture and associated DZ.
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Then, the reference modulus  c
mK  corresponds to that found with a frac-

ture thickness of 10−4 m. For the case of the DZ, we simply assume that 
the bulk modulus is 1.14 times the value of the shear modulus. This ratio 
is the same as the one corresponding to the DZ moduli in Table 1.

Figure 10 shows that the increase of most of the dimensionless rock and 
fluid properties produces either a monotonic increase or decrease of the 

/o u
N NZ Z  ratio. Properties producing an increase of /o u

N NZ Z  as they incre-
ment are  z, zh  and fK . As already investigated in the previous examples, 
the increase of  z and zh  has a positive impact on the maximum increase 
of normal fracture compliance because they provide a greater pore vol-
ume for FPD. On the other hand, an increasingly stiffer fluid fK  creates 
the necessary pressure gradient for FPD. In contrast, the increment of c

mK  
produces a continuous decrease of the /o u

N NZ Z  ratio because the fracture 
becomes increasingly stiffer. However, z

mK  is the only property, among the 
ones studied, that does not produce a monotonic response of the /o u

N NZ Z  
ratio. We observe that, for sufficiently low values of z

mK , the increase of 
this property causes a continuous rise of /o u

N NZ Z  until a maximum is 
reached. Then, a further increase of z

mK  produces a continuous decline 
of the /o u

N NZ Z  ratio. The non-monotonic behavior of /o u
N NZ Z  occurs as 

a consequence of the opposing effects that Bz and MZ have on the DZ 
fluid pressure     . .z z z s z

fp B H Mu w. That is, increasing values of 
z
mK  decreases Bz and Bz Hz, and this, in turn, induces lower magnitudes 

of z
fp , which will tend to promote higher pressure gradients for FPD, and 

as a consequence, higher values of o
NZ . On the contrary, increasing values of z

mK  increases Mz. This, in turn, 
induces higher magnitudes of z

fp , which will tend to promote lower pressure gradients for FPD and, as a 
consequence, a reduction of o

NZ . In Section 3.3, we have analyzed the effects of DZ moduli on the maximum 
increase of fracture normal compliance. In that analysis we have found that for values of z

mK  6.6 GPa 
( z

mK  33), the maximum increase of normal fracture compliance decreases with the increase of z
mK . This 

means that for the z
mK  values used in that section, the response of the /o u

N NZ Z  ratio is in the decreasing part 
of the curve. Notice that, for this sensitivity analysis, we do not consider neither the permeability of the DZ 
nor the viscosity of the saturating fluid, because, according to Equation 25, none of these properties has any 
effect on the maximum increase on normal compliance. Nonetheless, these parameters control the transi-
tion frequency between FPD regimes (Equations 21 and 23).

For completeness, Table 3 shows the /o u
N NZ Z  ratios for the rock and fluid properties analyzed in the pre-

vious sections. Here, the column Marker refers to the marker used in Figure 10 to plot the respective data 
entry. These results can be compared against the /o u

N NZ Z  ratio of 9.45 obtained for the reference elastic-po-
roelastic model using the properties of Table 1. The dimensionless vari-
ables of interest for the rock and fluid properties of Table 1 are zh  = 20, 

z
mK  = 165, c

mK  = 10, and z
fK  = 225.

4.  Discussion
In this work, we have shown that the presence of a DZ in low-perme-
ability formations has the potential to increase the compliance and re-
flectivity of a fracture due to FPD in the seismic exploration frequency 
range. Specifically, our study indicates that the rock and fluid physical 
properties of the DZ and fracture have a direct control on the fluid ex-
change between these two regions due to FPD and, therefore, they de-
termine the maximum increase of normal fracture compliance from its 
elastic limit. However, the variation of rock properties may not produce 
the same trend on reflectivity as they do on the normal fracture compli-
ance because these property changes may cause opposing results on FPD 
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Figure 10.  /o u
N NZ Z  ratio as a function of dimensionless rock and fluid 

properties X obtained with a normalization of the corresponding reference 
values. Property X represents the factor by which a reference value has 
increased. The corresponding dimensionless properties are: the increment 
of the fracture bulk modulus c

mK , the increment of the DZ bulk modulus 
z
mK , the increment of DZ thickness zh  and the increment of the fluid bulk 

modulus fK . The corresponding reference values are:  c
mK  = 4 × 10−4 GPa, 

 z
mk  = 0.2 GPa, the thickness of DZ hz = 0.01 m and Kf = 0.01 GPa. Markers 

denote data points as detailed in Table 3.

Dimensionless property X Reference value

Increment of fracture bulk modulus c
mK  c

mK  = 4 × 10−4 GPa

Increment of DZ bulk modulus z
mK  z

mK  = 0.2 GPa

Increment of DZ porosity  z z = 0.01

Increment of DZ thickness zh  zh  = 0.01 m

Increment of fluid bulk modulus fK 
fK  = 0.01 GPa

Abbreviations: DZ, damage zone.

Table 2 
Definition of the Dimensionless Properties and the Corresponding 
Reference Values Used for 10
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between the fracture and DZ and on the impedence contrast between the background and the poroelastic 
fracture-DZ system. This response is observed, for instance, when decreasing the DZ and background me-
chanical moduli (Figure 8). For the elastic-poroelastic models tested in that example, the maximum fracture 
normal compliance decreases but the maximum reflectivity in general increases with increasing values of 

z
mK . In fact, it is possible to show that the maximum acoustic impedance contrast between the background 

and the poroelastic fracture-DZ system increases with z
mK . To this end, the low-frequency limit P-wave ve-

locity of the poroelastic DZ-fracture system can be calculated as suggested by Brajanovski et al. (2005). We 
remind the reader that for these examples the mechanical moduli of the background are the same as those 
for the DZ. A corollary of these observations is that a 1D model considering a slip interface characterized by 
a poroelastic normal compliance, as the ones calculated in the examples presented in this work, does not, 
in principle, represent the seismic response of the poroelastic fracture-DZ system, since the acoustic imped-
ance of this entire system is not accounted for. Nonetheless, we expect to explore models that are seismically 
equivalent to the aforementioned poroelastic system in future works.

We have considered that the DZ and the adjacent impermeable background have the same rock properties 
except for the permeability, since we have aimed to highlight the effects of FPD on reflectivity. Thus, we 
have not analyzed the effect on reflectivity of any decrease in mechanical moduli or increase in porosity in 
the DZ with respect to the background, although these effects are expected due to the presence of micro- 
and macro-fractures in the DZ. In Figure 11, we present such an analysis. Here, solid lines correspond to 
elastic-poroelastic models for a DZ permeability of 0.1 D and dashed curves of the same color denote the 
corresponding elastic model. Unless stated otherwise, all other DZ properties are the same as in Table 1. Fig-
ure 11a shows the effect of the decrease of DZ bulk and shear moduli while the corresponding background 
moduli are kept constant. The red solid curve corresponds to the elastic-poroelastic model, for which the 
background and DZ have the same rock and fluid properties. The red dashed curve shows the reflectivity 
for the corresponding elastic model. We observe that, compared to this elastic model, the other two present 
higher reflectivities. The reason for this increase in reflectivity is the presence of a softer region comprised 
by the DZ and fracture that produces a higher impedance contrast with regard to the background: the elas-
tic reflectivity increases as the DZ becomes softer. In contrast, the maximum increase of reflectivity due to 
FPD from its corresponding elastic reference decreases as the DZ becomes softer. This is the consequence 
of the decreasing mechanical contrast between the DZ and the fracture. Nonetheless, it is likely that the DZ 
becomes not only softer but also more porous. Figure 11b presents reflectivities of models considering in-
creasing porosities of a DZ that is softer than the background. As expected, the increase of the pore volume 
promotes FPD, increasing the maximum reflectivity from its elastic reference, thus counteracting the effect 
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Property (dimensionless) Property value (dimensionless) /o u
N NZ Z Marker

 z zh h 0.05 m (5) 3.15

0.8 m (80) 31.51

  z z 0.03 (3) 15.96

0.07 (7) 32.35

 z z
m mK K 6.6 GPa (33) 17.67

19.8 GPa (99) 14.53

 c c
m mK K 8 × 10−4 GPa (2) 43.35

0.02 GPa (50) 2.67

 f fK K 0.0229 GPa (2.29) 3.51

See Table 2 for a description of the dimensionless properties and Figure 10 for the plots of the data points.

Table 3 
/o u

N NZ Z  Ratio for the Different Rock and Fluid Properties Studied in the Previous Examples
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of the decrease of DZ bulk and shear moduli. We assume that changes in 
porosity do not have any further effect on the bulk modulus of the DZ, 
although it is expected that an increase in porosity would decrease the 
bulk modulus. On the one hand, this would result in a higher impedance 
contrast with the stiffer background rock, on the other hand, however, 
the softening of the DZ bulk modulus would decrease the FPD effects 
between the fracture and DZ (Figure 10).

We have shown that the FPD effects between an isolated fracture and its 
surroundings (DZ) even in largely impermeable rocks are evidenced by 
the fact that the normal fracture compliance becomes complex-valued, 
presenting the largest magnitude of its imaginary part when the energy 
dissipation is the greatest. This result provides a possible explanation for 
the existence of an imaginary part in seismic measurements even if the 
background is largely impermeable (Barbosa et al., 2019). Furthermore, 
our results regarding the enhanced reflectivity in the seismic frequency 
band further imply that FPD between the fracture and its associated DZ 
could be an important factor, for which reflectivity from fractures can be 
distinguished using seismic exploration techniques even in largely imper-
meable environments (e.g., Kim et al., 1994; Schmelzbach et al., 2007).

Future research should consider more realistic configurations of the 
DZ. For instance, these models should include the effect of discrete frac-
tures in the DZ. However, to be able to calculate the reflectivity with a 
semi-analytical approach of a poroelastic system comprised by an iso-
lated fractured and such a complex DZ representation, it would be nec-
essary to upscale this system using techniques such as the one proposed 
by Rubino et al. (2016). The isolated fracture and associated complex DZ 
could then be represented by an equivalent anisotropic viscoelastic me-
dium. Another approach would be to consider the fracture-complex DZ 
poroelastic system as an equivalent viscoelastic slip interface. Meaning 
that the entire poroelastic system is modeled as a displacement-jump in-
terface characterized by complex-valued, frequency-dependent compli-
ances. However, this representation would be valid only for poroelastic 
fracture-DZ systems with thicknesses much smaller than the prevailing 
seismic wavelengths.

5.  Conclusions
We have considered a layered model to analyze the poroelastic effects 
associated with a DZ adjacent to a fracture in a low-permeability back-

ground rock. Our results show that FPD between a fracture and its adjacent DZ increases fracture normal 
compliance, as this process allows fluid pressure release from the fracture into the DZ. As a consequence, 
the reflectivity of the system also increases compared to an impermeable reference model. Our results also 
show that the maximum increase of normal compliance and reflectivity are most sensitive to the increase 
in DZ thickness and porosity as well as to to the decrease of fracture mechanical moduli. In contrast, the 
permeability of the DZ does not have any effect in the maximum increase of reflectivity but controls the 
transition frequency between FPD regimes and, therefore, constrains the visibility of the FPD effects on 
reflectivity: the greater the permeability of the DZ, the higher the transition frequency to the unrelaxed FPD 
regime, which allows for a wider range of frequencies for FPD to contribute in its relaxed regime. The thick-
ness and porosity of the DZ affect both the maximum increase of reflectivity and the transition frequency. 
Greater thicknesses and porosities increase the reflectivity of the system but shift the transition frequency to 
lower values. The consequence of this latter is that the visibility of FPD effects on reflectivity is constrained 
to lower frequency bands. In this regard, an increase of the DZ thickness and porosity has an opposing effect 
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Figure 11.  Absolute value of normal-incidence P-wave reflection 
coefficient |RPP| as a function of frequency. Solid lines correspond to 
elastic-poroelastic models for a DZ permeability of 0.1 D. Dashed lines of 
the same color denote the corresponding elastic models. (a) Curves for 
varying values of DZ bulk moduli z

mk  with /z z
mk  = 1.14. The background 

bulk modulus is kept constant to 33 GPa. (b) Curves for varying values of 
DZ porosity ϕz. DZ bulk modulus z

mk  is 19.8 GPa.
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to that of an increase of the DZ permeability. Regarding the effect of decreasing the mechanical moduli of 
the DZ, our results show that this decrease limits to lower values the maximum increase of reflectivity due 
to FPD. However, this effect is opposed by a likely increase of DZ porosity. Overall, this study shows that 
FPD effects promoted by the presence of a DZ in an otherwise largely impermeable background can notably 
enhance the reflectivity of a fracture in the seismic frequency band.

Data Availability Statement
The data set used to plot the figures presented in this paper can be found at https://doi.org/10.5281/ze-
nodo.4085397 These data set have been generated by solving the system of equations comprised of Equa-
tion 15 to Equation 20. The reference input parameters are as detailed in Table 1.
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