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 “The higher organic matter contents of calcareous soils compared with adjacent non-calcareous 

soils was in part supposedly due to Ca-humates, but the subject has been neglected until 

recently” 

Oades (1988). 

- only to have the subject again neglected, until recently -
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Abstract - English 
Soils play an essential role in the global cycling of carbon. Understanding the mechanisms behind the 

preservation and accumulation of soil organic carbon (SOC) is of globally recognised significance. Until 

recently, research into the processes that cause SOC to accumulate has predominantly focused on acidic 

soil environments, where SOC interacts with aluminium (Al) or iron (Fe). The interactions between 

SOC and calcium (Ca) have typically received less attention, particularly in humid and temperate soil 

environments. Consequently, the aim of this thesis was to investigate the specific role of Ca in the 

accumulation of SOC in humid and temperate soils. 

A critical assessment of existing literature indicated that Ca could help stabilise SOC by promoting its 

occlusion in aggregates or its sorption to mineral surfaces. In order to investigate the effects of Ca on 

these SOC stabilisation mechanisms, we conducted a field study that was split into two parts. Firstly, 

we evaluated the effects of calcium carbonate (CaCO3), a main reservoir of Ca, on the pedogenic 

trajectories and general biogeochemistry of humid and temperate soils in a subalpine valley of 

Switzerland, the Nant Valley. To isolate the influence of CaCO3 from other variables, six profiles were 

selected that had developed under almost identical conditions for soil formation, except for the presence 

(CaCO3-bearing) or absence (CaCO3-free) of CaCO3. CaCO3 was present in some parts of the valley 

due to the variability in CaCO3 content of surficial deposits issued from the Morcles Nappe. The 

presence of CaCO3 was associated with cascading changes in soil biogeochemistry, including a higher 

pH, an order of magnitude higher extractable Ca, higher proportion of poorly crystalline Fe forms, and 

twice as much SOC.  

In the second part of the study, we investigated the mechanisms behind this accumulation of SOC at the 

CaCO3-bearing site. To separate the role of occlusion from that of sorption, we fractionated SOC into 

four fractions by density and sequential sonication (a free-light fraction, two occluded fractions 

separated at 10 and 200 J mL-1 sonication and a mineral-associated-fraction). There was always more 

occluded material at the CaCO3-bearing site. Likely causes included the flocculation of soil separates 

by exchangeable Ca (CaExch) and the increased cementation or stability of aggregates in the presence of 

high SOC content. Yet, the free-light or occluded pools played a minimal role in bulk SOC content at 

either site. It was instead the mineral-associated fraction that had the highest mass of SOC, closely 

resembling bulk SOC values. Mineral-associated SOC was nearly twice as high at the CaCO3-bearing 

site, relative to the CaCO3-free site. Mineral-associated SOC also displayed different stable carbon 

isotope compositions, which was potentially caused by a preferential stabilisation of SOC by either Ca 

or Fe oxides. Finally, this thesis highlights that pH could be used as a predictor of the dominance of 

different SOC stabilisation mechanisms and their effects on accumulation in soils. 
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Résumé - Français  
Les sols jouent un rôle essentiel dans le cycle global du carbone. C’est pourquoi il est primordial de 

mieux comprendre les mécanismes qui préservent et accumulent le carbone organique du sol (COS). 

Jusqu'à présent, les recherches sur la stabilisation du COS se sont concentrées principalement sur les 

environnements de sols acides, où le COS interagit plus avec l'aluminium (Al) ou le fer (Fe). Les 

interactions entre le COS et le calcium (Ca) ont été généralement négligées, en particulier dans les sols 

de milieux frais et tempérés. L’objectif de cette thèse fut donc d'étudier le rôle du Ca dans l’accumulation 

du COS des sols frais et tempérés d’une vallée subalpine de Suisse, le Vallon de Nant. 

Une évaluation de la littérature existante a montré que le Ca pouvait stabiliser le COS par occlusion 

dans les agrégats ou par sorption sur les surfaces minérales. Les recherches ont ensuite entrepris d'isoler 

les effets du calcium sur les mécanismes de stabilisation du COS grâce à une approche fondée sur deux 

parties complémentaires. Dans une première partie, les effets du carbonate de calcium (CaCO3), 

réservoir principal de Ca, ont été évalués en tant que facteur agissant sur la trajectoire pédogénétique et 

la biogéochimie des sols du Vallon de Nant. Afin d’isoler l'influence du CaCO3, six profils ont été 

sélectionnés. Ces profils se sont développés sous des conditions pédogénétiques similaires, à l'exception 

de la présence (CaCO3-bearing site) ou de l'absence (CaCO3-free site) de CaCO3. La présence de CaCO3 

a conduit à un enchainement de changements dans la biogéochimie du sol, à savoir un pH plus élevé, 

une teneur en Ca extractible supérieure d’un ordre de grandeur, une proportion plus élevée de formes 

du Fe crypto-cristallines, et deux fois plus de COS, le tout par rapport à une absence de CaCO3. 

Dans la seconde partie de l’étude ont été étudiés les mécanismes contrôlant l’accumulation du COS dans 

les profils contenant du CaCO3. Afin de séparer le rôle de l'occlusion de celui de la sorption, le COS a 

été fractionné en quatre fractions par densité et sonification séquentielle (une fraction libre légère, deux 

fractions occluses et une fraction intimement associée aux minéraux). Le site contenant du CaCO3 était 

toujours plus riche en matériaux occlus, probablement à cause de la floculation des particules du sol par 

le Ca échangeable (CaExch) et l’augmentation de la cimentation ou de la stabilité des agrégats du sol en 

raison du contenu élevé en COS. Pourtant, les fractions libre ou occluses ne représentaient qu’une partie 

minime du COS. La majorité du COS était présente dans la fraction associée aux minéraux, donc 

caractérisée par des teneurs en COS proches de celles du sol total. La teneur en COS associée aux 

minéraux était près de deux fois supérieure dans les profils contenant du CaCO3, comparativement aux 

profils sans CaCO3. Ce COS avait également des compositions en isotopes stables (13C) différentes entre 

les deux sites, ce qui présuppose une stabilisation préférentielle du COS lors des associations organo-

minérales. Enfin, cette thèse souligne l’importance du pH en tant que prédicteur de la dominance des 

mécanismes de stabilisation et d’accumulation du COS. 
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- General introduction foreword -

In this section the current state of the art on soil organic carbon and its biogeochemical cycling is 

presented. The following introduction defines the general concepts and key terms that are used regularly 

throughout this thesis. This introduction will also aim to place our research and the following chapters 

within the context of existing literature, highlighting recent paradigm shifts in our understanding of the 

transformation and persistence of soil organic carbon. It will then focus on some more complex concepts 

within the field of organo-mineral association that will be key for our general discussion (Chapter 6). It 

will also importantly, highlight the existing knowledge gaps that will be addressed in the research outline 

(Chapter 2) and following research chapters (Chapters 3-5).  
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1.1 - Biogeochemistry 
Biogeochemistry is a scientific discipline that seeks to describe the relocation, exchanges, or cycling of 

elements through the Earth’s surface. Elements take part in different processes as they migrate through 

the Earth’s four spheres, the atmosphere, hydrosphere, lithosphere, biosphere, and the intersection 

between them, the pedosphere. The field is interdisciplinary, spanning biology, geology, physics, and 

chemistry, to name but a few fields, and is a fundamental building block in our understanding of natural 

systems (Schlesinger, 2003). Biogeochemistry is built upon two fundamental principles, the laws of 

thermodynamics and chemical stoichiometry (Schlesinger and Bernhardt, 2013). The 1st law of 

thermodynamics states that energy can never be created or destroyed, but is instead converted from one 

form to another. Yet, as chemical reactions are not completely efficient, some energy is lost from natural 

systems (typically as heat) and thus, reactions always proceed to yield a lower state of free energy (G; 

2nd law) or higher disorder (entropy). Biological systems are highly ordered and thus, must constantly 

process energy or metabolise to maintain their state of low entropy. The laws of thermodynamics 

therefore provide a framework for understanding the movement of energy in different biogeochemical 

reactions and why life must metabolise.  

The second fundamental principle of biogeochemistry is stoichiometry, which dictates that elemental 

cycles are linked through the proportional balance of elements within the structure of molecules. This 

principle highlights the delicate equilibrium between different elemental cycles in nature. It states that 

one elemental cycle may be limited by the presence or absence of another element needed to create 

specific molecules; for instance, the productivity of vegetation is typically limited by an environmental 

deficiency in N or P (Koerselman and Arthur, 1996), needed to create chlorophyll, amino acids and 

adenosine triphosphate (ATP). Biogeochemical constraints placed on a specific environment by 

stoichiometry thus enable us to model elemental cycles and their interactions with other elements on 

ecosystem- or larger-scales (Bashkin, 2002). With these two fundamental principles, we can begin to 

investigate the complex coupling of different elemental cycles such as Ca and C as they migrate through 

the Earth’s surface, our global biogeochemical system (Lovelock, 1989). 

1.2 - The Ca cycle 
Calcium is an alkaline earth metal, meaning that it has a high third stage ionisation energy and is 

divalent. Ca is the 5th most abundant element in the Earth’s crust (Wedepohl, 1995) and is considered 

mobile, as it is weathered relatively easily from most primary and secondary minerals, moving freely in 

different marine and terrestrial reservoirs. Ca is an essential nutrient in the biosphere, typically used 

throughout nature for structural purposes, including the stabilisation of membranes (Demarty et al., 

1984), enzymes (Likens et al., 1998), or the production of essential biominerals, such as hydroxyapatite 

(teeth or bones; Abou Neel et al., 2016) or different forms of carbonate (protective shells; Ries et al., 

2009). During the biomineralisation of carbonate (CaCO3) by marine organisms, C can be sequestered 
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within the geologic pool when the animal dies and sink to the ocean floor (Heinze et al., 2015). This is 

just one of the examples in which the Ca and C cycles can be intimately coupled due to their importance 

within biological systems.  

1.3 - The C cycle 
The C cycle is of central importance to biogeochemistry because C is the fundamental building block of 

life. C is a non-metallic tetravalent element that has four electrons available to form covalent bonds. C 

is an effective catenater, binding to itself and creating long chain-like and ring structures. C shifts 

between different inorganic and organic phases as it moves through the geosphere, atmosphere, 

hydrosphere, biosphere, and pedosphere. However, it is the faster cycling biotic C cycle that has the 

larger fluxes as the amount of carbon taken up by the biosphere and re-released to the atmosphere is 

1000 times greater than that of the geological C cycle (Archer and Barber, 2004). The biotic cycling of 

C starts when photosynthetic organisms (phototrophs) utilise photons at certain electromagnetic 

wavelengths from inbound solar radiation to create adenosine triphosphate and nicotinamide adenine 

dinucleotide phosphate within chloroplasts. This energy source is then used by phototrophs to reduce 

inorganic C (CO2) in the Calvin cycle, releasing O2 and C, the latter of which can be stored as fuel after 

being converted to a higher state of G, (Eq. 1.1; Benson and Calvin, 1950). Organic C is then 

subsequently oxidised back into a state of lower G, inorganic CO2 during heterotrophic respiration (Eq. 

1.2; Krebs and Johnson, 1937), which is the fundamental pathway of metabolism for nearly all remaining 

life forms (not accounting for chemoautotrophs).  

CO2 + 2H2O
Light
���� 〈CH2O〉 + O2 + H2O 

Eq. 1.1. Reduction of inorganic carbon into a nominal carbohydrate during 
photosynthesis by photosynthetic organisms, utilising inbound 
electromagnetic wave radiation (Archer and Barber, 2004). 

 

C6H12O6 + 6O2  →  6CO2 +  6H2O + ATP energy 

Eq. 1.2. The aerobic oxidation of glucose during glycolysis and the Krebs cycle 
(Krebs and Johnson, 1937) and production of energy. 

1.3.1 - Global budgets and reservoirs of C 
During the migration of C through both inorganic and organic forms, it is stored within different 

environmental reservoirs. Each reservoir has different inputs and outputs (fluxes) and processes that 

govern how long C may stay within a specific reservoir (residence times). Global estimates for how 

much C is stored within each environmental reservoir (g x 1015 = 1 Pg) at a specific time vary widely 

(Fig. 1.1) due to the intricate nature of the global system and large spatial and temporal fluctuations in 

elemental cycles (Schlesinger and Bernhardt, 2013).  
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Fig. 1.1. A simplified model of the carbon (C) cycle describing the stocks of C within 
different environmental reservoirs (Pg C) and the fluxes of C between the 
different reservoirs. Fluxes (Pg C yr-1) are in orange (environmental) or red 
(anthropogenic) boxes with accompanying arrows. Reservoirs are in black 
boxes with red numbers signifying anthropogenic driven changes in the stocks 
of the reservoirs since the industrial revolution (1750). All figures are taken 
from Kandasamy and Bejugam (2016). Estimates for soils vary widely, but 
2400 Pg C will be used from here out.  

1.3.2 - Anthropogenic effects on the C cycle  
Since the start of the industrial era, humans have been extracting fossil C from an inert reservoir, 

combusting it, and releasing various gases into the atmosphere (CO2, CO, CH4, SO2, NO2, N2O; Fig. 

1.1), the predominant of which is CO2. Atmospheric CO2 concentrations (CO2
Atm) have thus risen from 

280±10 ppm during the several thousand years prior to the industrial revolution (1750; Prentice et al., 

2001) to 407.4±0.1 ppm in 2018 (NOAA, 2019). This increase in CO2
Atm protrudes from historical 

records (Ciais et al., 2013), as measurements of ice cores show that CO2
Atm typically varied between 

172–300 ppm during the last 800 kyr, between glacial and interglacial periods, respectively (Lüthi et al., 

2008). It has long been known that CO2, along with other greenhouse gases (H2O vapour, CH4) trap 

inbound infrared radiation (Tyndall, 1859), driving global temperatures (Foote et al., 1856) by 

increasing surface radiative forcing. This process is vital for life as it warms average global temperatures 

to 15°C from  
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-18°C, the Earth’s radiative equilibrium temperature (Ahrens and Samson, 2010). However, global 

temperatures are rising rapidly and there is now scientific consensus (Cook et al., 2016) that 

anthropogenic emissions from the burning of fossil fuels is likely its main cause (IPCC, 2014). This 

increasing CO2
Atm is in turn linked to a range of environmental issues (IPCC, 2014) and there is near 

global consensus that CO2
Atm must be reduced (UNFCC, 2016). CO2

Atm can be reduced by sequestering 

it through different processes and storing it in existing natural reservoirs, such as in the geosphere, 

hydrosphere, biosphere, or pedosphere (soils). This is supported by the European Academies Science 

Advisory Council who recently concluded that soils could play a major role in reducing CO2
Atm 

(EASAC, 2018). 

1.4 - Soils 
Soils are complex 3-dimensional matrices formed of both mineral and organic solid matter (both living 

and dead), the pores of which, water (or ice) and gases pass through, all interacting in different 

biogeochemical processes. Soils initially form when life begins to colonise rock weathering products or 

sediment (regolith) at the surface of the lithosphere. The complexity of a soil then typically increases as 

a function of time as pedogenic processes (addition, losses, translocation and transformation) alter 

components differentially within the solum, causing the horizonation and forming the profile (Fig. 1.2; 

Schaetzl and Thompson, 2015). The evolution and development of soils through time (pedogenesis) is 

principally governed by four external factors: climate, topography, biota, and parent material, which 

function through time (Dokuchaev, 1883; Jenny, 1941). Thus, soils that have developed for a similar 

amount of time under near-identical external factors of pedogenesis should be relatively similar 

(Dokuchaev, 1883). Yet, it is often more complicated than this in the field and the effects of these factors 

can also be inhibited by inherent pedogenic processes or intrinsic pedogenic factors (Muhs, 1984). These 

intrinsic pedogenic factors can enforce a state of pedogenic inertia, preventing pedogenesis and its 

associated changes in biogeochemistry (Chadwick and Chorover, 2001), contributing to the spatial 

heterogeneity of soils. Thus, soils can vary drastically over short distances due to small differences in 

both external and internal factors of pedogenesis, which has a divergent influence on biogeochemical 

cycles, such as the C cycle. 
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Fig. 1.2. Two soil profiles of different pedogenic complexity. Profile A is a Regosol 
profile that has recently developed in a regolith (museum example of a 
Regosol, photo credit to Rockwurm, Creative Commons License). 
Contrastingly, profile B is a Podzol at Fontainebleau, France (photo courtesy 
of Dr. Stephanie Grand). Profile A still retains the structure of the original 
regolith, while profile B is formed due to the downwards translocation of 
carbon, iron, and aluminium through a sandy textured soil via chelation, 
leaving a bleached eluviation horizon over an enriched illuviation horizon.  

1.4.1 - Carbon in soils 
Soils play an essential role in the cycling of both inorganic (SIC) and organic carbon (SOC). Soils 

contain approximately 2400 Pg C, of which, 900 Pg C is SIC and 1500 Pg C SOC (Batjes, 1996; Lal, 

2004). SIC is generally overlooked in soil studies, but is still important as it links the slower geologic C 

cycle with the faster biotic cycle of SOC (Zamanian et al., 2016). SOC consists of both living and non-

living soil organic matter (SOM) that is cycling through the pedosphere (Torn et al., 2009). SOM plays 

a central role in many soil properties and ecosystem services, including soil fertility and the slow release 

of nutrients, water filtration, ecosystem functioning, structural stability, erosion prevention, and the 

regulation of global CO2
Atm (Lal, 2009). The mass of SOM in a given space or landscape (stocks) can 

be summarised as the balance between inputs (fresh, transported and recycled SOM) and outputs 
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(dissolved organic C and respired CO2). SOM stocks are being degraded globally, particularly by land 

management practices in agricultural soils (Stockmann et al., 2015), and land use change, such as 

deforestation (Cerri et al., 1991). This disrupts soils, their C cycle, and their associated ecosystem 

services, further exacerbating global CO2
Atm.  

The recent United Nations Sustainable Development goals (UN General Assembly, 2015) aim at 

reducing this degradation by moving towards sustainable agricultural practices (§ 2.4) and achieving 

land degradation neutrality (§ 15.3) by 2030. This is further supported by a recent movement called the 

“4 Per Mille Initiative”. This initiative publicises the need to preserve and accumulate SOC in 

agricultural soils due to its important ecosystem services (Minasny et al., 2017). The project aims to 

reduce harmful land management practices that decrease SOC and increase the adoption of sustainable 

agricultural practices that contribute towards the accumulation of SOC. Through the adoption of such 

practices, the initiative aims to increase SOC stocks on agricultural land by 0.4 % yr-1 (4 ‰), which, by 

their calculations, would represent a C sequestration that equals current anthropogenic CO2 emissions. 

Yet, to successfully implement both the United Nations Sustainable Development goals and the 4 Per 

Mille Initiative, key knowledge gaps regarding the degradation, retention, and preservation of SOC, and 

its interactions with other elements within a soil profile, must first be addressed. 

1.4.2 - Decomposition 
Non-living SOC (from here on out SOC) is predominantly formed of plant, but also animal / microbial 

matter that is at various stages of physical and oxidative transformation (decomposition). SOC is 

incorporated into the soil when plants or animals die and can have residence times that span several 

orders of magnitude (minutes to tens of thousands of years) before it is respired back to the atmosphere 

as CO2 (Torn et al., 2009). During decomposition, SOC can become increasingly laden in functional 

groups as it undergoes oxidative transformation. Decomposition is more efficient in the presence of O2 

(aerobic); but it can also occur anaerobically, as unlike other heterotrophs, microorganisms can use a 

variety of chemicals as electron acceptors for the oxidative transformation of SOC (Burgin et al., 2011). 

There are currently three conceptual models of SOC decomposition processes (Fig. 1.3), discussed 

further below to give context to the evolution in our understanding of SOC’s degradation and 

transformation within a profile. 
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Fig. 1.3. The three competing models of decomposition within soil science, discussed 
further below. Image adapted from Lehmann and Kleber (2015). 

1.4.2.1 - Humification 

Humification is the oldest of the three models of decomposition in soils and differs from the other 

models by theorising that decomposition products condensate within a soil profile. These novel 

condensates were defined operationally as the products of alkali-based extraction methods and were 

thought to consist of large macromolecules of a dark nature, called humic substances. Humus was then 

assumed to be more resistant to decomposition, leading to its persistence and accumulation within soils 

(Orlov, 1995; Stevenson, 1994). Yet, the concept of humification has been recently challenged (Kelleher 
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and Simpson, 2006; Kleber and Lehmann, 2019; Lehmann and Kleber, 2015). Novel techniques have 

demonstrated that humic substances cannot be defined as a single substance and are instead, a 

heterogeneous mixture of simpler biochemical constituents (Kelleher and Simpson, 2006). It therefore 

seems as though recent evidence does not support the historic concept of humification and that these 

substances and their associated condensation processes do not exist within soils (Kleber and Lehmann, 

2019; Lehmann and Kleber, 2015; Schmidt et al., 2011). Humification will thus not be discussed further 

within the context of this thesis, unless referring to ancient literature. 

1.4.2.2 - Selective preservation 

Another important model of understanding SOC decomposition processes is selective preservation, 

which is based upon the selective decomposition of certain substrates by microorganisms. Litter 

decomposition experiments have repeatedly shown that certain complex and more stable compounds 

(lignin, cutin, and suberin) have a slower turnover in organic horizons (Aber et al., 1990; Preston et al., 

2009). It was thus previously assumed that this also occurred in mineral horizons and that 

microorganisms preferentially used less complex substrates, due to the smaller energy barriers that 

obstructed their utilisation. Logically, this would lead to the selective preservation and persistence of 

these complex substrates within a profile and their accumulation through time.  

However, as hypothesised by Oades (1988), there has been little evidence for the preservation of 

complex materials within soil profiles. On the contrary, authors have found that simple substrates tend 

to persist within the soil profile, while complex substrates, like lignin, are decomposed relatively quickly 

(Gleixner et al., 1999; Gleixner et al., 2002). It has also been demonstrated that microorganisms can use 

the energy gained from simpler substrates to overcome energy barriers associated with the metabolism 

of more complex substrates (priming effect; Kuzyakov et al., 2000; Löhnis, 1926). Thus, the importance 

of selective preservation is still recognised within organic horizons or at the beginning of the 

decomposition continuum, but its role seems to be diminished within mineral horizons (Matteodo et al., 

2018).  

1.4.2.3 - Continuum 

Decomposition is now commonly thought to occur in a continuum (Lehmann and Kleber, 2015). This 

continuum begins when organic matter is incorporated into the soil by physical or biological processes 

and then broken down into smaller particulate SOM by macro-endopedonic species (mites, beetles, 

worms, small mammals, etc...; Gobat et al., 2004). This source of particulate SOM can then be further 

degraded by the extra-cellular enzymes of microorganisms (fungi / bacteria), hydrolysing it from large 

energy rich compounds to smaller energy poor compounds (Burns, 2010). Once SOC has been broken 

down beyond approximately < 600 Da, it can pass directly across the cell wall of microorganisms (Decad 

and Nikaido, 1976) and either be incorporated into cell structures, used for storage (Mason-Jones et al., 

2019), or respired and transformed into CO2 (Section 1.4.3; Eq. 1.2).  
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Thus, unlike selective preservation, where SOC is preserved due to its inherent biochemical complexity, 

the continuum model suggests that SOC is actually more likely to persist as it becomes increasingly 

smaller and less complex (Lehmann and Kleber, 2015). This is because degradation processes that 

reprocess SOC into smaller energy poor compounds also increase the proportion of polar and ionisable 

functional groups in SOC (Kleber et al., 2007). In turn, the processes that inhibit the decomposition of 

SOC within most mineral soils, occlusion and sorption (discussed further in Section 1.5), can more 

readily stabilise these smaller substrates with more polar and ionisable functional groups. This 

hypothesis agrees with recent evidence that, rather than more complex substrates, it is instead the simpler 

constituents of SOC that persist within mineral soil (Gleixner et al., 1999; Gleixner et al., 2002). It 

therefore seems that, contrary to previous hypotheses, SOC is formed of a heterogeneous mixture of 

substrates at various points along a decomposition continuum (physical degradation and oxidative 

transformation) within mineral soil, prior to being eventually respired (Lehmann and Kleber, 2015). 

Furthermore, the direction of this continuum does not reverse to form more complex substrates 

(humification) and remains relatively disconnected from the inherent composition of particulate SOM 

(selective preservation) once incorporated into the mineral soil.  

1.4.3 - Respiration and its global drivers 
At the end of the decomposition continuum under both aerobic and anaerobic conditions, a certain 

fraction of C is lost and re-emitted as CO2 or CH4 in a process called heterotrophic respiration. 

Respiration rates, like any other property of a soil, are governed by the five factors of soil formation. 

Thus, heterotrophic respiration varies temporally and spatially, and global estimates vary widely from 

43.6 to 75 Pg C yr-1 (Konings et al., 2019; Schlesinger and Andrews, 2000). Yet, while estimates of 

global respiration vary widely, it seems as though heterotrophic soil respiration is increasing globally 

(Bond-Lamberty et al., 2018). Recent changes in two soil forming factors (organisms and climate) could 

be driving these globally increasing decomposition / respiration rates and will now be explored further 

below.  

1.4.3.1 - Increased net primary production 

Photosynthetic organisms play a vital role in heterotrophic respiration as their net primary production 

(NPP) drives the input of new SOC into the soil reservoir. Gross primary production is defined as the 

amount of chemical energy stored (usually defined as carbon biomass) by photosynthetic organisms 

through a given time. In contrast, NPP is the chemical energy that remains stored within photosynthetic 

organisms after they have used photosynthate from gross primary production for cellular respiration and 

maintenance of existing tissues. Thus as NPP increases, there is more C input into the reservoir as SOM 

to be decomposed and respired back to the atmosphere, if not inhibited by other processes (Torn et al., 

2009; Trumbore et al., 1995). As CO2
Atm increase globally, photosynthesis (the ribulose-1, 5-

bisphosphate carboxylase / oxygenase enzyme) becomes more efficient, increasing gross primary 

productivity world-wide in what is known as the CO2 fertilisation effect (Braghiere et al., 2019; Ciais et 
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al., 2019; Frederick et al., 1973; Zhu et al., 2016). Thus, a proportion of increasing heterotrophic 

respiration is likely driven by increased gross primary productivity from CO2 fertilisation. 

1.4.3.2 - Climate (precipitation / temperature) 

Moisture is a necessary component of decomposition, and changes in moisture regime can either 

increase or decrease global respiration rates. Episodic periods of drying can thus affect decomposers by 

reducing the availability of a necessary component of decomposition (H2O) from substrates, enzymatic 

efficiency, decreasing bacterial mobility (Iovieno and Bååth, 2008) when not transported through air 

pockets by fungal highways (Bravo et al., 2013), and consequently, heterotrophic respiration. 

Contrastingly, rain events can drive sharp increases in heterotrophic respiration rates as moisture from 

precipitation reconnects decomposers with the necessary components of decomposition and fresh C 

substrates (Carbone et al., 2011; Lee et al., 2004). With a changing global climate, precipitation 

frequency and intensity will also be affected (Trenberth, 2011), which can directly or indirectly influence 

soil moisture content and heterotrophic respiration rates.  

Another aspect of the changing climate that impacts global respiration rates is the increasing 

temperature. Biogeochemical reactions in soils, such as decomposition, are strongly temperature 

dependent and thus C stocks tend to be smaller in hotter environments than colder environments (Torn 

et al., 2009). Temperature can affect decomposition by directly influencing enzymatic kinetics, 

microbial dynamics, and substrate availability (Davidson and Janssens, 2006; Schipper et al., 2014). 

Increasing temperatures globally will likely have a positive influence on soil respiration, particularly in 

surficial horizons with increased SOC contents, which in turn will positively feedback into CO2
Atm and 

global climate change (Davidson and Janssens, 2006; Jenkinson et al., 1991).  

1.4.3.3 - Limiting factors 

It is worth noting that neither gross primary productivity nor soil respiration increase linearly or 

consistently with increases in CO2
Atm, moisture or temperature. Responses can display a ‘plateau’ due 

to limiting factors. These limiting factors are numerous, but specific examples include: N or P limitation 

modulating photosynthesis or respiration, an increased water content reducing the availability of O2 for 

decomposition as soils approach saturation point, or the stabilisation of SOC within a soil profile. These 

processes that stabilise SOC will now be discussed further below. 

1.5 - SOC stabilisation - An ecosystem property 
Soil organic carbon may be stabilised against oxidative transformation within a profile, contributing 

towards its persistence and accumulation while reducing heterotrophic respiration. SOC stabilisation is 

therefore defined as a set of processes that directly or indirectly inhibit the decomposition of organic C 

within a soil profile (Sollins et al., 1996). It is now thought that the stabilisation and accumulation of 
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SOC in mineral soils over medium- to long-time periods is predominantly driven by specific ecosystem 

properties (Fig. 1.4; Schmidt et al., 2011). These ecosystem properties include:  

i) The physical separation of substrates from decomposers over pluri-metric to micro-metric

scales.

ii) Interactions between SOC and minerals or cations.

iii) The occurrence of temperature or moisture conditions that are incompatible with enzymatic

reactions.

iv) Toxicity effects of metal ions like Al3+.

Fig. 1.4. A conceptual illustration of the emerging understanding that soil organic carbon 
stabilisation arises as a result of specific ecosystem properties. These 
properties change as one moves throughout the soil profile, meaning that 
different stabilisation mechanisms dominate in different horizons. This image 
is taken from Schmidt et al. (2011). 

Calcium will more likely play a role in the first and second processes. Thus, the influence of physical 

separation and sorption processes on the SOC decomposition continuum (Fig. 1.5) will now be further 

explored in the following section, with the aim of creating a mechanistic framework for understanding 

the potential role of Ca in SOC stabilisation. 
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Fig. 1.5. A conceptual model of the effects of the two predominant stabilisation 
mechanisms at different points of the decomposition continuum. The model 
suggests that there is an increasing probability of stabilisation either by 
occlusion within aggregates or sorption onto mineral surfaces with decreasing 
substrate size. This image is taken from Lehmann and Kleber (2015). 

1.5.1 - Physical separation 
Soil organic carbon can be stabilised from decomposition if a substrate is physically 

separated from the necessary components of decomposition, namely decomposers, 

their extra-cellular enzymes, oxygen, and moisture.  

Physical separation is an ecosystem property that operates on a wide range of spatial scales (pluri- to 

micro-metric scales) and arises due to specific physicochemical conditions in soil ecosystems. At an 

ecosystem scale, physical separation can stabilise large quantities of SOC in biologically-limiting 

environments. Specific examples include Histosols or Cryosols, where water-logged (Laine et al., 1996; 

Pohl et al., 2015) or frozen conditions (Grosse et al., 2011; Mueller et al., 2015) severely inhibit the 
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oxidative transformation of organic substrates, causing SOC to accumulate. The physical separation of 

substrates from decomposers and the necessary components of decomposition can also occur on much 

smaller spatial scales. Examples comprise SOC inclusion within a mineral or co-genetic mineral 

assemblage (Bindschedler et al., 2016), hydrophobic interactions creating a micellar-like structure 

(Chassin, 1979), SOC intercalation within phyllosilicates (Theng et al., 1986), and the separation of 

SOC within pedogenic aggregates (Adu and Oades, 1978).  

Formation of aggregates in soil is the most widespread micro scale process that leads to the physical 

separation of SOC, in a mechanism typically labelled as occlusion. Soil aggregates are conglomerates 

of primary soil particles (Schaetzl and Thompson, 2015) and their relation to the stability or 

accumulation of SOC has been repeatedly demonstrated (Denef et al., 2004; Moni et al., 2010; Monreal 

et al., 1997; Plante et al., 2002; Skjemstad et al., 1993; Virto et al., 2008; Virto et al., 2010). Formation 

of aggregates has conventionally been thought to involve the electrostatic flocculation of soil separates 

(Ghezzehei, 2011), which are then cemented by organic or inorganic agents (Jastrow, 1996; Six et al., 

2004). Aggregates can also be formed biologically during the physical meshing of soil particles by roots 

and fungi or the excretion of extra-cellular polysaccharides / polymeric substances by microorganisms 

and roots (Balesdent et al., 2000; Chenu and Cosentino, 2011; Six et al., 2004; Six et al., 2002). 

Microorganisms can excrete these extra-cellular polysaccharides / polymeric substances (EPS) around 

fresh SOC during decomposition. This EPS then adheres to soil particles, binding them together and 

creating a shell around the decomposing SOC nucleus, which eventually occludes the SOC residue 

within (Chenu and Cosentino, 2011).  

When driven by biology, soil structure is typically arranged into a spatial hierarchy, with distinct 

physical classes of aggregates that are often classified as macroaggregates (> 250 µm) or 

microaggregates (< 250 µm; Asano and Wagai, 2014; Elliott, 1986; Oades, 1984; Six et al., 2004; Six 

et al., 2000; Tisdall, 1996; Tisdall and Oades, 1982). It is largely accepted that in this hierarchy, 

microaggregates are formed within macroaggregates, which then break apart because of their weaker 

binding agents and larger planes of weakness, distributing microaggregates into the soil matrix (Oades, 

1984; Six et al., 2004; Tisdall, 1996). These microaggregates are typically considered more stable 

because of their stronger binding agents and reduced macroporosity, increasing the stability of SOC 

occluded within (Denef et al., 2004; Tisdall and Oades, 1982). Yet, despite the recent emphasis on 

biological controls on soil aggregation, it should be noted that soil aggregation, its hierarchy, and the 

occlusion of SOC are also influenced by inorganic components of the soil matrix. 

Abiotic agents, such as the composition of the mineral soil matrix, can also play a dominant role in 

aggregate formation, occlusion, and the stabilisation of SOC. Polyvalent cations can increase 

aggregation in soils by flocculating negatively charged soil separates (Bronick and Lal, 2005; Érika et 

al., 2016; Grant et al., 1992). Inorganic components can also act as cementing agents, reinforcing 
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aggregates and reducing porosity, with examples including poorly crystalline minerals (Rasmussen et 

al., 2005), well crystallised Fe oxides (Oades and Waters, 1991; Zhao et al., 2017), or carbonates 

(Falsone et al., 2010; Fernández-Ugalde et al., 2014; Fernández-Ugalde et al., 2011; Virto et al., 2011). 

Inorganic components have been documented to reinforce both macroaggregates (Fernández-Ugalde et 

al., 2011; Virto et al., 2013) and microaggregates (Falsone et al., 2010). Some authors have pointed out 

that when predominantly controlled by inorganic agents, like Fe oxides in Ferralsols (Oxisols; Oades 

and Waters, 1991), soil structure may not display the hierarchical organisation commonly associated 

with biology. However, when compared to biotic processes, inorganic controls on SOC occlusion have 

received relatively little attention. 

Thus, further investigation is still required into the indirect effects of inorganic 

components, such as Ca and CaCO3, on SOC stabilisation through occlusion within 

aggregates, and its effects on overall SOC accumulation.  

1.5.2 - Sorption 
Soil organic carbon can also be stabilised within soil when it is adsorbed to reactive mineral surfaces or 

through other sorptive interactions with metal cations. Adsorption is defined as the adhesion and 

removal of atoms, ions, or molecules from a gas or liquid onto a solid surface (Sposito, 2016). Organic 

substrates can be adsorbed to a range of minerals. Sorptive capacity in soils is most commonly attributed 

to phyllosilicates (mineral clay particles), poorly crystalline minerals, Al-, Fe-, and Mn-oxides, or also 

to polyvalent cations, which can form bridges to mineral or other organic soil constituents. A positive 

relationship between the resistance of SOC to chemical oxidation and the presence of specific reactive 

mineral species was first described by Hosking (1932). Since then, the presence of reactive minerals or 

metals has been repeatedly shown to correlate with increased SOC stocks (Baldock and Skjemstad, 

2000; Grand and Lavkulich, 2011; Sokoloff, 1938; Torn et al., 1997) as well as with the resistance of 

SOC to microbial degradation in incubation experiments (Minick et al., 2017; Rasmussen et al., 2006; 

Whittinghill and Hobbie, 2012). Soil organic C complexed by minerals generally exhibits older 14C-

derived ages than other SOC pools (Kleber et al., 2011; Rasmussen et al., 2005; Schrumpf et al., 2013; 

Spielvogel et al., 2008; Trumbore, 1993); thus, adsorption plays a clear role in the stabilisation of SOC 

over long time periods. 

Sorption primarily stabilises SOC by reducing its availability for diffusive encounters 

with extra-cellular enzymes through the transfer of a substrate from the soil solution 

to a solid phase (Moni et al., 2010; Sollins et al., 1996).  

Beyond the direct effect of sorption on the partitioning of SOC between the liquid and solid phases, 

substrates can also be stabilised by secondary mechanisms, including: 
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i) steric hindrance – a general mechanism involving the lack-of-fit between a substrate and a 

catalyst (an enzyme) caused by changes in tertiary structure, which is a common consequence of 

sorptive interactions in soil (Quiquampoix and Burns, 2007; Zimmerman and Ahn, 2010).  

ii) the inactivation of enzymes during sorption – extra-cellular enzymes, responsible for much of 

SOM decomposition, can also be rendered inactive by adsorption onto mineral surfaces, due to 

structural modifications in their conformation at the adsorption interface (Quiquampoix and 

Burns, 2007). 

iii) the toxicity effects of certain metals – it has been proposed that environmental cytotoxicity 

could result in the stabilisation of organics complexed by some metals such as Al (Tate and Theng, 

1980). Al3+ is toxic and is thought to limit decomposer activity in acidic soil environments 

(Tonneijck et al., 2010), although evidence for this can be contradictory (Marschner and Kalbitz, 

2003). 

However, there is still some level of confusion regarding the chemistry involved in interactions between 

organic and inorganic constituents of soils. Therefore, it is necessary to briefly discuss the main bonding 

mechanisms between organic and inorganic soil components.  

1.5.2.1 - Bonding mechanisms and the organo-mineral interface 

Organic molecules can be adsorbed onto mineral or metal surfaces through a range of mechanisms in 

both inner and outer sphere complexes (Table 1.1). The prevalence of each bonding mechanism will 

vary with soil texture (proportion of fine to coarse particles), mineralogy, and cation content. Inner 

sphere complexes occur when a substance can closely approach a mineral’s surface or metal ion, usually 

resulting in direct chemi-sorption (see Eq. 1.3 for an example). In outer sphere interactions, water 

molecules prevent the direct approach or sorption of a substance to a mineral’s surface or metal ion; 

instead, the charges are countered through a diffuse charged zone (Oldham, 2008). In soil, inner- and 

outer-sphere interactions act in combination to stabilise SOC over medium- to long-time periods, so that 

it becomes difficult, if not impossible, to ascribe SOC stabilisation in a given horizon to specific modes 

of interaction. However, a basic understanding of the fundamental chemical mechanisms at play is useful 

to inform our interpretation of the role of Ca in SOC stabilisation and operationally-defined SOC pools. 
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Table 1.1. Mechanisms of interaction between soil organic carbon substrates and minerals 
or metal ions 

Mechanism Nature Interaction Description 

Ligand exchange  

(Mikutta et al., 2014) 

Ligand exchange is the 
formation of new coordination 

complexes with metals 

 

Covalent to ionic bond Inner sphere 

Strong bonding to a metal via the direct substitution of one 

outgoing ligand (for instance, a hydroxyl group) by an 

incoming one (for instance, an organic molecule with a 

hydroxyl, phenol, or carboxyl functional group)—see Eq. 1.3. 

There is no change in oxidation state at the metal centre and 

charge is conserved during the reaction 

Chelation  

(Ahmed and Holmström, 

2014) 

Chelation is the formation of 
polydentate coordination 
complexes with metals. 

Compared to monodentate 
complexes, they have a greater 

stability 

Covalent to ionic 
bond Inner sphere 

 

A special case of ligand exchange, where the incoming ligand 

(usually an organic molecule) is polydentate and thus able to 

replace two or more of the simple outgoing ligands bound to 

the central metal. 

Cation bridging  
(Iskrenova-Tchoukova et al., 

2010) 

Cation bridging allows for the 
interaction of two negatively 
charged surfaces such as a 

phyllosilicate and an organic 
anion 

Direct cation 
bridging; mostly 

ionic bond 

Inner sphere 
A bond formed when the hydration shell of a polyvalent 

cation is displaced. The organic anion becomes directly 

coordinated to the cation, as in ligand exchange 

Exchangeable 
(water) bridging 

Van der Waals forces 
(see below) 

 

Outer sphere 

Here water is not displaced and the cation interacts with the 

organic anion essentially through hydrogen bonding (see 

below). Both polyvalent and monovalent cations can 

participate in this type of interaction. It has sometimes been 

labelled ‘water bridging’, although this term remains 

ambiguous, as it has also been used to describe ligand 

exchange reactions. The term ‘exchangeable bridging’, which 

has been coined to describe the cation exchange phenomenon, 

may be more descriptive 

Hydrophobic interactions 

(Spaccini et al., 2002) 

These occur whenever non-polar 
substances exist in a polar 

solvent, such as water 

 

 

Entropy driven 
structure 

 

 

Outer sphere 

 

 

Aggregation of non-polar substances caused by the repulsion 

of hydrophobic molecule by water. Hydrophobic interactions 

also take place during the clustering of amphiphillic molecules 

into bilayers and micelles (hydrophilic exterior protecting a 

hydrophobic core) 

 

 

Other ‘weak’ interactions  
(van der Waals) 

(Israelachvili, 2011) 

While weak, these forces are 
additive meaning that in 

complex substrates such as 
those commonly found in 
SOC, many van der Waals 
interactions can combine to 

create apparent strong sorption 

Dipole–dipole force Outer sphere 

The electrostatic attraction between molecules with permanent 

polarity, arising from differences in the electronegativity of 

their atomic constituents 

Hydrogen bonding Outer sphere 

Hydrogen bonding refers to a specific type of dipole–dipole 

interaction, which occurs when a hydrogen atom bonded to a 

strongly electronegative atom (typically F, O, or N) interacts 

with another electronegative atom. These interactions are 

stronger than ordinary dipole–dipole forces 
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London dispersion 
(induced dipole) force Outer sphere 

Temporary and weak attractive force arising from the unequal 

movement of electrons within a molecule, turning it 

momentarily into a dipole. Unlike dipole–dipole interactions, 

the London dispersion force does not arise from a difference in 

the electronegativity of component atoms, but merely the 

correlated movements of electrons in interacting molecules 

‖ − M − OH + HO− R →  ‖ − M − O− R + H2O 

Eq. 1.3. Ligand exchange between a mineral (M) and a hydroxyl functional group 
on an organic substrate (R) that results in the direct and strong adsorption 
of soil organic carbon. Equation adapted from Huang and Schnitzer (1986). 

It was previously believed that sorption of SOC through the aforementioned mechanisms occurred in a 

monolayer coverage on mineral surfaces. However, mineral surface loadings can be two to five times 

higher than would be expected during monolayer loading (Hedges and Keil, 1995). Observations of 

organo-mineral associations (OMA) have suggested that SOC is instead adsorbed onto distinct hotspots 

on reactive mineral surfaces (Mayer and Xing, 2001; Vogel et al., 2014). These SOC hotspots can be 

flocculated together as a result of polyvalent cation bridging or hydrophobic interactions (Table 1.1; 

Kaiser and Guggenberger, 2003; Kleber et al., 2007), creating a layered organo-mineral interface. Kleber 

et al. (2007) explored this layering in their conceptual model of the organo-mineral interface (Fig. 1.6), 

suggesting that the interface is organised into distinct zones of interaction, where SOC is bound with 

different mechanisms. These zones include a contact layer, associated with strong and direct interactions 

with the mineral surface, a zone of hydrophobic interactions, and a kinetic outer zone of weak 

interactions (Kleber et al., 2007). Polyvalent cations, like Ca2+, could play an important role in the 

stabilisation of SOC within these different zones through cation bridging mechanisms highlighted above 

(Table 1.1; Fig. 1.6), but there has been very little investigation into the role of Ca2+ in OMA.   

In theory, polyvalent cations, like Ca2+, could stabilise mineral-associated SOC 

through cation bridging mechanisms at different zones of the organo-mineral 

interface, but the interactions between Ca2+ and SOC still requires further 

investigation.   
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Fig. 1.6. A conceptual model of multi-layer organo-mineral association in soils, taken 
from Kleber et al. (2007). The model is split into three conceptual zones: the 
contact zone in direct association with a mineral or coating’s surface, the zone 
of hydrophobic interactions protecting the contact zone through amphiphillic 
interactions, and the outer kinetic zone dominated by outer sphere cation 
bridging and other weak forms of organo-mineral association. 

1.5.2.2 - Co-occurrence of stabilisation mechanisms 

Novel techniques are enabling us to further investigate these hotspots of OMA and the mechanisms that 

stabilise SOC at their interfaces. Vogel et al. (2014) utilised a NanoSIMS to observe the adsorption of 

isotopically labelled SOC on a clay fraction during incubation. The authors found that this labelled SOC 

was preferentially associated with specific areas of nano-mineral clusters, such as micropores, etch pits, 

and cracks. As hypothesised by Kögel-Knabner et al. (2008), adsorption of SOC within these areas 

would provide a two-fold stabilisation of SOC. This is because, within these cracks, the physical 

accessibility of SOC to decomposers is reduced, while SOC is concomitantly stabilised by sorption 

(Chenu and Plante, 2006; Kögel-Knabner et al., 2008). Therefore, at the nanoaggregate scale, SOC could 

be simultaneously protected by both occlusion and adsorption (Fig. 1.7), in a stabilisation that becomes 

indistinguishable (Chenu and Plante, 2006; Kögel-Knabner et al., 2008; Vogel et al., 2014), questioning 

the conceptual segregation of the mechanisms enumerated by Sollins et al. (1996). 
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Fig. 1.7. Occlusion and sorption co-stabilise soil organic carbon at all spatial scales, but 
this co-occurrence becomes more apparent at the nano scale where they 
become operationally-indistinguishable, taken from Rowley et al. (2018). 

However, at different spatial scales, the endmembers of these stabilisation mechanisms are more 

apparent, as large particulate organic matter stabilised through occlusion can be more easily 

distinguished from SOC adsorbed to clay minerals (Fig. 1.7). These endmembers, where the relative 

importance of a specific stabilisation mechanism is more apparent, can be fractionated into 

operationally-defined SOC pools (Viret and Grand, 2019). Techniques such as density fractionation and 

sonication can be used to separate SOC that is either free within the soil matrix, from SOC that is 

stabilised through occlusion within aggregates or mineral-association (Golchin et al., 1994; Kaiser and 

Berhe, 2014; Kaiser et al., 2012; Schmidt et al., 1999; Viret and Grand, 2019). These operationally-

defined SOC pools have provided valuable insight into the mechanisms through which SOC is stabilised 

by Fe or Al (Golchin et al., 1994; Sollins et al., 2009; Sollins et al., 2006). Yet, there has been relatively 

few investigations that have fractionated Ca-rich soils, and we still do not know how Ca2+ influences 

these specific endmembers.  

While a stabilisation by either occlusion or sorption can become indistinguishable at 

certain scales, SOC can be divided into operationally-defined SOC pools to investigate 

their endmembers. Yet, it remains to be seen if and how Ca could influence these 

operationally-defined pools of SOC.  
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1.5.2.3 - Preferential sorption 

While selective preservation and the inherent biochemical composition of SOC seem to be relatively 

less important in mineral horizons, contradictorily, there is a growing consensus that sorption of organics 

by minerals can be preferential. This means that in the presence of certain minerals or cations, SOC of 

a certain composition may be more or less likely to be stabilised by sorptive interactions (Kaiser et al., 

1997). Certain mineral forms in acidic soils seem to preferentially stabilise microbial matter (Spielvogel 

et al., 2008). Fe and Al forms are well documented to preferentially adsorb organics rich in aromatic 

moieties and carboxyl groups (Gu et al., 1994; Kaiser and Guggenberger, 2003; Kaiser et al., 1997). 

Yet, while this has been observed in acidic soils, there has been less investigation of preferential sorption 

in alkaline soils, rich in polyvalent cations, such as Ca; so, we still do not know whether or not Ca may 

preferentially influence the sorption or occlusion of specific organics in different parts of the organo-

mineral interface.  

Therefore, further research is still required to establish whether Ca-mediated OMA 

are preferential and what influence this may have on SOC in Ca-rich environments. 

1.6 - The role of polyvalent cations in SOC stabilisation 
As can be seen in the Table 1.1 and diagrams above (Figs 1.6 & 1.7), soil organic carbon can be stabilised 

through its interactions with polyvalent cations. Polyvalent cations can contribute to SOC stabilisation 

directly through sorption mechanisms (Table 1.1) and indirectly by flocculating soil particles and 

driving the formation of aggregates, and subsequent occlusion. Much of the research on flocculation 

thresholds has focused on acid soils dominated by Al chemistry (Boudot, 1992; Matus et al., 2006; 

Rasmussen et al., 2006). In these soils, it has been shown that extensive flocculation and precipitation 

can be expected at a C:Al ratio in the order of 10-30 or lower (Jansen et al., 2003; Scheel et al., 2007; 

Skjemstad et al., 1992).  

Yet, the flocculation of dissolved organics by other cations, such as Ca, in natural soils 

has not been as extensively studied.  

1.7 - The role of Ca 
Of these polyvalent cations, Ca2+ has long been hypothesised to stabilise and positively influence the 

accumulation of SOC (Dokuchaev, 1883; Sokoloff, 1938). Calcareous soils have long been connected 

to higher SOC contents then their adjacent, non-calcareous counterparts (Oades, 1988). Yet, the 

stabilisation of SOC by polyvalent base cations such as Ca2+ have received arguably less attention since 

the earlier body of works by Oades (Grant et al., 1992; Muneer and Oades, 1989a; Muneer and Oades, 

1989b; Muneer and Oades, 1989c; Oades and Waters, 1991; Oades, 1984; Oades, 1988; Oades, 1993; 

Tisdall and Oades, 1982), consequently presenting several clear knowledge gaps: 
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i) Why do Ca-rich environments typically contain more SOC than their Ca-poor 

counterparts?  

ii) Is this due to a stabilisation mediated by Ca?  

iii) What are the mechanisms for this stabilisation? 

iv) Can these mechanisms be utilised in the context of sustainable agricultural practices to 

promote SOC accumulation?  

1.8 - Problem statement  
Soil organic carbon and its ecosystem services are of global importance (Minasny et al., 2017; UN 

General Assembly, 2015). There is growing consensus that geochemistry is an important predictor of 

SOC accumulation and its persistence in soils (Rasmussen et al., 2018). While it is well established that 

Fe and Al play a dominant role in the stabilisation of SOC in acidic soil environments through multiple 

mechanisms, our mechanistic understanding of the influence of Ca on SOC stabilisation is still weak. 

Ca-rich environments are often associated with significant quantities of SOC, yet we do not truly 

understand the mechanisms through which these environments accumulate SOC. Authors often 

speculate that polyvalent cation bridging and occlusion play an important role in Ca-rich environments, 

but more empirical data is needed to further investigate these mechanisms. Furthermore, a large 

proportion of research into Ca-rich soils has focused on semi-arid to arid soil environments or amended 

soils, thereby overlooking the role of Ca in humid and temperate soils.  

To address the aforementioned knowledge gaps and problem statement, we must now 

further investigate the role of Ca in the stabilisation of SOC in humid and temperate 

soils. 

1.9 - Site setting - The Nant Valley 
The Vallon de Nant (Nant Valley), Vaud, Switzerland is a humid and temperate, alpine catchment 

located at the frontier between the Vaud and Valais Alps (Fig. 1.8). The valley is orientated north-south 

and located on the Morcles Nappe, a near-recumbent anticline of Jurassic and Cretaceous shallow-water 

limestones, intercalated with marl and shale deposits (Austin et al., 2008). The valley was a research 

priority for the universities in Lausanne (Université de Lausanne / École Polytechnique Fédérale de 

Lausanne) and has had several teams working on the local vegetation (Dr. P. Vittoz), geomorphology 

(Prof. S. Lane), permafrost (Dr. Christophe Lambiel), hydrology (Prof. B. Schaefli) and river 

biogeochemistry (Prof. T. Battin). Previous soil science research in the valley has quantified soil 

respiration in the rangeland (alpage) and its relation to soil and vegetation type (Grand et al., 2016). 

There have also been several masters studies on the catchment, investigating: soil respiration (Rubin, 

2013) and its environmental causes (Blattner, 2017), the classification and origin of surficial formations 

(Rion, 2016), their influence on soil development (Gigon, 2012), and the different reservoirs of Ca 

(Delasoie, 2018).  
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Ultimately, this site presents soils with a natural variation in Ca content, and is 

therefore the perfect setting for further investigating the influence of Ca on SOC 

stabilisation in a humid and temperate environment. 

Fig. 1.8. Aerial photo of the Nant Valley (Switzerland) with the rangeland (alpage) 
marked with an orange square. This map was constructed using SwissTopo 
(2019). See section 8.2 for a range of different maps of the region. 
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- Chapter 2: Research Outline -
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2.1 - Aim 

Investigate the role of Ca in the accumulation of SOC in humid and temperate soils. 

2.2 - Objectives 
To address this aim, this thesis will focus on four key objectives: 

1. Establish the mechanisms through which Ca can theoretically stabilise SOC.

Prior to investigating the role of Ca in the accumulation of SOC at the Nant Valley, we must first 

review existing literature to establish if and how Ca could mediate a stabilisation of SOC. 

2. Investigate the direct and indirect effects of CaCO3 on soil development and

biogeochemistry at the Nant Valley.

The objective will be to find an appropriate study site within the Nant Valley that can be used to 

investigate the role of Ca on soil processes. After identifying soils that have developed under similar 

soil forming conditions, with a natural variation in CaCO3 (the main reservoir of Ca in the given 

geological settings). It will then evaluate how this presence or absence of CaCO3 influences the 

pedogenesis and biogeochemistry of these soils, in an order to attempt to isolate the effects of 

variations in Ca on important soil processes at the Nant Valley.  

3. Evaluate the differences in SOC between the Nant Valley sites.

Once an appropriate study site with a natural variation in Ca is selected, we will then investigate 

how SOC differs between soils within this variation. We will fractionate bulk soil in an attempt to 

separate SOC pools related to different mechanisms of SOC stabilisation. For each fraction, we will 

measure the SOC content and mass in a given fraction, and characterise its degree of oxidative 

transformation. This will enable us to ascertain how these mechanisms differ between the sites with 

a natural variation in Ca at the Nant Valley.  

4. Discuss what can be inferred about the role of Ca in the accumulation of SOC

These previous research objectives will then be synthesised to infer how Ca may lead to SOC 

accumulation in cool-temperate environments. This objective will also compare our results to those 

within existing literature, focusing on the broader perspective of our findings and highlighting 

avenues for future investigation. 
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2.3 - Research questions 
The following research questions will address the four objectives above. Each of these questions will be 

addressed in an individual chapter (Chapters 3 to 6). Each question is labelled with its specific Chapter 

Number (3 to 6) and will be redisplayed at the beginning of each chapter.  

3. Can Ca mediate a stabilisation of SOC?

a. What evidence exists for the stabilisation of SOC mediated by Ca?

b. What are the mechanisms through which Ca can stabilise SOC?

c. How could these mechanisms be measured at various spatial scales?

4. What is the influence of small quantities of CaCO3 on the pedogenesis and

biogeochemistry of soils that have developed under similar soil forming conditions, in a

humid and temperate environment (Nant Valley, Switzerland)?

a. How is the pedogenesis of soils, which have developed under otherwise similar soil

forming conditions, influenced by the presence or absence of CaCO3?

i. What is the influence of CaCO3 on pedogenic trajectories?

ii. Does CaCO3 create a state of pedogenic inertia?

b. What are the fundamental differences in the biogeochemical properties caused by the

presence or absence of CaCO3?

i. How does the presence or absence of CaCO3 influence the amount of Ca and soil

pH?

ii. How does the presence or absence of CaCO3 influence the amount of SOC?

5. How does SOC differ at the sites with or without CaCO3 at the Nant Valley?

a. How does bulk SOC content and stable C isotopic composition differ at sites that have

formed under similar soil forming conditions with or without CaCO3?

b. Does occlusion play a larger relative role in accumulation of SOC in soils with CaCO3,

relative to those without?

c. Is there more mineral-associated SOC in the soils with CaCO3, relative to those without?

6. Does Ca mediate an accumulation of SOC at the Nant Valley?

a. Could we isolate the role of Ca in the accumulation of SOC?

b. What were the mechanisms through which Ca contributed to the accumulation of SOC?

c. What are the broader applications of these findings and how do they compare to those of

previous studies?
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2.4 - Methodology and approach 

2.4.1 - Establishing potential mechanisms for Ca-mediated SOC stabilisation 
It was of the utmost importance to first establish the mechanisms through which Ca could mediate a 

stabilisation of SOC. This was achieved by thoroughly reviewing existing literature and evidence on the 

subject. Evidence of Ca-mediated SOC stabilisation is distributed amongst various domains, including 

soil science, biogeochemistry, microbiology, chemical modelling, and aqueous chemistry, to name but 

a few. Thus, this information needed to first be amalgamated within one single critical literature review 

that summarised the existing evidence to the best of our ability. This review aimed to identify the key 

knowledge gaps that remain within the field and the most appropriate methods, by which, to address 

them. This document highlighted the important steps that are required to further our understanding of 

Ca-mediated SOC stabilisation, namely:  

i) Isolate the role of Ca in the accumulation of SOC from other pedogenic variables.

ii) Investigate how SOC differs in otherwise highly similar, natural (unamended) sites with and

without Ca.

iii) Isolate the role of Ca in different SOC stabilisation mechanisms, namely occlusion or

organo-mineral association, and their effect on the accumulation of SOC.

2.4.2 - Selecting an appropriate field site for the investigation of Ca-mediated accumulation of 

SOC 
We used a field-based approach to investigate the role of Ca in the accumulation of SOC as there are 

very few studies that have attempted to quantify it in natural systems. To give context to future 

experimental studies, we must first investigate these interactions at the field scale. We attempted to 

isolate the role of Ca from other natural influences on SOC accumulation at the Nant Valley. SOC, like 

any variable in soils, is predominantly impacted by five main soil forming factors (Jenny, 1941) and as 

such, these factors needed to be accounted for when choosing potential study sites. 

To isolate the role of Ca in SOC accumulation, the ideal study sites needed to present a natural variation 

in Ca, while also possessing a similar climate, topography, vegetation structure, time of development 

(since deglaciation), texture and silicate mineralogy. After a field campaign (2015), the Nant Valley 

alpage was identified as a potential study site as CaCO3 was present (ascertained with HCl dropper 

bottle) on one side of the otherwise similar grassland and absent on the other. Furthermore, the site was 

practical because it is in close proximity to the University of Lausanne and was also a study priority for 

the Institute of Earth Surface Dynamics. This meant that there was many different research groups 

working in the catchment, providing potential interdisciplinary research collaborations and a larger 

perspective on our research. The Nant Valley alpage thus seemed to provide the perfect location to 

further investigate the role of Ca in accumulation of SOC, but we still needed to confirm the 

homogeneity of the sites, except for this source of CaCO3 (Chapter 4).  
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2.4.3 - Investigating SOC in soils with a natural variation in Ca 
The potential influence of Ca on different SOC stabilisation mechanisms was then investigated at the 

Nant Valley by physically fractionating soil samples into operationally-defined SOC pools. 

Fractionation of soils has been an important analytical tool to highlight the role of other important 

elements (Fe / Al) in different SOC stabilisation mechanisms and its accumulation (Golchin et al., 1994; 

Kaiser et al., 2002; Sollins et al., 2009; Sollins et al., 2006), but there has been less of this research in 

Ca-rich soils. Soils are typically fractionated by size and / or density (Viret and Grand, 2019). A recent 

study used size fractionation to great effect in Ca-rich Mediterranean soils, discussed further later on 

(Martí-Roura et al., 2019). Our approach differed because, rather than size fractionation, we fractionated 

our soils using density fractionation (DF) with a Na-polytungstate solution (SPT; 1.6 g cm-3) and 

sequential sonication (Schmidt et al., 1999). The main benefit of this fractionation was that it enabled 

us to separate out different pools of the free particulate or occluded SOC from SOC adsorbed onto denser 

mineral surfaces. This thereby isolated the role of different stabilisation mechanisms in soils that had 

formed under similar conditions, but with a large variation in available Ca. Yet, the main difficulty to 

DF in Ca-rich soils is the potential precipitation of Ca-metatungstate (Rovira et al., 1998), which was 

ruled out during the investigation with X-ray photoelectron spectroscopy (XPS; discussed further 

below). While time consuming and resource heavy, the DF was carried out in triplicates to prevent 

random errors. 

Recent studies have demonstrated that natural variations in stable C isotope compositions (δ13C values) 

of organic carbon provide important insight into SOC accumulation of Ca-rich environments (Martí-

Roura et al., 2019; Minick et al., 2017). δ13C values of SOC increase when it is oxidatively transformed 

within a soil profile, due to the fractionation in 13C during microbial activity (Boström et al., 2007), and 

are thus regularly used for the analysis of SOC cycling. Natural variations in δ13C values of both bulk 

soil and density fractions were therefore analysed as an analogue for oxidative transformation within 

the profile. CaCO3 was removed from samples using HCl fumigation, due to its higher δ13C values. 

Furthermore, potential variations in the δ13C values from below- and above-ground biomass were 

quantified to check that there was no variation in the δ13C values of vegetation inputs between the sites. 

Shifts in the δ13C values of SOC between our sites were then used to investigate the potential effects of 

an increased Ca availability on the oxidative transformation of SOC in different pools at the Nant Valley. 

X-ray photoelectron spectroscopy (XPS) was also used to investigate a subset of the density fractions.

XPS is an advanced surface characterisation tool that investigates the surface (< 10 nm) of samples by

irradiating them with X-rays of a known energy and measuring the quantity and kinetic energy of

photoelectrons that are ejected. The kinetic energy of these ejected photoelectrons is then used to

calculate their binding energy (Eq. 2.1), which is indicative of the specific orbital they were ejected from

(orbitals are denoted with a number and a letter after an element). The binding energy of photoelectrons,

ejected from a specific orbital, can be shifted due to changes in the bonding environment of that element.



51 

This means that we can use the XPS to qualitatively measure the surficial chemical composition of the 

samples, while also investigating the bonding environment of detected elements, such as Ca, W or C. 

The XPS accessorily enabled us to check that there had been no significant precipitation of Ca-

metatungstate during the DF by evaluating surficial W contamination and by looking for Ca 

association in the detailed W4f scans. The detailed C1s spectra from the XPS analyses were also 

deconvoluted into sub peaks, indicative of different functional groups, to give an estimate of the 

oxidation state of surficial SOC in our density fractions. XPS analysis is thus complementary to the 

δ13C values because it can be used to measure the surficial chemical composition of different samples, 

while concomitantly inferring differences in the speciation of SOC (Jones and Singh, 2014). Overall, 

all of these methods helped us to gain novel insights into the influence of Ca on SOC. 

Electron binding energy = incident photon energy − photoelectron kinetic energy 

Eq. 2.1. Calculating the binding energy of electrons emitted as photoelectrons from 
the surface of a sample irradiated by X-rays of a known energy. 

2.4.4 - Choice of study design and statistical methods 
As previously mentioned, initial testing revealed that there was CaCO3 present on the eastern flank of 

the alpage (Fig. 1.8) and absent on the western flank. With the constraints of finding soils that had 

developed under near-identical conditions for soil formation with a natural variation in CaCO3, we 

identified two specific sites from each side of the Nant River for further analysis. We then sampled three 

profiles (the descriptions of which can be found in section 8.3 in the appendices / Chapter 8) from each 

of these sites at the alpage. These profiles included three Phaeozems from a site with CaCO3 (CaCO3-

bearing) and three Cambisols from a site without CaCO3 (CaCO3-free). The profiles were sampled at 6 

/ 7 different depth intervals to evaluate the evolution of SOC with depth. Samples from these profiles 

were transported to the University of Lausanne for further analysis. Various analyses were then 

completed on both the bulk soil and triplicates of density fractions.  

We used linear mixed models to analyse the effects of this presence or absence of CaCO3 at the alpage 

on different dependent variables, explored further in Chapters 4 and 5. Linear mixed models can account 

for the lack of independence in our measurements, caused by our sampling strategy (correlation between 

depth and profiles-within-sites) and triplicate measurements in the DF work. Details of the covariance 

structures, fixed and random effects will be explored individually in each chapter.  

A brief summary of the methods used within Chapters 4 and 5 will be presented in each chapter. 

However, there will be an exhaustive description of the methods used within this thesis, presented in the 

appendices (section 8.4 in Chapter 8).
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- Chapter 3: Ca-mediated stabilisation of soil organic carbon, a critical

review - 

The following paper is a reviewed pre-print of an open-access Biogeochemistry© publication. The 

introduction to the paper has been removed as some of the material was adapted and included in the 

general introduction. See Appendix 8.6.1 for the original copy. 
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- Research question Chapter 3 - 
The following question and sub-questions will be addressed in this chapter: 

Can Ca mediate a stabilisation of SOC? 

a. What evidence exists for the stabilisation of SOC mediated by Ca? 

b. What are the mechanisms through which Ca can stabilise SOC? 

c. How could these mechanisms be measured at various spatial scales?  
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- Chapter 3 abstract - 

Soils play an essential role in the global cycling of C and understanding the stabilisation mechanisms 

behind the preservation of SOC pools is of globally recognised significance. Until recently, research 

into SOC stabilisation has predominantly focused on acidic soil environments and the interactions 

between SOC and Al or Fe. The interactions between SOC and Ca have typically received less attention, 

with fewer studies conducted in alkaline soils. Although it has widely been established that 

exchangeable Ca (CaExch) positively correlates with SOC content and its resistance to oxidation, the 

exact mechanisms behind this relationship remain largely unidentified. This synthesis paper critically 

assesses available evidence on the potential role of Ca in the stabilisation of SOC and identifies research 

topics that warrant further investigation. Contrary to the common view of the chemistry of base cations 

in soils, chemical modelling indicates that Ca2+ can readily exchange its hydration shell and create inner 

sphere complexes with organic functional groups. This review therefore argues that both inner- and 

outer-sphere bridging by Ca2+ can play an active role in the stabilisation of SOC. Calcium carbonate 

(CaCO3) can influence occluded SOC stability through its role in the stabilisation of aggregates; 

however, it could also play an unaccounted role in the direct sorption and inclusion of SOC. Finally, 

this review highlights the importance of pH as a potential predictor of SOC stabilisation mechanisms 

mediated by Al- or Fe- to Ca, and their respective effects on SOC. 
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3.1 - Ca-mediated SOC stabilisation  

3.1.1 - Ca-SOC interactions  
Research into SOC stabilisation has typically focused on acidic soil environments and the effects of Al3+ 

or Fe3+ or their poorly crystalline forms on SOC (Grünewald et al., 2006; Kögel-Knabner et al., 2008). 

Basic soil environments, and potential interactions between the Ca and C cycles have received 

comparatively less attention (Grünewald et al., 2006). Yet, Ca is the most abundant alkaline earth metal 

in the Earth’s crust, making up 2.94 % of the upper continental crust (Wedepohl, 1995). Furthermore, 

calcareous or Ca-rich soils cover more than 30 % of the Earth’s surface (Bertrand et al., 2007; Chen and 

Barak, 1982) and basic soils account for at least 12 % of the world’s soil resources (Grünewald et al., 

2006). Ca2+ within a soil matrix typically originates from the weathering of lithosphere or surficial 

formations (Dijkstra et al., 2003; Likens et al., 1998), decomposition of Ca2+-rich organic materials 

(Ranjbar and Jalali, 2012), the lateral movement of Ca2+-rich water (Clarholm and Skyllberg, 2013), 

atmospheric dust deposition (Dijkstra et al., 2003; Pulido-Villena et al., 2006) or anthropogenic inputs. 

Ca2+ is weathered with relative ease from both primary and secondary minerals (Likens et al., 1998) and 

has therefore typically been thought to persist or accumulate chiefly in semi-arid to arid environments. 

However, Ca-rich environments also exist within temperate regions on soils developed from calcareous 

parent material, out-of-equilibrium with climate (Slessarev et al., 2016). High Ca contents are also 

commonly found in the topsoil of acid soils derived from crystalline lithologies due to biological cycling 

(Cailleau et al., 2004; Federer and Hornbeck, 1985; Grand and Lavkulich, 2013; Likens et al., 1998; 

Ross et al., 1991). Therefore, Ca2+ is an environmentally ubiquitous cation that could potentially play 

an unaccounted role in the stabilisation of SOC. 

The first investigation into the interactions between Ca and SOC was published almost 80 years ago by 

Sokoloff (1938), who provided experimental evidence that organic matter solubility decreased upon 

addition of Ca when compared to Na addition. Since then, research in Ca-rich field environments has 

highlighted a positive correlation between exchangeable Ca2+ (CaExch) and SOC (Fig. 3.1; Bertrand et 

al., 2007; Bruckert et al., 1986; Clough and Skjemstad, 2000; Duchaufour, 1982; Gaiffe et al., 1984; 

Oades, 1988; Paul et al., 2003; Shang and Tiessen, 2003). As an example, Yang et al. (2016) recently 

established that alpine grassland soils in the Neotropics contained nearly twice as much SOC (405.3 ± 

41.7 t ha-1) when developed on Ca-rich calcareous lithology than their acidic counterparts (226.0 ± 5.6 

t ha-1). Similarly, O'Brien et al. (2015) and Li et al. (2017) demonstrated that CaExch was the strongest 

explanatory variable for SOC contents of grasslands. However, identification of the exact mechanisms 

responsible for this widespread correlation remain elusive.  
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 Fig. 3.1. Positive relationship between exchangeable calcium (centimoles of charge per 
kilogram) and soil organic carbon content (percent) in the Jura Mountains, 
adapted from Gaiffe and Schmitt (1980). 

3.1.2 - A simple case of co-occurrence? 
The positive correlation between CaExch and SOC could be explained by their simple co-occurrence, as 

an increase in SOC generally increases the cation exchange capacity (CEC) of a soil (Yuan et al., 1967). 

Calcium is also a plant macronutrient and there is evidence that Ca also has a localised positive effect 

on net primary productivity (NPP) and SOM inputs through above-ground and below-ground biomass 

(Briedis et al., 2012b; Carmeis Filho et al., 2017; Paradelo et al., 2015). This localised effect on NPP 

has been shown to positively influence the accumulation of SOC in limed Ferralsols (Oxisols; Briedis 

et al., 2012b; Carmeis Filho et al., 2017) and could explain a portion of the differences in SOC content 

observed between acidic and calcareous soils. However, these explanations fail to account for the 

decrease in respiration rate (per unit C) associated with Ca prevalence, observed in multiple field studies 

(Groffman et al., 2006; Hobbie et al., 2002) or incubation experiments (Minick et al., 2017; Whittinghill 

and Hobbie, 2012). These results are, at first glance, counter-intuitive since the addition of Ca2+ to an 

edaphic ecosystem is also linked to a change in decomposer communities composition from fungi- to 

bacterial dominance (Blagodatskaya and Anderson, 1999; Rousk et al., 2010; Rousk et al., 2009) and 

an improvement in conditions for bacterial decomposition (Illmer and Schinner, 1991; Ivarson, 1977; 

Zelles et al., 1987), at least partially due to the buffering of soil pH to circumneutral levels (Narendrula-

Kotha and Nkongolo, 2017). It would thus be expected that the rate of enzymatic decomposition of SOC 

would increase when Ca2+ saturates the exchange complex (Andersson et al., 1999; Chan and Heenan, 

1999; Thirukkumaran and Morrison, 1996). This could be the case in the organic (litter) layer (Minick 

et al., 2017), but is generally not observed in the mineral soil. Contrary to hypotheses formulated in both 

studies, Hobbie et al. (2002) and Groffman et al. (2006) found that microbial respiration was actually 
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lower in Ca-rich environments, even though physicochemical conditions for microbial activity were 

improved. Furthermore, lab experiments have shown that CaExch is correlated with a reduction in SOC 

leaching losses (Minick et al., 2017), photo-oxidation (7%; Clough and Skjemstad, 2000) and respiration 

(as CO2) during incubation (Minick et al., 2017; Whittinghill and Hobbie, 2012). Therefore, CaExch 

seems to be linked to a reduction in the propensity of C substrates for decomposition that is not solely 

linked to its effects on NPP or microbial ecology.  

Consequently, this review will investigate the potential mechanisms behind the 

stabilisation and accumulation of SOC mediated by Ca and its mineral forms, namely 

their influence on: 

i) Aggregation and the occlusion of SOC. 

ii) Inclusion of SOC within pedogenic- or biogenic-CaCO3. 

iii) Organo-mineral and organo-cation interactions. 

3.2 - Mechanisms for Ca-mediated SOC stabilisation  

3.2.1 - Occlusion - Ca and aggregation 

3.2.1.1 - The Ca ion and aggregates 

It is widely accepted that Ca2+ has a significant positive effect on aggregation and soil structural stability 

and therefore, indirectly influences the accumulation and occlusion of SOC. Early authors demonstrated 

an influence of Ca2+ on soil aggregation (Martin et al., 1955; Peterson, 1947). This dependence was 

further investigated by Gaiffe et al. (1984) who demonstrated that the removal of CaExch and its 

replacement by KExch
 led to a disruption of aggregates. As theorised by Edwards and Bremner (1967), 

one of the main mechanisms thought to be behind this stabilisation is the flocculation of negatively 

charged separates by outer sphere interactions involving Ca2+, which is explored further in the following 

section on sorption processes. This process operates in the bulk soil and it has also been hypothesised 

that Ca2+ could play a role in flocculating particles in the gut of certain earthworm species, leading to 

the formation of ‘Ca-humates’ (Satchell, 1967). This was supported by the results of Shipitalo and Protz 

(1989) who utilised micromorphology and chemical pre-treatments to infer that Ca probably played a 

role in flocculating particles within earthworm casts of certain species, stabilising the microaggregates 

within them.  

Another mechanism for the stabilisation of aggregates in Ca-rich environments involves the formation 

of complexes between Ca and high-molecular weight organic compounds such as root mucilages or 

microbial polysaccharides / polymeric substances. It has been shown that these substances readily 

complex Ca2+ and create gel-like structures that bind aggregates (Czarnes et al., 2000; de Kerchove and 

Elimelech, 2007; Erktan et al., 2017; Gessa and Deiana, 1992). In particular, galacturonic acid, a 

common root mucilage, displays a high affinity towards Ca, which links polymer chains to form an 
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adhesive matrix (de Kerchove and Elimelech, 2007). Czarnes et al. (2000) also showed that these 

polygalacturonic acid gels increase the hydrophobicity of aggregates, thereby increasing their stability 

during wetting and drying cycles. Further investigation is still needed to analyse the role that adhesive 

Ca-mucilage matrices play in aggregate stabilisation and the occlusion of SOC.  

3.2.1.2 - The effects of carbonate on aggregates 

Interactions between Ca-bearing primary and secondary minerals and soil structure have been 

extensively covered in the literature because of the use of liming (CaCO3 addition) in agriculture. There 

have been many experiments that have documented the positive effects of the addition of calcite / 

aragonite (CaCO3) or gypsum (CaSO4) on the structure of non-calcareous soils (Armstrong and Tanton, 

1992; Baldock et al., 1994; Briedis et al., 2012a; Grant et al., 1992; Grünewald et al., 2006; Inagaki et 

al., 2017; Kaiser et al., 2014; Melvin et al., 2013; Muneer and Oades, 1989a; Paradelo et al., 2016). 

Some authors have also assessed the effects of CaCO3 removal from calcareous soils on aggregate 

stability, finding that the treatment reduced soil structural stability and increased porosity (Falsone et 

al., 2010; Muneer and Oades, 1989c; Toutain, 1974; Virto et al., 2011). Furthermore and reminiscent of 

the work of Oades and Waters (1991) on Fe oxides in Ferralsols (Oxisols), Fernández-Ugalde et al. 

(2011) demonstrated that the hierarchical model of aggregation was partially disrupted by carbonate. In 

the semi-arid Mediterranean soils of their study, the authors showed that the abundance of CaCO3 

controlled macroaggregate turnover and increased their stability, to the extent that the usual disruption 

of macroaggregates, leading to the release of constituent microaggregates, was prevented (Fernández-

Ugalde et al., 2011; Oades, 1984).  

There are several mechanisms through which CaCO3 could positively affect aggregate stability and the 

occlusion of SOC. CaCO3 is easily weathered and acts as an abundant source of Ca2+, thus encouraging 

the flocculation of soil separates and aggregation through the mechanisms listed above (Baldock and 

Skjemstad, 2000; Clough and Skjemstad, 2000; Wuddivira and Camps-Roach, 2007). Carbonate ions 

are also capable of reprecipitation with Ca2+ under the right environmental conditions, forming 

secondary CaCO3 crystals (from micrite to sparite) that cement aggregates (Fernández-Ugalde et al., 

2014; Fernández-Ugalde et al., 2011; Shang and Tiessen, 2003; Virto et al., 2013). This mechanism was 

analysed in detail by Falsone et al. (2010), who utilised N2 adsorption and Hg porosimetry to 

demonstrate that this formation of secondary CaCO3 crystals decreased aggregate porosity in the 2–50 

nm range and thus, decreased the accessibility of intra-microaggregate SOC to decomposers. Certain 

earthworm species have also been shown to cement particles that pass through their gut with a mixture 

of poorly crystalline biogenic carbonates (calcite, vaterite, and aragonite) excreted from their calciferous 

glands (Brinza et al., 2014; Edwards and Bohlen, 1995). The cementing effect of CaCO3 on aggregates 

is well-documented in arid soils in which large quantities of pedogenic carbonates are found (Fernández-

Ugalde et al., 2014; Fernández-Ugalde et al., 2011; Virto et al., 2013). However, it may also play a role 
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in sub-humid environments where carbonate-rich parent materials are continually getting dissolved and 

occasionally reprecipitated locally, but this still needs to be investigated further.  

Although it is widely accepted that the occurrence of CaCO3 positively affects soil structure and offers 

favourable conditions for the stabilisation of SOC by occlusion, its actual consequence on occluded 

SOC stocks is less clear. In their recent review, Paradelo et al. (2015) concluded that, while CaCO3 

addition had a clear positive effect on soil structure, its effect on occluded SOC stocks was uncertain. 

Positive (Egan et al., 2018b; Muneer and Oades, 1989a; Muneer and Oades, 1989b), non-existent 

(Paradelo et al., 2016), or negative effects (Chan and Heenan, 1999) of CaCO3-amendment on occluded 

SOC have indeed been reported. In some instances, it may be difficult to disentangle the integrative 

effects of agricultural management from the simple effects of CaCO3 additions. In natural, unamended 

soils, Fernández-Ugalde et al. (2014) showed that CaCO3 had a positive effect on occluded SOC stocks. 

This finding needs to be replicated in a range of natural soils, as differences in initial conditions (e.g. 

texture, mineralogy, organic inputs and their distribution) could reasonably result in different outcomes.  

3.2.2 - Inclusion 
Inclusion is defined as the envelopment of SOC within a mineral or co-genetic mineral assemblage that 

leads to its physical protection (Babel, 1975). Stabilisation of SOC by inclusion works through a similar 

mechanism to intercalation or occlusion, by physically separating a substrate from decomposers. SOC 

may be trapped within any form of pedogenic carbonates, but its inclusion may not be quantitatively 

important when carbonate formation chiefly occurs through abiotic processes. Diaz et al. (2016) recently 

dated small amounts of SOC (0.1-0.5 %) included within pedogenic carbonate nodules in Cameroon 

with 14C measurement, recording ages ranging between 8-13 kyr. This highlights the potential of this 

mechanism to stabilise SOC over long time periods, but probably only in small quantities. 

Calcium carbonate is one of the most abundant biominerals on Earth and can be synthesised by a wide 

range of terrestrial organisms (Skinner and Jahren, 2007). Biomineralisation of CaCO3 can either be 

induced within cells, mediated by biological activity that stimulates physicochemical precipitation, or 

initiated by the presence of an existing biological matrix that initiates crystal nucleation and growth in 

the extra-cellular environment (Bindschedler et al., 2016). During each of these forms of 

biomineralisation, SOC can become included and encapsulated within the crystal structure (Verrecchia 

et al., 1995). A few specific examples of biogenic carbonate forms include calcified root cells, fungal 

filaments and rhizoliths (calcified roots; e.g. Becze-Deàk et al., 1997; Jaillard et al., 1991; Monger et 

al., 1991), calcified earthworm biospheriods (Barta, 2011), and the mineralisation of bacterial or fungal 

organic templates (Bindschedler et al., 2014; Cailleau et al., 2009; Dincher et al., 2019). Another 

mechanism for the inclusion of SOC could be biomineralisation pathways such as the oxalate-carbonate 

pathway (Verrecchia, 1990). The oxalate-carbonate pathway involves biomineralisation of CaCO3 

during the bacterial catabolism of calcium oxalate-rich SOC produced by plants or fungi. It thus 
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intimately links SOC to the nucleation site of CaCO3 biomineralisation and could allow its inclusion 

within the crystal matrix in both acidic (Cailleau et al., 2005; Cailleau et al., 2004; Verrecchia et al., 

2006) and calcareous soils (Rowley et al., 2017). However, there has been very little direct quantification 

of the amounts or 14C ages of SOC included within biogenic carbonate forms, which could potentially 

contain much higher SOC contents than abiotically-formed, pedogenic CaCO3. Therefore, further 

investigation is now needed to quantify the inclusion of SOC within biogenic carbonate and its role in 

SOC cycling.  

3.2.3 - Sorption - Ca, minerals and organics 

3.2.3.1 - Organo-mineral associations with CaCO3 

Lithogenic and pedogenic CaCO3 could also play a key role in the stabilisation of SOC via adsorption. 

Most of the research into direct organo-calcite interactions has focused on the interactions between 

dissolved organic carbon (DOC) and calcite in sorption experiments. Earlier work by Suess (1970) and 

W. Carter (1978) showed that DOC could be directly adsorbed onto CaCO3, while Suzuki (2002) more 

recently showed that CaCO3 was an effective adsorbant of DOC from black tea solutions, possibly due 

to its high point of zero charge (9.5; Grünewald et al., 2006). Thomas et al. (1993b) more specifically 

studied the affinity of different synthetic carbonates for common organic functional groups and 

demonstrated that calcite, dolomite, and magnesite all sorbed a wide range of organic compounds, which 

included carboxylic acids, alcohols, sulphates, sulfonates, amines, amino acids and carboxylated 

polymers. Interestingly, interaction with DOC has been shown to modify carbonate precipitation 

equilibria, by inhibiting either further crystal precipitation (Inskeep and Bloom, 1986; Reddy et al., 

1990; Reynolds, 1978) or the dissolution of sorbent minerals (Thomas et al., 1993a). Jin and Zimmerman 

(2010) established that CaCO3 obtained from aquifers preferentially adsorbed dissolved organic matter 

with a high molecular weight, which the authors attributed to a form of outer sphere interaction. It has 

been theorised that the kinetics of DOC adsorption by carbonates may be biphasic, occurring through 

an initial rapid phase of outer sphere interactions, which is then followed by a slower phase of inner 

sphere and hydrophobic interactions that in turn protect the carbonate surface from dissolution (Jin and 

Zimmerman, 2010; Lee et al., 2005; Thomas et al., 1993b). While these DOC adsorption experiments 

have provided interesting insight into potential CaCO3-SOC interactions, there has been relatively little 

direct research on the adsorption of SOC by different forms of calcite / aragonite in soils. Measurements 

of soil carbonate content commonly differentiate between a reactive and a total pool (Pansu and 

Gautheyrou, 2006), but there is little evidence for the role of these operationally-defined pools in 

adsorption of SOC. Further research should focus on the effects of the supposedly reactive, poorly 

crystalline or amorphous CaCO3 pool on the adsorption of SOC in natural environments. 
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3.2.3.2 - Outer sphere processes  

Irrespective of their carbonate content, many soils have significant quantities of free Ca2+, which may 

also contribute to the stabilisation of SOC. The widely observed correlation between CaExch and SOC 

has led to the implicit assumption that Ca2+ predominantly affects SOC through weak outer sphere 

interactions (von Lützow et al., 2006), such as those contributing to the retention of exchangeable cations 

(Table 3.1). This form of cation bridging by Ca2+ has been highlighted as an important component of 

SOC stabilisation by many authors and is well-documented (Clough and Skjemstad, 2000; Edwards and 

Bremner, 1967; Oades, 1988). As illustrated in the lyotropic series, cations’ outer sphere (exchangeable) 

behaviour is related to the size of their hydration shell and valence. This is confirmed by chemical 

modelling, which indicates that exchangeable bridges by Ca2+ typically have a larger residence time than 

those of monovalent cations, like Na+, because the charge-to-hydration radius ratio of Na+ prevents it 

from efficiently countering the repulsion between negatively-charged surfaces (Iskrenova-Tchoukova 

et al., 2010; Sutton et al., 2005). Thus, Ca2+ is a fundamental flocculating agent of natural systems 

because of its ability to form efficient outer sphere bridge units.  

However, it is interesting to note that Al3+
 and H+ rate higher than Ca2+ on the lyotropic series and should 

thus cause similar or higher levels of apparent flocculation in soils in which they are abundant, such as 

most acid soils. Yet, it is widely observed that colloidal mobility is enhanced in acidic environments 

where Al3+ and H+ dominate and there is little or no Ca2+ present, such as those associated with the 

formation of Luvisols (Lavkulich and Arocena, 2011). It is also worth considering that the innate 

reversibility of outer sphere interactions should mean that exchangeable Ca bridges would not be 

inherently persistent in natural soils. These considerations lead us to explore the possibility that 

interactions between Ca and SOC are not solely attributable to outer sphere (exchangeable) processes 

and that, despite its correlative association with SOC, CaExch may not be solely responsible for the bulk 

of SOC stabilisation in Ca-rich soils.  

3.2.3.3 - Inner sphere processes 

It is generally observed that each cation has a different range of interactions in soils. For instance, 

trivalent Fe is seldom found in large amounts as a free ion in soil, as it very readily hydrolyses to form 

insoluble precipitates under most environmentally-relevant conditions. Al3+ also hydrolyses into 

insoluble hydroxides at slightly acidic to basic pH, while in acidic soils, it is found to participate both 

in outer sphere, cation exchange and inner sphere, ligand exchange reactions. Ca2+ is thought to retain 

its hydration shell and behave strictly like an exchangeable cation, as are other ‘base’ cations such as 

Mg2+, K+ and Na+ (Essington, 2015). However, in soil science, the fundamental controls on the 

propensity of each cation to form inner sphere complexes with SOM are not as well understood as the 

affinity of cations for non-specific exchange sites.  
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One of the reasons for this is that there are many factors that can influence inner sphere complexation 

of SOM by ions in the soil matrix, including characteristics of cations (ionic potential, electronegativity, 

polarisability of their electron cloud, hydrated radii, propensity to retain their hydration shell), of ligands 

(amount and type of organic functional groups), and of the environment (pH, ionic strength, solution 

composition, metal-to-ligand ratio, pressure and temperature conditions; Essington, 2015). Cations can 

be broadly split into three classes (Class A, B, and intermediate / C) based upon the polarisability of 

their electron cloud, which in turn, indicates how likely they are to form inner sphere complexes with 

specific ligands (Ahrland et al., 1958; Pearson, 1963; Schwarzenbach, 1961). Class A cations are weakly 

polarisable and tend to form complexes with O-containing ligands, such as carboxylate functional 

groups through ionic bonding. On the other hand, Class B cations have a labile electron cloud and tend 

to form complexes with N- or S-bearing ligands through more covalent bonding (Langmuir, 1997; 

Sposito, 2016). Al3+ and the base cations, including Ca2+, are considered group A cations, indicating that 

they may theoretically form inner sphere complexes with widely-occurring O-bearing ligands such as 

carboxylate groups (Sposito, 2016). However, each cation’s actual behaviour in soil cannot be predicted 

from one or a couple of first-principles only, as it results from the interaction of several factors. For 

instance, Na is not generally seen to engage in inner sphere complexation in soils, while K only does so 

in the interlayer of specific phyllosilicates. Advanced chemical modelling can offer insight into these 

issues.  

Authors have modelled the interactions between DOC and Ca2+ in an attempt to investigate their 

molecular scale interactions (Aristilde and Sposito, 2008; Benedetti et al., 1995). These models suggest 

that Ca2+ can bind to SOC through both inner sphere and outer sphere processes (Bogatko et al., 2013; 

Iskrenova-Tchoukova et al., 2010; Kalinichev and Kirkpatrick, 2007; Sutton et al., 2005). Sutton et al. 

(2005) modelled the complexation of deprotonated carboxyl groups by Ca2+ and found that their 

interactions were predominantly inner sphere (75 %). The model of Kalinichev and Kirkpatrick (2007) 

also confirmed that Ca2+ could form direct cation bridges with carboxylate and to a lesser extent, 

phenolic and other –OH functional groups, unlike Mg2+, whose hydration water is more tightly held 

(Dontsova and Norton, 2002; Kalinichev and Kirkpatrick, 2007; Tipping, 2005). Chemical modelling 

thus indicates that Ca2+ can interact with SOC through inner- and outer-sphere processes, thereby 

potentially increasing SOC stability against decomposition or leaching (Minick et al., 2017).  

3.2.3.4 - Building empirical evidence for Ca-SOC interactions 

While models predict that Ca2+ can form both inner- and outer-sphere bridges with SOC, empirical 

evidence of these associations in natural environments remains scarce. Density fractionation, which 

separates free particulate, occluded and mineral-associated SOC (Golchin et al., 1994) has the potential 

to offer insight. When performed sequentially (Sollins et al., 2009), density fractionation can separate 

SOC fractions associated with different minerals; furthermore, because the method uses extremely 

concentrated salt solutions (usually SPT), outer sphere associations are not expected to survive the 
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treatment, meaning that only strong (inner sphere) association with minerals are considered. Wen et al. 

(2017) recently showed that there was more SOC associated with calcite-rich than with dolomite-rich 

heavy fractions, possibly corroborating modelling predictions of stronger SOC association with Ca than 

Mg (Kalinichev and Kirkpatrick, 2007). The occluded fraction was however not separated from the 

mineral-associated fraction, so that the results remain somewhat equivocal. Further density fractionation 

studies analysing the relative role of occlusion and sorption for SOC accumulation in Ca-rich soils would 

undoubtedly prove informative. Density fractionation is however a costly and time-consuming 

technique (Poeplau et al., 2018) and may be difficult to use in calcareous soils, since polytungstate left 

in contact with free Ca for extended periods can precipitate as insoluble Ca-metatungstate. Methods 

applicable to the bulk soil would constitute useful complements to fractionation approaches. 

Selective extractions on bulk soil have typically been used to analyse the effects of cation pools on SOC 

stocks. As indicated in Fig. 3.1, the operationally-defined CaExch pool, extracted by salt solutions, 

represents a reactive and abundant pool of Ca2+ that is regularly correlated with SOC (Bruckert et al., 

1986; Gaiffe and Schmitt, 1980; Li et al., 2017; O'Brien et al., 2015), thus highlighting its potential as 

an indicator variable for the measurement of Ca2+ interacting with SOC. However, by definition, CaExch 

only represents Ca2+ engaged in outer sphere interactions. The selective chemical extraction of the inner 

sphere Ca pool, corresponding to pyrophosphate extractions for Al and Fe in acidic soil environments 

(Bascomb, 1968; Parfitt and Childs, 1988a; Rasmussen et al., 2006), is challenging due to the 

insolubility of most chelating agents once complexed by Ca (e.g., Ca-pyrophosphate or Ca-oxalate). In 

a recent study, van der Heijden et al. (2017) isolated a “non-crystalline pool of Ca” in acidic, base-poor 

soils, which may have included a significant contribution of Ca complexed by SOM, but the extract 

(dilute oxalic + nitric acid) was not specific to organic complexes. Extraction with other chelating agents 

that remain soluble in their Ca form (e.g. ethylenediaminetetraacetic acid, EDTA; Bélanger et al., 2008) 

or with salts of strong cation complexants (e.g. copper chloride; Barra et al., 2001; Juo and Kamprath, 

1979) may also be informative.  

Alternatively, X-ray absorption spectroscopy (XAS) could eventually be used to investigate the 

coordination environment of Ca2+-SOC complexes under different environmental conditions. As an 

example, Martin-Diaconescu et al. (2015) have successfully probed the coordination environment of 

synthetic Ca complexes. While powerful, these direct spectroscopic techniques require the use of 

synchrotron light source and can only be applied to small amounts of samples with limited compositional 

complexity. We are still lacking a method that allows for the routine assessment of inner sphere Ca-

SOM complexes and their relative importance in different soils, which constitutes a significant research 

gap given the potential for inner sphere interactions to stabilise SOM with increased efficiency (Mikutta 

et al., 2007), and perhaps through ecosystem disturbance events (Basile-Doelsch et al., 2009; Grand and 

Lavkulich, 2012). 
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3.3 - Implications for conceptual models of SOC cycling 
Despite the growing body of evidence supporting a major role for specific soil minerals and cations in 

SOC stabilisation (Doetterl et al., 2015), soil mineralogy and geochemistry are largely absent from 

leading models of SOC cycling. The following section will discuss a few processes that have the 

potential to improve representations of SOC stabilisation, with particular emphasis on Ca-rich soils. 

3.3.1 - Digressing from the expected profile scale depth distributions 
In addition to their influence on the total amount of SOC retained in soil, polyvalent cations are 

suspected to influence its vertical distribution in soil profiles. Current pedometric approaches to mapping 

soil C acknowledge the importance of accounting for soil type when estimating the vertical distribution 

of SOC (Kempen et al., 2011; Wiese et al., 2016). Polyvalent cations can indeed cause departures from 

the generally assumed exponential decline of SOC content with depth (Hilinski, 2001). A conventional 

example involves Podzols characterised by the effective translocation of Al-SOC complexes to deep 

soil horizons (Ferro-Vázquez et al., 2014; Grand and Lavkulich, 2011). Contrastingly, Calcisols have 

an accumulation of Ca-saturated SOC in surface horizons (Yang et al., 2016). This accumulation of Ca-

saturated SOC is likely caused by the complexation, flocculation, and precipitation of organic acids and 

clays in the presence of Ca, precluding their translocation to subsoil horizons. Two of the most common 

low molecular weight organic acids (oxalic and citric acids) in soil notably form sparingly soluble salts 

in the presence of Ca (Ca oxalate Ksp ≈ 10−8.5; Certini et al. 2000), preventing their translocation, whereas 

their Al and Fe counterparts are highly soluble (Gadd, 1999). The fundamental differences in how 

polyvalent cations modulate SOC inputs, stability and depth distributions highlight the critical 

importance of accounting for geochemical factors when modelling SOC. 

3.3.2 - Preferential sorption in Ca2+ based systems 
Integrating a geochemical dimension into conceptual models of SOM cycling is also important because 

the formation of organo-mineral complexes appears to be a preferential process, with selectivity 

exhibited by both the organic and mineral component (Spielvogel et al., 2008). Very little is actually 

known about the preferential nature of OMA in soils. To date, there is some evidence within the literature 

that specific organic compounds such as N-rich microbial metabolites, microbial cell-wall fragments, 

and possibly pyrogenic C may be selectively adsorbed by soil minerals (Brodowski et al., 2007; Jin and 

Zimmerman, 2010; Miltner et al., 2012; Scheel et al., 2008; Schurig et al., 2013; Spielvogel et al., 2008). 

Furthermore, it has been suggested that some reactive mineral surfaces, such as those of Al and Fe 

phases, may be disproportionally involved in the sorption of specific classes of organics, such as 

proteins, lignin, and phenolic compounds (Heckman et al., 2013; Kögel-Knabner et al., 2008; Xiao et 

al., 2015). However, there have been very few studies looking at the potential preferential sorption of 

organic compounds in Ca-rich edaphic environments.  
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If molecular scale stabilisation of SOC by Ca2+ predominantly occurs through inner- or outer-sphere 

cation bridging, then it should preferentially target functional groups such as carboxyls and phenols. 

Römkens and Dolfing (1998) and Kaiser (1998) accordingly demonstrated that Ca2+ preferentially 

flocculated and precipitated high molecular weight DOC compounds, which contained higher 

proportions of carboxylic and phenolic functional groups. There is also evidence for the preferential 

adsorption of negatively charged products of lignin degradation (syringyl units; Grünewald et al., 2006) 

and DOC (Jin and Zimmerman, 2010; Jin et al., 2014) by calcite. The implications of this hypothesis 

for our understanding of SOC cycling could be profound. It could potentially provide a mechanism to 

bridge the two competing hypotheses of SOC persistence, i.e. biochemical recalcitrance versus mineral-

association, since organic compounds with different compositions could have different probabilities for 

sorptive preservation. This perspective is highly relevant to SOC modelling. As an example, the 

CENTURY model assumes universal preservation of lignin in stable SOC pools (Parton, 1996; Parton 

et al., 2015), which has been questioned by experimental evidence (Gleixner et al., 1999; Gleixner et 

al., 2002). Accruing evidence on selective sorption of specific compounds to minerals or cations, 

including lignin derivatives, could speak in favour of considering SOC biochemical composition as a 

predictor of residence time, but the parametrisation would have to be adjusted for different geochemical 

environments.  

Conversely, Minick et al. (2017) demonstrated that high additions of Ca at the Hubbard Brook 

experimental forest specifically reduced the mineralisation of 13C-depleted SOC, which should represent 

a relatively fresh pool, little affected by oxidative transformation (Rumpel and Kögel-Knabner, 2011), 

thus contradicting the hypothesis that Ca2+ preferentially stabilises oxidised SOC. Yet, stabilisation of 

13C-depleted SOC could simply imply that occlusion was the predominant mechanism of SOC 

stabilisation at the Hubbard Brook Forest. SOC occlusion could limit the mineralisation of 13C-depleted 

sources because aggregates occlude a heterogeneous mixture of both 13C-enriched, decomposed and 

relatively fresh, 13C-depleted particulate SOM (Poeplau et al., 2018). However, this still requires further 

evidence. Future investigation should specifically focus on the relative importance of occlusion and 

adsorption for SOC stabilisation, as influenced by the geochemical environment and the composition of 

organic components.  

3.3.3 - pH - the master variable for SOC stabilisation mechanisms? 
As pH shifts from acidic to basic conditions, so does the importance of SOC stabilisation by different 

polyvalent cations and their mineral forms, moving from Al3+ or Fe3+ to Ca2+, respectively (Tipping, 

2005). The prevalence of each cation is indeed largely linked to soil pH due to the buffering capacity of 

primary and secondary minerals, notably calcite and Al oxides (Oste et al., 2002; Slessarev et al., 2016). 

As each cation is associated with different SOC stabilisation mechanisms (Fig. 3.2), this shift in pH 

could arguably be used to predict the content and types of SOC being stabilised in each environment. 

Therefore, we propose the following conceptual model: in acidic environments, complexation of organic 
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ligands by free Al3+ and Fe3+ as well as their mineral forms (Kalbitz and Kaiser, 2008; Scheel et al., 

2008) and the cementation of aggregates by Fe oxides (Oades and Waters, 1991; Zhao et al., 2017) are 

likely to control SOC stabilisation. There could also be a localised effect of Ca in the topsoil of these 

acidic environments caused by biological cycling and resulting accumulation of Ca (Clarholm and 

Skyllberg, 2013). As soil pH increases above 6, Ca2+ becomes more prevalent and, consequently, there 

should be increased evidence of SOC stabilisation by inner- and outer-sphere Ca2+ bridging or Ca-

mediated aggregation (Kayler et al., 2011). As soil pH increases further to pH > 8.4, excess Ca2+ will 

begin to precipitate physio-chemically as CaCO3, reducing the stabilisation by free Ca2+ at the expense 

of CaCO3-mediated mechanisms (Lindsay, 1979). When soil pH starts to increase beyond pH 9.5, soils 

will become increasingly sodic and dominated by Na+, which tends to disperse soil separates, reducing 

occlusion (Wong et al., 2010) and sorption of SOC (Iskrenova-Tchoukova et al., 2010; Sutton et al., 

2005), and consequently weaken SOC stabilisation. 

Fig. 3.2. The shifting role of polyvalent cations in the stabilisation of soil organic carbon 
with increasing pH. A ‘window of opportunity’ for microbial decomposition 
is highlighted in green according to the proposition of (Clarholm and 
Skyllberg, 2013). Thresholds are based on values available in the literature and 
it is expected that adjustments will occur as more results become available. Al 
- Fe oxides refer to true aluminium and iron oxides as well as oxyhydroxides
and their poorly crystalline forms. OCP: oxalate-carbonate pathway.

As indicated by Fig. 3.2, stabilisation of SOC by polyvalent cations is expected to be weakest at near-

neutral levels of pH, which also coincides with optimum conditions for bacterial mineralisation 
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(Groffman et al., 2006; Illmer and Schinner, 1991; Ivarson, 1977; Whittinghill and Hobbie, 2012; Zelles 

et al., 1987). This was suggested previously by Clarholm and Skyllberg (2013) as a “window of 

opportunity” (highlighted in green; Fig. 3.2) for C mineralisation. Taking this reasoning a step further, 

we hypothesise that low and high pH environments will afford different capacities for SOC stabilisation. 

Given the documented efficiency of sorption by Al and Fe forms and of aggregation by Ca, we postulate 

that adsorption by Al - Fe oxides generally dominates SOC stabilisation at low pH, stabilising SOC for 

long time periods; but as the pH increases beyond the “window of opportunity”, it could be expected 

that the dominant stabilisation mechanism would be occlusion within aggregates, potentially involving 

larger amounts of SOC but for shorter durations. However, due to the relatively limited body of work 

on Ca-mediated SOC stabilisation mechanisms, these hypotheses currently remain speculative; the 

dominant SOC stabilisation mechanisms associated with each cation, the amount of SOC they can affect 

and the relative strength of the conferred protection still require confirmation. Nonetheless, pH has the 

potential to act as a fundamental indicator of the mechanisms controlling SOC stabilisation. Therefore, 

this review suggests that SOC models should consider incorporating pH as a master variable to represent 

the effects of different stabilisation mechanisms by polyvalent cations and their mineral forms on the 

accumulation and persistence of SOC. 

3.4 - Conclusions 
Although an addition of Ca2+ generally improves microbial conditions for decomposition by increasing 

pH and reducing stress from H+, it can counter-intuitively reduce respiration rates through the 

stabilisation of SOC. The main mechanisms behind Ca-mediated SOC stabilisation are likely linked to 

the ability of Ca2+ to bridge negatively charged surfaces. Chemical modelling indicates that Ca2+ can 

bridge SOC and minerals through both inner- and outer-sphere interactions, but this still requires 

empirical confirmation. When scaled up, Ca bridging also positively affects soil structure; yet 

surprisingly little is known about the implication for the amount and stability of occluded SOC. The 

relative prevalence of occlusion and adsorption for SOC stabilisation in Ca-influenced soils needs to be 

determined, as it could have important consequences for the stabilisation of SOC in terms of its 

maximum amount, mean residence time but also composition. Indeed, there is some evidence that 

adsorption could preferentially involve some classes of organic compounds whereas occlusion may be 

relatively indiscriminate, at least at the macroscopic level. Soil pH could also play a fundamental role 

in predicting the occurrence of these stabilisation mechanisms and should be considered for inclusion 

in current SOC models. In order to better represent interactions between the C and Ca cycle in conceptual 

and numerical models of SOC cycling, we suggest that further mechanistic investigation should focus 

on the quantification of the relative prevalence and strength of each stabilisation mechanism and their 

variation across pH thresholds. 

- End of publication -
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Chapter 3 - Opening perspectives and recent literature 

Since publication of this critical review, there have been several important articles that have helped to 

further illuminate the field, which will now be discussed further below. The first of these papers, was 

Rasmussen et al. (2018), which synthesised data from 5,500 soil profiles spanning continental scale 

environmental gradients. In this analysis, they showed that CaExch strongly predicted SOC content in arid 

environments and called for us to move beyond clay as a sole predictor of SOC content. Another recent 

study (Solly et al., in review) analysed predictors of SOC content in 1000 forest soils spread throughout 

Switzerland. They demonstrated that CEC explained more of the variation in their dataset (35 %) than 

clay content (7 %) and that soil pH influenced this relationship, as effective CEC explained more 

variation with increasing pH (Solly et al., in review), coinciding with an increased Ca availability. While 

these studies do not separate out the co-localisation of CaExch and SOC during cation exchange processes 

from a potential mechanism of SOC stabilisation, they do raise the potential of CaExch, CEC and pH to 

modelling SOC content on national to continental scales.  

Recent studies have also further investigated the potential mechanisms of Ca-mediated stabilisation of 

SOC in CaCO3-rich soils. Chi et al. (2019) recently used in situ atomic force microscopy to observe how 

calcite gradually included SOC demonstrating the potential importance of the inclusion and sorption of 

CaCO3 in soils with significant CaCO3 contents. Another recent study, Martí-Roura et al. (2019) used 

size-fractionation, δ13C values and incubation experiments to investigate SOC cycling and stability in 

arid top-soils (0-10 cm) with or without CaCO3 (> 50 %). This study demonstrated that the coarse and 

fine fractions had similar δ13C values in the CaCO3-rich soils, while soils without CaCO3 had higher 

δ13C values in the fine fraction than the coarse fraction. The following research chapters will now further 

investigate the mechanisms of SOC stabilisation in CaCO3-bearing soils and why they may have similar 

δ13C values in different fractions, relative to soils without CaCO3. 

Important discoveries were also made regarding the interactions between Fe and Ca in SOC stabilisation 

and their coupled interaction. Sowers et al. (2018b) demonstrated that ferrihydrite adsorbed more SOC 

in the presence of Ca than in its absence, across a wide range of pH conditions. Sowers et al. (2018a) 

then used scanning transmission X-ray microscopy (STXM) paired with C-near-edge X-ray absorption 

fine structure (C-NEXAFS) to demonstrate that Ca was highly associated with C. The C-NEXAFS 

revealed that this was due to the formation of a Fe-Ca-C ternary complex, which was then further 

supported by another later work by the same group (Adhikari et al., 2019). This body of work opened 

up a whole new chapter in our understanding of Ca-SOC interactions, expanding the role of Fe beyond 

what was hypothesised in Fig. 3.2. The complexities of deconvoluting this relationship in a natural 

environment will be further explored in the following chapters. 
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- Chapter 4: A cascading influence of calcium carbonate on the 

biogeochemistry and pedogenic trajectories of subalpine soils, 

Switzerland - 
 

The following manuscript has been accepted for publication in Geoderma©. Most of the supplementary 

figures from this paper have been included in this chapter, but several methods-based supplementary 

figures and all the supplementary tables have been included in the appendices section (8.1.1).
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- Research question Chapter 4 - 
The following question and sub-questions will be addressed in this chapter: 

What is the influence of small quantities of CaCO3 on the pedogenesis and biogeochemistry of 

soils that have developed under similar soil forming conditions, in a humid and temperate 

environment (Nant Valley, Switzerland)? 

a. How is the pedogenesis of soils, which have developed under otherwise similar soil forming 

conditions, influenced by the presence or absence of CaCO3? 

iii. What is the influence of CaCO3 on pedogenic trajectories?  

iv. Does CaCO3 create a state of pedogenic inertia?  

b. What are the fundamental differences in the biogeochemical properties caused by the presence 

or absence of CaCO3? 

i. How does the presence or absence of CaCO3 influence the amount of Ca and soil pH? 

ii. How does the presence or absence of CaCO3 influence the amount of SOC?  
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- Chapter 4 abstract - 

Soil research in temperate to humid and temperate regions has typically focused on acidic soils; there 

has been relatively little investigation of the effects of CaCO3 on unamended soil properties or function 

in these environments. The object of this study was to characterise the effects of small amounts of CaCO3 

on pedogenic trajectories and soil biogeochemistry in a humid subalpine valley of Switzerland. To 

isolate the influence of CaCO3, six profiles were selected that had developed under almost identical 

conditions for soil formation, i.e. climate, topography, vegetation structure, time since deglaciation, 

silicate mineralogy, and texture. The main difference between the profiles was that three contained a 

small quantity of CaCO3 (< 6.2 %; thereafter, ‘CaCO3-bearing’) while the remaining three contained no 

detectable CaCO3 (thereafter, ‘CaCO3-free’). The presence of CaCO3 was associated with cascading 

changes in soil biogeochemical properties. These changes included higher pH, an order of magnitude 

higher extractable Ca, and twice as much SOC. CaCO3-bearing profiles also displayed a higher 

proportion of poorly crystalline Fe forms. The higher pH at the CaCO3-bearing site was attributable to 

the weak buffering provided by CaCO3 dissolution, which in turn maintained the relatively higher 

extractable Ca. CaExch and other reactive Ca forms could help stabilise SOC, contributing to its 

accumulation through processes such as flocculation and subsequent occlusion within aggregates and / 

or sorption to mineral surfaces. The increased SOC, CaExch and pH at the CaCO3-bearing site could in 

turn be inhibiting the crystallisation of disordered Fe forms, but further research is required to confirm 

this effect and isolate the exact mechanisms. Overall, this study shows that the presence of small 

amounts of CaCO3 in humid environments has a far-reaching influence on soil biogeochemical 

properties, and further supports the idea that indicators of Ca prevalence have the potential to improve 

regional SOC estimates.  
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4.1 - Introduction 
Calcium carbonate accounts for an important fraction of C present in soils, linking the long-term 

geological C cycle with the faster biogeochemical cycling of SOC (Gao et al., 2017; Hasinger et al., 

2015; Sanderman, 2012; Zamanian et al., 2016). Globally, the presence of CaCO3 in soils is inversely 

correlated to effective precipitation because of its susceptibility to chemical weathering (Arkley, 1963; 

Jenny, 1941; Slessarev et al., 2016). However, there remains clear outliers in this global correlation, as 

CaCO3-bearing soils can be found in humid environments and are typically related to lithological CaCO3 

reservoirs that are yet to be exhausted by leaching (Slessarev et al., 2016). Furthermore, while the 

precipitation of CaCO3 by physicochemical processes is not typically favoured in humid or acidic 

environments (Barta et al., 2018; Cerling, 1984), it can still occur through the direct and indirect results 

of biological processes (Bindschedler et al., 2016; Cailleau et al., 2005; Hasinger et al., 2015). Thus, 

CaCO3 in soils can persist in a state of disequilibrium with climate, when driven by reserves of 

calcareous parent material or biological processes. 

The aforementioned disequilibrium is an example of pedogenic inertia, defined as the persistence of 

certain soil conditions or processes in spite of the presence of extrinsic pedogenic factors that favour 

their discontinuation (Bryan and Teakle, 1949). The extrinsic pedogenic factors refer to four of the five 

conventional factors of pedogenesis (parent material, biota, topography and climate; Jenny, 1941), 

excluding time which acts as a vector (Muhs, 1984). In the previously used example, the state of 

pedogenic inertia exists because an intrinsic pedogenic factor, the continued and slow dissolution of 

CaCO3, preventing the expression of an acidic soil favoured since deglaciation by the extrinsic factor of 

climate (Chadwick and Chorover, 2001). This inertia in turn diverges the trajectory of pedogenesis, as 

evidenced by the wide array of soils that develop on parent material containing a range of varied CaCO3 

content in humid or mountainous environments (Kowalska et al., 2019). Unless there is a change in 

extrinsic factors, pedogenic inertia is by nature a transient condition that will eventually cease in a 

threshold response. Pedogenic thresholds are defined as limits in intrinsic pedogenic factors or soil 

properties, that once breached, cause rapid and irreversible transformations in pedogenesis and 

biogeochemistry (Chadwick and Chorover, 2001; Muhs, 1984). In the case of CaCO3, a threshold may 

occur when its concentration becomes too low to provide pH buffering to the soil system, triggering 

changes in soil biogeochemistry.  

The presence of CaCO3 plays a commanding role in governing soil biogeochemistry. The primary 

mechanism for this is the buffering of soil pH caused by the consumption of H+ during acid hydrolysis 

of CaCO3 (Bache, 1984; Zamanian et al., 2016). pH is known as a master variable in soil ecosystems 

and impacts many biological and chemical processes, such as the composition of microbial communities 

(Bahram et al., 2018; Rousk et al., 2010), mineral weathering rates (Chadwick and Chorover, 2001), 

redox chemistry (Bartlett and James, 1993) and the speciation and lability of many elements (Sposito, 

2016). The dissolution of CaCO3 also provides a continued supply of CaExch, which has long been 
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thought to promote the accumulation of SOC in CaCO3-bearing soils through occlusion (Grant et al., 

1992; Muneer and Oades, 1989c) and sorption processes (Edwards and Bremner, 1967; Kalinichev and 

Kirkpatrick, 2007; see review in Rowley et al., 2018). Recent evidence has highlighted a potential 

stabilisation of SOC by Fe-Ca-ternary complexation (Sowers et al., 2018a; Sowers et al., 2018b), which 

could be more prevalent in CaCO3-bearing soils than acidic profiles with limited CaExch. However, 

further research is still needed to evidence links between Ca, SOC, and reactive forms of Fe in different 

soil environments. In particular, the effects of small amounts of CaCO3, commonly found in humid and 

temperate soil environments, on biogeochemistry still requires further investigation.  

Therefore, the objective of this paper is to quantify the impact of small amounts of CaCO3 on the 

pedogenesis and biogeochemistry of soils in a humid environment (Nant Valley, Vaud Alps, 

Switzerland). To isolate the effects of CaCO3 on pedogenesis at the Nant Valley, six soil profiles were 

selected that had developed under near-identical conditions for soil formation (Jenny, 1941) or extrinsic 

pedogenic factors (Chadwick and Chorover, 2001; Muhs, 1984), except that three profiles contained a 

small quantity of CaCO3 (< 6.2 % CaCO3) while the other three were devoid of CaCO3. Our hypothesis 

was that the presence or absence of CaCO3 would trigger a threshold response, resulting in large 

divergences in pedogenesis and soil biogeochemistry, particularly regarding the accumulation of SOC.  

4.2 - Materials and methods 

4.2.1 - Site description and sampling 
This study was completed in the Nant Valley (573'000, 119'000 CH1903 LV03), a partially glaciated 

watershed in the Vaud Alps, Switzerland. The valley is orientated north-south and situated on the 

Morcles Nappe, a near-recumbent anticline consisting of Jurassic and Cretaceous shallow-water 

limestones intercalated with marl and shale deposits (Austin et al., 2008). Sampling took place in a 

pastoral area of the valley floor (ca. 1500 m elevation above sea level), which is lightly-grazed by heifers 

during summer months. This area receives approximately 1800 mm yr-1 precipitation, has a mean annual 

temperature of 6°C (Vittoz and Gmür, 2008) and is typically covered in snow from December to April 

.  

Two sampling sites were selected that represented a range of CaCO3 contents, while having developed 

under near-identical soil forming conditions. Potential variations in the CaCO3 content were identified 

in the field using an auger, 10 % v / v HCl and a field pH meter (Hellige pH Indicator). Retained sites 

were located on subalpine prairies and thus had the same vegetation structure, which had previously 

been characterised in detail (Grand et al., 2016; Vittoz and Gmür, 2008). Soils at each site developed in 

mixed alluvial, morainic and colluvial materials issued from the Morcles Nappe (Grand et al., 2016; 

Perret and Martin, 2014) and deposited around the time of the retreat of the Martinets Glacier (ca. 15 

kyr; Seguinot et al., 2018). Sites all had a minimal slope, the same altitude, similar climate due to their 

proximity to each other (ca. 400 m apart) and equivalent irradiance.  
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Three profiles were dug at each sampling site in July - August 2016 (Fig. 4.1). Profiles were classified 

as Eutric Cambisols (siltic) with no HCl effervescence on the north-western bank and Cambic 

Phaeozems (siltic) that effervesced on the south-eastern bank of the Nant River (IUSS Working Group 

WRB, 2015). For brevity, the Eutric Cambisols will henceforth be labelled as CaCO3-free (profiles F1, 

F2, F3, in fuchsia) and the Cambic Phaeozems will be labelled as CaCO3-bearing (profiles B1, B2, B3, 

in black). Profiles were sampled at 6-7 depth intervals (see Table 4.1 included in results section) to a 

maximum depth of 50 cm, sampling the deepest layers first to prevent intra-profile contamination. 

Samples were labelled from 1 to 6 / 7 with increasing depth (e.g., F1.1-to-F1.6) and then transported to 

the University of Lausanne in sealed bags. Aboveground biomass (AGB) was also randomly sampled 

from the sites to quantify potential differences in vegetation inputs at the sites.  

 

Fig. 4.1. Profile locations in the Nant Valley, Vaud Alps, Switzerland. Coordinates are 
in CH1903 LV03 (ESRI, 2019). Profiles labelled with an F (F1, F2, F3) are at 
the CaCO3-free site and profiles labelled with a B (B1, B2, B3) are at the 
CaCO3-bearing site. 

4.2.2 - Laboratory analyses 
Samples were air-dried and sieved to 2 mm. All analyses were completed on this fine earth fraction 

unless stated otherwise and results were corrected for residual humidity (van Reeuwijk, 2002). Sub-

samples were ground to a fine powder (ca. 20 µm) for 3 min in an agate crucible with a vibrating-disc 

mill (Siebtechnik Schibenschwingmuhle-TS). AGB samples were oven dried (40°C), ground by hand 

and homogenised for further analysis. Quality control procedures included the analysis of an internal 

standard when appropriate, as well as the inclusion of blanks and quality checks. A minimum of 10 % 
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blind replicates were included in all analyses. All plastic and glassware were acid washed (3 M HCl) to 

remove trace contamination.  

4.2.2.1 - pH and texture 

Soil pH was measured potentiometrically using a glass-body combination electrode (Thermo Scientific 

Orion ROSS Probe) on field moist samples in a 0.1 M CaCl2 solution (1:2 soil:solution mass ratio). 

Texture was determined using laser diffraction (0.01–2000 μm; Pansu and Gautheyrou, 2006). Pre-

treatment included digestion of soil organic matter with increasing concentrations of H2O2 (10-35 %). 

During the procedure, pH was kept around neutrality with NaOH to prevent destruction of mineral 

components due to acidification. Samples were then shaken with sodium hexametaphosphate for 16 h 

to chemically disperse particles prior to measurement with a Beckman Coulter LS13320 Particle Sizing 

Analyser. The analyser pump speed was set at 80 % (ca. 9500 mL min-1) and samples were weakly 

sonicated in both the autosampler and analyser (4 / 8 setting; ca. 2 J mL-1) prior to measurement. The 

analyser was run using the default optical model (Fraunhofer.rf780d) in auto-dilution mode. 

Measurements were taken when an obscuration of 12 % was obtained.  

4.2.2.2 - Elemental analysis 

The total elemental composition was quantified on ground samples using X-ray fluorescence (XRF; 

PANalytical PW2400 WDXRF Spectrometer) following lithium tetraborate fusion (PANalytical Perl 

X3 Fuser). Results were corrected for loss-on-ignition at 1050°C (Solo 111-13/10/30). Organic C and 

total nitrogen were quantified on AGB and soil ground samples by dry combustion (Carlo Erba 1108 

and Thermo Scientific Flash 2000 CHN Elemental Analysers). Soil samples were fumigated for 24 h 

with 12 M HCl in order to remove inorganic C prior to CHN elemental analysis (Harris et al., 2001; 

Ramnarine et al., 2011). Samples were weighed to the nearest milligram before and after fumigation to 

correct for mass changes. All samples gained mass due to the formation of small quantities of chloride 

green rust, likely formed from the reaction of Fe oxides with Cl- (Ramnarine et al., 2011).  

4.2.2.3 - Mineralogy  

Bulk mineralogy was determined on ground samples prepared according to Adatte et al. (1996) using 

X-ray diffraction (XRD; Thermo ARL X’TRA Powder Diffractometer). Approximately 800 mg of 

ground sample was pressed (20 bars) in a powder holder covered with blotting paper. Pressed samples 

were then analysed using Cu Kα radiation at 45 kV / 40 mA with a 13 s counting time per 0.02° for 2 θ 

in the 1-65° range. Samples were rotated at a range of 1° min-1 with an acquisition step size of 0.03 – 

0.05° 2 θ using a 0 / 0 type goniometer with a 250 mm radius. A spectral counter (Thermo ARL Water-

cooled Silicon Detector) was used to eliminate Cu Kβ and Fe parasitic emissions. The bulk mineralogy 

of samples was then quantified using external standards (Adatte et al., 1996).  

Samples from a randomly selected profile at each site were also prepared for clay mineralogical analysis 

according to Adatte et al. (1996). Briefly, samples from profiles F1 and B2 were mixed with deionised 



77 
 

water, agitated, and combined with 10 % HCl to remove carbonate. Insoluble residues were washed by 

centrifugation until neutral pH was acquired. Different size fractions (< 2 µm and < 16 µm) were 

separated by sedimentation according to Stokes’ law. Selected fractions were then pipetted onto glass 

plates and air-dried. Resulting oriented slides were analysed by XRD before and after ethylene glycol 

solvation (heating at 450 °C).  

Total carbonate content expressed as CaCO3 equivalent (CCE %) was determined using a weak acid 

dissolution followed by measurement of the pH of the extractant (Loeppert et al., 1984). The method 

was selected for its reproducibility in quantifying low amounts of CaCO3, for which the XRD detection 

limit is around 1 % (Loeppert and Suarez, 1996). The method was also adapted to measure reactive 

carbonates, by measuring extracts shortly after the addition of the weak acid. Briefly, 2 g of soils were 

placed in 50 mL centrifuge tubes and shaken on a rotary shaker (250 rpm) with 25 mL 0.4 M acetic acid. 

Holes approximately 1 mm in diameter were made in the lids to allow for degassing during the reaction. 

The pH of standards (reagent grade CaCO3) and samples solutions was measured (Thermo-Fisher 

Scientific Orion Star A111 Probe) at 1 h (reactive carbonates) and 16 h (total carbonate) after the 

addition of acetic acid. Quality control was assured by running blind, analytical and spiked replicates 

(Loeppert and Suarez, 1996). 

4.2.2.4 - Extractable cations 

Fe and Al present in pedogenic oxides were extracted using a citrate-bicarbonate dithionite solution (Fed 

or Ald; Mehra and Jackson, 1958), while poorly crystalline and monomeric Fe and Al forms were 

extracted with an oxalate solution (Feo or Alo; McKeague and Day, 1966). The ratio of oxalate-to-

dithionite extractable Fe (Feo/Fed) was used as a measure of the crystallinity of Fe oxides (Skjemstad et 

al., 1992). One surficial sample (B3.1) contained more Feo than Fed (ca. 20 %; Table 4.1). The citrate-

bicarbonate dithionite extraction is typically less selective and extracts more Fe than the oxalate 

extraction (Dahlgren, 1994), but it can be less efficient at extracting chelated Fe (Rennert, 2019), 

potentially explaining the Feo/Fed ratio > 1.  

Exchangeable cations were extracted from field moist samples using a 0.0166 M cobalt hexamine 

(Cohex; [Co(NH3)6]Cl3) extraction (Aran et al., 2008). Pre-testing demonstrated that this extraction was 

the least aggressive towards carbonates (Appendix Fig. 8.19). Cation exchange capacity (CECSUM) was 

calculated as the sum of extracted exchangeable cations (cmolc kg-1), excluding H+. Ca was also 

quantified in several other soil extracts including, in order of expected increasing extraction strength: 

deionised water (1:4 ratio; Tirmizi et al., 2006), 2 M KCl (1:5 ratio; Keeney and Nelson, 1982), 0.05 M 

disodium EDTA (1:20 ratio; Lo and Yang, 1999) and 0.5 M CuCl2 extraction (1:10 ratio; Barra et al., 

2001). All extracts were vacuum-filtered (0.45 μm) and diluted with 2 % HNO3 prior to analysis on an 

ICP-OES (Perkin Elmer Optima 8300 Inductively Coupled Plasma–optical Emission Spectrometer). 
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4.2.3 - Statistical analyses of soil variables 
The effects of CaCO3 on soil variables were investigated using linear mixed models in SAS 9.4TM. The 

estimation method was set to restricted (residual) maximum likelihood. Conditional residuals were 

plotted against predicted values to evaluate deviations from homoscedasticity and goodness of fit. 

Residuals were also checked for normality with QQ-plots (Galecki and Burzykowski, 2015). The 

significance of fixed effects was evaluated using type III F-tests. The denominators’ degrees of freedom 

were computed using the Satterthwaite adjustment (Satterthwaite, 1946). For significant fixed effects, 

comparison of means was carried out using t-tests without multiple inference adjustment (Webster, 

2007). The alpha level of significance was set at α=0.05 for all tests. All reported means are conditional 

least-square means ± the standard error of the mean (SEM). Means for profiles are the unweighted 

average of sampling intervals. 

Models included site (CaCO3-bearing or free), depth classes and their interaction as fixed effects. 

Observations were blocked by profile and a different variance was computed for each site since 

observations from the CaCO3-bearing site typically had a higher dispersion than those from the CaCO3-

free site. For extractable Fe, dispersion was also higher for surface samples and the variance was 

additionally allowed to vary with depth. To account for the autocorrelation of observations within 

profiles, depth was set as a repeated measure effect with a first-order autoregressive covariance structure. 

Choice of covariance structure was made based on the Bayesian Information Criteria.  

A Pearson’s correlation coefficient heat map was created to explore linear associations between 

variables using the Corrplot Package (Wei and Simko, 2017) in R (2019). Variables in the heat map 

were ordered hierarchically into two separate groups using the complete-linkage method (Sørensen, 

1948). A principal component analysis (PCA) was conducted on the correlation matrix to synthesise 

relationships between variables. A factor analysis was completed on the first 5 principal components 

(accounting for > 82 % of variance) using a quartimax orthogonal rotation (Neuhaus and Wrigley, 1954). 

The purpose of the quartimax rotation is to minimise the number of original variables associated with 

each factor to simplify interpretation. Observations were then plotted according to their factor 1 and 2 

scores in Matlab®. 

Finally, differences in the shape of the depth curve of SOC between the sites were explored by 

examining scatterplots of SOC versus depth. Linear regressions were fitted to the data for each site. A 

higher root mean square error (RMSE) was considered as an indication of lack-of-fit (departure from 

the linear trend). Residuals from the linear regression were also tested for normality using the Shapiro-

Wilk Test, with departures from normality used as another indicator of deviation from the linear trend. 



79 

4.3 - Results  

4.3.1 - Soil texture, composition and silicate mineralogy 
Soil texture was similar between the two sites (Fig. 4.2 on the following page). All samples had a silty-

loam texture and were comprised of six predominant textural populations (Fig. 4.3 on the following 

page). There was slightly less silt at the CaCO3-free site than at the CaCO3-bearing site (67.3±0.7 % 

versus 74.1±0.4 %), and consequently more sand- (15±0.8 % versus 10.6±0.5 %) and clay-sized particles 

(17.8±0.3 % versus 15.3±0.3 %). The surficial samples of F1 and F2 (F1.1, F2.1, F2.2 and F2.3) as well 

as one deep sample (F2.6) had a more pronounced peak in the fine sand population (Fig. 4.3), which 

occurred at the expense of fine silt populations.  

Major elemental compositions were mostly similar at both sites (Appendix Table 8.1). Ti and other 

transition / post-transition metals were largely invariant. The main differences pertained to Ca, which 

was approximately an order of magnitude higher at the CaCO3-bearing site (14.7±3.3 g kg-1) than at the 

CaCO3-free site (1.9±0.2 g kg-1). There was a corresponding decrease in Si at the CaCO3-bearing site 

(299.8±1.5 g kg-1), relative to the CaCO3-free site (318.3±3.4 g kg-1). There were also small differences 

in the amounts of other elements including Mg and P, which were slightly higher at the CaCO3-bearing 

site (14.9±0.1 g kg-1 Mg; 4.9±0.8 g kg-1 P) than at the CaCO3-free site (12.7±0.3 g kg-1 Mg; 1.4±0.1 g 

kg-1 P). K was also marginally higher at the CaCO3-bearing site (26.9±0.3 g kg-1 versus 23.4±0.9 g kg-

1), while Na was slightly higher at the CaCO3-free site (7.8±0.0 g kg-1 versus 6.4±0.1 g kg-1). Overall, 

the main difference in major elements composition between the sites consisted of an increase in Ca at 

the expense of Si in the CaCO3-bearing profiles.  
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Fig. 4.2. Texture of samples from the CaCO3-free (fuchsia dots) and CaCO3-bearing 
(black dots) profiles. 

 
Fig. 4.3. Particle size distributions of the CaCO3-free (F1, F2, F3) and CaCO3-bearing 

(B1, B2, B3) profiles. Graphs at the bottom of the subplot are averages for sites 
with 95 % confidence intervals.  
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Table 4.1. Selected properties of the study profiles at the Nant valley. Profiles F1, F2 and 
F3 are Eutric Cambisols (CaCO3-free) and profiles B1, B2 and B3 are Cambic 
Phaeozems (CaCO3-bearing). 

Sample 
name 

Depth 
intervals 

Genetic 
Horizons 

pH 

AlExch CaExch CECsum 
CaExch 

saturation 
AlExch 

saturation 
TON SOC 

C:N 
ratio 

Alo  Feo  Ald  Fed  
Feo/Fed  
ratio 

(cm) 
cmol.c 

kg-1 
cmol.c 

kg-1 
cmol.c 

kg-1 
% % % % 

g 
kg-

1 

g 
kg-1 

g 
kg-

1 

g 
kg-1 

F1.1 0-5 Ah 4.1 0.4 6.2 7.3 84.9 5.7 0.6 4.7 8.0 2.6 13.2 3.2 24.0 0.6 
F1.2 5-10 A1 4.3 0.3 4.5 5.3 84.9 6.4 0.4 3.0 7.5 2.8 12.5 3.3 23.0 0.5 
F1.3 10-15 A2 4.3 0.2 4.1 4.7 87.0 5.2 0.3 2.3 7.3 3.1 11.8 3.3 22.3 0.5 
F1.4 15-25 B1 4.5 0.2 3.8 4.6 82.8 5.1 0.2 1.6 6.8 2.6 12.1 3.8 24.6 0.5 
F1.5 25-35 B2 4.5 0.2 4.1 4.6 89.1 4.5 0.2 1.3 6.1 2.9 11.2 3.9 25.4 0.4 
F1.6 35-52 B3 4.6 0.1 4.3 4.6 93.3 1.5 0.2 0.9 5.3 2.5 9.1 3.0 22.8 0.4 
F2.1 0-5 Ah 4.0 1.3 4.4 6.1 72.6 20.6 0.7 5.8 8.6 2.9 11.1 3.7 23.7 0.5 
F2.2 5-10 A 4.2 1.5 1.6 3.2 48.4 45.7 0.3 2.4 7.7 3.1 11.5 3.6 22.1 0.5 
F2.3 10-15 AB 4.2 1.4 1.5 3.0 50.0 44.5 0.3 2.3 7.5 2.8 10.6 3.9 23.1 0.5 
F2.4 15-20 B1 4.3 1.0 1.7 2.8 61.1 36.7 0.3 2.0 7.3 2.9 10.8 3.7 21.8 0.5 
F2.5 20-25 B2 4.4 0.9 1.6 2.6 62.9 34.5 0.2 1.5 6.7 2.8 9.9 3.9 23.3 0.4 
F2.6 25-40 BC 4.4 0.8 1.6 2.5 63.5 33.1 0.2 1.0 5.6 2.1 7.4 3.0 19.7 0.4 
F3.1 0-5 Ah 4.3 0.5 7.6 9.0 84.1 5.7 0.7 6.1 8.5 2.8 12.2 3.3 21.7 0.6 
F3.2 5-10 A 4.4 0.9 3.2 4.5 71.2 19.8 0.4 3.4 7.8 3.0 11.6 3.6 21.8 0.5 
F3.3 10-15 B1 4.5 0.9 2.6 3.8 66.9 23.5 0.3 2.3 7.4 2.7 9.9 3.6 21.5 0.5 
F3.4 15-20 B2 4.4 1.1 1.7 3.0 56.4 34.8 0.3 2.0 7.3 3.0 10.6 4.3 24.6 0.4 
F3.5 20-25 B3 4.5 1.1 1.9 3.2 58.1 33.8 0.2 1.7 7.4 3.2 10.5 4.1 22.9 0.5 
F3.6 25-40 BC 4.5 1.1 1.7 3.1 54.3 35.9 0.2 1.5 7.5 3.2 10.1 3.8 20.5 0.5 

B1.1 0-5 Ah1 6.3 0 23.2 23.7 97.6 0.0 0.8 7.7 9.2 0.9 13.1 0.9 24.7 0.5 
B1.2 5-10 Ah2 6.4 0 23.0 23.4 98.4 0.0 0.8 6.8 8.9 1.0 14.0 1.0 25.4 0.6 
B1.3 10-15 ABh 6.3 0 20.3 20.6 98.5 0.0 0.6 5.3 8.7 1.2 15.3 1.0 24.5 0.6 
B1.4 15-20 Bh 6.4 0 16.9 17.2 98.4 0.0 0.5 4.3 8.5 1.4 17.9 1.2 26.8 0.7 
B1.5 20-25 B1 6.4 0 15.2 15.5 98.3 0.0 0.4 3.4 8.3 1.2 15.3 1.2 26.3 0.6 
B1.6 25-40 B2 6.3 0 11.8 12.0 98.2 0.0 0.3 2.3 7.8 1.3 13.8 1.4 29.9 0.5 
B2.1 0-5 Ah1 5.7 0 23.5 23.8 98.7 0.0 0.9 8.3 9.2 1.6 17.6 1.3 20.2 0.9 
B2.2 5-10 Ah2 5.7 0 18.4 18.6 98.8 0.0 0.8 7.3 9.3 1.6 20.8 1.5 25.1 0.8 
B2.3 10-15 ABh 5.8 0 18.8 19.1 98.9 0.0 0.7 6.1 9.2 1.7 21.5 1.5 26.0 0.8 
B2.4 15-20 Bh1 5.8 0 16.9 17.3 97.6 0.0 0.5 5.1 9.4 1.7 22.4 1.5 25.3 0.9 
B2.5 20-25 Bh2 5.9 0 14.6 14.7 98.9 0.0 0.4 4.1 9.5 1.6 20.9 1.6 30.1 0.7 
B2.6 25-40 BC 6.5 0 12.8 13.1 98.0 0.0 0.3 2.7 9.0 0.9 15.5 1.0 22.1 0.7 
B3.1 0-5 Ah1 5.0 0 13.5 14.5 93.0 0.0 1.1 9.4 8.8 2.0 21.4 1.7 17.4 1.2 
B3.2 5-10 Ah2 5.3 0 11.3 12.0 94.4 0.0 0.6 5.3 8.9 2.0 20.8 1.8 25.6 0.8 
B3.3 10-15 ABh 5.1 0 12.3 12.9 95.3 0.0 0.5 5.1 9.4 1.9 21.1 1.8 26.3 0.8 
B3.4 15-20 Bh 5.2 0 13.4 14.4 93.2 0.0 0.5 4.5 9.4 1.9 26.7 1.6 27.5 1.0 
B3.5 20-25 B1 5.3 0 12.5 12.9 97.0 0.0 0.4 3.8 8.8 1.6 17.9 1.6 26.6 0.7 
B3.6 25-30 B2 5.2 0 12.1 12.5 96.8 0.0 0.4 3.4 9.0 1.3 14.2 1.5 26.7 0.5 
B3.7 30-37 BC 6.4 0 12.0 12.3 97.7 0.0 0.3 2.4 8.6 0.9 12.1 1.2 25.4 0.5 

 
CaExch, AlExch: exchangeable Ca and Al 
CECsum: cation exchange capacity calculated as the sum of exchangeable cations, not including H+ 

TON, SOC and C:N ratio: total nitrogen, soil organic carbon and the ratio of the two 
Feo, Alo: oxalate-extractable Fe and Al 
Fed, Ald: dithionite-extractable Fe and Al 
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Silicate mineralogy was also similar between the CaCO3-bearing and CaCO3-free sites (Appendix Table 

8.2 & Appendix Fig. 8.1). Both sites had a bulk mineralogy that was predominated by quartz (38-41 %) 

and phyllosilicates (42-44 %), with small amounts of Na-plagioclase (5 %), K-feldspar (2 %) and 

goethite (1 %), while 8 % of the diffraction signal remained unquantified. Average Na-plagioclase 

content was slightly higher at the CaCO3-free site (6.1±0.2 %) relative to the CaCO3-bearing (4.8±0.3 

%), while average content of K-feldspar was marginally higher at the CaCO3-bearing site (2.2±0.1 %) 

relative to the CaCO3-free site (1.5±0.2 %). The phyllosilicate mineralogy was also remarkably similar 

between the two sites and consistent throughout the analysed profiles (Appendix Fig. 8.2). The 

phyllosilicate population in both the randomly selected profiles (F1 and B2) was predominantly formed 

of chlorite and mica, with a small quantity of illite-vermiculite mixed layer minerals. 

4.3.2 - Soil pH, CaCO3 and Ca forms 
Soil pH was higher at the CaCO3-bearing site (range=5-6.5) than the CaCO3-free (range=4-4.6). pH also 

increased significantly with depth at both sites (Table 4.1). The amount of CaCO3 equivalent material 

(CCE) was below detectable limits in profiles from the CaCO3-free site. Profiles from the CaCO3-

bearing site typically contained about 0.5 % reactive CCE and 0.8 % total CCE (Fig. 4.4), except for 

four samples also identified by XRD as containing several percent of CaCO3. These four samples 

consisted of two surficial samples (B1.1, B1.2) and two of the deepest samples (B2.6, B3.7). The overall 

proportion of reactive carbonates, operationally-defined as having reacted with 0.4 M acetic acid in 

under 1 h, was high (74.4±3.7 % average; Appendix Table 8.2). 

Fig. 4.4. Reactive and total contents of calcium carbonate equivalent for CaCO3-bearing 
profiles (B1, B2, B3). Calcium carbonate equivalent contents were below the 
limits of detection at the CaCO3-free site. 
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As with total Ca, extractable Ca was approximately an order of magnitude higher at the CaCO3-bearing 

than at the CaCO3-free site (Fig. 4.5). CECSUM was also higher at the CaCO3-bearing (16.6±1.9 cmolc 

kg-1) than at the CaCO3-free site (4.3±0.6 cmolc kg-1). This difference reflected the higher CaExch content 

(Fig. 4.6) at the CaCO3-bearing site (16.1±2.1 cmolc kg-1) relative to the CaCO3-free site (3.2±0.8 cmolc 

kg-1), as Ca was the predominant exchangeable cation at both sites. The Ca saturation of the exchange 

complex was high at both sites, but was greatest and had a smaller range at the CaCO3-bearing site (93-

99 %) than at the CaCO3-free site (48-93 %). This difference was reflected in corresponding increases 

in Al saturation, as exchangeable Al (AlExch) was consistently detected at the CaCO3-free site only.  

Fig. 4.5. Calcium contents of the CaCO3-free and CaCO3-bearing profiles. From left to 
right are deionised water, 2 M potassium chloride, 0.0166 M cobalt hexamine 
(Cohex), 0.05 M disodium EDTA and 0.5 M copper chloride extracts 
measured on an ICP-OES and total contents measured with X-ray fluorescence 
(XRF). Y scales differ by an order of magnitude. Bottom and top edges of the 
boxes in the box plot represent the 25th and 75th percentiles, the middle bars 
represent the median. Whiskers represent the range of most extreme data points 
not considered as outliers, while ‘+’ represent outliers defined as values 
outside of the ±2.7 standard deviation range.  
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Fig. 4.6. Exchangeable calcium (CaExch) content as a function of depth for the CaCO3-
free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. 

Extraction efficiency of Ca increased in the order of H2O < KCl ≈ Cohex < EDTA < CuCl2. 2 M KCl 

extracted similar amounts of Ca as 0.0166 M Cohex at both sites, indicating that these two extracts 

effectively targeted the classical, exchangeable pool. The EDTA and CuCl2 also extracted the 

exchangeable Ca pool at the CaCO3-free site (Fig. 4.5), but extracted more Ca at the CaCO3-bearing 

site, particularly in the samples with higher CaCO3 contents. 

4.3.3 - Multivariate exploration of texture and mineralogy 
Correlation analysis (Fig. 4.7) showed that there was a strong positive correlation between CaCO3 and 

total Ca. There was also a strong positive correlation between CECSUM and CaExch. On the other hand, 

there was a strong anti-correlation between CaExch / Ca saturation and AlExch / Al saturation. Strong anti-

correlations were also detected between fine silt and fine sand / clay content, reflecting the fact that soil 

texture was dominated by silt populations, which exerted a ‘dilution’ effect (Bern, 2009) on other size 

classes (simplex behaviour). Total Mg and total Ca were also significantly anti-correlated with changes 

in total Si, which dominated major element composition, highlighting another ‘dilution’ effect.  
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Fig. 4.7. Pearson’s correlation coefficient matrix divided into two parts. The lower-left 
part represents the value of positive (blue) and negative (red) correlation 
coefficients as variations in circle size. The upper-right part displays the actual 
Pearson’s correlation coefficients. Boxes in the upper-right part are only 
coloured in if the relationship is significant (α=0.05). Strong correlation 
coefficients are highlighted in white and underlined (r > 0.85). The different 
variables are hierarchically clustered using the complete-linkage method into 
two separate groups, highlighted with black rectangles in bold. 

A PCA (Fig. 4.8 A) followed by a factor analysis (Fig. 4.8 B) demonstrated that sites were clearly split 

along multivariate factor 1 (Fig. 4.8 C). This factor represented the abundance of Ca (as shown by the 

correlation with total Ca, CaCO3 and CaSat) and the anti-correlation between total Ca / Mg and total Si / 

quartz. The second factor was a proxy for texture. There was no difference between sites along this 

factor, except for the fact that observations from the Ca-free site showed a higher dispersion (had both 

lower and higher scores than observations from the Ca-bearing site). Thus, overall differences in texture 

and silicate mineralogy were relatively small, but there were clear differences related to the presence or 

absence of CaCO3, which differentiated the sites (Fig. 4.8 C).  
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Fig. 4.8. Results of the principal component and factor analyses. Original variables 
included in the analyses were texture classes (content of clay < 2 µm, fine silt 
2-20 µm, coarse silt 20-50 µm, fine sand 50-250 µm, and coarse sand 250 –
2000 µm), major elements (e.g., AlXRF etc.), mineralogy, calcium and
aluminum saturation of the exchange complex (CaSat / AlSat). A.) Vector plot
showing the relationships of original variables with the first and second
principal components. The length of the arrow depicts the extent to which the
variation in the original variable is represented in the principal components
space while the direction of the arrow represents the strength of the positive or
negative relation to the first or second components. Percentages indicate the
amount of variance in the original dataset accounted for by each component.
B.) Vector plot of the quartimax rotated factor pattern. Percentages indicate
the amount of variance in the five-components space accounted for by each
factor C.) Score plot of the first two factors. Observations are uniquely
identified by colour (separating sites), profile number and depth interval.

4.3.4 - Organic matter and free Al / Fe 
Alo was lower at the CaCO3-bearing site (1.5±0.2 g kg-1) than at the CaCO3-free (2.8±0.2 g kg-1), and 

did not vary with depth. Alo displayed a strong negative correlation with pH (Fig. 4.9; R2=0.88). Ald was 

generally equal to Alo at the CaCO3-bearing site, suggesting that dithionite and oxalate quantitatively 

extracted the same low-crystallinity Al pool. Ald was however higher than Alo at the CaCO3-free site, 

suggesting that some Al substitution (Al incorporation into the crystalline lattice of Fe oxides dissolved 

by the dithionite treatment) had taken place.  
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Fig. 4.9. Negative relationship between soil pH and oxalate extractable aluminium for 
CaCO3-free (F1, F2, F3) and CaCO3-bearing profiles (B1, B2, B3). 

Extractable Fe was an order of magnitude higher than extractable Al at both sites. There was an effect 

of depth on the amount of Feo, which became larger mid-profile (15-20 cm). There was also a significant 

influence of depth on the proportion of oxalate-to-dithionite extractable Fe, which typically decreased 

with depth, except for samples at 15-20 cm (Fig. 4.10). Both dithionite and oxalate extractable Fe were 

higher at the CaCO3-bearing site (Fed=25.3±0.3 g kg-1; Feo=18.2±1.6 g kg-1) than at the CaCO3-free 

(Fed=22.7±0.4 g kg-1; Feo=10.9±0.5 g kg-1). The proportion of oxalate-to-dithionite extractable Fe was 

also higher at the CaCO3-bearing site (0.73±0.06) than the CaCO3-free (0.48±0.01). Thus, extractable 

Fe was more abundant and predominantly found in poorly crystalline or monomeric forms at the CaCO3-

bearing site. 
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Fig. 4.10. Ratio between oxalate and dithionite extractable iron contents for CaCO3-free 
(F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. 

Organic carbon contents of AGB were similar between the sites (Appendix Fig. 8.3). AGB estimates, 

reported in Blattner (2017), were 281 g m-2 at the CaCO3-bearing sites and 350 g m-2 at the CaCO3-free 

site. We thus calculated that above-ground C amounted to 110 g C m-2 at the CaCO3-bearing site and 

140 g C m-2 at the CaCO3-free site. 

In contrast, SOC was approximately twice as high at the CaCO3-bearing site (5.2±0.2 %) compared to 

the CaCO3-free soils (2.5±0.1 %), decreasing systematically with depth at both sites (Fig. 4.11). SOC 

decreased with depth more linearly at the CaCO3-bearing site (RMSE of linear relationship=3.36) than 

at the CaCO3-free (RMSE=6.76; Fig. 4.12 A:C). The distribution of residuals from the linear relationship 

between SOC and depth at the CaCO3-bearing site were normally distributed (p=0.69), while the 

residuals at the CaCO3-free site were not (p=0.02). Total nitrogen followed an almost identical pattern 

and was thus higher at the CaCO3-bearing site (0.6±0.0 %) than at the CaCO3-free (0.3±0.0 %). Total N 

also decreased systematically with depth. The C:N ratio was low at both sites (Fig. 4.13). It was slightly 

higher at the CaCO3-bearing site (8.9±0.3) than at the CaCO3-free site (7.2±0.3), but the differences 

were very small.  
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Fig. 4.11. Soil organic carbon and total nitrogen contents for CaCO3-free (F1, F2, F3) 
and CaCO3-bearing (B1, B2, B3) profiles.  

 

Fig. 4.12. Depth distribution of soil organic carbon (SOC) for the CaCO3-free (F1, F2, 
F3) and CaCO3-bearing (B1, B2, B3) profiles. A) Linear fits of SOC content 
as a function of depth. B & C) Actual versus predicted SOC contents for the 
CaCO3-free (B) and CaCO3-bearing (C) profiles, showing a clear lack-of-fit 
for CaCO3-free profiles.   
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Fig. 4.13. Carbon to nitrogen ratio as a function of depth for the CaCO3-free (F1, F2, 
F3) and CaCO3-bearing (B1, B2, B3) profiles. 

4.4 - Discussion 
In this study, we aimed to determine the influence of small amounts of CaCO3 on pedogenesis and 

biogeochemistry. We used a naturally occurring gradient in CaCO3 content affecting otherwise highly 

similar soils. With the constraints of finding near-identical soil forming conditions, we retained only 6 

profiles, which were all located in close proximity (< 500 m). With such a low sample size, two things 

must be kept in mind:  

i) The generalisation of findings to other soils is not supported by this experimental layout (but

remains possible if a detailed mechanistic understanding is attained).

ii) Only large effects could be statistically detected.

It was of prime importance that the soils be similar except for the presence / absence of CaCO3, in order 

to isolate the role of CaCO3 from other pedogenic variables. Homogeneity of parent material was of 

particular importance and is discussed further below.  

4.4.1 - Parent material 
Textural analysis confirmed field observations that the parent material was homogeneous, with all 

samples plotting within the silt loam class. Both sites had 6 predominant textural populations, the modes 

of which are commonly encountered in previously glaciated landscapes (Boulton, 1978). The total 

composition of major elements were also similar between the sites. Relatively immobile elements such 

as Ti and other transition / post-transition metals showed near-uniform distribution between samples 

from different profiles, collected at different depths, pointing to a common source for parent materials. 

There was however a clear increase in Ca at the CaCO3-bearing sites due to the presence of CaCO3. This 

increase in Ca also caused a proportional decrease in Si (silicates) due to a ‘dilution’ effect. The slightly 
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higher Mg content at the CaCO3-bearing site could be due to partial substitution of Mg for Ca in calcite 

(0.3 % in measured coarse fragments) or the presence of poorly crystalline dolomite and accessory 

ferromagnesian minerals. P was also slightly elevated at the CaCO3-bearing site, which could be a 

reflection of its lower mobility in Ca-bearing geochemical environments (von Wandruszka, 2006). K 

was marginally higher at the CaCO3-bearing site and Na was higher at the CaCO3-free site, which 

corresponded to small differences in K-feldspar and Na-plagioclase abundances, respectively. 

Neoformation of pedogenic clay was incipient at both sites, with only small quantities of an illite-

vermiculite mixed-layer mineral detected (Egli et al., 2003; Zollinger et al., 2013). Most of the 

phyllosilicates originated from the physical disintegration of shale components of the Morcles Nappe.  

While the siliceous component of the parent material at the two sites was near-homogeneous, there was 

a natural variation in CaCO3 present at the alpage. This was likely due to the variability in CaCO3 content 

of surficial deposits issued from the Morcles Nappe. The Grand Muveran cliffs protruding on the 

southeast side of the study area contain calcareous material, while the slopes of La Chaux on the 

northwest side essentially consist of shales. Thus, during the partial alluvio-colluvial reworking of the 

moraine and slope deposits that occurred following deglaciation, some carbonates were added to the 

CaCO3-bearing site while little to no carbonates were added to the CaCO3-free site.  

CaCO3 was identified as being predominantly reactive at the Nant Valley (Fig. 4.4) by the adapted 

Loeppert et al. (1984) method. This method is not typically used for the measurement of reactive 

carbonates, but its results were in reasonable agreement with the EDTA extraction (Appendix Fig. 8.4), 

which has been used previously used for the estimation of reactive carbonates (Glover, 1961). Thus, 

CaCO3 was most likely predominantly reactive at the CaCO3-bearing site, increasing the likelihood that 

it would play an active role in soil biogeochemistry.  

Another difference between the sites was that free Fe forms were significantly less crystalline at the 

CaCO3-bearing profiles, relative to the CaCO3-free profiles. The sorption of organic colloids 

(Filimonova et al., 2016; Kleber and Jahn, 2007) and cations such as CaExch (Thompson et al., 2011), 

which were more abundant at the CaCO3-bearing site, could also have inhibited the formation of well-

crystallised Fe forms. Furthermore, pH may have also indirectly influenced the crystallinity of Fe forms 

via its influence on their variable surface charge and their interaction with CaExch (Schwertmann and 

Fechter, 1982), but this would still require further investigation. While the presence of CaCO3 seemed 

to indirectly favour the prevalence of disordered Fe forms, the Feo/Fed ratio did not vary systematically 

SOC, CaExch or pH making it hazardous to attribute the differences in crystallinity to a single factor. It 

seems more likely that a mixture of indirect influences of CaCO3 (SOC, CaExch and pH) were involved 

in explaining the decreased crystallinity of Fe forms at the CaCO3-bearing site (Fig. 4.14 A).  
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Fig. 4.14. Relationships between several edaphic variables at the CaCO3-free (F1, F2, 
F3) and CaCO3-bearing (B1, B2, B3) profiles. A) Relationship between the 
ratio of oxalate to dithionite extractable iron contents (Feo/Fed) and soil organic 
carbon (SOC). B) Relationship between oxalate extractable iron (Feo) and 
SOC. C) Relationship between exchangeable Ca (CaExch) and SOC. D) Depth 
profile of cation exchange capacity (CECSum). In panels A & C, profiles 
showing the strongest positive correlation between the dependent variable and 
SOC are represented by hollowed symbols.  

4.4.2 - Accumulation of SOC 
Soil organic carbon was approximately twice as high at the CaCO3-bearing site compared to the CaCO3-

free site. A potential explanation for this accumulation could involve the higher primary productivity of 

grasses at the CaCO3-bearing site. Yet, AGB was slightly higher at the CaCO3-free site relative to the 

CaCO3-bearing site. Increased root turnover or exudation at the CaCO3-bearing site could explain part 

of the differences in SOC, but this effect should be relatively small due to the similarities between 

vegetation structure at the sites (Vittoz and Gmür, 2008). Instead, it was probably the difference in the 

efficiency of SOC stabilisation that drove the relative accumulation of SOC observed at the CaCO3-

bearing site.  

In a previous study, Grand et al. (2016) demonstrated that soil respiration was higher at the CaCO3-

bearing site than the CaCO3-free site for three out of four of the measured months (July-Oct.); yet 

estimated heterotrophic respiration (Hanson et al., 2000) was actually lower throughout the entire 

measurement period, when expressed per unit SOC (Appendix Table 8.3). This suggests that SOC at the 

CaCO3-bearing site has a certain biogeochemical stability, which may be contributing towards its 

accumulation (Whittinghill and Hobbie, 2012). Due to similarities between the sites, this stability cannot 

be explained by differences in texture or clay mineralogy. Potential geochemical controls that could 
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influence the accumulation of SOC at the Nant Valley include the prevalence of reactive Ca and Fe 

forms, which are discussed further below. 

4.4.2.1 - Reactive Ca forms 

We found a weak positive correlation between CaExch and SOC at our sites (Fig. 4.14 C), which was 

particularly evident in the CaCO3-bearing profiles with higher pH and CaExch. CECsum was also higher 

at the CaCO3-bearing sites (Fig. 4.14 D); this was partly attributable to the higher SOC content acting 

as loci for cation exchange, as clay mineralogy and texture were homogeneous at the sites. Thus, the 

commonly observed correlation between SOC and CaExch could partially be explained by the increase in 

cation exchange sites provided by SOC (Briedis et al., 2012a). However, there is evidence that Ca can 

also influence SOC cycling (Groffman et al., 2006; Hobbie et al., 2002; Martí-Roura et al., 2019; Minick 

et al., 2017; Whittinghill and Hobbie, 2012) through several mechanisms (see Rowley et al., 2018 for 

more details). In our study, the two-fold increase in SOC at the CaCO3-bearing site supports the 

hypothesis that reactive Ca is causally linked to the accumulation and stabilisation of SOC. Future 

investigation should focus on the mechanisms through which Ca influences SOC. 

4.4.2.2 - Analysing Ca forms 

Exchangeable Ca may not be the only reactive Ca pool that influences SOC. It has been hypothesised 

that Ca could also stabilise SOC through inner sphere complexes (Rowley et al., 2018). This is supported 

by chemical modelling (Iskrenova-Tchoukova et al., 2010; Kalinichev and Kirkpatrick, 2007; Sutton et 

al., 2005), but as of yet, there is no direct evidence of this in soils. We attempted to extract more tightly 

bound, ‘chelated Ca’ pool using selective extractions, as has been done with the selective dissolution of 

free Fe and Al. Our more aggressive extracts, EDTA and CuCl2, yielded the same quantity of Ca as the 

exchangeable cations extracts (KCl / Cohex) at the CaCO3-free site, but more Ca than the exchangeable 

cations extracts at the CaCO3-bearing site. This was particularly apparent in samples with higher 

amounts of CaCO3 and it thus seems as though both EDTA and CuCl2 were aggressive towards reactive 

CaCO3, but failed to target Ca pools other than the exchangeable pool at CaCO3-free sites. Thus, the 

existence in soils of a tightly-bound Ca pool which is distinct from reactive CaCO3, and its selective 

extraction, remains an open question.  

4.4.2.3 - Fe forms 

It is widely established that poorly crystalline Fe forms can stabilise SOC (Kögel-Knabner et al., 2008; 

von Lützow et al., 2006). In our study, SOC displayed a weak positive correlation with Feo, which was 

particularly evident in the profiles with the highest amounts of extractable Fe (Fig. 4.14 B). The same 

trend was observed for the degree of crystallinity of Fe oxides (Feo/Fed; Fig. 4.14 A), as the amount of 

crystalline oxides was comparatively similar between profiles and it was mainly the amount of Feo that 

changed. The CaCO3-bearing profiles displayed an increase in Feo/Fed ratio mid-profile (15-20 cm; Fig. 

4.10), potentially due to the mobility of poorly crystalline Fe species during brief suboxic events linked 
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to snowmelt. It is possible that this pattern had some influence over the more linear SOC decline with 

depth at these sites (Fig. 4.12 A:C). Overall, our results support a positive relation between SOC 

accumulation and the amount of poorly crystalline Fe. 

4.4.2.4 - Ca and Fe interactions 

It is interesting to note that our data hint at some kind of interaction or competition between Ca and Fe 

forms (Fig. 4.14 A:D). Profiles B1 and B2 showed no association between SOC and Feo but were instead 

characterised by a strong correlation between SOC and CaExch. On the contrary, in profile B3, where pH 

and CaCO3 were slightly lower than in the other CaCO3-bearing profiles, SOC was significantly related 

to Feo and much less so to CaExch. Speculatively, we propose that some organic functional groups may 

interact either with exchangeable cations or with reactive oxides depending on the prevailing 

biogeochemical conditions (pH and the prevalence of free elements), which may lead to a change in the 

relative importance of SOC stabilisation mechanisms (Rasmussen et al., 2018; Rowley et al., 2018).  

Furthermore, a synergistic stabilisation of dissolved organic C by poorly crystalline Fe and CaExch, 

involving the formation of Fe-Ca-organic C ternary complexes, has recently been described (Sowers et 

al., 2018a; Sowers et al., 2018b). Hypothetically, this could also have exerted a positive feedback on the 

stabilisation of SOC at the CaCO3-bearing sites (Fig. 4.15 A:D), as disordered Fe forms that are favoured 

by the higher SOC, CaExch and pH would in turn further contribute to an accumulation of SOC, rendered 

particularly effective by the presence of significant amounts of extractable Ca. This potential 

relationship between Ca and Fe and its impacts on SOC stabilisation and accumulation should now be 

investigated further in Ca-rich soils. 
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Fig. 4.15. A conceptual diagram of differences in biogeochemical properties at the 
CaCO3-free and CaCO3-bearing sites, attributable to the cascading influence 
of calcium carbonate. Direct one or two-ways interactions between 
geochemical variables are signified by straight arrows, while potential positive 
/ negative feedback systems are signified by curved dashed arrows. The 
numbered interactions refer to: A) calcium (Ca)-Fe interactions, where 
sorption of Ca by Fe oxides can prevent their further crystallisation (Thompson 
et al., 2011). B) Soil organic carbon (SOC)-Ca feedback loop, where SOC can 
be directly stabilised by Ca (Rowley et al., 2018), while SOC also provides 
exchange sites for the continued retention of available Ca forms. C) Fe-SOC 
feedback loop, where poorly crystalline Fe forms retain and stabilise SOC, 
while SOC can also inhibit the crystallisation of Fe forms (Kleber and Jahn, 
2007). 

4.4.3 - Implications for modelling efforts  
There is growing evidence that geochemical indicators are important parameters for modelling the 

persistence of SOC (Rasmussen et al., 2018; Vaughan et al., 2019). Indeed, models that infer the cycling 

of SOC from clay content and climate would be unable to represent the difference in SOC content 

attributed here to the presence or absence of CaCO3. Rasmussen et al. (2018) recently questioned the use 

of clay and climate as sole variables for modelling SOC and our results are in close agreement with their 
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broader analysis of 5,500 soil profiles. Models based on climate and clay content may be particularly 

inappropriate in situations where soil geochemistry is in disequilibrium with climate (occurrence of 

pedogenic inertia) and / or variations in types and crystallinity of Fe phases exist. Furthermore, 

modelling the depth distribution of SOC using an exponential decay function would have also 

misrepresented the different SOC-depth trends present at the sites, further underestimating SOC stocks 

at the CaCO3-bearing site. These errors could however be reduced by accounting for differences in soil 

geochemistry and their subsequent effects on the accumulation of SOC and its depth distribution.  

4.4.4 - Synthesis - Cascading biogeochemistry 
The divergence in biogeochemistry at the Nant Valley sites is caused by a state of pedogenic inertia, 

driven by the cascading influence of CaCO3 dissolution (Fig. 4.17). The CaCO3-bearing site exists in a 

state of disequilibrium with climate as the pedogenic threshold of CaCO3 removal has not yet been 

breached. This threshold is unlikely to be breached in the near-future, due the presence of the adjacent 

calcareous cliffs and their alluvio-colluvial inputs, so that the site will likely continue to retain its Mollic 

nature, high pH, and base saturation (Phaeozem).  

Upon weathering, reactive CaCO3 buffered pH levels (Likens et al., 1998), releasing CaExch into the soil 

solution. This CaExch can stabilise SOC (Oades, 1988; Rowley et al., 2018), which likely contributed to 

its accumulation in the CaCO3-bearing profiles (x2). The presence of CaCO3 also seemed to indirectly 

participate in the stabilisation of poorly crystalline Fe forms, which in turn, may have exerted a positive 

feedback on the retention of SOC, possibly involving ternary Fe-Ca-SOC complexes (Sowers et al., 

2018a; Sowers et al., 2018b).  

In contrast, the CaCO3-free profiles had a lower pH. These acidic conditions in turn seemed to favour 

the prevalence of more crystalline Fe oxides such as goethite and higher amounts of reactive Al forms 

such as AlExch and Alo (Adams et al., 2000). This confirms the long-held notion that decreasing soil pH 

identifies a shift along a weathering sequence from Ca-to-Al dominated biogeochemistry (Adams et al., 

2000; Slessarev et al., 2016). In turn, this shift can be linked to different SOC stabilisation mechanisms 

(Rasmussen et al., 2018; Rowley et al., 2018), which could be used to help model the persistence of 

SOC. Thus, this study further supports the notion that soil pH could be used as an efficient and 

parsimonious variable for improving regional models of pedogenesis, biogeochemical functioning, and 

even SOC stabilisation (Clarholm and Skyllberg, 2013; Rowley et al., 2018). Future studies should 

investigate the potential of soil pH as a widely available indicator to account for the effects of 

geochemistry on SOC and improving the accuracy of regional SOC estimates. 

 - End of publication -
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Chapter 4 - Opening perspectives 

This chapter has demonstrated that small amounts of CaCO3 could have a far-reaching impact on the 

pedogenesis and biogeochemistry of humid environments like the Nant Valley. Now we must focus on 

evaluating why the CaCO3-bearing site contained a two-fold increase in SOC and what mechanisms 

could be responsible for this increase. One way to further evaluate the differences in SOC between the 

sites is to fractionate soil samples into different SOC pools, representative of different forms of 

stabilisation. This will enable us to evaluate how much SOC is stabilised by these different SOC 

stabilisation mechanisms at the sites and how its properties change within these pools.  

Following Chapter 3, we could expect that a proportion of the SOC accumulation that we witnessed in 

Chapter 4 is caused by Ca-mediated aggregation and subsequent occlusion of SOC. We can thus 

hypothesise that occluded SOC, separated by a density fractionation with sequential sonication, will be 

more abundant at the CaCO3-bearing site. Furthermore, this occlusion could cause a shift in bulk SOC 

δ13C values by physically preventing it from being oxidatively transformed. The next chapter will seek 

to investigate this hypothesis and the mechanisms that led to a two-fold increase in SOC at the CaCO3 

bearing site.
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- Chapter 5: The influence of Ca on soil organic carbon at the Nant

Valley, Switzerland - 

The following chapter is an un-submitted draft manuscript. It will eventually be submitted to 

Biogeochemistry© or SOIL©. Most of the supplementary figures from it have been included in this 

chapter, but several method-based supplementary figures and all the supplementary tables have been 

included in the appendices section (8.1.2).
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- Research question Chapter 5 -
The following question and sub-questions will be addressed in this chapter: 

How does SOC differ at the sites with or without CaCO3 at the Nant Valley? 

a. How does bulk SOC content and stable C isotopic composition differ at sites that have formed

under similar soil forming conditions with or without CaCO3?

b. Does occlusion play a larger relative role in accumulation of SOC in soils with CaCO3, relative

to those without?

c. Is there more mineral-associated SOC in the soils with CaCO3, relative to those without?
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- Chapter 5 abstract - 

Geochemical indicators are emerging as important predictors of SOC and its cycling, but evidence of 

the influence of Ca on SOC is still scarce. This study investigated the role of CaCO3 in SOC 

accumulation at otherwise similar sites with (CaCO3-bearing) and without CaCO3 (CaCO3-free) in a 

humid subalpine valley. To isolate the role of occlusion from sorption, we fractionated samples from 

three profiles at each site into 4 individual fractions by density and sequential sonication (a free-light 

fraction, two occluded fractions separated at 10 and 200 J mL-1 sonication, and a heavy fraction). The 

SOC content, mass, stable C isotope composition (δ13C) and surficial chemical properties (X-ray 

photoelectron spectroscopy) of these separate fractions were then quantified. Our hypothesis was that 

Ca-mediated occlusion would play a more dominant role at the CaCO3-bearing site, physical protecting 

SOC and preventing it from acquiring the higher δ13C signature, generally associated with microbial 

activity.  

Bulk SOC was twice as high and had lower δ13C values at the CaCO3-bearing site, relative to the CaCO3-

free site. There was also always more occluded material at the CaCO3-bearing site, likely caused by the 

positive influence of the flocculation of soil separates by CaExch and the increased presence of SOC on 

aggregation. However, contrary to our hypothesis, occluded SOC at the CaCO3-bearing site was more 

oxidatively transformed than at the CaCO3-free site and both the free-light and occluded pools played a 

minimal role in bulk SOC content at either site. It was instead the heavy fractions (HF) that were of 

clearer importance to bulk SOC content due to their larger relative masses.  

The mass of mineral-associated SOC was twice as high at the CaCO3-bearing site, relative to the CaCO3-

free site. The CaCO3-free site displayed an increase in δ13C values from the light fractions (LFs; free-

light and occluded) to the HF, typically associated with the preferential sorption of microbial biomass 

by Fe oxides. Contrastingly, the CaCO3-bearing site had similar δ13C values in the LFs and the HF, 

which likely arose from two complementary mechanisms. Firstly, the δ13C values and X-ray 

photoelectron spectroscopy (XPS) C1s peak deconvolution imply that the LFs were more oxidatively 

transformed at the CaCO3-bearing site. This was probably caused both by the better biogeochemical 

conditions for the oxidation of the LFs at the CaCO3-bearing site and the lesser degree of mineral coating 

of the LFs at this site. Secondly, mineral-associated SOC also tended to have lower δ13C values at the 

CaCO3-bearing site. This was likely related to the flocculation, precipitation, and accumulation of 

dissolved organic carbon (DOC) with a fresher signal by CaExch in organo-mineral association (OMA), 

which would have also contributed to the increased mass of SOC in the HF. 

Future research should now attempt to decipher Ca-mediated OMA in similar Ca-bearing environments 

with advanced spectroscopy, investigating the exact mechanisms that drive a near two-fold increase in 

OMA.
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5.1 - Introduction 
Soil geochemical properties are emerging as an important predictor of SOC content and cycling, yet 

empirical data on how this role changes in different environments is still scarce. It is well established 

that Fe and Al forms can stabilise SOC (Kögel-Knabner et al., 2008; Torn et al., 1997). Moreover, Ca 

forms can also play a role in SOC accumulation and cycling (Martí-Roura et al., 2019; Oades, 1988; 

Rasmussen et al., 2018), mediating a stabilisation of SOC through several mechanisms (Rowley et al., 

2018). Ca is thought to indirectly contribute to the accumulation of occluded SOC through the 

flocculation of soil separates and its subsequent promotion of aggregation (Muneer and Oades, 1989c; 

Oades, 1984; Oades, 1988). While, outer sphere polyvalent cation bridging (Clough and Skjemstad, 

2000; Edwards and Bremner, 1967) and other sorption processes (Kalinichev and Kirkpatrick, 2007; 

Sutton et al., 2005) mediated by Ca are also thought to play a significant role in the accumulation of 

SOC. It has been recently demonstrated that Ca can have a synergistic effect on the sequestration of 

SOC by ferrihydrite (Sowers et al., 2018a; Sowers et al., 2018b), which may be particularly prevalent 

in Ca-rich environments (Chapter 4). However, few studies have attempted to quantify the role of these 

different mechanisms in SOC accumulation in soils with a variation in Ca content.  

Stable C isotope compositions (δ13C values) could aid in further investigating the role of these 

mechanisms in natural systems. Previous investigation at the Hubbard Brook experimental site has 

demonstrated that bulk SOC δ13C values are lower after Ca-addition, relative to similar, adjacent soils 

with less CaExch (Minick et al., 2017). The δ13C values of SOC typically increase by approximately 1-3 

‰ with depth, which is linked to a fractionation by the activity of microorganisms (Boström et al., 2007; 

Hobbie et al., 1999). Increased protection of SOC within aggregates, as demonstrated in Ca-bearing 

environments (Muneer and Oades, 1989c), should prevent this 13C fractionation by physically separating 

microorganisms from SOC. Thus, the relative decreases in bulk 13C values measured by Minick et al. 

(2017) could have been indicative of the physical protection of SOC within aggregates flocculated by 

Ca (Chapter 3). However, this hypothesis still requires testing, fractionating and analysing the occluded 

SOC pool in otherwise similar soils with a natural variation in CaExch. 

Soil organic carbon stabilisation has typically been investigated in Fe and Al rich soils by fractionating 

bulk soil samples into individual components or pools, predominantly by size or density fractionation. 

Yet, few studies have attempted to fractionate soils of a Ca-bearing nature, due in part, to the 

complicated nature of investigating SOC cycling in CaCO3-containing soils (Rovira et al., 1998). Martí-

Roura et al. (2019) recently used size fractionation to successfully investigate SOC in top soils with or 

without CaCO3 under several land uses. Their study demonstrated that SOC was higher in the carbonated 

forest soils, which also, unlike the sites without, displayed similar δ13C values in the coarse and fine 

fractions. Several studies have used density fractionation on neutral soils, including dolomitic soils 

(Kreyling et al., 2013) or reclaimed industrial soils (Grünewald et al., 2006). Schrumpf et al. (2013) 
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measured several calcareous soils in their detailed study, but did not isolate the differences between 

CaCO3-free and CaCO3-bearing samples. More recently, Wen et al. (2017) utilised density fractionation 

to analyse differences between SOC of dolomitic and calcaric soils, but bulked the occluded and free-

light fractions, thus preventing the analysis of the occluded pool. Ca-bearing soils have long been 

thought to impact SOC through occlusion, thus further investigation with density fractionation is still 

required to isolate the role of occlusion in soils with a natural variation in Ca.  

Chapter 4 demonstrated that CaCO3, derived from alluvio-colluvial inputs from the adjacent mountain 

range, had a cascading influence on the biogeochemistry of soils, formed under near-identical conditions 

for pedogenesis (similar climate, parent material, vegetation structure, relief, and time since 

deglaciation) at the Nant Valley, Switzerland. This cascading influence included a direct increase in soil 

pH and an order of magnitude higher CaExch in profiles with CaCO3 (CaCO3-bearing; 16.1±2.1 cmolc kg-

1) relative to those without CaCO3 (CaCO3-free; 3.2±0.8 cmolc kg-1). The CaCO3-bearing site also

presented a higher proportion of poorly crystalline Fe forms (CaCO3-bearing 73±6 % versus CaCO3-

free 48±1 %), which were linked to the higher SOC and CaExch content, known to inhibit the

crystallisation of ferrihydrite to goethite (Kleber and Jahn, 2007; Thompson et al., 2011). The CaCO3-

bearing site contained twice as much SOC (5.21±0.16 %) as the CaCO3-free site (2.54±0.11 %), which

was not linked to vegetation, climatic or textural differences between the sites. Due to the otherwise

similar nature of these soils and their natural variation in Ca, increased occlusion, mediated by Ca may

be contributing to the higher bulk SOC content of the CaCO3-bearing site.

In order to isolate the potential role of occlusion in soils with a natural variation in Ca, three profiles 

from the CaCO3-bearing and CaCO3-free site were fractionated by density and sequential sonication 

into four individual fractions (a free-light fraction, two occluded-light fractions separated at 10 and 200 

J mL-1 sonication and a heavy fraction), in triplicate. The SOC content, mass, δ13C composition of all 

these fractions, and the surficial chemical composition and bonding environment of C in a subset of 

these fractions were then quantified to investigate differences in SOC at the sites. Our hypothesis was 

that the flocculation of soil separates by CaExch would cause relative increases in occluded SOC at the 

CaCO3-bearing site, inhibiting the oxidative transformation of occluded material. Furthermore, we 

hypothesised that this inhibition caused the accumulation of SOC at this site and would result in lower 

bulk δ13C values.  

5.2 - Materials and methods 

5.2.1 - Site description and sampling 
This study was completed in the Nant Valley (573'000, 119'000 CH1903 LV03), a partially-glaciated 

alpine watershed in the Vaud Alps, Switzerland. The valley is situated on the Morcles nappe, which 

consists of Jurassic and Cretaceous shallow-water limestones intercalated with marl and shale deposits 

(Austin et al., 2008). These variations in the composition of the Morcles Nappe, ensure that there are 
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natural variations in the amount of CaCO3 in the soils of the valley. Sampling took place in the rangeland 

(the alpage; Fig. 4.1) described in detail by several studies (Grand et al., 2016; Vittoz and Gmür, 2008). 

The alpage is approximately 1500 m above sea level, receives 1800 mm yr-1 precipitation, and has a 

mean annual temperature of 6°C (Vittoz and Gmür, 2008).  

Two sampling sites were selected at the alpage after field-testing with 10 % HCl demonstrated the 

presence or absence of CaCO3 (0-6.2 %). The texture, silicate mineralogy, and elemental composition 

of the sites have been previously analysed and described in detail (Chapter 4) and were highly similar. 

Three profiles were dug at each sampling site in July - August (Fig. 4.1; IUSS Working Group WRB, 

2015) and were characterised as Eutric Cambisols (siltic) with no CaCO3 (CaCO3-free; F1, F2, F3) and 

Cambic Phaeozems (siltic) with small (< 6.2 %) quantities of CaCO3 (CaCO3-bearing; B1, B2, B3). 

Profiles were sampled at 6-7 depth intervals and labelled from 1 to 6 / 7 with increasing depth (e.g., 

F1.1-to-F1.6) before being transported to the University of Lausanne in sealed bags. Bulk density 

measurements were made at three equally spaced depths at a randomly selected profile from each site 

(P3 & R3) according to Wiesmeier et al. (2012). Both above- and below-ground biomass (AGB and 

BGB, respectively) were randomly sampled from the sites to quantify potential differences in the δ13C 

values of the vegetation.  

5.2.2 - Sample preparation 
Samples were air-dried and sieved to 2 mm. Subsamples of bulk samples were crushed to a fine powder 

for 3 min using a vibrating-disc mill and agate crucible (van Reeuwijk, 2002). CaCO3 was removed 

from crushed bulk samples by HCl fumigation and corrected for changes in mass (Harris et al., 2001). 

Samples typically gained a little weight, which was caused by Cl- sorption (Ramnarine et al., 2011). 

AGB and BGB samples were oven dried (40°C), ground by hand and homogenised for further analysis. 

5.2.3 - Lab analysis 
Quality control procedures included the analysis of an internal standard when appropriate, as well as the 

inclusion of blanks and quality checks. All plastic and glassware were acid washed (3 M HCl) to remove 

trace contamination.  

5.2.3.1 - Density fractionation 

Individual SOC pools were fractioned by density and sequential sonication using SPT (Na-

polytungstate; Sometu-Europe). These pools included a free-light fraction (f-LF), two occluded-light 

fractions separated at 10 J mL-1 and 200 J mL-1 sonication energies (o-LF10 and o-LF200, respectively), 

and finally, a heavy fraction (HF; Golchin et al., 1994; Poeplau et al., 2018; Viret and Grand, 2019). 7 

g of soil were combined with 35 mL 1.6 g cm-3 SPT in 50 mL centrifuge tubes and inversed thoroughly 

to liberate the f-LF fraction. Samples were then left to repose for 30 min before centrifuging for 30 min 

at 1080 g. The suspended f-LF were carefully decanted onto 0.45 μm nitrocellulose membranes and 
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vacuum filtered. The f-LF remaining on the filter was then rinsed with deionised water (Schrumpf et al., 

2013) and washed carefully into aluminium drying boats.  

SPT was then placed back into the tubes and the remaining sample was then sonicated at 10 J mL-1 using 

a QSonica Q500 Sonicator with a model cl-334 Sonication Node, the output energy of which was 

calibrated calorimetrically according to Schmidt et al. (1999). Sonication energies were selected after 

pretesting revealed that higher sonication energies (< 590 J mL-1; Schmidt et al., 1999; Kaiser and Berhe, 

2014) did not alter the recovery of o-LFs at either site (data not shown; Golchin et al., 1994; Schrumpf 

et al., 2013). Tubes were sonicated in an ice slurry to dissipate heat transferred from the sonicator, which 

was ran at max 20 % amplitude. After sonication, the o-LF10 was then separated in the same manner as 

the f-LF, before sonicating the sample a second time at 190 J mL-1. This second more sonication resistant 

occluded pool (o-LF200) was then fractionated at a higher centrifuge speed (1830 g) and rinsed in the 

same manner as the other light fractions (LFs). The remaining HF was then rinsed with deionised water, 

shaking on a rotary shaker (250 rpm) for 10 mins and centrifuging at 7,500 g between rinses. A 1 mm 

glass bead and vortex were used to break up aggregated centrifuge pellets and ensure SPT was 

thoroughly rinsed from the HF (Schrumpf et al., 2013). Once rinsed, all fractions were oven dried at 

65°C, crushed in a pestle and mortar, fumigated with HCl to remove CaCO3 (Harris et al., 2001), and 

stored in glass vials. SPT was recycled several times before disposal according to Six et al. (1999). To 

ensure accurate and replicable fractionation, density fractionation was run in triplicate for each soil 

sample, the recoveries of which ranged from 98–100 % (Appendix Table 8.4). There was no o-LF10 

recovered from sample F1.6.  

5.2.3.2 - SOC and δ13C values 

The content of SOC and stable C isotope composition (δ13C values) in both bulk samples, triplicates of 

density fractions, AGB, and BGB were quantified using a Carlo Erba 1108 Elemental Analyser 

connected to a Thermo Fisher Delta V Isotope-ratio Mass Spectrometer. Bulk SOC stocks were 

calculated for individual soil profiles using Eq. 5.1. The mass of SOC in different fractions was 

calculated by multiplying the SOC content by the mass of a given fraction. The elemental analyser was 

operated in continuous He flow mode via a split interface (Conflo II). Combustion of samples within 

pre-weighted tin capsules occurred in an O2 atmosphere at 1020°C. Standards and blind replicates were 

measured throughout the run. The δ13C values of samples is reported relative to known standards (Eq. 

5.2). All analyses were run with a minimum of 10 % blind replicates, unless run in triplicate (DF). 
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Eq. 5.1. Calculating the soil organic carbon stocks (kg C m-2) of a specific profile 
from the soil organic carbon content (%) of each sample (SOCi), the nearest 
corresponding bulk density measurement of each sample (BD; g cm-3), a 
samples’ height (hi; cm), and the proportion of large (>2mm) rock 
fragments (RFi; %; Wiesmeier et al., 2012) . 

𝛿𝛿13Cunknown  =
R(13C/12C)unknown − R(13C/12C)standard 

R(13C/12C)standard

Eq. 5.2. The stable carbon isotope composition is reported in per mille relative to 
the Vienna Pee Dee Belemnite standard (Coplen, 2011). 

The 13C isotopic enrichment factor (ε) was calculated individually for our sites using the Rayleigh 

equation (Eq. 5.3; Rayleigh, 1896), fitting our observed bulk SOC content and corresponding δ13C 

values (Accoe et al., 2003; Accoe et al., 2002; Garten et al., 2007; Powers and Schlesinger, 2002). The 

initial SOC content and δ13C values were taken from the surface sample (0-5 cm) of each profile. There 

was no significant improvement in the relationship (R2) for the sites when the deepest samples were 

removed (Accoe et al., 2003; Accoe et al., 2002), so all observations are included in our ε calculations.  

𝛿𝛿 = 𝛿𝛿0 + ε log[C/C0] 

Eq. 5.3. The Rayleigh equation describes the gradual 13C enrichment of SOC 
resulting from isotopic fractionation associated with the oxidative 
transformation of C. The enrichment factor (ε) is calculated from the C 
content and initial C content (C0) and the intercept (δ0).  

5.2.3.3 - X-ray photoelectron spectroscopy 

All the fractions of a surface and subsoil sample from the same randomly-selected profile at each site 

were investigated (all fractions from samples B2.1, B2.4, F2.1, F2.4) using a PHI VersaProbe II 

Scanning X-ray Photoelectron Spectroscopy Microprobe (XPS; Physical Instruments AG, Germany). 

XPS measurements were performed at the Surface Characterization Laboratory, Ecole Polytechnique 

Fédérale de Lausanne. The topography of samples can influence XPS measurement due to 

photoelectron and differences in nano-, micro-, and macro-scopic electron emission geometry (Zemek 

et al., 2008). Thus, powdered fractions were loaded onto stubs in a homogeneous manner, attempting to 

reduce surface topographical differences between samples, prior to measurement with the XPS. The 

surface of samples (< 10 nm depth; Yuan et al., 1998) were then analysed with a monochromatic Al Kα 

X-ray source (1486.6 eV) of 45.7 W power and a beam size of 200 µm. The spherical capacitor was set

at 45° take-off angle respective to the surface of samples. Samples were scanned twice, once coarsely

(regional scans), with a pass energy of 187.85 eV, yielding the principle elements of interest. The

samples were than scanned again in more detail (survey scans) using a pass energy of 46.95 eV.
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Exposure time was < 30 min to prevent X-ray induced alteration of the density fractions and subsequent 

false structural C assignments (Dengis et al., 1995). Vacuum inside the main chamber was in low 10 

torr during measurements (-7 Pa). Sample charging during analysis caused peak shifts of < 3 eV, which 

were corrected based on the maximum principal C1s peak, centered at 285 eV (Mikutta et al., 2009).  

Atomic quantification of the surface of samples was completed using a process of background linear 

subtraction, fitting a set of Gaussian curves to lines and converting intensities into atomic abundancies 

with sensitivity factors (Moulder and Chastain, 1992). Curve fitting of survey scans was performed 

using PHI Multipak 9.5TM Software. Identification of binding energies was completed according to 

Moulder and Chastain (1992). Differences in C bonding environments at the surface of the fractions 

were evaluated by deconvoluting the C1s peak into sub-peaks (Appendix Fig. 8.5; Jones and Singh, 

2014). Sub-peaks were fitted with Gaussian-Lorentzian functions, the full-width-at-half-maximum was 

allowed to vary between 1 and 2. Spectral shifts in core level C1s binding energies were assigned 

according to Table 5.1. The ratio of aromatic / aliphatic C to oxidised C moieties (alcoholic / phenolic, 

carbonyl, carboxylate) was also used as an index of the level of SOC oxidation within the fractions 

(Yeasmin et al., 2017).  

Table 5.1. Binding energies of specific carbon C1s sub-peaks and their associated C 
bonding environment; these figures have been adapted from Jones and Singh 
(2014) and Moulder and Chastain (1992). 

Associated carbon bond environment Bond type 
Fixed binding 

energy (eV) 

Aromatic / Aliphatic C-C / C-H 285 

Alcoholic / Phenolic C-O 286.5 

Carbonyl based C=O 288 

Carboxylate O=C-O 289.5 

5.2.4 - Statistical analysis 
The effects of the natural variation in quantities of CaCO3 on SOC and δ13C values were investigated 

using linear mixed models. Models were fitted using SAS 9.4TM with the estimation method set to 

restricted (residual) likelihood ratio. Residuals were checked for goodness of fit and normality with QQ-

plots (Galecki and Burzykowski, 2015). Deviations from homoscedasticity were evaluated by plotting 

conditional residuals against predicted values. The significance of fixed effects were evaluated using 

type III F-tests, while the means of significant fixed effects were compared using t-tests without multiple 

inference adjustment (Webster, 2007). The Satterthwaite adjustment was used to compute the degrees 

of freedom of the denominators (Satterthwaite, 1946). All reported means are significant (α=0.05 for all 

tests), conditional least-square means ± the standard error of the mean.  
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Separate models were constructed using measurements from the bulk soil and density fractionation. 

Choice of covariance structure was based upon the Bayesian Information Criteria. Simpler model 

structures were used for the bulk observations (see Chapters 4 & 8) as they were based on singular 

measurements rather than triplicate measurements. Models used to analyse triplicate observations from 

the density fractionation included site, depth classes, the specific fractions, and their interactions as fixed 

effects. Depth was set as a random effect with a first-order autoregressive covariance structure to account 

for the spatial autocorrelation of observations within profiles. Observations were blocked by sample and 

each triplicate (repetition) to account for the temporal autocorrelation between replicates of the same 

fraction within samples. LFs and HF were given different variances to account for the greater variance 

in observations from the LFs.  

5.3 - Results 

5.3.1 - Bulk soil 
Bulk SOC (%) was twice as high at the CaCO3-bearing site (5.3±0.1 %) relative to the CaCO3-free site 

(2.5±0.1 %). Total mean SOC stocks (appendix table 8.4) were thus higher at the CaCO3-bearing site 

(22.8 kg C m-2) than the CaCO3-free site (12 kg C m-2). Bulk SOC δ13C values increased systematically 

with depth at both sites. As hypothesised, bulk δ13C values of SOC (Fig. 5.1) were lower at the CaCO3-

bearing site (-26.2±0.1 ‰) relative to the CaCO3-free site (-25.5±0.0 ‰). AGB δ13C values were higher 

at the CaCO3-bearing site, but BGB δ13C values were indistinguishable between the sites. The δ13C 

values of SOC were always higher than AGB and BGB measurements but this shift was smaller at the 

CaCO3-bearing site. The ε (Fig. 5.2) was higher at the CaCO3-bearing site (ε=-1.46, R2=0.9) than at the 

CaCO3-free (ε=-1, R2=0.88). 
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Fig. 5.1. Stable carbon isotope composition of bulk soil organic carbon, above ground- 
(AGB) and below-ground biomass (BGB) from the CaCO3-free (F) site and 
the CaCO3-bearing (B) site.  

Fig. 5.2. Stable carbon isotopic enrichment factors (ε) for the CaCO3-free (F) site and 
the CaCO3-bearing (B) site, calculated using the Rayleigh equation (Eq. 5.3). 
ε is calculated as the slope of the relationship between bulk δ13C values and 
the log relationship between SOC content of each sample divided by the initial 
SOC content (Log C/Co).  

5.3.2 - Density fractions 

5.3.2.1 - Distribution of material between fractions 

Out of the four density fractions and at both sites, there was always the least recovered material in the 

o-LF10, while the HF always contained the most material (Appendix Table 8.4). The f-LF was larger

than the o-LF200 in several samples at the CaCO3-free site (Fig. 5.3 A); while, in contrast, the o-LF200
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was particularly large at the CaCO3-bearing site (Fig. 5.3 B), always containing more material than the 

f-LF. The HF was at least an order of magnitude larger than the LFs (Fig. 5.3 C:D).

Fig. 5.3. Mass of material recovered in the fractions. A & B) Amount of material 
recovered in the light fractions (free-light and occluded fractions separated at 
10 J mL-1 and 200 J mL-1; f-LF, o-LF10, o-LF200, respectively) per gram of 
fractionated soil (mg g-1) for the (A) CaCO3-free and (B) CaCO3-bearing 
samples. Bottom and top edges of the boxes in the box plot represent the 25th 
and 75th percentiles, the middle bars represent the median. Whiskers represent 
the range of most extreme data points not considered as outliers, while ‘+’ 
represent values outside of the maximum potential whisker value, 
corresponding to ±2.7 standard deviation (outliers). C & D) The average 
amount of material in each fraction as a percentage of the total recovered 
material in the (C) CaCO3-free and (D) CaCO3-bearing samples.  

5.3.2.2 - Distribution of SOC between fractions 

The SOC content of each fraction was higher at the CaCO3-bearing site relative to the CaCO3-free site 

(Fig. 5.4). SOC contents of the LFs showed higher variability relative to the HF, particularly at the 

CaCO3-free site where there was less material in the LFs. Overall the LFs had a higher SOC content at 

the CaCO3-bearing site (22.6±1.4 %) than at the CaCO3-free site (14.9±1.0 %). The SOC contents of 

the HF at both sites were similar to the bulk SOC contents, differing most in surficial horizons (Fig. 

5.5), which had a larger proportion of recovered material in the LFs. Therefore, the SOC content was 

almost twice as high in the HF at the CaCO3-bearing site (4.7±0.2 %) relative to the CaCO3-free site 

(2.4±0.1 %; Fig. 5.6 A). 
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Fig. 5.4. Mean soil organic carbon content of the free-light fraction (f-LF), occluded 
fractions separated at 10 J mL-1 (o-LF10) and 200 J mL-1 (o-LF200) and heavy 
fraction (HF). The CaCO3-free (F1, F2, F3) profiles are on the left and the 
CaCO3-bearing profiles (B1, B2, B3) are on the right. Error bars represent the 
standard deviation between triplicate measurements. The amount of material 
recovered in o-LF10 of F1.6 was insufficient for analysis.  

Fig. 5.5. Linear relationship between the content of soil organic carbon in the heavy 
fractions (mean of three triplicates) and bulk soil at the CaCO3-free (F1, F2, 
F3) and CaCO3-bearing (B1, B2, B3) profiles. A reference line representing 
the 1:1 relationship is plotted in red. Surficial samples tended to deviate most 
from the 1:1 relationship and to highlight this, the first two samples from each 
profile are plotted with hollow markers. 



113 

Fig. 5.6. The relatively larger role of the mineral-associated fractions in bulk SOC at our 
sites. A.) The SOC content of the heavy fractions from the CaCO3-free (F1, 
F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. Error bars represent the 
standard deviation between triplicate measurements. B:C) The average 
proportion of SOC mass in each fraction at the B) CaCO3-free site and C) 
CaCO3-bearing site.  

The mass of SOC decreased systematically with depth at both sites. The mass of SOC in the f-LF 

(8.6±0.8 versus 4.1±0.5 mg C) was approximately twice as high at the CaCO3-bearing site. The mass of 

SOC in the occluded fractions was also higher at the CaCO3-bearing site, but the differences between 

the sites were larger in the o-LF200 (17.7±0.8 versuss 1.7±0.5 mg C) than in the o-LF10 (4.8±0.8 versus 

0.7±0.5 mg C). Yet, the mass of SOC in the LFs were always at least an order of magnitude lower than 

the HF (Fig. 5.6 B:C). Like in the bulk soil or the f-LF, the mass of SOC in the HF was nearly twice as 

high in the CaCO3-bearing site (310.9±3.7 mg C), relative to the CaCO3-free site (159.7±3.7 mg C). 

This meant that the mineral-associated SOC pool was the largest at the Nant Valley (Fig. 5.6 B:C) and 

there was nearly twice as much SOC in OMA at the CaCO3-bearing site, relative to the CaCO3-free site 

(Fig. 5.6 A).  

5.3.2.3 - δ13C values of fractions 

As with SOC content, the δ13C values of the LFs were more variable between triplicates than the HF 

(Appendix Table 8.5). The δ13C values of the LFs at the CaCO3-free site were always lower than those 

at the CaCO3-bearing site (f-LF =-27.2±0.1 ‰ versus -25.9±0.2 ‰; o-LF10= -27.9±0.1 ‰ versus -
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26.5±0.2 ‰; o-LF200= -27.6±0.1 ‰ versus -25.8±0.2 ‰; respectively; Fig. 5.7). Contrastingly, the δ13C 

values of the HF at the CaCO3-free profiles were typically higher than those at the CaCO3-bearing site, 

which was particularly evident in B1 or B2, but less apparent in B3 (Fig. 5.8). Thus, the CaCO3-free site 

displayed an increase in δ13C values from the LFs to the HF, but the δ13C values in the LFs were similar 

to the HF at the CaCO3-bearing site.  

Fig. 5.7. Mean stable carbon isotope composition of the free-light fraction (f-LF), 
occluded fractions separated at 10 J mL-1(o-LF10) and 200 J mL-1(o-LF200) and 
heavy fraction (HF). The CaCO3-free (F1, F2, F3) profiles are on the left and 
the CaCO3-bearing profiles (B1, B2, B3) are on the right. Error bars represent 
the standard deviation between triplicate measurements. The amount of 
material recovered in the o-LF10 of F1.6 was insufficient for analysis. 

Fig. 5.8. Mean stable carbon isotope composition of heavy fractions (HF) at the CaCO3-
free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. Error bars 
represent the standard deviation between triplicate measurements. 
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5.3.2.4 - XPS characterisation of fractions 

Surficial chemical compositions 

The two main elements detected by XPS were C (44-57%) and O (30-40%; Appendix Table 8.6). The 

high C contents were likely caused by adventitious C adsorption on the surface of the samples. As a 

result, the surficial composition of the fractions could not be quantitatively determined. Elements 

associated with the mineral phase (e.g. Ca, Fe, Si, Ti or Al) were all detected at low quantities. W and 

Cl were also detected at low quantities and probably represent residues from the fractionation and 

fumigation procedures, respectively.  

Patterns in XPS detailed scans 

While estimation of surface coverage was unreliable, qualitative information on potential differences in 

bonding environments between the sites could still be gained from the shape of XPS scans for different 

elements. Different survey scans from the different XPS analysed elements are all presented in Appendix 

Fig. 8.6-8.10, but several specific scans are presented below (Fig. 5.9 to 5.10). There was a slight shift 

in the N1s peak towards more protonated N forms at the more acidic CaCO3-free site (Fig. 5.9). Ca-

tungstate precipitation was not evident on the details W4f scans (Fig. 5.10). There also was a clear 

difference in the Ca2p signal between the sites (Fig. 5.11). Both sites presented a peak in the Ca2P1/2 

region, but this peak was better defined in the CaCO3-bearing fractions. However, the CaCO3-bearing 

site also displayed a satellite peak in the Ca2P3/2 region, which was not present at the CaCO3-free site.  

Fig. 5.9. Detailed X-ray photoelectron spectroscopy spectra in the electron binding 
energy range of photoelectrons ejected from the nitrogen 1s orbital. These 
spectra are from all of the density fractions from the CaCO3-bearing (B2.1 and 
B2.4) and CaCO3-free (F2.1 and F2.4) sample subsets.  
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Fig. 5.10. Detailed X-ray photoelectron spectroscopy spectra in the electron binding 
energy range of photoelectrons ejected from the tungsten 4f orbital. These 
spectra are from all of the density fractions from the CaCO3-bearing (B2.1 and 
B2.4) and CaCO3-free (F2.1 and F2.4) sample subsets.  

Fig. 5.11. Detailed X-ray photoelectron spectroscopy in the electron binding energy 
range of photoelectrons ejected from the calcium 2p orbital. These spectra are 
from all of the density fractions from the CaCO3-bearing (B2.1 and B2.4) and 
CaCO3-free (F2.1 and F2.4) sample subsets.  

C1s peak deconvolution 

The deconvolution of the C1s peak (Fig. 5.12; Table 5.2) indicated that the largest proportions of surficial 

C were always associated with aromatic / aliphatic C moieties at both sites. There was a higher 

proportion of carbonyl C moieties at the CaCO3-free site (9.8±1.3 %) than the CaCO3-bearing (14±1.1 

%). The ratio of aromatic / aliphatic C to oxidised C moieties in the LFs were typically higher and more 

similar at the CaCO3-bearing site than at the CaCO3-free site. This pattern was similar to the δ13C values, 

which were more similar between the LFs and HF at the CaCO3-bearing site, relative to the CaCO3-free, 

which displayed a larger range of δ13C values between the f-LF, the occluded fractions and the HF. Yet, 

the ratio of aromatic / aliphatic C to oxidised C moieties contrasted the δ13C values in the HF. The ratio 

was higher at the CaCO3-bearing site HF relative to the CaCO3-free and decreased with depth, while HF 

δ13C values were higher in the CaCO3-free site, and decreased with depth. Thus the C1s deconvolution 

hinted that there was more carbonyl C at the CaCO3-bearing site and that the LFs were more oxidatively 

transformed.  
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Fig. 5.12. Detailed X-ray photoelectron spectroscopy spectra in the electron binding 
energy range of photoelectrons ejected from the carbon 1s orbital. These 
spectra are from all density fractions from the CaCO3-bearing (B2.1 and B2.4) 
and CaCO3-free (F2.1 and F2.4) sample subset. 

Table 5.2. Results from the deconvolution of the detailed X-ray photoelectron 
spectroscopy attained carbon 1s (C1s) peak for the four density fractions (free-
light fraction, occluded fraction separated at 10 and 200 J mL-1, and heavy 
fraction) of samples from the CaCO3-free (F2.1, F2.4) and CaCO3-bearing 
(B2.1, B2.4) sample subsets. The first four data columns represent the 
percentage area of each sub-peak within the total C1s peak and are indicative 
of different C bond environments (listed in Table 5.1). See the method section 
for more details on the deconvolution technique. The final column represents 
the ratio between the percentages of the sub-peak centred at 285 eV relative to 
the percentage representation of other sub-peaks. 

Sample Fractions 

C-C / C-H C-O C=O O-C=O Ratio of C-C 
/ C-H to 

oxidised C 
(C-O / C=O / 

O-C=O)
285 eV 286.5 eV 288 eV 289.5 eV 

F2.1 

f-LF 57.6 24.1 13.4 4.9 0.74 
o-LF10 73.8 11.6 8.3 6.2 0.35 
o-LF200 70.4 16.7 7.6 5.3 0.42 

HF 48.3 29.1 13.2 9.4 1.07 

F2.4 
f-LF 59.2 23.7 11.2 5.8 0.69 

o-LF10 71.7 14.1 7.6 6.5 0.39 
o-LF200 70.1 16.5 5.4 8.0 0.43 

HF 64.8 19.6 8.3 7.2 0.54 

B2.1 

f-LF 61.6 21.0 13.3 4.1 0.62 
o-LF10 59.4 22.0 12.8 5.8 0.68 
o-LF200 59.1 19.3 15.0 6.7 0.69 

HF 47.5 27.0 17.4 8.1 1.11 

B2.4 

f-LF 57.6 19.0 16.7 6.7 0.74 
o-LF10 63.3 20.3 10.0 6.4 0.58 
o-LF200 58.2 22.4 14.8 4.7 0.72 

HF 55.1 25.1 10.8 9.0 0.81 
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5.4 - Discussion 

5.4.1 - Limitations of the XPS 
Surficial C contents determined by XPS were higher than expected (44-57%) and did not show a 

consistent pattern with depth or between the C-rich LFs and C-poorer HF (Fig. 5.4). This was most 

probably caused by the adsorption of adventitious C by the analysed fractions when exposed to the 

atmosphere during the various manipulations (Greczynski and Hultman, 2017). Adventitious C is a thin 

film (1-2 nm) of C contamination, typically formed primarily of aliphatic / aromatic C, which is 

deposited onto the surface of samples upon atmospheric exposure or during the creation of a vacuum. 

The analysed fractions were treated identically throughout the density fractionation and fumigation 

processes, so it is reasonable to assume that adventitious C contamination has been homogeneous 

between the subsets of fractions measured with the XPS. This assumption is supported by the fact that, 

while there was an increased surface content of C in our samples, there was still notable differences in 

the C1s peak deconvolution. The C1s peak deconvolution can be used as an indication of the degree of 

oxidative transformation of surface C and agreed with patterns in the LFs δ13C values, fractionated 

towards higher values during microbial transformation. Thus, while, in our study, the XPS surficial 

chemical compositions were likely biased by adventitious C, this contamination seemed to be 

homogeneous. Thus, the C1s peak deconvolution and other specific survey scans can still help to 

reinforce our interpretations of the more reliable δ13C data, discussed further below.  

5.4.2 - Bulk values 
Bulk soil organic carbon was twice as high in the CaCO3-bearing site as the CaCO3-free. Bulk SOC 

results from this study were in agreement with previous measurements with a separate CHN analyser 

(Appendix Fig. 8.11).Bulk SOC stocks were either higher (CaCO3-bearing) or similar (CaCO3-free) to 

a range of SOC stock measurements from grassland environments in Bavaria (Wiesmeier et al., 2012). 

Vegetation structure, inputs and total organic carbon contents were similar between the sites. Thus, this 

difference in SOC arises from a cascading influence of CaCO3 on the biogeochemistry of the CaCO3-

bearing site (Chapter 4). 

Bulk δ13C values systematically increased with depth at both sites. It is widely reported in the literature 

that δ13C values of bulk SOC increase by approximately 1-3 ‰ with depth. This fractionation is thought 

to arise through a combination of several mechanisms (see Boström et al., 2007 for detailed description). 

The most accepted of these is the fact that SOC is fractionated by the oxidative transformation of 

microorganisms and that there is an increasing proportion of microbial necromass with depth (Boström 

et al., 2007; Hobbie et al., 1999; Rumpel and Kögel-Knabner, 2011), This in turn, typically has higher 

δ13C values and slower turnover times than plant residues, leading to its accumulation with depth and 

the fractionation of bulk SOC δ13C values. 
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The bulk δ13C values of the CaCO3-bearing profiles were significantly lower than those of the CaCO3-

free profiles. The δ13C differences in both AGB and BGB from vegetation at the sites were contrary to 

the SOC signature or negligible at the sites, respectively. This further hinted to a disconnection between 

the inputs from vegetation and SOC at the sites (Matteodo et al., 2018; Schmidt et al., 2011). Instead, 

bulk δ13C values suggested that SOC had been exposed to less 13C fractionation by microbial activity 

and was thus, less oxidatively transformed at the CaCO3-bearing site, supporting previous observations 

from similar environments (Matteodo et al., 2018). 

The ε was higher at the CaCO3-bearing site (Fig. 5.2). Our ε figures rest within experimental values 

(Balesdent and Mariotti, 1996; Natelhoffer and Fry, 1988), but are lower than would be expected from 

similar forested (Accoe et al., 2003; Powers and Schlesinger, 2002) or agricultural systems (Accoe et 

al., 2003; Accoe et al., 2002). Due to the similarity in texture and climate between our sites, one 

interpretation of this result is that SOC processing of fresh soil C inputs may have been faster at the 

CaCO3-bearing site; furthermore, this SOC may have had a greater stability at the CaCO3-bearing site 

(Garten, 2006; Garten et al., 2000; Garten and Hanson, 2006). Yet, this relationship needs to be 

interpreted with caution as the Rayleigh equation is only really applicable in the case of a mono-

directional isotopic enrichment system (Rayleigh, 1896). In a soil system, microbial biomass is 

incorporated and recycled within the residual SOC pool and as such, the ε should be interpreted with 

caution (Accoe et al., 2003). 

5.4.3 - Light fractions 
Yet, in contrast to the bulk δ13C values, the LFs at the CaCO3-bearing site had both higher δ13C values 

and a higher ratio of aromatic / aliphatic C to oxidised C moieties. This seems to indicate that they had 

a higher degree of oxidative transformation relative to the respective CaCO3-free fractions. 

Environments with a near-neutral pH are typically considered to present near-optimum conditions for 

the oxidative transformation by bacteria (Clarholm and Skyllberg, 2013; Groffman et al., 2006; 

Whittinghill and Hobbie, 2012). It is thus possible to suggest that biogeochemical conditions for the 

oxidative transformation of easily accessible SOC were better at the CaCO3-bearing site. These 

conditions in turn could explain why more easily accessible SOC (LFs) showed increased signs of 

oxidative transformation at the CaCO3-bearing site.  

SOC contents were also lower in the LFs at the CaCO3-free site. This likely indicates that there was 

relatively more mineral coating on the LFs at the CaCO3-free site (Cerli et al., 2012), relative to the 

CaCO3-bearing site. While XPS detected surficial abundances of Al, Fe, and SI, were largely invariant 

in-between the LFs at the sites, the XPS also did not detect differences between the LFs and the HF, 

which should have displayed a larger range of differences. Clay content (2 %) and well-crystalline Fe / 

Al oxides were slightly more abundant at the CaCO3-free site (Chapter 4). Both of these can adsorb onto 

particulate organic matter, subsequently protecting it against further decomposition through multiple 
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mechanisms (Scheel et al., 2008). This stabilisation could potentially also explain a proportion of the 

differences in the oxidative transformation of the LFs between the sites. Thus, to conclude, SOC in the 

LFs seems to be more efficiently oxidised at the CaCO3-bearing site, which is probably due to the better 

biogeochemical conditions for its oxidative transformation and it having a lower degree of mineral 

coating, relative to the CaCO3-free site. 

5.4.4 - Occluded pool 
As hypothesised, the CaCO3-bearing site had a larger occluded SOC pool relative to the CaCO3-free 

site, particularly in the o-LF200 fraction. It has been repeatedly shown by numerous methods that Ca-

amended soils typically have a high degree of aggregation and increased occluded SOC pools (Kaiser 

et al., 2014; Muneer and Oades, 1989b; Paradelo et al., 2016). In humid conditions, this is usually 

attributed to the abiotic flocculation of soil separates by CaExch (Muneer and Oades, 1989c), rather than 

the evaporative precipitation of CaCO3 and its subsequent cementation of aggregates (Fernández-Ugalde 

et al., 2014). An increased mass of SOC, such as that present at the CaCO3-bearing site, can also 

positively influence biological aggregate formation (Chenu, 1989; Chenu and Cosentino, 2011), which 

would have also likely played a role in increasing the occlusion of SOC. In the biological theory of 

aggregate formation, microaggregates can be created around decomposing SOC as microorganisms emit 

cohesive EPS that can bind soil separates, eventually occluding the substrate within (Chenu, 1989; 

Chenu and Cosentino, 2011). Occluded SOC was more oxidatively transformed at the CaCO3-bearing 

site, relative to the CaCO3-free site, thereby supporting the idea that this SOC may have been occluded 

during biological aggregate formation processes. Thus, it is was most likely a mixture of both abiotic 

(CaExch) and biotic (increased SOC) influences on aggregation that generated a larger occluded SOC 

pool at the CaCO3-bearing site.  

5.4.5 - Differences between LFs and HF 
At the CaCO3-free site, the LFs had significantly lower δ13C values than the HF. This shift has been 

widely reported in numerous studies investigating the δ13C values of different density fractions (Poeplau 

et al., 2018; Schrumpf et al., 2013). It is thought to arise from the selective preservation of 13C enriched 

microbial matter by Fe oxides (Spielvogel et al., 2008), relative to the less decomposed and recycled 

SOC in the LFs. However, this contrasted our results from the CaCO3-bearing site where the δ13C values 

of the HF were similar to the LFs. A similar finding has been observed recently by Martí-Roura et al. 

(2019) in Mediterranean soils with CaCO3 relative to those without. They fractionated their soils by size 

and reported a smaller shift in δ13C values from coarser fractions to finer fractions. Yet, prior to further 

exploring this finding, the potential effects of density fractionation on these results must first be 

excluded.  

The similarities between LF and HF at the CaCO3-bearing site could have been caused by the dissolution 

of CaCO3 and subsequent precipitation of the dense Ca-metatungstate on the LFs. If this precipitation 
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occurred on SOC from the LFs with a fresh signature, it could cause it to sink into the HF, creating a 

false equivalence between the LFs and HF, which was previously reported during a 14C addition and 

recuperation experiment using density fractionation (Rovira et al., 1998). Firstly, it is worth noting that 

the Rovira et al. (1998) study was completed on soils with higher quantities of CaCO3 (> 40 %) than our 

study (< 6.2 %), increasing the likelihood of Ca-metatungstate precipitation. Secondly, if there had been 

significant precipitation of Ca-metatungstate, recovery during density fractionation would have been 

higher at the CaCO3-bearing site fractionation, which it was not (Appendix Table 8.4). Thirdly, XPS 

scans of the fractions revealed that W contamination was lowest in the HF, with no difference between 

sites. There was also no peak detected for Ca tungstate (shift towards 35 eV) in the detailed scans of the 

W4f region (Fig. 5.10). Thus, these differences did not seem to arise due to the precipitation of Ca-

metatungstate on fresh particulate organic matter. Yet, future studies should be aware of the risks of 

running density fractionation on CaCO3-bearing soils (> 10 %).  

Instead, the similarities between the LF and the HF of the CaCO3-bearing site were likely caused by two 

complementary mechanisms.  

i) More efficient microbial community - Firstly, as discussed above, the LFs were oxidatively

transformed by microorganisms more efficiently at the CaCO3-bearing site. This increased the

δ13C values of the LFs so that they are more similar to the HF, relative to the CaCO3-free site.

ii) Preferential stabilisation - Secondly, organo-mineral association (OMA) in the HF may

preferentially stabilise SOC with δ13C values that are more similar to those of the LFs. This second

point will now be expanded on and discussed further below.

5.4.6 – Heavy fractions 

5.4.6.1 - Discrepancy between the HFs and the bulk soil 

A discrepancy existed between the bulk and HF δ13C values. The HF accounted for the largest proportion 

of the total SOC mass (Fig. 5.6 B & C) and should thus have had δ13C values that were closely related 

to those of the bulk soil, particularly in deeper samples where there was less recovered material in the 

LFs. This difference between the bulk and HF δ13C values could demonstrate that there was a larger 

error in our δ13C measurements than evidenced by our blind replicates for bulk δ13C values or error bars 

for the DF triplicates in Fig. 5.7. It could also be caused by an artefact of the DF, whereby we lost a 

proportion of the bulk depth profile of δ13C values, which seems to have occurred during similar 

extraction procedures in similar soils (Schrumpf et al., 2013). A subset of these samples now need to be 

remeasured to evaluate whether this difference between bulk and HF δ13C values was caused by an 

analytical error or an artefact of the DF. Ultimately, this discrepancy reduces the magnitude of our 

observations in the HF relative to our bulk observations and is thus, more likely to reduce the strength 

of the conclusions that we can draw from this dataset. 
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5.4.6.2 - Indirect role of CaCO3 

The mass of mineral-associated SOC was almost twice as high at the CaCO3-bearing site, relative to the 

CaCO3-free site. This accumulation is unlikely to arise as a direct result of CaCO3. While there is 

evidence that CaCO3 can directly contribute to the accumulation of SOC through sorption processes 

(detailed in Chapter 3) due to its high point of zero charge (PZC; Jin and Zimmerman, 2010), this 

evidence is limited in soils. The presence of CaCO3 at the Nant Valley is instead more likely playing an 

indirect role in the accumulation of mineral-associated SOC in the HF at the CaCO3-bearing site by 

acting as a reservoir of Ca or influencing the crystallinity of Fe forms.  

5.4.6.3 - The direct roles of Ca and Fe 

During its dissolution, CaCO3 buffers soil pH and releases Ca into the soil solution, which in turn, can 

influence the crystallinity of Fe oxides (Thompson et al., 2011). Both this released reactive Ca (Rowley 

et al., 2018) and a higher proportion of poorly crystalline Fe forms (Kramer and Chadwick, 2018) have 

well-established links to the accumulation of mineral-associated SOC. Furthermore, CaExch has recently 

been shown to positively influence the sorption of SOC by poorly crystalline Fe forms (Sowers et al., 

2018b). While, the higher SOC in the HF at the CaCO3-bearing site is probably stabilised by a complex 

mixture of organo-cation / mineral interactions involving CaExch, poorly crystalline Fe and their 

interaction, the δ13C values of this mineral-associated SOC may have hinted at their individual roles, 

developed in the following section.  

5.4.6.4 - Evidence from δ13C values 

In Chapter 4 we suggested that Ca and Fe may co-stabilise SOC at the CaCO3-bearing site, but that 

CaExch was likely more dominate in B1 and B2 and poorly crystalline Fe forms in profile B3. This was 

because SOC displayed a positive correlation with either CaExch (B1 & B2) or the ratio between oxalate 

and dithionite extractable Fe (B3) in these respective profiles (Fig. 4.14 A & C), and that poorly 

crystalline Fe seemed to be competing for exchange sites at B3, distorting the CEC-depth profile (Fig. 

4.14 D). Interestingly, both bulk and HF δ13C values (Fig. 5.6 A & B) were lower at B1 and B2, relative 

to B3, which had signatures that were more similar to the CaCO3-free profiles. As Fe oxides are typically 

thought to stabilise 13C-enriched SOC (Spielvogel et al., 2008), the δ13C values seem to further support 

the idea that Fe oxides may be more dominant in B3, relative to B1 and B2. Yet, the next question is 

what mechanism could explain an accumulation of 13C-depleted SOC in the mineral-associated fractions 

(HF) of profiles with higher Ca availability? 

5.4.6.5 - DOC 

Dissolved organic carbon (DOC) has variable δ13C values and is readily eluviated and adsorbed onto 

soil separates differentially in different soil environments (Hagedorn et al., 2004; Kaiser et al., 2001). 

Minick et al. (2017) demonstrated that Ca addition suppressed the mineralisation of 13C-depleted sources 

and the leaching of DOC. If CaExch predominantly affects the sorption of SOC through polyvalent cation 
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bridging, it would be expected to flocculate, precipitate and stabilise DOC on mineral and organic 

surfaces as it moves throughout the soil profile. This in turn, could explain the increased mass of 

mineral-associated SOC and the relatively fresher δ13C values of SOC stabilised in the HF of profiles 

with a higher Ca availability. 

The flocculation and bridging of CaExch has typically been thought to preferentially stabilise phenol and 

carboxyl functional groups (Kaiser, 1998; Römkens and Dolfing, 1998). However, unexpectedly, the 

main difference in the results from the C1s peak deconvolution of the subsampled fractions was an 

increased presence of carbonyl C moieties at the CaCO3-bearing site. This increased presence could be 

explained by the co-localisation of the carbonyl C sub peak with the peak of Ca-formate (Ca[COOH]2; 

288.6 eV), measured in standards during a previous XPS study (Demri and Muster, 1995). It would be 

expected that Ca-formate-like C bonds would be more abundant at the CaCO3-bearing site, with its 

increased Ca availability, but the Ca2p peak could not provide further evidence for this.  

There were two peaks present in the Ca2p region of the CaCO3-bearing site fractions, but only one weaker 

peak present in the HF at the CaCO3-free site (Fig. 5.11). Unfortunately, this peak could not be identified 

readily as there is only a small range of chemical shifts in the Ca2p region (< 1 eV; Moulder and Chastain, 

1992) and pre-existing data on Ca XPS is limited (Demri and Muster, 1995). While this peak cannot 

belong to CaCO3 due to the prior fumigation process, it is still difficult to distinguish from other Ca 

interactions or compounds (CaCl2, Fe-Ca, Ca(COO)2). The small shift in the O1s peak (Appendix Fig. 

8.9) did not help in further distinguishing the relationship either (Demri and Muster, 1995). Further 

investigation with more advanced spectroscopic techniques would be needed to identify the origin of 

this satellite Ca peak in the HF of the CaCO3-bearing samples and to further investigate Ca-mediated 

OMA.  

Ultimately, we hypothesise that the higher mass of mineral-associated SOC at the CaCO3-bearing site 

(commonly attributed to Ca-humate relationships; Oades, 1988) are actually caused by the sorption of 

DOC (Kleber et al., 2007; Minick et al., 2017), complexed predominantly by inner sphere interactions 

with reactive Ca forms (Rowley et al., 2018), and potentially a co-association with poorly crystalline Fe 

forms (Sowers et al., 2018a; Sowers et al., 2018b). However, further spectroscopic investigation is still 

required to confirm if Ca can form inner sphere complexes with DOC in different soils and whether this 

can explain a significant proportion of the SOC accumulated in the HF at the CaCO3-bearing site.  

5.5 - Conclusions 
We investigated SOC in soils with or without CaCO3 that had formed under similar conditions for soil 

formation, in an attempt to isolate the complex role of Ca in SOC stabilisation. Bulk SOC was twice as 

high and δ13C were lower in the CaCO3-bearing profiles, relative to the CaCO3-free profiles, implying 

that the CaCO3-bearing site contained an abundant source of relatively fresh SOC. In contrast to the 
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bulk signature, the LFs were more oxidatively transformed at the CaCO3-bearing site. This is probably 

due to better biogeochemical conditions for the decomposition of easily accessible SOC in a near-neutral 

environment and due to the LFs having a lower degree of mineral coating at the CaCO3-bearing site. 

Occluded pools were larger at the CaCO3-bearing site, likely due to the flocculation of soil separates by 

CaExch and the increased presence of SOC, both of which are known to positively influence aggregate 

formation. Yet contrary to our hypothesis, the LFs were of little overall significance to bulk SOC at 

either site due to their lower mass of SOC, relative to the HF. 

It was instead the heavy fractions (HF) that dominated bulk SOC. There was twice as much mineral-

associated SOC at the CaCO3-bearing site, relative to the CaCO3-free site. This mineral-associated SOC 

differed in quality from the CaCO3-free site, which had higher δ13C values, likely linked to the 

preferential stabilisation of microbially-enriched SOC by Fe oxides. Instead, the mineral-associated 

SOC at the CaCO3-bearing site tended to have lower δ13C values (particularly B1 & B2). Both the 

abundance and lower δ13C values of mineral-associated SOC at the CaCO3-bearing site are likely caused 

by the flocculation, precipitation and accumulation of DOC, with a fresher signal, in OMA (Minick et 

al., 2017). However, this would require further investigation with adsorption and leaching experiments 

to see if Ca does preferentially stabilise DOC with a fresher signal, measuring the δ13C values of DOC. 

Future research should aim to decipher OMA in Ca-bearing environments, investigating the mechanisms 

that drive a near two-fold increase in OMA, in subalpine soils that have developed under similar 

conditions.  

- End of draft publication -
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- Chapter 6: General discussion -
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- Research question Chapter 6 -
The following question and sub-questions will be addressed in this chapter: 

Does Ca mediate an accumulation of SOC at the Nant Valley? 

a. Could we isolate the role of Ca in the accumulation of SOC?

b. What were the mechanisms through which Ca contributed to the accumulation of SOC?

c. What are the broader applications of these findings and how do they compare to those of

previous studies?
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- Chapter 6 foreword - 

This chapter will now synthesise the previous research chapters to highlight the specific mechanisms 

through which Ca could have stabilised SOC, contributing to its accumulation at the CaCO3-bearing 

site. This chapter will also place this information within the context of existing literature, examining 

whether or not our findings conform to previous hypotheses regarding the accumulation of SOC. It will 

finally examine the remaining uncertainties that still require further investigation (which will be 

explored further in section 7.2) and broader prospective of the findings.
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6.1 - The overlooked effects of CaCO3 in humid and temperate soil environments 
Calcium carbonate can play an important role in the pedogenesis and 

biogeochemistry of a humid and temperate soil environments. 

Calcite (a crystalline phase made of CaCO3) is a soluble mineral and is weathered easily from humid 

soil environments (Schaetzl and Thompson, 2015), although it can still be precipitated from the soil 

solution by biomediated processes (Dincher et al., 2019; Hasinger et al., 2015; Millière et al., 2019). 

Contrarily, in semiarid or arid environments, CaCO3 can precipitate as calcite from the soil solution 

during evaporation processes (Arkley, 1963; Zamanian et al., 2016). Thus, CaCO3 minerals such as 

calcite are more commonly associated with these arid environments where they are known to accumulate 

(Zamanian et al., 2016). Simple evidence for this accumulation can be found in the global negative 

relationship between alkaline soils, buffered by CaCO3 and the aridity index (precipitation / potential 

evapotranspiration; Slessarev et al., 2016) or the distribution of calcretes (Goudie, 1973). We will refer 

to the aridity index in several locations throughout this discussion; to save confusion, it is worth noting 

that the aridity index is inversed, meaning that illogically, a humid environment has a high aridity index 

(UNEP, 1992). Due to this climatic association, the biogeochemical effects of CaCO3 on soils have been 

predominantly investigated in semiarid to arid environments, with a low aridity index. 

Yet, CaCO3 also exists in humid environments (Slessarev et al., 2016) and as shown in Chapter 4 and 

5, it can still play a commanding role in the pedogenesis and biogeochemistry of these regions. The 

weathering of limestone fragments, supplied by the Morcles Nappe, acted as an intrinsic pedogenic 

factor, sustaining a state of pedogenic inertia in the CaCO3-bearing soils at the Nant Valley (Bryan and 

Teakle, 1949; Muhs, 1984). This inertia bifurcated the pedogenic trajectory of the CaCO3-bearing site 

from that of the CaCO3-free site. The CaCO3-free site had no CaCO3 and without this reservoir, CaExch 

was less abundant and more variable. It also had a lower pH due to the absence of CaCO3 buffering, 

which may have enabled the hydrolysing effect of available Al3+ and its associated buffering of soil pH 

(Eq. 6.1; Fig. 6.1 A; Chadwick and Chorover, 2001; Thomas and Hargrove, 1984). In contrast, at the 

CaCO3-bearing site, CaCO3 dissolution directly increased soil pH and quantities of CaExch (Eq. 6.2; Fig. 

6.1 B). This dissolution also indirectly affected the crystallinity of Fe oxides and SOC accumulation at 

the CaCO3-bearing site. The effects of this presence or absence of CaCO3 on SOC will now be explored 

in more detail below, focusing on the specific role of Ca in the accumulation of SOC. The hypothesised 

mechanisms, which could explain these observations will be first synthesised in a conceptual diagram 

in Figure 6.1 (A:N).
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𝐀𝐀)    Al(OH)3(s) + 3H+(aq) ↔ Al3+(aq) + 3H2O (l) 

𝐁𝐁)           Al3+(aq) + H2O(l)  ↔ AlOH2+(aq) + H+(aq) 

𝐂𝐂)     AlOH2+(aq) + H2O(l)  ↔ AlOH2
+(aq) + H+(aq) 

Eq. 6.1. The buffering of soil pH by available aluminium (Al3+). A) The dissolution 
of gibbsite (AlOH3) releases Al3+ and consumes protons, while the 
progressive hydrolysis of Al3+, and potential precipitation of gibbsite, 
releases protons. B & C) The progressive hydrolysis of dissolved Al3+. All 
three equations are adapted from Chadwick and Chorover (2001). The 
letters in brackets refer to chemical states: solid, aqueous and liquid (s, aq, 
& l, respectively). 

 

𝐀𝐀)    CaCO3(s) +  2H+(aq)  ⇒ Ca2+(aq) + CO2(g) + H2O(l) 

𝐁𝐁)       CaCO3(s) +  H+(aq) ⇒ Ca2+(aq) + HCO3
−(aq) 

Eq. 6.2. The acid hydrolysis of calcium carbonate (CaCO3), which consumes 
protons and liberates available calcium (Ca), (A) while degassing carbon 
dioxide (CO2), when strong acids are acting or (B) bicarbonate ions when 
weak acids are involved. Although the yield in this chemical formula is 
included as a one-way direction, CaCO3 may reprecipitate due to 
evaporation or biomediated processes; it is worth noting that reprecipitation 
processes through evaporation were likely limited at the Nant Valley, 
because of its high aridity index, but biomineralisation remains possible. 
The letters in brackets refer to chemical states: solid, aqueous and liquid (s, 
aq, & l, respectively).  
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Fig. 6.1. Synthesis of the cascading influence of calcium carbonate (CaCO3) on 
geochemistry and soil organic carbon (SOC) at the CaCO3-bearing site and 
how this differed from the CaCO3-free site. Text boxes representing 
geochemical variables are hollow, while text boxes representing changes in the 
SOC pools are filled. LFs, o-LF and HF refer to the light fractions (occluded 
and free-light fraction), occluded fractions specifically and heavy fractions, 
respectively. Arrows indicating interactions between geochemical variables 
are in full, while arrows indicating the impacts of geochemistry on SOC are 
dashed. Specific numbered arrows refer to the following mechanisms: A) 
Retention of available aluminium and its hydrolysis / buffering of soil pH. B) 
The dissolution of CaCO3 releasing available calcium (Ca) and increasing pH. 
C) Accumulation of SOC by Ca, in turn, increases the exchange capacity of 
the soil and retains more exchangeable Ca. D) Ca inhibits the crystallisation of 
natural ferrihydrite, which, if past its point of zero charge, can adsorb and 
protect Ca. E) SOC inhibits the crystallisation of ferrihydrite, stabilising more 
SOC. F) Well crystalline Fe forms preferentially stabilise microbially-recycled 
SOC with higher stable carbon isotope compositions (δ13C values). G) Ca 
flocculates dissolved organic carbon with lower δ13C values. H) Poorly 
crystalline Fe forms may have stabilised occluded SOC. I) Ca increases the 
occlusion of SOC through flocculation. J) An increased SOC content increases 
biotic aggregate formation. K) Increased mineral coating decreases the SOC 
content of the LFs. L) Mineral coatings stabilises SOC. M) Near-neutral 
environments increases the efficiency of decomposition. N) More available Al 
decreases the efficiency of decomposition.  



133 
 

6.2 - The cascading influence of CaCO3 on SOC  
Soil organic carbon was strongly affected by an increase in Ca availability, driven by 

the presence of CaCO3 at our Nant Valley sites. 

Soil organic carbon content and δ13C values were different at the otherwise similar sites with or without 

CaCO3 at the Nant Valley alpage. Ca2+, released during the dissolution of CaCO3 (Eq. 6.2), can stabilise 

SOC through multiple mechanisms (Chapter 3). We tried to distinguish the potential role of Ca in SOC 

accumulation at the sites by isolating operationally-defined SOC pools related to different stabilisation 

mechanisms (free, occluded and mineral-associated SOC; Chapter 5). In this section (6.2) we will 

discuss the environmental processes that could have led to the differences between these pools and the 

potential role of Ca in these observations. The following synthesis will be ordered by decreasing mass 

of SOC to focus on the relatively more-important SOC stabilisation mechanisms first, which will also 

be covered in more detail.  

The principal ways in which SOC differed between our sites were:  

i) Accumulation of mineral-associated SOC - there was almost twice as much mineral-associated 

SOC at the CaCO3-bearing site. 

ii) Differences in the quality of mineral-associated SOC - δ13C values of the mineral-associated 

SOC were typically lower at the CaCO3-bearing profiles. 

iii) Accumulation of occluded SOC - there was more occluded material at the CaCO3-bearing site, 

particularly in the o-LF200.  

iv) SOC contents of the LFs differed - The SOC contents of the LFs were lower at the CaCO3-free 

site. 

v) Differences in the quality of SOC within the LFs - SOC in the LFs was more oxidatively 

transformed at the CaCO3-bearing site, particularly in the occluded fractions.  

6.2.1 - The accumulation of mineral-associated SOC  
Our findings suggested that a higher Ca availability promoted the accumulation of 

mineral-associated SOC. Potential mechanisms underlying this accumulation are 

explored below. 

6.2.1.1 - Conventional outer sphere polyvalent cation bridging 

The outer sphere polyvalent cation bridging of SOC to mineral surfaces by CaExch likely explains a 

proportion of the higher mass of mineral-associated SOC at the CaCO3-bearing site (Fig. 6.1 C). 

However, the persistence of SOC in association with minerals (HF) at the CaCO3-bearing site, in-spite 

of an increased abundance of Na+ during DF, would seem to rule this out as the predominant mechanism. 

Exchange-like outer sphere interactions are weaker than inner sphere interactions (Sposito, 2016), 

meaning that they occur rapidly in soils according to the affinity of given cations for exchange sites, 
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their valence, hydrated ionic radius, and concentration (Essington, 2015). Monovalent Na+ has less of 

an affinity for exchange sites on our HF than polyvalent Ca2+ (Sokoloff, 1938), due in part to its smaller 

valence and large hydrated radius (Kiriukhin and Collins, 2002). Yet, during DF, the concentration of 

Na+ outweighed that of Ca2+ by several orders of magnitude. Consequently, if the bonds linking Ca2+ 

with SOC in the HF were purely outer sphere, Ca2+ would have likely exchanged with Na+ during DF. 

This would have disrupted these bonds, causing SOC to be redistributed into the LFs, while reducing 

the mass of mineral-associated SOC.  

Contrarily, we saw that the mass of SOC in the HF remained high and consistent at both sites, most 

closely representing the bulk SOC values. Thus, the interactions that bound SOC to the HF at the CaCO3-

bearing site seem to have been resistant to exchange-like reactions with Na+. There are three potential 

hypotheses that could explain the persistence of mineral-associated SOC in the CaCO3-bearing HF 

during DF:  

i.i) The inner sphere complexation of SOC by Ca. 

i.ii) The zonal structuring of OMA and protection of CaExch / SOC from exchange-like reactions 

at the organo-mineral interface. 

i.iii) Fe-Ca-ternary complexation of SOC. 

6.2.1.2 - Inner sphere 

Surface chemistry of inner sphere complexes 

Metal cations can be adsorbed onto soil solid phases such as mineral surfaces or SOC functional groups 

through either the simple accumulation of an ion swarm around a negatively charged surface, outer 

sphere or direct inner sphere complexation (Sposito, 1981; Sposito, 2016). The propensity for a specific 

cation to form an inner sphere complex with a ligand / mineral surface is largely governed by local pH, 

ionic ratio of cation to ligand, ionic potential of the cation, Lewis nature of both the cation and surface, 

amongst other factors (Essington, 2015; Rahnemaie et al., 2006; Sposito, 2016). During inner sphere 

interactions the cation acts as a Lewis acid and the ligand a Lewis base. The availability of these ligands 

thus increases during deprotonation, which coincides with a soil pH range that is consistent with an 

increased Ca content. Inner sphere (covalent) complexes are more resistant than outer sphere complexes 

and thus, would be resistant to pure exchange-like (outer sphere) reactions (Rahnemaie et al., 2006; 

Sutton et al., 2005). Yet, there is still no evidence that Ca2+ could form inner sphere complexes with 

organic ligands or mineral surfaces in environmental samples and we still do not fully understand the 

thermodynamics of these processes. 
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Existence of inner sphere complexes 

In Chapter 3, we hypothesised that, contrary to popular belief in soil sciences, SOC may be stabilised 

by inner-sphere complexes with Ca2+ (Fig. 6.1 C). This hypothesis was supported by chemical modelling 

studies (Bogatko et al., 2013; Iskrenova-Tchoukova et al., 2010), which indicated that Ca can, and 

predominantly does, form inner sphere complexes with certain functional groups of DOC (Kalinichev 

and Kirkpatrick, 2007; Sutton et al., 2005). We unsuccessfully attempted to extract this pool in Chapter 

4, which was prevented by the simultaneous extraction of reactive CaCO3 pools. However, the 

persistence of mineral-associated SOC during DF at the CaCO3-bearing site (Chapter 5) may be 

evidence of the inner sphere complexation of SOC in these fractions. SOC complexed through inner 

sphere interactions with Ca would be more resistant to exchange-like reactions with Na+ during DF. 

However, these forms of OMA have still not yet been identified in environmental samples. 

Comprehensive spectroscopic techniques are now needed to confirm the presence or absence, and nature 

of inner sphere bonds between SOC and Ca in a natural environment (discussed further in the opening 

perspectives section). 

6.2.1.3 - Zonal structuring of OMA 

A hypothesis to explain the retention of mineral-associated SOC at the CaCO3-bearing site during DF, 

could be that outer sphere, exchange-like reactions between CaExch and SOC were protected by the zonal 

structuring of OMA. Following the conceptual model presented by Kleber et al. (2007; Fig. 1.6), Ca2+ 

can contribute to the adsorption of SOC in either the direct contact or the kinetic zone of the organo-

mineral interface. Speculatively, the flocculation of Ca2+ could, in theory, also increase the sorption of 

DOC / SOC by bridging another layer, an organo-cation layer, between the contact layer and the 

hydrophobic zone. In the hydrophobic zone, SOC is hypothesised to arrange into a micellar-like 

structure, with a hydrophobic interior and hydrophilic exterior (Kleber et al., 2007). If an outer sphere 

complexation of SOC by Ca was to occur within this conceptual zone of hydrophobic interactions, it 

could be, in theory, protected from exchange-like reactions with Na+ by the micellar-like structure of 

OMA. This zonal structuring of OMA could then, in theory, be protecting outer sphere bonds between 

SOC and Ca2+ from exchange-like reactions during DF. However, this remains highly speculative and 

further experimentation with more advanced surface characterisation techniques and sorption 

experiments is still required to investigate how CaExch influences the structure of OMA. 

6.2.1.4 - Ca-Fe interactions  

A co-stabilisation identified in experimental settings 

This thesis may have provided weak supporting evidence for a potential co-stabilisation of SOC by Fe 

and Ca. Yet, before exploring these potential interactions in an environmental setting, it is first necessary 

to discuss two pivotal studies (Sowers et al., 2018a; Sowers et al., 2018b), which demonstrated that Ca 

/ Fe could co-stabilise SOC in an experimental setting. In their first study (Fig. 6.2), Sowers et al. 
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(2018b) demonstrated that their experimental control (synthetic ferrihydrite) adsorbed less negatively 

charged DOC as pH levels increased towards its point of zero charge (PZC; pH 7-9; Schwertmann and 

Fechter, 1982). At lower pH, Ca addition increased DOC adsorption slightly relative to the control, but 

at higher pH, as the adsorption of the ferrihydrite decreased, Ca addition maintained high levels of DOC 

adsorption. Sowers et al. (2018b) hypothesised that at lower pH, the increased sorption during Ca 

addition was probably caused by Ca flocculating additional DOC onto the exterior of existing OMA 

(similar, conceptually, to the hypothesised organo-cation layer, discussed above). However, at a higher 

pH, as the surface charge of synthetic ferrihydrite decreased, Ca2+ bridged DOC onto the negatively 

charged ferrihydrite, co-stabilising it. In a later study, Sowers et al. (2018a) used STXM C-NEXAFS to 

elucidate that this accumulation was likely due to the formation of Fe-Ca-C ternary complexes. In 

theory, these experimental interactions would also be resistant to exchange-like reactions with Na+ and 

could thus explain a proportion of the SOC accumulated in OMA at the CaCO3-bearing site. Yet, could 

these interactions exist in a natural environment like the CaCO3-bearing site, and if so, how would they 

interact? We’ll now explore this topic further in the following sections. 
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Fig. 6.2. The effect of calcium (Ca) addition (10 mM Ca or 30 mM Ca) on the adsorption 
of dissolved organic carbon by ferrihydrite over a pH range of 4 – 9 modified 
from Sowers et al. (2018b) published in Geochemical Transactions©. An initial 
dissolved organic carbon to iron ratio of 4.7 was used for all samples and 
experiments were performed in triplicate. The data points represent the mean 
of the triplicates, but it is not clear whether the error bars represent the standard 
deviation or standard error of these measurements. Below this we have plotted, 
in orange, a potential shift in the pH of these experiments caused by differences 
in the point of zero charge (PZC) of synthetic and natural ferrihydrite. The 
PZC of natural ferrihydrite (5.5-7) is lower than that of synthetic ferrihydrite 
(7-9; Schwertmann and Fechter, 1982) and we would thus expect the 
relationship witnessed with Ca to occur in natural soils at a lower pH.  

The positive feedback Ca-Fe 

In a natural soil environment, the potential interactions between Ca, Fe and SOC are likely to be far 

more complicated (Chapter 4). Firstly, due to the presence of impurities, the PZC of natural ferrihydrite 

(pH 5.5–7) is lower than that of synthetic ferrihydrite (pH 7-9; Schwertmann and Fechter, 1982) used 

in Sowers et al. (2018b). This means that a lower pH (pH >5.5) is required to change the surface charge 

of any natural ferrihydrite towards a negative charge (Fig. 6.2), at which point, it would interact more 
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strongly with positively charged CaExch. The crystallisation of well crystalline Fe oxides from 

ferrihydrite could then be inhibited by this interaction with CaExch (Fig. 6.1 D; Thompson et al., 2011). 

Both pH and CaExch were increased by CaCO3 dissolution at the CaCO3-bearing site (Fig. 6.1 B; Eq. 

6.2), which could therefore create a positive feedback between CaExch sorption by Fe forms and the 

inhibition of their crystallisation. This interaction would create an intimate association between Ca and 

Fe that is driven by pH and likely explains the higher Feo/Fed ratios at the CaCO3-bearing site (Chapter 

4).  

The effect of a Ca/Fe interaction on mineral-associated SOC 

The potential positive feedback between the inhibition of Fe form crystallisation and the adsorption of 

Ca over a specific pH range may also have positively influenced the accumulation of SOC in OMA. It 

is highly probable that the more poorly crystalline Fe forms played some role in the accumulation of the 

higher mass of mineral-associated SOC at the CaCO3-bearing site (Kramer and Chadwick, 2018). Like 

with CaExch, the adsorption of organic colloids by poorly crystalline Fe forms is also known to inhibit 

their crystallisation (Fig. 6.1 E; Kleber and Jahn, 2007). However, while the higher pH at this site would 

have reduced the surface charge of poorly crystalline Fe forms and their adsorption of negatively 

charged SOC (Schwertmann and Fechter, 1982), CaExch could have contributed to this accumulation by 

acting as a bridge between negatively charged surfaces (Sowers et al., 2018b). This would ensure that 

poorly crystalline Fe forms continue to stabilise negatively charged SOC through their co-association 

with Ca, even after the PZC of natural ferrihydrite has passed (Fig. 6.2; Sowers et al., 2018a; Sowers et 

al., 2018b). There was no correlation between SOC content and the free Fe (Feo) to Ca (CaExch) ratio, 

but this metric may not act as an appropriate metric for these interactions. We can thus hypothesise that, 

CaExch and poorly crystalline Fe forms may have been co-stabilising SOC on the HF at the CaCO3-

bearings site due to its higher pH. Speculatively, this form of stabilisation could also be partially 

protecting CaExch from exchange-like reactions (Chan et al., 1979), explaining the persistence of these 

interactions during DF with Na+.  

Shifting pH - The transition between mechanisms 

Interestingly, as the pH changed between profiles at the CaCO3-bearing site, this relationship between 

Fe and Ca may have been destabilised, and instead shifted towards a competitive relationship. Profile 

B3 differed in characteristics from the other CaCO3-bearing profiles (B1 & B2), and seemed to represent 

a transition between the two sites. Of the CaCO3-bearing profiles, profile B3 was the furthest away from 

the adjacent cliffs and seemed to be the least impacted by the alluvio-colluvial inputs of limestone. 

Relative to B1 and B2, B3 had a slightly lower amount of CaCO3, a lower pH, higher Feo/Fed ratios, and 

lower CaExch content that were non-linear with SOC / depth (Fig. 4.14). As all profiles at the CaCO3-

bearing site had similar texture and SOC content, we hypothesised that this deviation in the CaExch profile 

was likely caused by the occupation of exchange sites by poorly crystalline Fe forms (Chapter 4). This 
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suggests that, as the pH level dropped, there was direct competition between Fe and Ca for functional 

groups of SOC, which negatively impacted the retention of CaExch. We can hypothesise that the lower 

pH at B3 increased the surface charge of poorly crystalline Fe forms, subsequently decreasing their 

interaction with CaExch and increasing their role in the sorption of SOC, occupying exchange sites. 

Interestingly, differences in the quality of mineral-associated SOC at the two sites may have further 

hinted at their individual roles in OMA.  

6.2.2 - Differences in the quality of mineral-associated SOC 
Calcium-rich soils similar to the Nant Valley have been previously shown to contain an abundance of 

SOC with a fresh signal (Matteodo et al., 2018); but contrary to our hypothesis, this was related to a 

difference in the quality of mineral-associated SOC between our sites rather than occluded material 

(Chapter 5). Mineral-associated SOC typically had lower δ13C values at the CaCO3-bearing site 

(particularly at B1 & B2). These differences could have arisen from two specific mechanisms: 

ii.i) Stronger stabilisation - Firstly, mineral-associated SOC could have been better protected at 

the CaCO3-bearing site and thus, less oxidatively transformed because of its mineral-

association.  

ii.ii) Preferential stabilisation - Secondly, SOC could have been preferentially stabilised through 

the different forms of mineral association at our Nant Valley sites, thereby leading to the 

differences in quality of mineral-associated SOC.  

While these differences could be explained by a higher degree of stabilisation at the CaCO3-bearing site 

(Hypothesis ii.i above), within the literature, sorption mechanisms mediated by Ca are commonly 

hypothesised to provide a weaker degree of stabilisation relative to those mediated by Fe or Al forms 

(von Lützow et al., 2006; Wiesmeier et al., 2019). If mineral-associated SOC was more stable at the 

CaCO3-bearing site, we would expect this site to always have lower HF δ13C values than the CaCO3-

free site. Yet, at our sites, Profile B3 had δ13C values that were more similar to the CaCO3-free site. This 

transitional site thus questions this hypothesis (ii.i) and instead hints that the differences in the quality 

of mineral-associated SOC at our sites may be linked to the effects of a preferential stabilisation 

(hypothesis ii.ii). 

SOC of varying quality may have been preferentially stabilised by the different, 

dominate forms of mineral-association at the two sites. 

Within the literature, Fe oxides are thought to preferentially stabilise of microbial matter with higher 

δ13C values (Fig. 6.1 F; Spielvogel et al., 2008), while CaExch could be responsible for preferentially 

stabilising DOC with lower δ13C values (Fig. 6.1 G; Minick et al., 2017). Our data, at the CaCO3-bearing 

site, could support these hypotheses as poorly crystalline Fe forms seemed to be more dominant at B3 
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(Fig. 4.14 A), while CaExch appeared more dominant in B1 and B2 (Fig. 4.14 C; Chapter 4). This, in turn, 

corresponded with changes in the HF δ13C values at our CaCO3-bearing site (Fig. 5.8; Chapter 5), which 

were more similar to the CaCO3-free site at B3, but were lower at both B1 and B2. Thus, the HF δ13C 

values may have identified a shift in the preferential stabilisation of mineral-associated SOC, caused by 

the dominance of different geochemical actors at our profiles (Fe oxides / Ca); but, to confirm this 

hypothesis, further investigation of the preferential stabilisation of SOC by different geochemical actors 

over a range of soil pH conditions is still needed.  

6.2.3 - The accumulation of occluded SOC 
There was more occluded SOC at the CaCO3-bearing site and this is likely linked to 

the increased availability of Ca and SOC. 

As hypothesised in Chapters 3, 4, and 5, there was more occluded SOC at the CaCO3-bearing site. The 

role of CaCO3 cementation, during evaporative processes (not discounting a potential role of 

biominerals; Bindschedler et al., 2016; Dincher et al., 2019; Zamanian et al., 2016), in the stabilisation 

of aggregates and accumulation of occluded SOC was likely inhibited by the humid conditions at the 

CaCO3-bearing site. Likewise, while poorly crystalline Fe forms are thought to influence the occlusion 

of SOC (Fig. 6.1 H; Duiker et al., 2003), their variable charge and the increased pH at B1 and B2 would 

have probably diminished their direct role in the stabilisation of aggregates. Instead, it was likely the 

abiotic influence of the flocculation of soil separates by CaExch (Fig. 6.1 I; Melvin et al., 2013; Muneer 

and Oades, 1989a; Muneer and Oades, 1989b; Muneer and Oades, 1989c; Paradelo et al., 2016) and the 

biotic influence of an increased SOC content (Fig. 6.1 J; Chenu, 1989; Chenu and Cosentino, 2011; 

Chenu and Plante, 2006; Costa et al., 2018), which augmented aggregation and increased occluded SOC 

mass at the CaCO3-bearing site. Interestingly, Ca could also play a role in the promotion of biologically-

formed aggregates at the CaCO3-bearing site as it forms a key component linking EPS (personal 

discussion with Dr. Marco Keiluweit, 2018) and flocculating root mucilages into adhesive matrices that 

can cement aggregates (Czarnes et al., 2000; de Kerchove and Elimelech, 2007). Thus, we can 

hypothesise that there are probably several mechanisms through which an increased Ca availability 

directly impacted aggregate formation / stabilisation at the CaCO3-bearing site, and subsequently, the 

accumulation of occluded SOC.  

6.2.4 - Differences in SOC content of LFs 
Soil organic carbon contents of the LFs were lower at the CaCO3-free site and this is 

likely linked to an increased mineral coating on these fractions. 

The SOC contents of the LFs were approximately 10 % higher (Fig. 5.4) at the CaCO3-bearing site. This 

was most likely caused by a dilution effect on the SOC contents of the LFs by an increase in mineral 

coating (potentially mineral clay particles or well crystalline Fe oxides) at the CaCO3-free site (Fig. 6.1 
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K). The quantification of the surficial chemistry (Fe, Al, Si) by the XPS did not seem to support this 

hypothesis, but it also failed to identify the larger differences that should exist between the LFs and HF. 

Furthermore, inspection of the fractions with optical microscopy during pre-testing did seem to weakly 

support this hypothesis (Appendix Fig. 8.17). Thus, it seems probable that the diluted SOC contents at 

the LFs were caused by increased mineral coating.  

6.2.5 - Differences in the quality of SOC within the LFs 

There were differences in the quality of SOC in the LFs and this was likely linked to 

a stabilisation by the aforementioned mineral coating and differences in geochemical 

environment between the sites. 

Both δ13C values and XPS measurements suggested that the LFs were less oxidatively transformed at 

the CaCO3-free site, which could have been caused by two different mechanisms. Firstly, the above-

hypothesised mineral coating (Al, Fe oxide and clay particles) on the LFs could inhibit their oxidative 

transformation through physical separation and sorption mechanisms (Fig. 6.1 L; Gu et al., 1994; Kaiser 

and Guggenberger, 2003). Secondly, the different geochemical conditions present at the two sites could 

have been promoting or inhibiting their respective microorganism communities. Near-neutral conditions 

like those at the CaCO3-bearing site supposedly present near-optimum conditions for bacterial 

transformation of SOC (Fig. 6.1 M; Zelles et al., 1987); while, in contrast, Al3+ and H+, which were 

more abundant at the CaCO3-free site, are largely thought to stress bacterial communities (Jones et al., 

2019; Scheel et al., 2008; Tate and Theng, 1980; Tonneijck et al., 2010). The toxic effects of Al3+ have 

long been hypothesised to stabilise SOC (Tate and Theng, 1980), although evidence for this can be 

contradictory (Marschner and Kalbitz, 2003). Thus, we can speculatively hypothesise that the increased 

abundance of available Al3+ at the CaCO3-free site, relative to the CaCO3-bearing site, may have 

inhibited the oxidation of easily accessible SOC (LFs; Fig. 6.1 N). 

6.2.5.1 – Differences in microbial community and carbon use efficiency 

Geochemistry may have also affected the composition of the microorganism communities, present at 

our sites. It is reasonably well established that an increasing pH is linked to a decreases in the fungal to 

bacterial ratio of soils at the global-scale (Bahram et al., 2018; Blagodatskaya and Anderson, 1999; 

Rousk et al., 2010; Rousk et al., 2009). As the differences in geochemistry at our sites differentiated 

their soil pH (Eq. 6.1 & 6.2), we can also assume that this may have affected the composition of the 

microbial communities at our sites. This could mean that there was a decreased fungal to bacterial ratio 

at our CaCO3-bearing site. 

Microorganism communities utilise SOC differently and as such, have different carbon use efficiencies. 

Carbon use efficiency is defined as the proportion of C assimilated by a microorganism that is used for 

growth and biomass (Bradford and Crowther, 2013). Although still in its infancy, early work is 

demonstrating that there is an exponential negative relationship between the fungal to bacterial ratio and 



142 
 

carbon use efficiency (Soares and Rousk, 2019). This implies that CUE is higher in bacterial-dominated 

soils, leading to an increased production of microbial metabolites, which can then be incorporated into 

the SOC pool. While there is not yet enough evidence of this relationship, an increase in pH could 

potentially be linked to an increase in carbon use efficiency, with shifting microbial community (Bahram 

et al., 2018; Rousk et al., 2010; Rousk et al., 2009; Soares and Rousk, 2019). Thus, the increased pH 

driven by the presence of CaCO3 at the CaCO3-bearing site, may be linked to a shift in microbial 

community, their carbon use efficiency, an increase in SOC content and a differential effect on the LFs 

at our sites. However, this is all based upon several assumptions and future investigation if there is a 

shift in microbial community between the sites and whether this change may have affected their carbon 

use efficiency and the LFs or SOC accumulation at our sites.  

6.2.5.2 - Occlusion specific - differing levels of protection within different aggregates  

Occluded SOC was more oxidised at the CaCO3-bearing site, which was potentially 

evidence of increased biological aggregate formation 

While the f-LF and occluded fractions had a similar ratio of aliphatic / aromatic to oxidised C moieties 

and δ13C values at the CaCO3-bearing site, the occluded SOC at the CaCO3-free site was less oxidised 

than the f-LF. During biological aggregate formation SOC is decomposed prior to being occluded within 

its EPS bound aggregate (Fig. 6.1 J; Chenu and Cosentino, 2011). Thus, supporting the idea that 

biological aggregate formation was more abundant at the CaCO3-bearing site, explaining a proportion 

of the larger occluded SOC pool at the CaCO3-bearing site.  

6.3 - Applications 

6.3.1 - pH - the master variable and a linking theme? 
This thesis supports the idea that pH should be incorporated into SOC models to 

parsimoniously improve their estimations of SOC content, by accounting for the 

geochemical controls on SOC persistence and accumulation. 

There has been a recent revolution in our understanding of SOC, its decomposition (Lehmann and 

Kleber, 2015) and stabilisation within a soil profile (Schmidt et al., 2011). Unfortunately, conventional 

SOC models have still not fully incorporated this paradigm shift. SOC models have typically used 

climate (temperature / moisture) or clay content as the dominant variables for determining SOC content 

at the continental- to global scale (Coleman and Jenkinson, 1996; Parton, 1996). Climate has clear 

effects on SOC at the global scale (Davidson and Janssens, 2006; Schipper et al., 2014) and a finer 

texture (clay / fine silt content) does have well-established links to SOC stabilisation (Hosking, 1932); 

however, these are not the sole controls on SOC and this approach amounts to a rough generalisation at 

best.  
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It is clearly unjust to compare the alpage scale of the Nant Valley dataset to the results achieved by 

global SOC estimation methods, because results are scale dependent in soil science (Yudina and 

Kuzyakov, 2019). Yet, the CaCO3-free site had a similar climate and a slightly higher clay content to 

the CaCO3-bearing site. Consequently, SOC models based on clay and climate would estimate that the 

CaCO3-free site had a slightly higher SOC content. However, SOC was actually twice as high at the 

CaCO3-bearing site where the clay content was slightly smaller. This finding has recently been 

supported by Solly et al. (in review) who evaluated the variables that best predicted SOC content in a 

set of 1000 Swiss forest sites, demonstrating that clay content only predicted 7 % of the overall signal 

in their dataset. These findings further highlight the unreliability of estimations of SOC content made 

with models that use clay content as the sole variable. 

Rasmussen et al. (2018) recently called for a movement “beyond clay”, to find a new set of variables 

that more accurately predict SOM content. Rasmussen et al. (2018) analysis of 5,500 soil profiles 

suggested that CaExch worked as an efficient predictor of SOM content in arid environments, while Al 

hydroxides and moisture content worked better in humid environments. This is once again, tracks with 

our understanding of Ca / Al chemistry on a global scale due to the leachable nature of Ca and the 

soluble nature of its main reservoir CaCO3 (Likens et al., 1998). In a more humid environment, SOC 

should, in theory, be largely driven by Al / Fe hydroxides or a high water content (Histosols), as we can 

assume that with time, the presence of CaExch would be reduced as it is leached from the system (unless 

restocked by Ca-rich parent material; Chapter 4). Thus, in their study, Rasmussen et al. (2018) seemed 

to have effectively identified a global transition from Ca-to-Al dominated biogeochemistry with climate, 

and their respective roles in SOC accumulation.  

In Chapter 3 (Fig. 3.2), we hypothesised that pH could be used as a parsimonious variable (cheap and 

efficient) to incorporate this shift in geochemical controls on SOC cycling, into estimations of SOC 

content at the global scale. Unlike CEC, which correlates with the content of organic C in a soil because 

SOM is a predominate source of exchange sites, pH can act as a relatively independent measure of the 

shifting geochemical controls on SOC stabilisation (Rasmussen et al., 2018; Slessarev et al., 2016; Solly 

et al., in review). Unlike climate, which separates humid (largely buffered by available Al3+; Eq. 6.1) 

from arid (largely buffered by CaCO3; Eq. 6.2) environments (Slessarev et al., 2016), pH would also 

identify the presence of CaCO3 in humid and temperate soils, like the CaCO3-bearing site at the Nant 

Valley (and their potentially high SOC contents). In a case of apparent “multiple-independent” 

suggestion, both ourselves and Rasmussen et al. (2018) independently hypothesised this in the same 

edition of Biogeochemistry©. We have included an adapted version of their conceptual model below 

(Fig. 6.3), showing the shifting geochemical controls on SOC accumulation with pH. However, has this 

suggestion been supported by the empirical data gathered in Chapter 4 and 5? 
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Fig. 6.3. A conceptual model of how horizon-level soil pH identifies a shift in the 
relative importance of different geochemical controls on soil organic carbon 
stabilisation. Image adapted from Rasmussen et al. (2018), published in 
Biogeochemistry©. Atop of their conceptual diagram we have highlighted the 
soil pH level of our samples with three boxes, grouped by the CaCO3-free, B3, 
and the B1 / B2 profiles. It is worth noting that profile B3 did have one sample 
with a high pH (B3.7 = 6.5), which contained a distinct increase in calcium 
carbonate equivalent material and has not been included within its range. 

As can be seen in Figure 6.3, the Nant Valley profiles plotted slightly lower than where we would expect 

them to, regarding the dominance of specific SOC stabilisation mechanisms at the Nant Valley. Yet, we 

measured our soil pH in 0.1 M CaCl2, known to reduce soil pH by about 1.0 unit relative to soil pH in 

H2O (Sumner, 1994), thereby explaining this shift. We found that the CaCO3-free site had a relatively 

higher dominance of available Al forms and a Feo/Fed ratio of approximately 0.5, indicating a near-split 

between well crystalline and poorly crystalline Fe forms. Shifting to B3, we saw that poorly crystalline 

Fe seemed to dominate with its pH that was intermediate relative to the other profiles; while, CaExch (and 

its potential co-stabilisation with Fe) seemed more dominant in both profile B1 & B2, which both had a 

higher pH. Thus, if the pH of the Nant Valley samples are shifted slightly higher (equivalent to that 

extracted by H2O), the conceptual diagram of Rasmussen et al. (2018) seems to accurately predict 

observations from our dataset regarding the relative contribution of geochemical controls to SOC 

accumulation and cycling.  

In Fig. 6.4 we have replotted Fig. 3.2, accounting for the results from this thesis and recent findings 

presented in the literature (Rasmussen et al., 2018; Sowers et al., 2018a; Sowers et al., 2018b). In this 

updated version we have split the role of well crystalline Fe oxides from that of poorly crystalline Fe 

oxides. We have also included the potential stabilisation of SOC by a Fe-Ca ternary complexation 

system. The environments in which this system could exist is once again predicted by pH, dictating at 

what point the surface charge of poorly crystalline Fe oxides begins to shift towards a negative charge 
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and can thus interact with Ca2+ (Schwertmann and Fechter, 1982; Sowers et al., 2018b). Overall, soil 

pH may help us parsimoniously reduce the uncertainties in traditional SOC models (Fig. 6.4), accounting 

for geochemical / climatic anomalies like the Nant Valley, and the shifting geochemical controls on 

SOC accumulation. 

 

Fig. 6.4. An updated version of Fig. 3.2 detailing a shifting role of polyvalent cations in 
the stabilisation of soil organic carbon with increasing pH. Thresholds are 
based on values available in the literature and it is expected that adjustments 
will occur as more results become available. The sorption of Fe-Ca ternary 
complexes becomes more dominant as pH increases, which coincides with a 
decrease in the surface charge of poorly crystalline Fe forms. The text box of 
the sorption by poorly crystalline Fe forms, has been moved to the left to 
demonstrate the start of the Fe-Ca-ternary complex system. 

6.3.2 - Is Ca-mediated occlusion really not important? 
The small mass of SOC in our occluded pool suggests that future investigation into 

humid Ca-rich environments should instead focus predominantly on the importance 

of OMA mediated by Ca. 

There has been much recent debate on the importance of aggregates and occlusion for the stabilisation 

and accumulation of SOC at different spatial scales. This debate has largely focused on whether or not, 

occlusion needs to be accounted for in models that estimate SOC content at a global scale (Kravchenko 



146 
 

et al., 2019; Wang et al., 2019; Yudina and Kuzyakov, 2019). An extrapolation of our results to this 

argument is impossible because of our study design (Chapter 4) and our operationally-defined occluded 

pool (Chapter 5; Kaiser and Berhe, 2014). Yet, to synthesise the discussion above, what insights about 

occlusion can be gained from our observations in Chapter 4 and 5? 

In Chapter 5, we hypothesised that occlusion would play a relatively more important role in stabilising 

SOC at the CaCO3-bearing sites, which in turn, would influence bulk SOC (Matteodo et al., 2018). There 

was more occluded material at the CaCO3-bearing site, but contradicting our hypothesis, this occluded 

SOC was also more oxidatively transformed and played a minimal role in bulk SOC accumulation. This 

implies that Ca-mediated occlusion may not be as important to the accumulation of SOC in Ca-rich 

environment as first expected, contradicting our current understanding.  

Yet, was material still occluded within our HF at the CaCO3-bearing site? To prevent the potential 

redistribution of material between our fractions in Chapter 5, we did not sonicate above 590 J mL-1 

(Kaiser and Berhe, 2014; Schmidt et al., 1999). SOC could still have been stabilised by both Ca-

mediated occlusion and sorption within strong, nanoaggregates in the HF of the CaCO3-bearing site. 

However, if these nanoaggregates were, as theorised, flocculated by outer sphere interactions with Ca 

(Ca-mediated occlusion), they should have been disrupted during the DF with SPT. Furthermore, at this 

smaller scale, where the conceptual separation of these mechanisms becomes near impossible (Sollins 

et al., 1996), an accumulation of SOC due to occlusion mediated by Ca would have been less apparent 

(Fig. 1.7). While we cannot rule out the possibility of Ca-mediated occlusion within strong 

nanoaggregates, this stabilisation was probably of less importance to the increased SOC content of the 

mineral-associated fraction than Ca-mediated OMA.  

Contrasting this result, several key studies have repeatedly highlighted the importance of occlusion 

mediated by CaCO3 to SOC in environments with a low aridity index (Blanco-Moure et al., 2012a; 

Blanco-Moure et al., 2012b; Fernández-Ugalde et al., 2014; Fernández-Ugalde et al., 2011; Virto et al., 

2013). CaCO3 has even been demonstrated to disrupt aggregate hierarchy and completely dominate the 

occlusion of SOC in certain semi-arid environments (Fernández-Ugalde et al., 2014). The high aridity 

index at the Nant Valley could potentially explain this disparity between our results. Humid conditions 

could have reduced the importance of the occluded pool at the CaCO3-bearing site, by preventing the 

cementation of aggregates by CaCO3. It seems that future studies on Ca-mediated accumulation of SOC 

in similar humid and temperate soil environments should instead focus on the mechanisms that increase 

the mineral-associated SOC content of Ca-rich soils.  

6.3.3 - CaCO3 and SOC management practices in agro-systems 
This thesis supports the idea that liming could be a useful tool to help us achieve the 

targets set out by the 4 Per Mille Initiative, but this hypothesis still requires further 

investigation in different environments. 
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Could the findings discussed within this thesis be applied in the context of the 4 Per Mille Initiative? 

Lime (CaCO3) has been applied agriculturally (liming) for millennia to help prevent soil acidification, 

which the Romans apparently quantified by taste (Barber, 1984). Furthermore, as shown in this thesis, 

applying CaCO3 to agricultural soils could also positively influence SOC accumulation, potentially 

contributing to the direct (sorption / occlusion) and indirect (release of Ca2+ / pH changes / increased 

NPP / Fe form crystallinity) sequestration of SOC (Muneer and Oades, 1989a; Muneer and Oades, 

1989b; Muneer and Oades, 1989c). As mentioned previously in Chapter 3, CaCO3 application in 

agricultural soils has been reported to have mixed effects on SOC (Paradelo et al., 2015), with some 

authors reporting positive (Auler et al., 2019; Egan et al., 2018a; Muneer and Oades, 1989a; Muneer 

and Oades, 1989b), non-existent (Paradelo et al., 2016), or even negative effects (Chan and Heenan, 

1999) of liming on SOC stocks. One major reason for this inconsistency could be the differences in 

initial parent material and soil type.  

As supported by evidence presented in this thesis, flushing a biogeochemical reactor like a soil with 

CaCO3 (during liming) could completely change its biogeochemistry and potentially alter its pedogenic 

trajectory. Soils will react differently to a significant anthropogenic input of CaCO3, based upon their 

initial pedogenic conditions, particularly in regards to parent material and initial pH conditions. Whereas 

a CaCO3-bearing or neutral environment may show little to no significant change upon CaCO3-addition 

(Paradelo et al., 2016; Paradelo et al., 2015), an acidic deforested soil may exhibit more dramatic shifts 

in biogeochemistry (Carmeis Filho et al., 2017). Potential changes to an acidic system could include an 

increase in soil pH, CaExch (Eq. 6.2), a shift in microorganism community (Rousk et al., 2010; Rousk et 

al., 2009), and a move away from Al / Fe dominated SOC stabilisation mechanisms (Adams et al., 2000; 

Chan and Heenan, 1999; Slessarev et al., 2016). Yet, this shift in system has rarely been investigated in 

detail, probably because it is contrary to the standard model of pedogenesis (Chadwick and Chorover, 

2001), driven by the weathering of soils as a function of time (loss of soluble minerals prior to more 

insoluble minerals). Further investigation is still needed to evaluate the potential of liming to increase 

SOC accumulation in agro-soil systems under differing initial pedogenic / geochemical conditions. 

These investigations would also have to calculate the proportion of CO2 given off during the dissolution 

of the applied lime (Eq. 6.2; Biasi et al., 2008), and compare this against the C sequestered through an 

accumulation of SOC. However, this thesis supports the idea that CaCO3 application may help increase 

SOC contents of degraded agricultural soils (Minasny et al., 2017).
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- Chapter 7: General conclusions & opening perspectives - 
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7.1 - Conclusions 
The following synthesis will be structured by the principal research questions of the thesis, listed by 

their respective chapter number.  

3. Can Ca mediate a stabilisation of SOC?  

Calcium can mediate a stabilisation of SOC, increasing its resilience against oxidative transformation 

by microorganisms through several mechanisms. Evidence for this stabilisation dates back to Sokoloff 

(1938), but has been largely ignored since the works of Oades (1988). Investigations have only recently 

started to re-focus on these processes (Martí-Roura et al., 2019; Minick et al., 2017; Rasmussen et al., 

2018; Solly et al., in review; Sowers et al., 2018b) and have highlighted a potential role of Ca in the 

stabilisation of SOC. Ca can mediate a stabilisation of SOC by facilitating or bridging organo-mineral, 

organo-cation, or organo-organic associations or by flocculating primary soil separates, which positively 

influences aggregation, subsequently occluding SOC. Ca seems to facilitate organo-mineral associations 

through the outer or inner sphere bridging complexation of SOC and through its interactions with Fe. It 

is possible that Ca plays an important role in the zonal structure of the organo-mineral interface; but 

further investigation with, more advanced, spectroscopic techniques is still required to investigate these 

OMA.  

4. What is the influence of small quantities of CaCO3 on the pedogenesis and 

biogeochemistry of soils that have developed under similar soil forming conditions, in a 

humid and temperate environment (Nant Valley, Switzerland)? 

The presence of CaCO3 created a state of pedogenic inertia at the Nant Valley that bifurcated the 

pedogenic trajectory and biogeochemistry of the studied soils. The dissolution of CaCO3 caused a shift 

in the pedogenic trajectory of soils that had developed under otherwise similar soil forming conditions, 

away from Eutric Cambisols towards Cambic Phaeozems. CaCO3 also had a cascading effect on the 

biogeochemistry of the CaCO3-bearing site. The dissolution of CaCO3 directly increased pH and Ca, 

which subsequently inhibited the crystallisation of Fe oxides and increased SOC contents at the CaCO3-

bearing site. This study thus supports the idea that liming could be used to help increase the SOC content 

of degraded agricultural soils, in line with the 4 Per Mille Initiative, but this still requires further 

investigation in different soil types.  

5. How does SOC differ at the sites with or without CaCO3 at the Nant Valley?  

Soil organic carbon content and δ13C values were significantly different between the Nant Valley sites 

with a natural variation in Ca. Bulk SOC was approximately twice as high at the CaCO3-bearing site 

and had lower δ13C values. As hypothesised, there was also more occluded SOC at the CaCO3-bearing 

site; but contrary to our hypothesis, this seemed to provide little protection to the LFs, which were more 
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oxidatively transformed at the CaCO3-bearing site. The LFs were likely stabilised at the CaCO3-free site 

by mineral coating present on these fractions, which diluted their SOC content slightly. Ultimately both 

the free-light and occluded pool were of little overall significance to bulk SOC accumulation at either 

site due to their low mass of SOC.  

It was instead, mineral-associated SOC that was of particular interest because of its larger mass of SOC. 

The Ca-rich soils (CaCO3-bearing) contained twice as much C in organo-mineral association, relative 

to the soils with less Ca (CaCO3-free site). The CaCO3-free site displayed a typical increase in δ13C 

values from the LFs to the HF, normally associated with a preferential stabilisation of microbially 

transformed SOC in the HF by Fe oxides. Yet, the HF at the CaCO3-bearing site had δ13C values that 

were more similar to the LFs. This likely arises from two complementary mechanisms. Firstly, SOC in 

the LFs is more efficiently oxidised in the near neutral environment of the CaCO3-bearing site, so that 

it has δ13C values that are more similar to the mineral-associated fraction. Secondly, Ca is likely 

flocculating and stabilising DOC with lower δ13C values in the CaCO3-bearing profiles, increasing the 

mass of mineral-associated SOC and causing the similarities between its qualities and that of the LFs.  

6. Does Ca mediate an accumulation of SOC at the Nant Valley?  

Our results strongly suggest a causal link between increased Ca availability and SOC accumulation. 

This suggests that Ca does play a role in the stabilisation of SOC at the Nant Valley. Ca seems to have 

played an important role in increasing the mass of occluded SOC, through its flocculation of soil 

separates and its positive effects on aggregation. More importantly, Ca seemed to increase the quantity 

of relatively fresh SOC within the OMA fractions at the CaCO3-bearing site, which ultimately drove the 

differences in bulk SOC between our sites. This OMA was also resistant to an increased presence of Na+ 

during DF, hinting that this accumulation was not predominantly driven by forms of outer sphere 

interaction, commonly assumed to be the main form of Ca bond in soil science. Yet, the role of Ca in 

accumulation of mineral-associated SOC was difficult to isolate from the effects of poorly crystalline 

Fe forms at the Nant Valley sites, which, like Ca, were also affected by the presence / absence of CaCO3. 

It seems that both Ca and poorly crystalline Fe forms acted to accumulate SOC in the OMA fractions of 

the CaCO3-bearing site. This relationship seemed to differ with pH, which could be driving changes in 

the surface charge of poorly crystalline Fe forms. We can thus speculate that Ca and Fe may have been 

co-stabilising SOC at our profiles with a higher pH (B1 and B2), relative to B3, where poorly crystalline 

Fe forms seemed to be more dominant. This shift was detected by pH, which should be incorporated 

into SOC models to help parsimoniously improve their predictive power for geochemical-climatic 

anomalies, like the Nant Valley. Future investigation should now focus on further deciphering organo-

mineral associations in similar Ca-rich environments with the methods outlined in the following section. 
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7.2 - Opening perspectives - the way forward 
The following section will cover potential lines for the future investigation of Ca-SOC interactions. It 

will be structured by decreasing analytical scale, focusing first on potential study locations and 

geochemical settings, before discussing potential analytical approaches for the evaluation of OMA 

mediated by Ca.  

7.2.1 - Future locations for the investigation of Ca 

7.2.1.1 - The natural effects of CaCO3 in humid environments - Slessarev et al. (2016) 

As mentioned above in the discussion, the effects of CaCO3 in humid environments have largely been 

overlooked. Fortunately, the study of Slessarev et al. (2016) highlighted potential locations for further 

evaluating the effects of CaCO3 on humid environments. Their study identified locations with 

anomalously high pH, in spite of a high aridity index. These locations notably included: central and 

northern Europe, China, the Pacific Rim, and north-eastern North America. Future studies should seek 

to investigate these environments and the impact that CaCO3 has on SOC in these regions.  

7.2.1.2 - Liming - New Zealand and OCP systems 

Further investigation into the effects of liming on different soil types could identify the potential of this 

process for increasing SOC sequestration of agro-ecosystems, in line with the 4 Per Mille Initiative. 

New Zealand could provide a great location to investigate the effects of liming due to its acidic 

pedogenic conditions (Podzols) and historic use of liming or soil flipping to increase agricultural 

production (Moir and Moot, 2014; Schiedung et al., 2019).  

Another interesting location to further investigate the impact of CaCO3-addition on SOC accumulation 

and stabilisation mechanisms would be adjacent to an active oxalate-carbonate pathway (OCP; Rowley 

et al., 2017). The OCP is a C sequestration pathway that results in the alkalinisation of the soil 

environment adjacent to a calcium oxalate (CaC2O4)-producing plant species, due to the oxidation of 

CaC2O4 by oxalotrophic microorganisms (Cailleau et al., 2011; Cailleau et al., 2014; Verrecchia et al., 

2006). This oxidation eventually leads to the precipitation of CaCO3 in the soil adjacent to the CaC2O4-

producing plant species, sequestering atmospheric CO2 and acting as a “natural liming” system. This 

natural liming should fundamentally alter SOC cycling adjacent to CaC2O4 producing trees over a period 

of time, shifting from Al- to Ca-dominated SOC stabilisation mechanisms with time in a threshold 

response. Future investigations could investigate this shift, coupled with agroforestry, to assess whether 

this natural liming positively affects SOC, as well as the sequestration of C as CaCO3.  

7.2.1.3 - A natural Ca-to-Al shift along a sequence in Hawaii 

Hawaii provides another excellent opportunity to study the evolution from Ca- to Al-dominated 

stabilisation mechanisms. Hawaii presents a well-studied soil chronosequence created through the 

volcanism on the main island (Chadwick et al., 2003; Chorover et al., 2004; Mikutta et al., 2009). Ca 
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has been progressively leached from the soils of Hawaii, meaning that older soils have less Ca compared 

to the younger soils in the sequence (Mikutta et al., 2009). Significant studies have already investigated 

OMA in the Hawaiian soils (Chadwick et al., 2003; Chorover et al., 2004; Mikutta et al., 2009) providing 

ample evidence to build upon. Thus, Hawaii could provide a perfect location to further study the 

evolution of soils from Ca- to Al-dominated SOC stabilisation mechanisms with leaching.  

7.2.2 - Experimental advances – probing Ca interactions 

7.2.2.1 – Exploring the physical and chemical configuration of intact samples 

Soil micromorphology is a powerful technique for the optical investigation of intact soils. It helps to 

give visual confirmation of the physical arrangement of a soil and can thus, provide invaluable evidence 

supporting chemical observations (Stoops, 2010; Verrecchia & Trumbino, in press). In soil 

micromorphology, a user can investigate intact soil samples with an optical microscope, after they have 

been cross-sectioned. This technique could be combined with a Wavelength-Dispersive Spectroscopy 

Electron Probe Microanalyser (thereafter electron microprobe) to chemically map the geochemical 

distributions of elements along the cross-sections, highlighting the chemical arrangement of different 

elements at the sites and their potential co-association. This could be used to quantify if Ca is spatially 

co-associated with Fe in physically in-tact samples.  

7.2.2.2 – Exploring associations between elements and SOC with specific δ13C values 

To go one-step beyond this, we could also attempt to spatially quantify the co-association of Ca or Fe 

with C of specific δ13C values in the HF to evaluate at a micro scale the preferential co-association of 

these elements. We would first have to chemically map the HF from the Nant Valley sites with the 

electron microprobe. Once mapped with the electron microprobe, we could pass the same samples on 

the secondary ionising mass spectrometer (SIMS; CAMECA IMS 1280HR; available at UNIL) to 

isotopically map δ13C values on the same samples. This way we would be able to quantify the 

preferential association of Ca or Fe with each other or SOC with specific δ13C values. While the co-

association has been identified in experimental situations (Sowers et al., 2018a), this would provide 

valuable evidence of this system in natural samples. Yet, finding the right standards and ensuring that 

the samples were polished-flat correctly to reduce analytical bias caused by variations in surface 

topography, would be extremely challenging.  

7.2.2.3 – Tracing the different stabilisation mechanisms. 

NanoSIMS has been adopted widely within soil science for the investigation of organo-mineral 

associations (Mueller et al., 2013), particularly in relation to clay particles or Fe oxides (Heister et al., 

2012; Rennert et al., 2014). These experiments typically involve incubating the clay and silt-sized 

fraction with isotopically labelled organic matter (13C / 15N) over a short-time period to observe how this 

freshly added material bonds to different minerals through sorption or occlusion (Mueller et al., 2012; 
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Vogel et al., 2014). This approach has demonstrated that SOC typically bonds to reactive mineral 

surfaces in surface areas such as pores, etches, or joins between two reactive mineral-bodies.  

However, very few investigations have utilised NanoSIMS to investigate Ca-related processes in soils. 

A recent study used 44Ca-labelled wollastonite (44Ca29SiO3) to investigate the mobility of Ca during 

bimineralic reaction-rim growth in a CaO-MgO-SiO2 system (Joachim et al., 2019). However, to our 

knowledge, no studies have yet used 44Ca to directly investigate the mechanisms of SOC stabilisation 

and organo-mineral associations with a NanoSIMS. Samples and DF from the Nant Valley sites could 

be combined with various isotopic tracers and then measured with the NanoSIMS after a short-term 

incubation (Mueller et al., 2012; Vogel et al., 2014) The NanoSIMS would enable us to observe directly 

the spatial configuration of organo-mineral assemblages and tracers. Samples could be dosed with 
44CaCO3 or 44CaCl2, tracing and mapping the reprecipitation and occlusion of 44CaCO3 or the sorption 

of 44Ca / 13C / 15N with a NanoSIMS. Samples with and without Ca could also be dosed with 13C-enriched 

DOC, observing how DOC is stabilised differently in organo-mineral assemblages. 

7.2.2.3 – Investigating the chemical structure of Ca-mediated organo-mineral association  

One major weakness of this thesis is the lack of detailed spectroscopic work to explore our hypotheses, 

beyond the XPS data, the results of which were reasonably limited. The Ca-XPS did identify a Ca bond 

in the CaCO3-bearing fractions, that was not present in the CaCO3-free samples, but identification of the 

nature of this peak was prevented due to the limited chemical shift in the detailed Ca2p region. There has 

been very little work that has used advanced Ca spectroscopy to evaluate different environmental 

samples, including hydroxyapatite samples (Eanes et al., 1981), analysis of Ca-acetate complexes in 

aqueous solutions (Muñoz Noval et al., 2018), or for the analysis of several inorganic and molecular 

calcium complexes (Martin-Diaconescu et al., 2015). The main work related to soils was completed by 

Sowers et al. (2018a), who used STXM C-NEXAFS to probe Fe-Ca-C ternary complexes in an 

experimental setting. Yet, overall OMA mediated by Ca have rarely been investigated with advanced 

spectroscopic techniques. Further investigation could use Ca / C (XAFS) or STXM C-NEXAFS to 

answer a whole range of important questions regarding these associations in different soils.
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Appendices list 
The appendices of this thesis are ordered as follows: 

8.1 - Supplementary Figures and Tables from the research chapters that were not included in the text. 

8.2 - Maps. 

8.3 - Soil profile data from the field.  

8.4 - Full methods. 

8.4.1 Preparation of soil 

8.4.2 Lab analyses 

8.4.3 Statistical methods 

8.5 - Print copy of published papers. 

8.5.1 Chapter 3: Rowley et al., 2018. Calcium-mediated stabilisation of soil organic carbon. 

Biogeochemistry. 137, 27-49. 

8.5.2 Chapter 4: Rowley et al., 2020. A cascading influence of calcium carbonate on the 

biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma. In 

press. 

8.5.3 Matteodo et al., 2018. Decoupling of topsoil and subsoil controls on organic matter 

dynamics in the Swiss Alps. Geoderma. 330, 41-51. 
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8.1 - Appendix (supplementary) Figures and Tables 
This section will present any figures or tables in the supplementary information of the papers that hasn’t 

been presented in the main thesis.  

8.1.1 - Chapter 4 

 
Appendix Fig. 8.1. Powder X-ray diffraction spectra for profiles F1 and B2. The main 

primary peaks are labelled. 
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Appendix Fig. 8.2. X-ray diffraction spectra of oriented slides (< 2 μm) for profiles F1 

and B2. The main primary peaks are labelled. 
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Appendix Fig. 8.3. Organic carbon contents for randomly sampled aboveground 
vegetation from the CaCO3-free and CaCO3-bearing sites. 

 

 

Appendix Fig. 8.4. Reactive carbonate quantified by the 0.4 M acetic acid (Loeppert et 
al. 1984) and 0.05 M disodium EDTA (Glover, 1961) methods at the CaCO3-
bearing (B1, B2, B3) profiles. For the EDTA method, extracted Ca was 
corrected for CaExch content (0.0166 M cobalt hexamine) and expressed as 
equivalent CaCO3. Estimates from the EDTA method tended to be slightly 
smaller than those from the acetic acid method. This may be due to incomplete 
displacement of the exchangeable pool by the 0.05 M disodium EDTA or the 
extraction of small amounts of reactive CaCO3 by the cobalt hexamine. 
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Appendix Table 8.1. Total elemental compositions for the CaCO3-free and CaCO3-
bearing profiles. Compositions were obtained by X-ray fluorescence and were 
corrected for loss on ignition during the fusion process.  

Sample 
Al Ca Cr Fe K Mg Mn Na Ni P Si Ti 

g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1 
F1.1 88.8 3.0 0.2 49.7 22.6 12.1 0.7 7.3 0.1 1.8 320.3 5.3 
F1.2 91.4 2.4 0.2 50.8 23.2 12.4 0.8 7.6 0.1 1.6 317.5 5.3 
F1.3 91.3 2.3 0.2 51.2 23.4 12.7 0.9 7.8 0.1 1.5 316.7 5.2 
F1.4 93.6 2.1 0.2 51.5 25.0 13.2 0.9 7.9 0.1 1.4 312.7 5.3 
F1.5 97.4 1.9 0.2 52.5 26.5 13.8 0.9 7.9 0.1 1.2 307.8 5.5 
F1.6 101.4 1.6 0.2 53.6 28.5 15.0 0.9 8.1 0.1 0.8 301.8 5.5 
F2.1 87.1 2.2 0.1 49.3 21.2 11.6 0.7 7.6 0.1 1.8 323.1 5.0 
F2.2 87.5 1.4 0.1 49.8 21.6 12.3 0.8 7.9 0.1 1.4 322.8 4.8 
F2.3 87.6 1.3 0.1 50.0 22.2 12.5 0.9 8.0 0.1 1.4 322.5 4.8 
F2.4 88.2 1.3 0.1 49.6 22.6 12.6 0.9 7.8 0.1 1.3 321.3 4.9 
F2.5 90.2 1.2 0.2 50.2 23.5 13.2 0.9 8.0 0.1 1.2 318.8 4.8 
F2.6 88.8 1.1 0.1 48.8 24.1 13.5 1.0 8.1 0.1 1.0 320.4 4.7 
F3.1 88.4 3.4 0.1 49.1 22.7 12.0 0.9 7.6 0.1 2.3 320.4 5.1 
F3.2 88.0 2.0 0.1 49.9 22.4 12.1 0.9 7.7 0.1 1.7 321.4 5.0 
F3.3 87.0 1.6 0.1 49.8 22.2 12.2 0.9 7.9 0.1 1.5 321.9 4.9 
F3.4 88.3 1.4 0.1 49.7 22.8 12.4 0.9 8.2 0.1 1.4 320.5 4.9 
F3.5 90.0 1.4 0.1 49.9 23.3 12.4 0.9 7.8 0.1 1.3 319.6 5.0 
F3.6 89.0 1.9 0.1 49.8 23.4 12.7 0.8 8.0 0.1 1.3 320.0 4.8 
B1.1 91.0 28.7 0.2 52.4 26.6 15.3 0.7 6.1 0.1 2.9 293.2 5.6 
B1.2 90.1 31.4 0.2 52.1 26.1 15.0 0.8 6.1 0.1 2.9 294.3 5.5 
B1.3 91.8 12.7 0.2 52.9 27.4 15.1 1.0 6.1 0.1 3.3 299.9 5.5 
B1.4 91.8 10.5 0.1 53.2 27.1 14.9 1.2 6.2 0.1 3.3 304.0 5.5 
B1.5 90.1 9.3 0.1 52.9 26.6 14.7 1.1 6.1 0.1 3.3 306.8 5.3 
B1.6 91.4 7.3 0.1 53.3 27.1 15.0 0.9 6.0 0.1 2.4 306.0 5.3 
B2.1 93.6 13.9 0.2 50.7 27.3 15.0 0.8 6.5 0.1 5.4 296.9 5.6 
B2.2 91.8 13.2 0.2 53.0 27.0 14.7 1.1 6.4 0.1 6.2 297.4 5.5 
B2.3 91.0 11.9 0.2 52.4 26.7 14.5 1.2 6.5 0.1 6.4 300.0 5.5 
B2.4 89.8 11.2 0.2 52.0 26.3 14.4 1.2 6.5 0.1 6.8 301.6 5.4 
B2.5 90.8 10.5 0.2 51.1 25.8 14.7 1.0 6.7 0.1 6.8 303.8 5.5 
B2.6 87.2 47.1 0.2 47.1 25.6 15.1 0.7 6.5 0.1 5.1 287.4 5.1 
B3.1 93.0 9.7 0.2 47.8 27.9 14.6 0.8 6.5 0.1 5.8 303.4 5.5 
B3.2 91.8 8.6 0.2 53.6 27.3 14.6 1.6 6.5 0.1 6.3 300.2 5.4 
B3.3 91.8 8.6 0.2 53.4 27.1 14.6 1.6 6.5 0.1 6.5 299.8 5.4 
B3.4 92.7 8.9 0.2 51.5 27.0 14.8 1.5 6.7 0.1 6.3 301.9 5.4 
B3.5 94.5 8.1 0.2 52.0 27.6 15.2 1.3 6.7 0.1 5.4 301.0 5.5 
B3.6 96.1 7.7 0.2 52.9 28.3 15.7 1.2 6.8 0.1 4.3 298.4 5.6 
B3.7 94.7 13.0 0.2 53.3 27.8 15.7 0.9 6.7 0.1 3.0 299.3 5.4 
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Appendix Table 8.2. Mineralogy and texture of CaCO3-free and CaCO3-bearing profiles. 
Silicates and oxides were quantified on X-ray diffraction spectra, while total 
and reactive calcium carbonate equivalent (CCE) were quantified chemically 
(see Methods section). Samples for which the X-ray diffraction spectrum 
contained a clear calcite peak are marked in the total CCE column with an *. 

Sample
s 

Phyllo-
silicates Quartz 

K-
Feldspa

r 

Na-
Plagioc

-lase 

Goethi-
te 

Un-
ident. 

CCE-
Total 

CCE-
React. 

% 
React. 
CaCO3 

Clay 
< 2  
μm  

Silt 
2-50 
μm 

Sand 
50- 

2000  
μm 

% % % % % % % % % % % % 

F1.1 42.8 44.4 0.0 5.5 1.5 5.9 0.0 0.0 0 18.4 67.9 13.7 
F1.2 42.9 41.5 1.7 5.6 0.0 8.4 0.0 0.0 0 18.9 68.5 12.7 
F1.3 41.3 38.3 1.5 6.5 1.5 10.9 0.0 0.0 0 18.6 68.2 13.2 
F1.4 41.3 38.3 2.0 5.5 1.3 11.6 0.0 0.0 0 18.1 68.7 13.1 
F1.5 41.5 36.5 3.4 6.5 0.0 12.1 0.0 0.0 0 17.7 69.1 13.2 
F1.6 43.9 38.3 1.7 6.0 0.0 10.1 0.0 0.0 0 14.0 65.4 20.6 
F2.1 45.7 41.8 1.7 4.9 0.0 5.8 0.0 0.0 0 18.4 64.1 17.5 
F2.2 41.5 41.4 1.8 7.9 1.7 5.8 0.0 0.0 0 18.3 65.7 16.0 
F2.3 45.1 43.6 1.8 5.8 1.6 2.1 0.0 0.0 0 18.1 65.7 16.2 
F2.4 41.5 41.7 1.2 6.0 0.0 9.7 0.0 0.0 0 19.2 69.8 11.1 
F2.5 42.6 41.0 1.2 4.8 0.0 10.4 0.0 0.0 0 17.4 68.4 14.2 
F2.6 40.6 39.7 1.3 6.7 0.0 11.8 0.0 0.0 0 14.4 62.8 22.8 
F3.1 40.8 42.5 0.0 7.2 0.0 9.5 0.0 0.0 0 21.1 68.6 10.3 
F3.2 40.9 43.6 1.3 4.8 0.0 9.5 0.0 0.0 0 18.8 67.8 13.5 
F3.3 40.8 44.4 1.5 7.3 1.2 4.8 0.0 0.0 0 17.7 67.4 15.0 
F3.4 42.9 43.1 1.5 6.2 1.6 4.8 0.0 0.0 0 17.3 67.1 15.6 
F3.5 42.8 38.9 1.7 6.2 0.0 10.5 0.0 0.0 0 17.8 68.7 13.6 
F3.6 41.6 40.7 1.3 6.7 0.0 9.8 0.0 0.0 0 16.1 66.9 17.0 
B1.1 42.9 39.8 2.1 4.1 0.0 7.3 3.8* 3.7 97 15.3 73.9 10.8 
B1.2 45.3 36.7 2.0 4.2 0.0 5.8 4.2* 3.4 79 16.1 74.9 9.0 
B1.3 47.0 38.2 2.0 3.8 0.0 9.0 1.1 0.6 54 16.5 73.9 9.7 
B1.4 42.7 39.3 2.1 5.6 1.6 8.8 1.0 0.6 60 16.0 73.6 10.4 
B1.5 43.2 43.1 2.0 3.6 0.0 8.1 0.8 0.6 67 15.2 73.1 11.7 
B1.6 41.7 43.0 2.5 4.7 0.0 7.4 0.8* 0.4 53 15.3 72.9 11.9 
B2.1 48.0 33.7 2.1 4.2 1.6 10.5 1.0 0.6 59 17.5 72.9 9.6 
B2.2 47.5 33.6 2.3 4.5 1.7 9.9 1.0* 0.9 85 16.4 73.2 10.4 
B2.3 45.7 34.7 3.7 3.9 1.9 10.1 1.0 0.7 69 15.4 73.8 10.8 
B2.4 37.6 50.4 1.6 4.1 0.0 6.3 1.0 0.7 72 14.9 73.6 11.5 
B2.5 40.0 41.0 2.0 4.3 1.3 10.9 0.9* 0.4 41 14.2 75.6 10.2 
B2.6 35.8 36.6 2.3 6.1 0.0 9.7 6.2* 3.9 62 13.3 74.7 12.0 
B3.1 53.6 31.9 2.5 8.5 0.0 3.6 0.7 0.6 82 15.8 74.1 10.1 
B3.2 43.6 41.7 2.5 4.4 0.0 7.9 0.6 0.5 82 14.9 73.2 12.0 
B3.3 51.2 35.5 2.3 4.3 0.0 6.8 0.6 0.5 86 14.5 74.4 11.2 
B3.4 49.4 37.7 1.9 5.9 0.0 5.2 0.6 0.5 83 14.9 74.0 11.1 
B3.5 47.6 36.9 1.9 4.8 0.0 8.9 0.6* 0.5 88 14.7 75.9 9.5 
B3.6 47.0 37.6 1.8 4.4 0.0 8.6 0.6* 0.6 97 15.0 75.6 9.4 
B3.7 41.7 37.6 2.0 5.3 1.7 10.2 1.9* 1.9 98 14.9 76.4 8.7 

Un-ident.: Unidentified signal 
Total and React. CCE: Total and reactive calcium carbonate equivalent material. 
% React. CaCO3: the percent of reactive CCE in the total CCE 
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Appendix Table 8.3. Relevant soil-surface carbon dioxide (CO2) efflux data from Grand 
et al. (2016). For each site, the first column represents soil respiration rates; 
the second column represents estimated heterotrophic respiration, taken as 
40% of clipped soil-surface CO2 efflux (Hanson et al., 2000); the third column 
represents estimated heterotrophic respiration expressed per unit of soil 
organic carbon.  

Month 
2016 

CaCO3-free CaCO3-bearing 

Soil 
Respiration 

Estimated 
heterotrophic 

respiration 

Respiration 
/  

unit SOC 

Soil 
Respiration 

Estimated 
heterotrophic 

respiration 

Respiration 
/  

unit SOC 
µmol / m2 / 

s µmol / m2 / s µmol / m2 / 
s / SOC 

µmol / m2 / 
s µmol / m2 / s µmol / m2 / 

s / SOC 

July 8.3 3.3 1.3 6.1 2.4 0.5 

Aug. 8.8 3.5 1.4 11.9 4.8 0.9 

Sept. 5.6 2.2 0.9 8.9 3.6 0.7 

Oct. 2.9 1.2 0.5 5.2 2.1 0.4 
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8.1.2 - Chapter 5 

 

Appendix Fig. 8.5. Example of the deconvolution of the X-ray photoelectron 
spectroscopy attained carbon 1s orbital peak into four different sub peaks 
peaks, representing (from left-to-right): carboxylate (289.5 eV), carbonyl (288 
eV), alcoholic / phenolic (286.5 eV), aromatic / aliphatic (285 eV) moieties. 
The two spectra have been centered at 285 eV.  
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Appendix Fig. 8.6. Detailed X-ray photoelectron spectroscopy (XPS) in the electron 
binding energy range of photoelectrons ejected from the aluminium 2p and 
calcium 2p orbitals. Spectra include all of the density fractions from the 
CaCO3-bearing (B2.1 and B2.4) and CaCO3-free (F2.1 and F2.4) sample 
subset. The Ca2F3/2 peak is difficult to distinguish due to the lack of a chemical 
shift in the Ca2p region, lack of pre-existing XPS data on Ca-C interactions and 
location of the peak. The Ca2F3/2 peak could be attributed to CaCl2 or CaO type 
bonds (not CaCO3 as it had been removed with a HCl fuimgation).  
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Appendix Fig. 8.7. Detailed X-ray photoelectron spectroscopy (XPS) in the electron 
binding energy range of photoelectrons ejected from the carbon 1s orbital. 
Spectra include all of the density fractions from the CaCO3-bearing (B2.1 and 
B2.4) and CaCO3-free (F2.1 and F2.4) sample subset. 
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Appendix Fig. 8.8. Detailed X-ray photoelectron spectroscopy (XPS) in the electron 
binding energy range of photoelectrons ejected from the chlorine 2p and iron 
2p3 orbitals. Spectra include all of the density fractions from the CaCO3-
bearing (B2.1 and B2.4) and CaCO3-free (F2.1 and F2.4) sample subset. 
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Appendix Fig. 8.9. Detailed X-ray photoelectron spectroscopy (XPS) in the electron 
binding energy range of photoelectrons ejected from the nitrogen 1s (N1s) and 
oxygen 1s orbitals. Spectra include all of the density fractions from the CaCO3-
bearing (B2.1 and B2.4) and CaCO3-free (F2.1 and F2.4) sample subset. There 
is a slight shift towards more protonated N1s forms at the CaCO3-free site, 
which has a more acidic pH (Jones and Singh, 2014). 
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Appendix Fig. 8.10. Detailed X-ray photoelectron spectroscopy (XPS) in the electron 
binding energy range of photoelectrons ejected from the silicon 2p and 
tungsten 4f (W4f) orbitals. Spectra include all of the density fractions from the 
CaCO3-bearing (B2.1 and B2.4) and CaCO3-free (F2.1 and F2.4) sample 
subset. Significant precipitation of calcium metatungstate would shift the W4f 
from 35.5-36 eV towards 35 eV (Moulder and Chastain, 1992). 
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Appendix Fig. 8.11. Comparison of previous elemental analyser (CHN analyser) 
measurements of bulk soil (Chapter 4) at the CaCO3-free (F1, F2, F3) and 
CaCO3-bearing (B1, B2, B3) profiles with the elemental analyser isotope-ratio 
mass spectrometer (EA-IRMS) bulk soil data (Chapter 5). A 10 % uncertainty 
interval has been plotted in dashed red line, on either side of a 1:1 reference 
line in bold red, to represent the 5 % error margin in both machines.  
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Appendix Table 8.4. Mass of recovered material in different density fractions of the 
CaCO3-free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. There was 
insufficient material recovered in the F1.6 o-LF10 fraction for analysis. All 
figures are mean values of triplicates. Samples from the CaCO3-bearing 
profiles with the highest calcium carbonate equivalent content are marked with 
an *. 

Sample 

Bulk SOC Mean fraction recoveries Mean SOC content Mean mass of SOC 

SOC 
content 

Bulk 
Density 

Sample 
SOC 
stock 

Profile 
SOC 
Stock 

f-LF o-LF10 o-LF200 HF 
Total 

recovery f-LF o-LF10 o-LF200 HF f-
LF o-LF10 o-

LF200 HF 

% g cm-3 kg C m-2 kg C m-

2 mg mg mg mg % % % % % mg C mg C mg C mg C 

F1.1 4.66 0.93 21.2 

F1 
12.8 

64.1 8.4 23.2 6712 99.1 22.2 16.9 16.3 4.4 14.2 1.4 3.7 296.9 
F1.2 3.05 0.93 12.7 12.7 4.6 13.9 6823 99.5 18.3 17.6 15.3 2.8 2.3 0.7 2.1 193.3 
F1.3 2.18 0.97 10.0 8.6 5.0 11.9 6883 99.8 18.1 16.8 13.9 2.1 1.5 0.6 0.8 141.8 
F1.4 1.55 0.97 13.5 5.8 1.4 9.3 6882 99.5 16.1 17.3 8.2 1.5 0.9 0.2 0.8 106.1 
F1.5 1.26 1.07 11.5 4.8 1.3 4.3 6911 99.8 15.4 9.1 11.6 1.2 0.7 0.1 0.4 85.3 
F1.6 0.85 1.07 11.5 4.3 0.1 0.4 6876 98.9 8.1  14.7 0.9 0.3  0.1 61.3 
F2.1 5.36 0.93 23.7 

F2 
11.4 

80.0 16.6 25.2 6713 99.9 21.0 12.5 13.3 5.0 16.6 1.5 3.2 333.9 
F2.2 2.55 0.93 11.3 10.7 10.1 13.4 6879 100.3 17.7 11.2 13.2 2.5 1.9 1.0 1.7 170.0 
F2.3 2.08 0.97 9.6 8.0 2.6 17.3 6894 100.4 15.7 14.6 9.8 1.8 1.3 0.4 1.5 125.3 
F2.4 1.88 0.97 8.2 7.2 5.4 12.4 6904 100.3 17.9 11.9 11.6 1.8 1.3 0.6 1.4 122.2 
F2.5 1.47 1.07 5.9 5.8 3.0 10.6 6913 100.2 16.3 11.5 10.4 1.6 1.0 0.3 0.8 110.9 
F2.6 0.90 1.07 11.1 3.5 2.4 7.4 6910 99.7 15.4 7.4 8.6 0.9 0.5 0.2 0.4 64.3 
F3.1 5.92 0.93 27.0 

F3 
11.7 

97.7 19.3 43.9 6608 99.2 23.0 16.5 18.2 5.6 22.4 3.1 7.9 371.4 
F3.2 3.19 0.93 13.4 14.5 10.3 14.3 6817 99.7 23.0 6.1 14.2 3.0 3.4 0.7 2.1 203.0 
F3.3 2.38 0.97 10.7 6.9 12.7 16.2 6876 100.2 20.2 8.3 11.6 2.2 1.4 1.0 1.9 148.6 
F3.4 1.97 0.97 7.6 5.4 5.0 7.4 6884 100.0 20.6 8.7 12.5 1.8 1.1 0.4 0.8 126.6 
F3.5 1.76 1.07 7.0 5.7 5.8 7.0 6893 99.9 20.7 10.3 8.8 1.7 1.2 0.5 0.6 119.7 
F3.6 1.37 1.07 8.1 7.4 0.7 6.9 6910 100.0 20.1 20.3 9.6 1.4 1.5 0.1 0.7 94.0 

B1.1* 8.01 0.87 34.9 

B1 
24.2 

84.5 55.8 162.5 6469 99.1 26.5 14.1 23.9 6.3 22.4 7.9 37.9 407.0 
B1.2* 7.08 0.87 30.2 61.8 48.4 136.9 6538 99.4 24.7 17.3 25.3 5.7 15.1 8.1 34.3 374.6 
B1.3 5.81 0.93 24.3 20.7 22.3 65.1 6667 99.0 24.1 12.0 22.4 5.1 5.0 2.7 13.4 342.4 
B1.4 4.56 0.93 19.1 16.5 24.2 83.5 6748 100.2 25.5 13.8 20.9 4.0 4.2 3.2 17.3 268.7 
B1.5 3.47 0.97 14.3 11.2 15.7 53.9 6814 100.2 27.1 13.7 16.0 3.2 3.0 2.2 8.6 218.9 
B1.6 2.32 0.97 23.6 6.4 14.2 23.4 6871 100.3 21.6 9.3 15.2 2.1 1.4 1.4 3.3 146.9 
B2.1 8.14 0.87 35.4 

B2 
25.2 

35.5 37.5 152.6 6493 99.0 28.5 21.5 21.6 7.3 10.1 7.8 32.4 475.3 
B2.2 7.63 0.87 33.2 34.3 32.1 147.5 6565 99.9 30.0 20.5 21.8 6.8 10.3 6.3 31.9 446.1 
B2.3 6.07 0.93 27.7 31.1 33.1 86.1 6607 99.3 26.6 19.0 23.9 5.4 8.3 6.1 19.6 354.1 
B2.4 4.83 0.93 21.9 32.3 21.4 83.7 6665 99.6 27.2 23.6 22.4 4.3 8.8 4.7 16.5 288.7 
B2.5 3.96 0.97 18.7 31.6 22.5 39.1 6712 99.4 29.1 25.4 24.7 3.5 9.2 5.5 8.7 237.5 
B2.6* 2.68 0.97 21.5 21.9 14.7 36.9 6697 98.2 27.0 25.6 19.4 2.5 5.9 3.7 7.0 165.7 
B3.1 9.06 0.87 39.4 

B3 
19.1 

73.3 40.5 155.8 6474 99.2 26.5 21.4 23.0 8.3 19.3 8.2 35.8 537.5 
B3.2 5.65 0.87 23.4 26.7 22.7 62.7 6661 98.9 30.2 20.0 21.9 5.1 8.1 4.4 12.3 336.5 
B3.3 5.20 0.93 23.4 27.7 24.5 64.2 6670 99.0 31.2 19.8 23.2 4.7 8.7 4.6 15.0 312.0 
B3.4 4.36 0.93 20.1 21.0 19.9 54.7 6704 99.1 26.8 22.3 22.4 4.2 5.6 4.4 12.0 282.7 
B3.5 3.87 0.97 17.8 15.3 16.5 46.7 6750 99.2 30.2 17.2 20.3 3.7 4.6 2.8 9.1 247.1 
B3.6 3.62 0.97 17.2 14.1 15.3 40.5 6767 99.2 23.0 19.7 19.4 3.3 3.3 3.0 7.9 221.4 
B3.7* 2.42 0.97 14.8 15.5 13.5 26.8 6757 98.3 27.6 20.5 19.2 2.3 4.3 2.8 3.8 154.8 

 
f-LF: Free-light fraction 
o-LF10: occluded soil organic carbon pool separated after a sonication of 10 J mL-1 

o-LF200: occluded soil organic carbon pool separated after a sonication of 200 J mL-1 

HF: Heavy fraction 
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Appendix Table 8.5. Stable carbon isotope compositons of the different density fractions 
of the CaCO3-free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles. 
There was insufficient material recovered in the F1.6 o-LF10 fraction for 
analysis. All figures are mean values of triplicates.  

 Mean δ13C values Reconst. 
δ13C values 

Bulk 
δ13C 

values Sample f-LF o-LF10 o-LF200 HF 

 ‰ ‰ ‰ ‰ ‰ ‰ 

F1.1 -27.2 -27.8 -27.0 -25.9 -26.0 -26.4 
F1.2 -27.4 -27.2 -26.8 -25.8 -25.8 -25.8 
F1.3 -28.1 -27.8 -27.4 -25.8 -25.9 -25.6 
F1.4 -27.4 -26.7 -27.6 -25.7 -25.7 -25.3 
F1.5 -28.0 -27.8 -28.1 -25.5 -25.6 -25.0 
F1.6 -28.5  -18.7 -25.3 -25.4 -24.7 
F2.1 -27.7 -27.7 -27.4 -25.7 -25.8 -26.3 
F2.2 -27.7 -28.3 -27.5 -25.8 -25.8 -26.3 
F2.3 -27.7 -27.8 -28.2 -25.8 -25.8 -25.6 
F2.4 -27.0 -28.5 -28.1 -25.8 -25.8 -25.3 
F2.5 -27.2 -28.7 -28.1 -25.7 -25.8 -25.1 
F2.6 -27.2 -18.8 -29.1 -25.6 -25.6 -25.0 
F3.1 -27.2 -27.7 -26.7 -25.8 -25.9 -26.6 
F3.2 -26.8 -28.1 -26.9 -25.7 -25.7 -25.7 
F3.3 -26.8 -28.8 -27.2 -25.8 -25.8 -25.5 
F3.4 -26.4 -27.7 -27.4 -25.6 -25.6 -25.3 
F3.5 -26.2 -27.8 -27.6 -25.5 -25.5 -24.9 
F3.6 -25.2 -27.3 -27.9 -25.5 -25.5 -24.8 

B1.1 -27.2 -27.4 -26.6 -26.5 -26.6 -27.4 
B1.2 -27.0 -27.2 -26.4 -26.4 -26.4 -26.9 
B1.3 -26.8 -27.1 -26.1 -26.2 -26.2 -26.4 
B1.4 -26.3 -27.0 -25.9 -26.0 -26.0 -26.2 
B1.5 -25.7 -27.0 -26.0 -25.9 -25.9 -25.6 
B1.6 -26.2 -27.4 -26.5 -25.6 -25.6 -25.1 
B2.1 -26.6 -26.7 -26.1 -26.1 -26.2 -26.9 
B2.2 -25.7 -26.5 -26.0 -26.0 -26.0 -26.7 
B2.3 -25.7 -26.1 -25.7 -26.0 -26.0 -26.3 
B2.4 -25.2 -25.8 -25.3 -26.0 -25.9 -26.0 
B2.5 -25.0 -25.6 -25.3 -26.0 -26.0 -25.8 
B2.6 -25.0 -25.5 -25.5 -26.1 -26.0 -25.7 
B3.1 -27.5 -26.7 -26.1 -25.9 -26.0 -26.8 
B3.2 -25.9 -26.1 -25.7 -25.9 -25.9 -26.1 
B3.3 -24.8 -26.0 -25.5 -25.7 -25.7 -26.0 
B3.4 -25.4 -26.0 -25.3 -25.9 -25.8 -25.7 
B3.5 -24.7 -26.2 -25.5 -25.6 -25.6 -25.6 
B3.6 -25.9 -25.6 -25.0 -25.3 -25.3 -25.3 
B3.7 -25.9 -25.8 -25.0 -25.3 -25.3 -25.1 

f-LF: Free-light fraction 
o-LF10: occluded soil organic carbon pool separated after a sonication of 10 J mL-1 

o-LF200: occluded soil organic carbon pool separated after a sonication of 200 J mL-1 

HF: Heavy fraction 
Total recovery: sum of fraction masses, expressed as % of soil mass prior to fractionation. 
Reconst. δ13C values: average of fractions δ13C values weighted according to the proportion of organic C in each fraction. 
Bulk δ13C values: actual δ13C measurements performed on the unfractionated samples. 
  



173 

Appendix Table 8.6. Surficial (< 10 nm) chemical composition of the density fractions 
as measured qualitatively by X-ray photoelectron spectroscopy (XPS). Four 
samples were analysed, two from the CaCO3-free (F2.1, F2.4) and two from 
the CaCO3-bearing (B2.1, B2.4) site. The number and letter following the 
elemental symbols represent the orbital targeted by the XPS, from which a 
photoelectron was ejected. 

Sa
m 
ple 

Fractio
n C1s O1s 

C:O 
rati

o 

N1

s

Al2

p

Ca2

p

Cl2

p

Fe2p

3

K2

p

Mg2

s

Na1

s

P2

p

Si2

p

Ti2

p

W4

f

% % % % % % % % % % % % % % 

F2.1 

f-LF 51.
2 

35.
6 1.4 0.6 3.1 0.0 2.2 0.0 0.0 0.0 0.7 0.4 6.2 0.0 0.0 

o-LF10 
54.
6 

31.
6 1.7 3.7 4.3 0.1 2.4 0.0 0.0 0.0 0.3 0.0 2.3 0.1 0.6 

o-LF200 
56.
8 

32.
2 1.8 1.4 2.6 0.0 2.8 0.1 0.0 0.0 0.3 0.1 0.0 0.0 3.7 

HF 45.
6 

34.
5 1.3 2.6 2.2 0.4 8.7 1.8 0.0 0.0 0.2 0.6 3.3 0.2 0.0 

F2.4 

f-LF 49.
3 

36.
7 1.3 0.7 3.8 0.1 2.4 0.8 0.0 0.0 0.4 0.2 5.3 0.3 0.1 

o-LF10 
51.
9 

33.
9 1.5 0.9 6.1 0.5 4.3 0.4 0.0 0.0 0.0 0.0 1.5 0.1 0.5 

o-LF200 
50.
9 

33.
6 1.5 1.7 3.8 0.3 3.2 0.2 0.0 0.0 0.1 0.0 0.9 0.4 4.9 

HF 49.
3 

33.
3 1.5 0.0 2.8 0.4 7.5 0.6 0.0 0.0 0.8 0.0 5.2 0.2 0.0 

B2.
1 

f-LF 55.
8 

33.
0 1.7 3.0 1.5 0.3 1.5 0.0 0.0 0.0 0.2 0.0 4.7 0.0 0.0 

o-LF10 
48.
8 

38.
9 1.3 1.1 2.2 0.3 2.7 0.9 0.0 0.0 0.0 0.1 4.1 0.4 0.6 

o-LF200 
48.
2 

34.
6 1.4 2.7 4.9 1.0 3.6 0.0 0.0 0.0 0.1 0.0 2.5 0.5 1.9 

HF 45.
8 

34.
1 1.3 1.7 3.0 0.5 7.2 0.9 0.0 0.0 1.5 1.0 4.2 0.3 0.0 

B2.
4 

f-LF 51.
9 

37.
5 1.4 0.6 2.3 0.5 3.8 1.1 0.0 0.0 0.0 1.1 0.8 0.2 0.2 

o-LF10 
43.
7 

40.
2 1.1 0.0 4.3 0.5 1.6 0.4 0.0 0.0 1.8 1.1 4.9 0.0 1.5 

o-LF200 
48.
6 

36.
8 1.3 2.8 2.5 0.6 2.6 0.0 0.0 0.0 1.3 0.0 2.2 0.3 2.2 

HF 51.
9 

30.
0 1.7 0.0 2.8 0.7 9.5 1.5 0.0 0.0 0.2 0.4 2.6 0.2 0.0 
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8.2 - Maps 

8.2.1 - Topographic map 

 

Appendix Fig. 8.12. Topographic map of the Nant Valley (SwissTopo, 2019). The line 
in pink separates the canton of Vaud (west) from Valais (east), Switzerland. 
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8.2.2 - Geological map 

 

Appendix Fig. 8.13. Geological map of the Nant Valley (SwissTopo, 2019). 
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8.2.3 - Surficial formations map 

Appendix Fig. 8.14. Surficial formations map of the Nant Valley taken from Rion 
(2016). Legend in French, please ask for a translation if required. 
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8.2.4 - Vegetation map 

 

Appendix Fig. 8.15. Vegetation map of the Nant Valley taken from Dutoit (1983). The 
legend is in French on the following page. The sites are located upon the same 
vegetation structure, alpine grasslands (44; polygono-trisetion). 
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8.2.4.1 – Legend vegetation map 

Appendix table 8.7. Index for the vegetation map in French (please ask for a translation 
if required), taken from Dutoit (1983). 
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8.3 - Profile Descriptions 

8.3.1 - Key 



181 

8.3.2 - Profile F1 
WRB classification: Hypereutric Leptic Cambisols (Humic, Siltic) Drainage: Good 

GPS location (Decimal degrees): N: 046.23130 E: 007.10038 Slope: 9° Aspect: E 

Parent lithology : shist mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

Depth 
(cm) Horizon Characteristics 

0-5 Ah Structure: Granular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 50 %; 
Large rock fragments: 2 % Mottles: 30 % Effervescence: 0 / 4.  

5-10 A1 
Structure: Granular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 30 %; 
Large rock fragments: 10 % Mottles: 15 % Effervescence: 0 / 4.  

10-15 A2 Structure: Granular; Texture: Silty loam; Munsell: 10 yr 3 / 3; Roots: 20 %; 
Large rock fragments: 5 % Mottles: 2 % Effervescence: 0 / 4.  

15-25 B1 Structure: Sub-angular / granular; Texture: Silty loam; Munsell: 10 yr 4 / 3; 
Roots: 5 %; Large rock fragments: 10 % Mottles: 0 % Effervescence: 0 / 4.  

25-35 B2 Structure: Sub-angular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 3 %; 
Large rock fragments: 15 % Mottles: 0 % Effervescence: 0 / 4.  

35-52 B3 Structure: Sub-angular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 0 %; 
Large rock fragments: 25 % Mottles: 0 % Effervescence: 0 / 4.  
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8.3.3 - Profile F2 
WRB classification: Orthoeutric Leptic Cambisols (Humic, Siltic)  Drainage: Good 

GPS location (Decimal degrees): N: 046.23096 E: 007.10011 Slope: 11° Aspect: E 

Parent lithology : shist mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

 

Depth 
(cm) Horizon Characteristics 

0-5 Ah Structure: Granular; Texture: Silty loam; Munsell: 10 yr 3 / 3; Roots: > 80 %; 
Large rock fragments: < 5 % Mottles: 30 % Effervescence: 0 / 4.  

5-10 A Structure: Granular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 50 %; 
Large rock fragments: 5 % Mottles: 0 % Effervescence: 0 / 4.  

10-15 AB Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 3 / 3; 
Roots: 35 %; Large rock fragments: 5 % Mottles: 5 % Effervescence: 0 / 4.  

15-20 B1 Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 4 / 4; 
Roots: 18 %; Large rock fragments: 10 % Mottles: < 5 % Effervescence: 0 / 4.  

20-25 B2 
Structure: Sub-angular; Texture: Silty loam; Munsell: 2.5 y 3 / 3; Roots: 10 %; 
Large rock fragments: 25 % Mottles: 0 % Effervescence: 0 / 4.  

25-48 BC Structure: Sub-angular; Texture: Silty loam; Munsell: 10 yr 4 / 3; Roots: 5 %; 
Large rock fragments: 35 % Mottles: 10 % Effervescence: 0 / 4.  
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8.3.4 - Profile F3 
WRB classification: Orthoeutric Leptic Cambisols (Humic, Siltic) Drainage: Good 

GPS location (Decimal degrees): N: 046.23094 E: 007.10026 Slope: 8°  Aspect: EEN 

Parent lithology : shist mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

 

Depth 
(cm) 

Horizon Characteristics 

0-5 Ah Structure: Granular; Texture: Silty loam; Munsell: 2.5 y 3 / 3; Roots: 50 %; 
Large rock fragments: 2 % Mottles: 60 % Effervescence: 0 / 4.  

5-10 A 
Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 5 / 4; 
Roots: 35 %; Large rock fragments: 10 % Mottles: 20 % Effervescence: 0 / 4.  

10-15 B1 Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 4 / 4; 
Roots: 20 %; Large rock fragments: 8 % Mottles: 5 % Effervescence: 0 / 4.  

15-20 B2 
Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 4 / 6; 
Roots: 15 %; Large rock fragments: 20 % Mottles: < 5 % Effervescence: 0 / 4.  

20-25 B3 Structure: Sub-angular; Texture: Silty loam; Munsell: 2.5 y 4 / 4; Roots: 2 %; 
Large rock fragments: 25 % Mottles: 2 % Effervescence: 0 / 4.  

25-35 BC 
Structure: Sub-angular; Texture: Silty loam; Munsell: 2.5 y 4 / 4; Roots: 1 %; 
Large rock fragments: 45 % Mottles: 2 % Effervescence: 0 / 4.  
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8.3.5 - Profile B1 
WRB classification: Cambic Leptic Phaeozem (Siltic) Drainage: Good 

GPS location (Decimal degrees): N: 046.22895 E: 007.10263 Slope: 6°  Aspect: W 

Parent lithology : carbonate-rich mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

 

Depth 
(cm) 

Horizon Characteristics 

0-5 Ah1 Structure: Granular; Texture: Silty loam; Munsell: 2.5 y 3 / 2; Roots: 70 %; 
Large rock fragments: 0 % Mottles: 10 % Effervescence: 3 / 4.  

5-10 Ah2 
Structure: Granular; Texture: Silty loam; Munsell: 2.5 y 2 / 1; Roots: 38 %; 
Large rock fragments: 2 % Mottles: 10 % Effervescence: 3 / 4.  

10-15 ABh Structure: Granular; Texture: Silty loam; Munsell: 5 y 1 / 2; Roots: 20 %; Large 
rock fragments: 10 % Mottles: 0 % Effervescence: 0 / 4.  

15-20 Bh 
Structure: Sub-angular; Texture: Silty loam; Munsell: 5 y 2 / 2; Roots: 5 %; 
Large rock fragments: 10 % Mottles: 0 % Effervescence: 1 / 4.  

20-25 B1 Structure: Sub-angular; Texture: Silty loam; Munsell: 5 y 2 / 2; Roots: 5 %; 
Large rock fragments: 15 % Mottles: 0 % Effervescence: 1 / 4.  

25-35 B2 Structure: Sub-angular; Texture: Silty loam; Munsell: 5 y 2 / 3; Roots: 1 %; 
Large rock fragments: 30 % Mottles: 0 % Effervescence: 2 / 4.  



185 
 

8.3.6 - Profile B2 
WRB classification: Cambic Leptic Phaeozem (Siltic)  Drainage: Good 

GPS location (Decimal degrees): N: 046.22883 E: 007.10262 Slope: 7°  Aspect: W 

Parent lithology : carbonate-rich mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

 

Depth 
(cm) 

Horizon Characteristics 

0-5 Ah1 Structure: Granular; Texture: Silty loam; Munsell: 5 y 2 / 1; Roots: 35 %; Large 
rock fragments: 0 % Mottles: 5 % Effervescence: 0 / 4.  

5-10 Ah2 
Structure: Granular; Texture: Silty loam; Munsell: 5 y 2 / 1; Roots: 25 %; Large 
rock fragments: 0 % Mottles: 5 % Effervescence: 0 / 4.  

10-15 ABh Structure: Granular; Texture: Silty loam; Munsell: 2.5 y 3 / 2; Roots: 10 %; 
Large rock fragments: 2 % Mottles: 18 % Effervescence: 0 / 4.  

15-20 Bh1 
Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 3 / 2; 
Roots: 10 %; Large rock fragments: 3 % Mottles: 10 % Effervescence: 1 / 4.  

20-25 Bh2 Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 2.5 y 3 / 2; 
Roots: 5 %; Large rock fragments: 3 % Mottles: 10 % Effervescence: 1 / 4.  

25-40 BC Structure: Sub-angular; Texture: Silty loam; Munsell: 2.5 y 3 / 1; Roots: 0 %; 
Large rock fragments: 40 % Mottles: 15 % Effervescence: 3 / 4.  
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8.3.7 - Profile B3 

WRB classification: Cambic Leptic Phaeozem (Siltic) Drainage: Good 

GPS location (Decimal degrees): N: 046.22886 E: 007.10240 Slope: 10°  Aspect: NW 

Parent lithology : carbonate-rich mixed colluvial-alluvial deposits eroded from the Morcles Nappe. 

 

Depth 
(cm) Horizon Characteristics 

0-5 Ah1 Structure: Granular; Texture: Silty loam; Munsell: 10 yr 2 / 2; Roots: 60 %; 
Large rock fragments: 0 % Mottles: 5 % Effervescence: 0 / 4.  

5-10 Ah2 Structure: Granular / sub angular; Texture: Silty loam; Munsell: 10 yr 2 / 2;  
Roots: 20 %; Large rock fragments: 5 % Mottles: 15 % Effervescence: 1 / 4.  

10-15 ABh Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 10 yr 3 / 2; 
Roots: 10 %; Large rock fragments: 3 % Mottles: 15 % Effervescence: 0 / 4.  

15-20 Bh Structure: Granular / sub-angular; Texture: Silty loam; Munsell: 10 yr 3 / 2; 
Roots: 5 %; Large rock fragments: 1 % Mottles: 15 % Effervescence: 0 / 4.  

20-25 B1 
Structure: Sub-angular; Texture: Silty loam; Munsell: 10 yr 3 / 2; Roots: 1 %; 
Large rock fragments: 5 % Mottles: 1 % Effervescence: 0 / 4.  

25-30 B2 Structure: Angular; Texture: Silty loam; Munsell: 10 yr 3 / 2; Roots: 0 %; Large 
rock fragments: 2 % Mottles: 0 % Effervescence: 1 / 4.  

30-37 BC 
Structure: Angular; Texture: Silty loam; Munsell: 2.5 y 3 / 2; Roots: 0 %; Large 
rock fragments: 10 % Mottles: 0 % Effervescence: 2 / 4.  
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8.4 - Methods  

8.4.1 - Preparation of soil samples 

8.4.1.1 - Field moist soil 

Several analyses required field moist soil (soil pH, oxalate and dithionite extraction). Field moist soil 

was carefully selected, ensuring coarse fragments or coarse organic matter (> 2 mm) were not included 

in these specific analyses.  

8.4.1.2 - Air-dried (< 2 mm fraction) 

Soils were air-dried and sieved to 2 mm as is the custom within soil sciences (van Reeuwijk, 2002). 

1. Soils were dried at room temperature for over 1 month in Stephanie’s office (the unofficial soil 

drying room).  

2. Dried soil from each sample site was placed into a 2 mm sieve with a lid and base-pan.  

3. Samples were shaken and left to repose for a moment.  

4. All material that had not passed the sieve was then crushed in a pestle and mortar.  

5. The material was then repassed through the sieves, repeating Steps 2 – 3, approximately six to 

ten times.  

6. Most analysis was completed on this air-dried fraction. 

7. All equipment was washed with ethanol and carefully dabbed dry with paper towel and 

compressed air. 

8. Henceforth this < 2 mm fraction will be labelled air-dried soil. 

8.4.1.3 - Ground soil (< 20 μm) 

Ground soil was needed for several forms of analysis. A homogenous and representative sub-sample of 

air-dried soil was taken from each sample and ground to a fine powder for further analysis.  

1. 25 g of air-dried soil was loaded into an agate crucible. 

2. This soil was then crushed for 3 mins in a Siebtechnik Schibenschwingmuhle-TS vibrating disc-

mill.  

3. Samples were then loaded into glass receptacles and all equipment was washed with distilled 

water and dried with compressed air and gently with paper towel.  

8.4.1.4 - Density fractionation 

Individual SOC pools were fractioned by density (SPT; Sometu-Europe) and sequential sonication, into 

free-light (f-LF), 2 occluded-light fractions separated at 10 J mL-1 and 200 J mL-1 sonication energies 

(o-LF10, o-LF200 respectively), and a heavy fraction (HF; Golchin et al., 1994; Poeplau et al., 2018; Viret 

and Grand, 2019).  
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f-LF 

1. 7 g of air-dried soil from each sample was added to a 50 mL labelled falcon tube. 

2. 35 mL of SPT (1.6 g cm-3) was added to the sample with a graduated cylinder. 

3. The tube was then gently inverted until all material was suspended. 

4. Samples were then placed and balanced within a swing-bucket centrifuge. 

5. Tubes were left to rest for 30 mins to ensure the fractionation of various particles with differing 

densities. 

6. Samples were then centrifuged at 1080 g for 30 mins. 

7. The f-LF (floating material on the SPT) was then decanted into an acid washed vacuum filtration 

unit with 0.45 μm nitrocellulose paper.  

8. Tubes were twisted during inversion to ensure that all material adhering to the side of the tube 

was decanted into the filtration unit. 

9. Any remaining f-LF material was then carefully scraped from the sides of the tubes using an 

acid washed plastic spatula so as not to scrape the tubes’ sides. 

10. The scraping spatula was rinsed thoroughly with deionised water between washes.  

11. Once the f-LF from all samples were in the vacuum filtration units, a vacuum pump was 

switched on, filtering the SPT from the f-LF.  

12. This SPT was then recombined with the remaining sample still in the falcon tube.  

13. The f-LF was then re-suspended with 50 mL of deionised water and left to rest for a least 10 

mins. 

14. The f-LF was then thoroughly rinsed and filtered, washing the side of the funnel and material 

three times with deionised water in a squeezy bottle. Between each rinse, the f-LF sat thoroughly 

submerged in deionised water to ensure it was rinsed properly. 

15. The f-LF was then washed off the filter paper and into an aluminium drying boat with deionised 

water, being careful to not overfill the boat or damage the paper, while ensuring no material 

remains on the filter o-ring.  

16. All material was already rinsed on the filter paper during the three complete rinses, but this was 

triple checked before passing the funnels for acid washing.  

17. The f-LF was then dried in an oven at 65°C, until the remaining deionised water in all the 

aluminium boats had been removed. Samples were then left for another 12 h to dry thoroughly.  

O-LF10 & o-LF200 

1. After removing the f-LF, the remaining sample were re-suspended in the SPT by shaking 

them carefully. 

2. Tubes were then sonicated using a pre-calibrated sonicator (see the calibration section 

below for more details for more details) at 10 J mL-1 (25 s). The sonicator was used at a 

maximum of 20 % amplitude to reduce the movement of material up the sonicator node.  
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3. During sonication, samples were kept in an ice slurry to efficiently dissipate any heat 

transfer from the sonication node.  

4. Occluded material that had travelled up the sonicator node was washed back into the sample 

tube with 1 mL of fresh 1.6 g cm-3 SPT using an autopipette.  

5. The sonicator node was washed with deionised water between samples, waiting until it 

dripped dry, before gently dabbing the node dry with tissue paper. Prior to sonicating 

another sample, the node was checked to ensure that no paper was stuck to it.  

6. Samples were then re-centrifuged at 1080 g for 30 mins 

7. The suspended o-LF10 was then fractionated, filtered, rinsed and oven dried in the same 

manner as the f-LF. 

8. SPT was recombined with the o-LF200 and pellets were re-suspended with a quick blast 

upside down on a vortex agitator.  

9. The remaining sample was then sonicated at 190 J mL-1 (8m16s for 36 mL), totalling 200 J 

mL-1 sonication. 

10. Material was washed off the sonicator node again. The sonicator node was washed three 

times with deionised water between uses, to prevent any potential SPT precipitation on the 

node. 

11. Tubes were reposed, balanced within the centrifuge and rested for 30 mins. 

12. Tubes were then centrifuged at 1830g for 30 mins. 

13. The o-LF200 floating material was then fractionated from the HF in the same manner as the 

f-LF and o-LF10. 

14. The SPT was then filtered from the o-LF200 and removed for recycling later (see the section 

below on SPT recycling for more details).  

15. Samples were then rinsed and oven dried.  

HF 

1. An acid washed glass bead (1 mm diameter) and 40 mL of deionised water were added to 

the remaining HF pellet. The glass bead broke up dense aggregates that developed during 

the rinsing process, particularly in the CaCO3-bearing site (Appendix Fig. 8.16). This in 

turn caused large recoveries because of the retention of SPT in the HF. 

2. This mixture was then agitated with a vortex until the pellet was broken up.  
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Appendix Fig. 8.16. Density fractionation pre-testing revealed a glass bead was 
necessary to ensure that the heavy fraction (HF) were thoroughly rinsed. A) 
This sample was not agitated with a glass bead (1 mm) and could not be rinsed 
properly. The HF aggregated and created a ball that still contained sodium 
polytungstate (SPT). B) This sample was agitated with a glass bead during the 
rinsing process and the HF was rinsed homogeneously, removing all SPT.  

3. Samples were then placed on a rotary shaker and agitated at 200 rpm for 10 mins. 

4. Samples were then centrifuged at 7,500 g for 30 mins. The supernatant was removed gently, 

pouring it against the direction of the cake so as not to dislodge loose material at the rim of 

the tube.  

5. The supernatant was not completely removed if the cake became un-stabilised, as it was of 

the utmost importance not to preferentially lose fine material. The rinse water was poured 

into a large beaker to check for loses of material during the rinsing process. If there were 

significant loses we started the process again.  

6. A second aliquot of deionised water (40 mL) was added to the sample and the process 

restarted.  

7. This process was repeated a total of five times to completely remove the SPT (< 50 μS).  

8. On the 4th rinse, 1mL of 2 M NaCl was added to the 40 mL of deionised water (50 mM 

NaCl) to prevent destabilisation of the cake on the 4th and 5th rinses. 

9. Once rinsed five times, the tube was vortexed with a little deionised water.  

10. The remaining HF slurry was then rinsed into an aluminium boat.  

11. The glass ball was removed straight away with tweezers rinsing any material back into the 

boat. 

12. After ensuring that all the HF material was transferred into the boat, the tube was disposed 

of and the HF was oven dried.  
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Material recovery 

1. Once oven dried, material in the aluminium weigh boats was left to cool within a desiccator.

2. Material was then scraped off the boats at a constant pressure using a plastic spatula so as

not to damage the boat. Pre-testing demonstrated that the metal spatula was more efficient,

but also attacked the aluminium boats, as was confirmed using optical microscopy

(Appendix Fig. 8.17 A & B). The material was scraped onto a pre-weighed weighing paper

and weighed. All scraping was carried out atop a white plastic tray to prevent any loss of

material.

Appendix Fig. 8.17. Micrographs of the free-light fraction from the: A) CaCO3-free site, 
B) CaCO3-bearing site. This inspection revealed that the metal spatula was too
aggressive to recover material for the fractions, as it grated the aluminium
boats (grated material circled in red), which contained the fractions after
drying. It also revealed that the CaCO3-free site seemed to have more mineral
coating.

3. Once all the material was removed from the boat, fractions were then moved into a pestle

and mortar, and crushed to a fine and homogeneous particle size.

4. To remove SIC from the LFs, all LFs were moved into a pre-weighed glass vials and

fumigated, like in Chapter 4 (see the fumigation section in 8.4.2.6 below).

5. A representative subsample of each HF was moved to an acid washed glass desiccator vial

for fumigation, as in Chapter 4 (see the fumigation section in 8.4.2.6 below).

6. Total recovery for all samples ranged between 98.2–100.4 %. There was no material

recovered in the F1.6 o-LF10.

8.4.1.5 - Preparations for DF 

Grading SPT to a specific density 

1. To ensure SPT was at 1.6 g cm-3, SPT was slowly added to a deionised water solution,

heated in a beaker on a hotplate at 80 °C (or warm to touch) with an acid washed stirring

magnet.
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2. Due to the potential precipitation of Ca-metatungstate, SPT was always kept in plastic

containers between the evaporation steps on the hotplate in glass.

3. Once cool the density of SPT solutions was confirmed using a floating densimeter in the

1.5-2 g cm-3 range.

Recycling SPT 

Due to the expensive nature of heavy density solutions SPT was recycled several times before disposal 

according to Six et al. (1999). A recycling column was used (the construction of which is explored in 

the next section).  

1. The SPT was first filtered through 2.5 μm filter papers

2. The SPT was first then added to a glass beaker and heated on a hotplate at 80 °C (or until

warm to touch) with a stirring magnet.

3. 15 mL L-1 H2O2 (35%) was then added to the warm contaminated SPT solution to oxidise

any organic material that passed the filter.

4. After 24 H, the SPT was removed from the heating plate and stored in a plastic container.

5. The SPT was then left to rest for 7 – 10 days with the lid left slightly open, to degas excess

H2O2

6. 2 L of deionised water was then passed through the recycling column (Appendix Fig. 8.18;

see below for details on its construction), prior to passing the SPT through.
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Appendix Fig. 8.18. Sodium polytungstate rinsing column. 

7. The SPT was then passed through the recycling column, passing 2.5 μm filters at the top 

and bottom.  

8. Each litre that passed the unit was marked on tape at the base of the stand. Filters on the top 

and bottom of the column were also changed every day.  

9. After passing all the H2O2 oxidised / evaporated SPT through the column, 200 – 400 mL of 

deionised water was passed through the columns twice, to ensure that any remaining SPT 

was rinsed from the columns. This rinse liquid was then combined with the SPT to be 

evaporated.  

10. The rinse water was then evaporated from the SPT on a heating plate with a stirring magnet. 

11. 15 mL L-1 ethanol was added to the evaporating solution to digest any excess H2O2.  

12. The recycled SPT was then evaporated to the desired density, checking density on the hot 

plate. Hotplate temperatures were reduced markedly if the SPT was left overnight to prevent 

potential “evaporation” accidents.  

13. The temperature of the SPT should only be warm to touch.  

14. After the solution had cooled to room temperature in a plastic container, it was brought to 

the desired density by adding deionised water.  
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Changing columns 

1. Dispose of the activated charcoal and filter papers. 

2. Store the cationic (Na+) exchange resin for regeneration.  

3. Clean and acid wash everything (3 M HCl). 

4. Set up the column as follows (Appendix Fig. 8.18): 

a. Cut two circular 6 μm filters for each column and place at the bottom of the columns. 

b. Next place into the column: 

i. 5 cm of glass wool column (laine de verre) 

ii. 10 cm of cationic exchange resin (Dowex® Marathon™ C Na+-form, strongly 

acidic, 20-50 mesh) 

iii. 5 cm of glass wool column (laine de verre) 

iv. 7 cm activated charcoal 

v. Then another 3cm of glass wool column (laine de verre) 

c. Make sure any liquid that goes in and out of the columns is filtered on 2.5 μm filters at 

the top and at the bottom 

Regenerating the cationic exchange resin 

1. Put the resin in a 2 M NaCl solution for 1 h while mixing slowly. 

2. Remove the solution 

3. Repeat steps a further 2 times 

4. Rinse the resin three times with deionised water 

8.4.2 - Lab analyses 

8.4.2.1 - Soil pH 

Soil pH was measured potentiometrically using a glass-body combination electrode (Thermo Scientific 

Orion ROSS probe) on field moist samples in 0.1 M CaCl2 solution (1:2 ratio).  

1. 10 g of field moist soil was combined with 20 mL of 0.1 M CaCl2 in 50 mL centrifuge tubes.  

2. Suspensions were then agitated with a pipette tip.  

3. Suspensions were left to equilibrate for 10 mins from the start time and were then stirred a 

second time. 

4. Suspensions were then left to settle for another 20 mins. 
5. The pH of suspensions was then measured using the electrode, rinsing the electrode between 

samples using distilled water.  

8.4.2.2 - Texture - Particle size distributions 

Texture was determined using laser diffraction (Pansu and Gautheyrou, 2006). The Beckman Coulter 

LS13320 Particle Sizing Analyser was run using the default optical model (Fraunhofer.rf780d) in auto-
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dilution mode. Measurements were taken when an obscuration of 12 % was obtained. Pre-treatment of 

samples prior to measurement included: 

1. 1 g of air-dried soil from each sample was placed in a 50 mL centrifuge tube.

2. Samples were not de-carbonated in an attempt to preserve any CaCO3 (< 2 mm), which were

present at the CaCO3-bearing site.

3. Soil organic matter was digested with increasing concentrations of H2O2 (10-35 %). Oxidation

of the organic matter was completed slowly as the reaction can quickly escalate, causing

samples to spill over, and then the extraction must be restarted.

a. pH was kept around neutrality throughout the destruction of organic matter with NaOH

to prevent destruction of mineral components due to the acidification associated with

the destruction of organic matter.

i. pH was checked with indicator paper and corrected around neutrality at each

step after step c.

b. 2 mL of distilled water was first added to the samples.

c. 2 mL of 10 % H2O2 was added to the samples, before agitating them.

d. After agitation, the lids were left on the samples, but unscrewed to allow for the release

of gases.

e. Tubes were then left for 12 h under the fume hood.

f. After this, the tubes were heated at 45°C in an oven.

g. 2 h later, 1 mL of 35 % H2O2 was added to the samples.

h. Samples were then left to repose for another 12 h.

i. Samples were then put back into the oven for 12 h.

j. Every 8 to 16 h 2 – 4 mL of 35 % H2O2 was added to the samples, agitating them and

then replacing them in the oven, until all organic matter had been oxidised and there

was no further evidence of reaction upon H2O2 addition. This took approximately 1.5

weeks.

k. Samples were then left with their lids off in the oven and evaporated down to < 10 mL.

4. Samples were then chemically dispersed with 1 mL of 40 g L-1 sodium hexametaphosphate,

shaking them on a rotary table at 100 rpm.

5. Samples were then washed into 15 mL tubes designed for the auto-sampler of the Beckman

Coulter LS13320 Particle Sizing Analyser.

8.4.2.3 - XRF 

The total elemental compositions of samples were determined using X-ray fluorescence (XRF; 

PANalytical PW2400 WDXRF spectrometer). Samples were prepared for analysis using a lithium 

tetraborate (Li2B4O7) fusion.  
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1. 3 g of crushed sample was weighed into a clean pre-weighed crucible.  

2. Samples were then heated for 3 h at 1050°C in a Solo 111-13/10/30 Furnace. 

3. The samples were then left to cool at room temperature. 

4. The loss of combustibles was then calculated for correction of elemental compositions later.  

5. Samples were then homogenised using a pestle and mortar.  

6. 1.2 g of each homogenised sample was then combined with 6 g of Li2B4O7 and crushed in a 

pestle and mortar for 3 mins. 

7. Samples were then loaded into a platinum crucible and fused twice in a PANalytical Perl X3 

Fuser at 1250 °C.  

8. The fuser then loaded the fused samples into a platinum plate, where they cooled.  

9. Glass samples are then removed from their platinum holder and stored in plastic containers, 

until they are measured with the XRF. 

8.4.2.4 - XRD 

Bulk 

Bulk mineralogy (Appendix Fig. 8.1) was determined on ground samples prepared according to Adatte 

et al. (1996) using X-ray diffraction (XRD; Thermo ARL X’TRA Powder Diffractometer).  

1. Approximately 800 mg of ground sample was pressed (20 bars) in a powder holder covered 

with blotting paper.  

2. Pressed samples were then analysed using Cu Kα radiation at 45 kV / 40 mA with a 13 s 

counting time per 0.02° for 2 θ in the 1-65° range.  

3. Samples were rotated at a range of 1° min-1 with an acquisition step size of 0.03 – 0.05° 2 θ 

using a 0 / 0 type goniometer with a 250 mm radius.  

4. A spectral counter (THERMO ARL water cooled silicon detector) was used to eliminate Cu Kβ 

and Fe parasitic emissions.  

Clay 

Samples from a randomly selected profile at each site were also prepared for clay mineralogical analysis 

(Appendix Fig. 8.2) according to Adatte et al. (1996).  

1. Samples from profiles F1 and B2 were mixed with deionised water. 

2. Samples were agitated and combined with 10 % HCl to remove carbonate.  

3. Insoluble residues were washed by centrifugation until neutral pH was acquired. 

4. Different size fractions (< 2 µm and < 16 µm) were separated by sedimentation according to 

Stokes’ law.  

5. Selected fractions were then pipetted onto glass plates and air-dried.  

6. Resulting oriented slides were analysed by XRD before and after ethylene glycol solvation.  
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8.4.2.5 - Extractions 

Extractions of varying strength were used on the soil samples to evaluate different elements within our 

soils (described below). Analysis of the various extractions was completed using an ICP-OES in a 2 % 

HNO3 matrix. All samples were run with process blanks and 20 % random blind measurements to ensure 

quantification of replicability and analytical error. The machine was run with analytical blanks and 

standards throughout its runs. A internal Sc standard was also used to check for machine drift and correct 

measurements. All extractions were completed using acid washed (3M HCl) equipment.  

Selective dissolution of Al and Fe forms 

X-ray diffraction works well on repeating crystalline structures, but struggles on poorly crystalline

reactive minerals. These reactive minerals, such as Al and Fe oxides can be semi-quantified using

selective dissolution techniques (Parfitt and Childs, 1988b). Selective dissolution techniques extract

minerals based on their resistance to dissolution by an array of chemical reagents and can be combined

to withdraw an approximation of the specific reactive mineral phase contents (Eusterhues et al., 2003).

Two dissolution techniques were combined to analyse reactive Al and Fe phases at the Nant Valley;

ammonium oxalate acid buffer (McKeague and Day, 1966) and citrate-bicarbonate-dithionite (Mehra

and Jackson, 1958) extractions. Both extracts were completed on field moist samples as Al and Fe oxides

are known to be affected by drying (Schwertmann, 1964).

Ammonium oxalate acid buffer extraction 

Oxalate extracts Al and Fe (Alo and Feo) associated with organic complexes and short range order 

mineral phases. The Alo and Feo were extracted using an ammonium oxalate acid buffer (pH 3), created 

by combining 0.2 M ammonium oxalate ([NH4]2C2O4.H2O; 4 / 7 parts) with 0.2 M oxalic acid (H2 

C2O4.2H2O; 3 / 7 parts).  

1. 1 g of moist soil sample was combined with 100 mL of ammonium oxalate acid buffer solution

in 250 mL polypropylene centrifuge tubes.

2. The tubes will then be concealed from light using aluminium foil and shaken at 250 rpm for 4

h.

3. The samples were reposed for 1 h.

4. Extracts will then be centrifuged at 7,500 g for 30 mins.

5. Extracts were then vacuum filtrated (0.45 μm) and diluted (x 100) for analysis on the ICP-OES.

Dithionite extraction 

Dithonite is a strong and versatile reducing agent (Williamson, 1989) and can be used to extract Al and 

Fe from crystalline or non-crystalline species, secondary oxyhydroxides, and organic complexes 

(Dahlgren, 1994). The dithionite reaction needs to be buffered between pH 7 – 8 (Mehra and Jackson, 

1958) to efficiently extract Al and Fe (Ald and Fed). This is achieved with a sodium-citrate-bicarbonate 
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buffer. The buffer is created by combining 0.3 M trisodium citrate dihydrate (Na3C6H5O7 . 2H2O; 8 / 9 

parts) with 1 M sodium bicarbonate (NaHCO3).  

1. 1 g of field moist soil from each sample was added to 100 mL of the sodium-citrate-bicarbonate

buffer, and heated in a water bath (Memmert WNE 29) at 75-80 °C.

a. The water level must not be too high as it causes the tubes to fall over, but must be high

enough to ensure that the samples stay at the correct temperature.

2. Once brought up to temperature, 1 g of dithionite (Na2S2O4) was added to the solution using a

calibrated measuring spoon and stirred for 10 mins intermittently with a pipette tip.

3. A second 1 g portion was then added to the samples, before stirring them for a further 10 mins

discontinuously.

4. Once the mineral soils greyed completely (30 mins), the solutions were removed from the water

bath and reposed / chilled at room temperature for 1 h.

5. Samples were then centrifuged at 7,500 g.

6. Samples were vacuum filtrating (0.45 µm).

7. Filtered samples were then diluted (x 100) with 2 % HNO3 for ICP-OES analysis.

Ca extractions 

Cobalt hexamine extract (0.0166 M) 

Cobalt hexamine (cohex) extract was selected as the main exchangeable extract after pre-testing 

revealed that it was least aggressive against CaCO3 in soil samples from the Nant Valley with mixed 

CaCO3 contents (Appendix Fig. 8.19). The cohex extraction was adapted from Aran et al. (2008). The 

cobalt hexamine extraction works via compulsive exchange as cobalt has a strong affinity for exchange 

sites. The compulsive exchange method of calculating CEC (difference in cobalt concentration between 

the blank and samples) was not used as a CEC measure, due to its erratic behaviour and lack of 

reproducibility during pre-testing. Therefore the sum of exchangeable cations was used instead, not 

including H+. 
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Appendix Fig. 8.19. A comparison of different exchangeable extracts on soils of mixed 
calcium carbonate contents from the Nant Valley.  

1. 2 g of air-dried soil was combined with 40 mL of 0.0166 M cohex. 

2. Samples were shaken at 120 rpm for 1 h on a rotary shaker.  

3. Samples were then vacuum filtered using 0.45 μm nitrocellulose filter papers.  

4. Filtered samples were diluted (x 25) and acidified with 2 % HNO3.  

5. Acidified extracts were then measured using the ICP-OES. 

Water extractable extract 

Water extractable elements were extracted with a method adapted from Tirmizi et al. (2006). Extraction 

time was kept as small as possible to prevent the dissolution of reactive CaCO3 by deionised water, 

which acidifies upon exposure to CO2
Atm and its absorption (H2CO3).  

1. 5 g of air-dried soil (< 2 mm) was combined with 20 mL of deionised water (ddH2O). 

2. Samples were then shaken for 30 mins at 250 rpm on a rotary shaker. 

3. Samples were then left to repose for 30 mins.  

4. Extracts were centrifuged at 1080 g for 15 mins. 

5. Extracts were then filtered using 8 μm filter papers. 

6. Filtered extracts were acidified and diluted with 2 % HNO3. 

7. Diluted extracts were then measured on the ICP-OES.  

KCl extract (2 M) 

An exchangeable cation extraction method adapted from Keeney and Nelson (1982). This extract is also 

used for the extraction of available nitrogen.  

1. 5 g of air-dried soil ws combined with 25 mL of 2 M KCl. 
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2. Samples were then shaken for 30 mins at 180 rpm on a rotary shaker.  

3. Extracts were then vacuum filtered through 0.45 μm nitrocellulose filters.  

4. Samples were diluted (x 50) and acidified with 2 % HNO3.  

5. Diluted extracts were then measured using an ICP-OES. 

Na2EDTA extract (0.05 M) 

A Na2EDTA extraction was used in an attempt to extract a more resistant exchangeable pool (Lo and 

Yang, 1999), but was also aggressive against reactive CaCO3 (Glover, 1961).  

1. 2 g of air-dried soil was combined with 40 mL of 0.05 M Na2EDTA. 

2. Samples were then shaken for 2 h at 250 rpm on a rotary shaker. 

3. Extracts were then vacuum filtered through 0.45 μm nitrocellulose filters.  

4. Samples were diluted (x 50) and acidified with 2 % HNO3.  

5. Diluted extracts were then measured using an ICP-OES. 

CuCl2 extract (0.5 M) 

A CuCl2 extraction was also used to extract a more resistant exchangeable pool (Barra et al., 2001; Juo 

and Kamprath, 1979), but it was also aggressive against reactive CaCO3. While this method worked on 

a limited number of samples, giving reproducible data, it also coated the ICP-OES torch in Cu. This Cu 

was removed in an acid bath with a low-level sonication, but we would recommend further dilution, 

prior to analysis, if you are to use this method.  

1. 2 g of air-dried soil was combined with 20 mL of 0.5 M CuCl2. 

2. Samples were then shaken for 2 h at 250 rpm on a rotary shaker. 

3. Extracts were centrifuged at 1080 g for 30 mins.  

4. Extracts were then vacuum filtered through 0.45 μm nitrocellulose filters.  

5. Samples were diluted (x 50) and acidified with 2 % HNO3.  

6. Diluted extracts were then measured using an ICP-OES. 

7. Remember that CuCl2 is toxic and must be disposed of with due care.  

NH4NO3 extract (1 M) 

As can be seen in Appendix Fig. 8.19 the NH4NO3 extract was not retained as it was aggressive towards 

reactive CaCO3 during method, development but for clarity it’s explained below. The method was 

adapted from Bélanger et al. (2008). 

1. A sub-sample of soils with mixed carbonate contents were selected.  

2. 8 g of air-dried soil from these soils was combined with 40 mL of 1 M NH4Cl. 

3. Samples were then shaken for 1 h at 200 rpm on a rotary shaker. 

4. Extracts were then vacuum filtered through 0.45 μm nitrocellulose filters.  

5. Samples were diluted (x 50) and acidified with 2 % HNO3.  
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6. Diluted extracts were then measured using an ICP-OES. 

BaCl2 extract (0.1 M) 

As with the NH4NO3 the BaCl2 extract was not retained as it was relatively more aggressive towards 

reactive CaCO3 during method development (Appendix Fig. 8.19), but for clarity it’s explained below. 

The method was adapted from Gillman and Sumpter (1986). 

1. A sub-sample of soils with mixed carbonate contents were selected.  

2. 2.5 g of air-dried soil from these soils was combined with 25 mL of 0.1 M BaCl2. 

3. Samples were then shaken for 1 h at 250 rpm on a rotary shaker. 

4. Extracts were then vacuum filtered through 0.45 μm nitrocellulose filters.  

5. Samples were diluted (x 50) and acidified with 2 % HNO3.  

6. Diluted extracts were then measured using an ICP-OES. 

8.4.2.6 - Soil organic carbon and total nitrogen analysis / fumigation 

Bulk organic C and total nitrogen contents were quantified on AGB and ground soil samples by dry 

combustion in Chapter 4 and 5 (Thermoscientific Flash 2000 CHN Elemental Analysers and Carlo Erba 

1108, respectively).  

Fumigation 

Prior to analysis SIC needed to be removed from ground samples to prevent over-estimation of the SOC 

content in the CaCO3-bearing site (and potential δ13C value bias from CaCO3 later in Chapter 5). 

Removal of SIC is normally achieved with repeated rinsing with HCl and H2O, however, this also 

removes acid and water soluble SOC and is both time and labour intensive. We used a 12 M HCl 

fumigation process (Harris et al., 2001; Ramnarine et al., 2011) instead as it can achieve SIC removal 

quicker and without the loss of soluble SOC. Samples typically lose weight upon fumigation when SIC 

is removed. Samples gained weight during the fumigation process, due most likely to the formation of 

a green rust, which could be seen on the samples.  

1. 510 mg of ground sample was oven dried at 65 °C for 24 h. 

2. Samples were removed from the oven and left to dry in a desiccator.  

3. Samples were then re-weighed after cooling.  

4. Samples were remoistened carefully with 150 μL of deionised water (ddH2O). 

5. Samples were then fumigated in a desiccator with 100 mL of 10.8 M HCl for 24 h. 

6. Samples were then removed from the desiccator and left to evaporate for 72 h (so as to not 

corrode the drying oven). 

7. Samples were then re-dried at 65 °C for 24 h and re-weighed to calculate the weight gain during 

the fumigation process. 
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8. A correction factor similar to the humidity residual correction was then used to correct SOC 

contents of analysed samples. 

9. Approximately 10-15 mg of fumigated samples were then weighed into tin boats using a 

microbalance and pyrolysed using a Thermoscientific Flash 2000 CHN Elemental Analyser.  

10. Samples were measured in duplicate to check the replicability of our measurements and 

standards were pyrolysed throughout the analysis to check for machine drift.  

δ13C values 

The content of C and stable C isotope composition of both bulk samples, triplicates of density fractions, 

AGB and BGB were quantified using a Carlo Erba 1108 elemental analyser connected to a Thermo 

Fisher Delta V isotope ratio mass spectrometer (EA-IRMS). The EA-IRMS was operated in continuous 

He flow mode via a split interface (Conflo II). Combustion occurred in an O2 atmosphere at 1020°C. 

Standards and blind replicates where measured throughout the run. The stable C isotope composition is 

reported as δ13C value in ‰ relative to known standards (Eq. 5.2). All analysis was run with a minimum 

of 10 % blind replicates, unless run in triplicate (density fractions). 

8.4.2.7 - X-ray photoelectron spectroscopy 

All the fractions of a surface and subsoil sample from the same randomly-selected profile at each site 

were measured (all fractions from samples B2.1, B2.4, F2.1, F2.4) using a PHI VersaProbe II scanning 

XPS microprobe (Physical Instruments AG, Germany). X-ray photoelectron spectroscopy (XPS) 

measurements were made at the Surface Characterization Laboratory, Ecole Polytechnique Federale de 

Lausanne. Fractions were analysed with a monochromatic Al Kα X-ray source (1486.6 eV) of 45.7 W 

power and a beam size of 200 µm. The spherical capacitor was set at 45° take-off angle respective to 

the surface of samples. Samples were scanned twice, once coarsely (region scans), with a pass energy 

of 187.85 eV, yielding the principle elements of interest. The samples were than scanned in more detail 

(survey scans) using a pass energy of 46.95 eV. Exposure time was < 30 mins to prevent X-ray induced 

alteration of the density fractions and subsequent false structural C assignments (Dengis et al., 1995). 

Vacuum inside the main chamber was in low 10 torr during measurements (-7 Pa). Sample charging 

during analysis caused peak shifts of < 3 eV, which were corrected based on the maximum principal C1s 

sub peak, centering at 285 eV (Mikutta et al., 2009).  

8.4.3 - Statistical methods 
As the statistical methods have been thoroughly explored in previous parts of this thesis, this specific 

section will present some of the code used in SAS for the linear mixed models, principal component and 

factor analysis. Code for specific graphics will not be presented in this section, but can be requested by 

email.  



203 
 

8.4.3.1 - Linear mixed models 

Analysis of bulk soil measurements in Chapter 4 

PROC MIXED data = DCP method = reml plots=residualpanel (conditional) boxplot; 
class RPL DG DGPL Pronew ; 
model SM = RPL|DGPL /ddfm=satterth htype=1,3 residual;  
repeated DGPL / type=ar(1) subject=Pronew group=RPL*DG; 
lsmeans RPL DGPL RPL|DGPL; 
RUN;  
 
PROC MIXED data = DCP method = reml plots=residualpanel (conditional) boxplot; 
class RPL DG DGPL Pronew ; 
model SM = RPL|DGPL /ddfm=satterth htype=1,3 residual;  
repeated DGPL / type=ar(1) subject=Pronew group=RPL*DG; 
lsmeans RPL DGPL RPL|DGPL; 
RUN;  
Analysis of triplicates in Chapter 5 

'For triplicates data'; 
 
PROC MIXED data = C13DF method = reml plots=residualpanel (conditional) boxplot; 
class RandomProfile Fraction LForHF Site Depth Profile Sample ; 
model _13C = Site|Depth|Fraction /ddfm=satterth htype=1,3 residual;  
random Depth/ type=AR(1) subject=Profile group=Site; 
repeated Fraction/type=vc subject=sample*RandomProfile group=LForHF; 
lsmeans Depth Fraction Site|Fraction; 
RUN;  
'LForHF tests'; 
 
PROC MIXED data = C13DF method = reml plots=residualpanel (conditional) boxplot; 
class RandomProfile Fraction LForHF Site Depth Profile Sample ; 
model SOC = Site|LForHF /ddfm=satterth htype=1,3 residual;  
random Depth/ type=AR(1) subject=Profile group=Site; 
repeated Fraction/type=vc subject=sample*RandomProfile group=LForHF; 
lsmeans Site|LForHF; 
RUN; 

8.4.3.2 – Principal component and factor analysis 

Principal component analysis 

PROC PRINCOMP data=PCA out=PCAPCA  
 plots(ncomp=3)=pattern(vector circles=0.25 0.5 0.75 1.0);  
 ID SamN;  
 var Clay FineSilt Coarsesilt Finesand Sand CaCO3React CaCO3Total Phyllosilicates
 Quartz Feldspar Plagioclase Goethite AlXRF CaXRF FeXRF MgXRF SiXRF CaSat AlSat; 
RUN;  
Factor analysis 

PROC FACTOR data=PCA out=DCPvari method=principal nfactor=5 rotate=quartimax 
cov 
 plots(vector nplot=3)= loadings(circles=0.25 0.5 0.75 1.0) scree; 
 var Clay FineSilt Coarsesilt Finesand Sand CaCO3React CaCO3Total Phyllosilicates
 Quartz Feldspar Plagioclase Goethite AlXRF CaXRF FeXRF MgXRF SiXRF CaSat AlSat; 
RUN; 
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8.6 - Full Papers 

8.6.1 - Chapter 3 - Ca-mediated stabilisation of SOC 
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Abstract Soils play an essential role in the global

cycling of carbon and understanding the stabilisation

mechanisms behind the preservation of soil organic

carbon (SOC) pools is of globally recognised signif-

icance. Until recently, research into SOC stabilisation

has predominantly focused on acidic soil environ-

ments and the interactions between SOC and alu-

minium (Al) or iron (Fe). The interactions between

SOC and calcium (Ca) have typically received less

attention, with fewer studies conducted in alkaline

soils. Although it has widely been established that

exchangeable Ca (CaExch) positively correlates with

SOC concentration and its resistance to oxidation, the

exact mechanisms behind this relationship remain

largely unidentified. This synthesis paper critically

assesses available evidence on the potential role of Ca

in the stabilisation of SOC and identifies research

topics that warrant further investigation. Contrary to

the common view of the chemistry of base cations in

soils, chemical modelling indicates that Ca2? can

readily exchange its hydration shell and create inner

sphere complexes with organic functional groups.

This review therefore argues that both inner- and

outer-sphere bridging by Ca2? can play an active role

in the stabilisation of SOC. Calcium carbonate

(CaCO3) can influence occluded SOC stability

through its role in the stabilisation of aggregates;

however, it could also play an unaccounted role in the

direct sorption and inclusion of SOC. Finally, this

review highlights the importance of pH as a potential

predictor of SOC stabilisation mechanisms mediated

by Al- or Fe- to Ca, and their respective effects on

SOC dynamics.

Keywords Calcium � Soil organic carbon
stabilisation � Sorption � Occlusion � Polyvalent cation
bridging � Organo-mineral interactions

Introduction

Soil organic carbon stabilisation

Soils are the largest actively cycling terrestrial C

reservoir and play an essential role in the global

cycling of C. Improving our understanding of this C

reservoir and modelling its dynamics are fundamental

to predicting its sensitivity to future change (Brovkin

and Goll 2015). However, current models suffer from
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large uncertainties caused by the complexities of SOC

and its physicochemical interactions with the soil

matrix (Friedlingstein et al. 2006). Models require

further mechanistic research on the variables that drive

SOC dynamics to improve their accuracy (Campbell

and Paustian 2015). Therefore, understanding the

mechanisms behind the accumulation and persistence

of SOC is of globally recognised importance.

Soil organic C stabilisation broadly refers to

mechanisms believed to impede the decomposition

of organic matter, promoting its accumulation and

persistence in soils. Conversely, decomposition refers

to the progressive oxidative transformation of organic

inputs, during which a fraction of the organic matter is

volatilised as carbon dioxide, while residues become

increasingly laden with functional groups, such as

carboxyl, phenol, or hydroxyl groups (Guggenberger

and Zech 1993; Oste et al. 2002; Peinemann et al.

2005). Sollins et al. (1996) originally proposed three

theoretical mechanisms that confer stability to SOC:

(i) an inherent recalcitrance or thermodynamic stabil-

ity of soil organic matter (SOM) and its subsequent

selective preservation by decomposers, (ii) the phys-

ical occlusion of SOC from decomposers, and (iii)

sorption of SOC to inorganic soil components result-

ing in organo-mineral or organo-cation complexes.

It was previously thought that the primary mech-

anism behind the persistence of SOC was the selective

preservation of thermodynamically stable or recalci-

trant substrates by decomposers (Aber et al. 1990;

Sollins et al. 1996), causing their accrual within the

soil matrix. However, as hypothesised by Oades

(1988), there is little evidence for the preservation of

complex cell-wall materials like lignin and suberin in

stable SOC pools (Gleixner et al. 1999, 2002; Rumpel

and Kögel-Knabner 2011; Schmidt et al. 2011).

Contrarily, recent evidence suggests that selective

preservation is only relevant at the beginning of the

SOC decomposition continuum (Dignac et al. 2005;

Gleixner et al. 1999, 2002; Lehmann and Kleber 2015;

Schmidt et al. 2011) or within organic horizons

(Lemma et al. 2007; Preston et al. 2009). The

stabilisation and maintenance of SOC in mineral soil

horizons, over medium- to long-time periods, is now

predominantly thought to be driven by specific

ecosystem properties rather than the inherent recalci-

trance of SOC (Schmidt et al. 2011).

The established paradigm: ecosystem properties

limiting SOC decomposition

Important ecosystem properties that contribute to SOC

stabilisation include:

(i) the physical separation of substrates from

decomposers over plurimetric to micrometric

scales;

(ii) interactions between SOC and cations or

minerals;

(iii) the occurrence of temperature or moisture

conditions that are incompatible with enzy-

matic reactions;

(iv) toxicity effects of metal ions like Al3?.

The first and second processes are the most wide-

spread as they occur, theoretically at least, in all soils.

The state of knowledge on these processes is briefly

synthesised below.

Physical separation

Soil organic carbon (SOC) can be stabilised by its

physical separation from decomposers, their enzymes,

and the necessary components of aerobic decomposi-

tion, such as oxygen or moisture. This physical

constrainment can occur over large spatial scales in

biologically limiting environments, like those present

in Histosols or Cryosols, where waterlogged or frozen

conditions severely limit the oxidative degradation of

organic substrates (Dörfer et al. 2013), but can also

occur at smaller spatial scales. Mechanisms for small

scale physical separation include hydrophobic inter-

actions arranging substrates into a micellar structure

(Chassin 1979), SOC inclusion within a mineral or co-

genetic mineral assemblage (Bindschedler et al.

2016), SOC intercalation within phyllosilicates

(Theng et al. 1986), and occlusion of SOC within

pedogenic aggregates (Adu and Oades 1978). Thus,

the physical constrainment of aerobic decomposition

can occur over plurimetric to micrometric scales and

stabilises SOC in nearly all soil environments.

Formation of soil aggregates is the most widespread

microscale process that leads to the physical separa-

tion of SOC, typically labelled as occluded SOC. The

relation between aggregation and the stability or

accumulation of SOC has been repeatedly demon-

strated (Denef et al. 2004; Moni et al. 2010; Monreal
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et al. 1997; Plante et al. 2002; Skjemstad et al. 1993;

Virto et al. 2008, 2010). Formation of aggregates has

conventionally been thought to involve the electro-

static flocculation of soil separates into stable domains

2–20 lm in size (Ghezzehei 2011), which are then

bound by organic or inorganic cementing agents

(Jastrow 1996; Six et al. 2004). Much emphasis has

been placed on biological mechanisms that can control

aggregation, such as the physical meshing of soil

particles by roots and fungi or the excretion of

extracellular polysaccharides/polymeric substances

by microorganisms and roots (Balesdent et al. 2000;

Chenu and Cosentino 2011; Six et al. 2002, 2004). In

the theory of biological-controlled aggregate forma-

tion (Chenu 1989; Oades and Waters 1991; Oades

1993; Tisdall 1996), fresh SOC acts as an aggregate

formation nucleus, stimulating localised activity of

microorganism communities. These microorganisms

excrete extracellular polysaccharide/polymeric sub-

stances that adhere to soil particles, which binds them

together, creating a shell around the decomposing

SOC nucleus and eventually occluding the SOC

residue within (Chenu and Cosentino 2011). When

driven by biology, soil structure is typically arranged

into a spatial hierarchy, with distinct physical classes

of aggregates that are often classified as macroaggre-

gates ([ 250 lm) or microaggregates (\ 250 lm;

Asano and Wagai 2014; Elliott 1986; Oades 1984;

Six et al. 2000, 2004; Tisdall 1996; Tisdall and Oades

1982). These aggregate classes have different proper-

ties (size, structural stability, porosity, hydrophilicity),

which confer different stabilities to the SOC occluded

within (Chenu and Cosentino 2011; Dexter 1988;

Kleber et al. 2007; Sutton et al. 2005; von Lützow et al.

2006; Zheng et al. 2016). It is largely accepted that in

this hierarchy, microaggregates are formed within

macroaggregates, which then break apart because of

their weaker binding agents and larger planes of

weakness, distributing microaggregates into the soil

matrix (Oades 1984; Six et al. 2004; Tisdall 1996).

These microaggregates are typically considered more

stable because of their stronger binding agents and

reduced macroporosity, increasing the stability of

SOC occluded within (Denef et al. 2004; Tisdall and

Oades 1982). Yet despite the recent emphasis on

biological controls on soil aggregation, it should be

noted that soil aggregation, its hierarchy, and the

occlusion of SOC is also influenced by inorganic

components of the soil matrix.

Abiotic agents, such as the composition of the

mineral soil matrix, can indeed play a dominant role in

aggregate formation and stability and therefore, influ-

ence occluded SOC. Polyvalent cations are known to

increase aggregation in soils by flocculating nega-

tively charged soil separates (Bronick and Lal 2005;

Érika et al. 2016; Grant et al. 1992). Inorganic

components can also increase the stability of aggre-

gates through cementation, with examples including

poorly crystalline minerals (Rasmussen et al. 2005),

well crystallised Fe oxides (Oades and Waters 1991;

Zhao et al. 2017), or carbonates (Falsone et al. 2010;

Fernández-Ugalde et al. 2011, 2014; Virto et al. 2011).

Inorganic components have been documented to

reinforce both macroaggregates (Fernández-Ugalde

et al. 2011; Virto et al. 2013) and microaggregates

(Falsone et al. 2010). Some authors have pointed out

that when predominantly controlled by inorganic

agents, like Fe oxides in Ferralsols (Oxisols; Oades

and Waters 1991), soil structure may not display the

hierarchical organisation commonly associated with

biology. However, when compared to biotic pro-

cesses, inorganic controls on SOC occlusion have

received relatively little attention recently.

Sorption

SOC can also be stabilised through sorptive interac-

tions. These interactions include adsorption to miner-

als, like phyllosilicate clays, Al-, Fe-, Mn-oxides,

poorly crystalline minerals, or polyvalent cations

forming bridges to mineral or other organic soil

constituents. A positive relationship between the

resistance of SOC to chemical oxidation and the

presence of specific reactive mineral species was first

described by Hosking (1932). Since then, the presence

of reactive minerals or metals has been repeatedly

shown to correlate with increased SOC stocks (Bal-

dock and Skjemstad 2000; Grand and Lavkulich 2011;

Sokoloff 1938; Torn et al. 1997) and the resistance of

SOC to microbial degradation in incubation experi-

ments (Minick et al. 2017; Rasmussen et al. 2006;

Whittinghill and Hobbie 2012). Soil organic C com-

plexed by minerals generally exhibits older 14C-

derived ages than other SOC pools (Kleber et al.

2011; Rasmussen et al. 2005; Schrumpf et al. 2013;

Spielvogel et al. 2008; Trumbore 1993); thus adsorp-

tion plays a clear role in the stabilisation of SOC over

long time periods. However, there is still some level of
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confusion within the field regarding the chemistry

involved. Therefore, the main bonding mechanisms

between organic and inorganic soil components are

discussed briefly below.

Bonding mechanisms

There is a range of bonding mechanisms that can link

organic molecules to minerals or metal cations

(Table 1). The prevalence of each bondingmechanism

will vary with soil texture, mineralogy, and concen-

tration of cations. SOC can be stabilised through either

inner- or outer-sphere interactions with minerals or

metal cations (Sposito 2008; Sutton et al. 2005). Inner

sphere complexes occur when a substance can closely

approach a mineral’s surface or metal ion, usually

resulting in direct chemisorption; see Eq. 1 for an

example. In outer sphere interactions, water molecules

prevent the direct approach or sorption of a substance

to a mineral’s surface or metal ion; instead, the charges

are countered through a diffuse charged zone (Oldham

2008). In soil, inner- and outer-sphere interactions act

in combination to stabilise SOC over medium- to long-

time periods, so that it becomes difficult, if not

impossible, to ascribe SOC stabilisation in a given

horizon to specific modes of interaction. However, a

basic understanding of the fundamental chemical

mechanisms at play is useful to inform our interpre-

tation of operationally-defined SOC pools (see section

below on sorption processes involving Ca).

�M� OH þ HO � R ! �M� O� Rþ H2Okk :

ð1Þ

Equation 1: Ligand exchange between a mineral

(M) and a hydroxyl functional group on an organic

substrate (R) that results in the direct and strong

adsorption of SOC. Equation adapted from Huang and

Schnitzer (1986).

Stabilisation by sorption

SOC can be stabilised by organo-cation or organo-

mineral interactions through several mechanisms. The

primary SOC stabilisation mechanism of adsorption

consists of the removal of SOC from solution and

transfer to a solid phase. This transfer increases the

stability of SOC by reducing the chance of diffusive

encounter with degrading enzymes. It can occur

whenever organic compounds become adsorbed to

mineral surfaces (Kaiser and Guggenberger 2000;

Kalbitz et al. 2005), but also when the concentration of

cations becomes sufficient for soluble organic poly-

mers to flocculate and precipitate (Baldock and

Skjemstad 2000). Much of the research on flocculation

thresholds has focused on acid soils dominated by Al

chemistry (Boudot 1992; Matus et al. 2006; Ras-

mussen et al. 2006). In these soils, it has been shown

that extensive flocculation and precipitation can be

expected at a C:Al ratio in the order of 10–30 or lower

(Jansen et al. 2003; Scheel et al. 2007; Skjemstad et al.

1992). The flocculation of dissolved organics by other

cations in natural soils has not been as extensively

studied.

Beyond the effect of sorption on the partition of

SOC between the liquid and solid phase, substrates can

also be stabilised by other mechanisms, such as the

toxicity effects of certain metals, the inactivation of

enzymes during sorption, or steric hindrance. It has

been proposed that environmental cytotoxicity could

result in the stabilisation of organics complexed by

somemetals such as Al (Tate and Theng 1980). Al3? is

toxic and is thought to limit decomposer activity in

acidic soil environments (Tonneijck et al. 2010),

although evidence for this can be contradictory

(Marschner and Kalbitz 2003). The extra-cellular

enzymes responsible for much of SOM decomposition

can also be rendered inactive by adsorption onto

mineral surfaces, due to structural modifications in

their conformation at the adsorption interface (Qui-

quampoix and Burns 2007). Steric hindrance is a

general mechanism involving the lack-of-fit between a

substrate and a catalyst (an enzyme) caused by

changes in tertiary structure, which is a common

consequence of sorptive interactions in soil (Qui-

quampoix and Burns 2007; Zimmerman and Ahn

2010). Therefore, the spatial arrangement of adsorbed

elements along the molecular interface plays an

important role in the stabilisation of SOC during

adsorption.

Although it was previously proposed that adsorp-

tion occurred uniformly over mineral surfaces, result-

ing in a monolayer coverage (Keil et al. 1994), this has

now been challenged by empirical evidence suggest-

ing that organic loading instead occurs in distinct

reactive ‘hotspots’ (Hedges and Keil 1995; Kaiser and

Guggenberger 2003; Vogel et al. 2014). Vogel et al.

(2014) recently utilised scanning electron microscopy
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Table 1 Mechanisms of interaction between soil organic carbon substrates and minerals or metal ions

Mechanism Nature Type of

interaction

Description

Ligand exchange (Mikutta et al. 2014)

Ligand exchange is the formation of new

coordination complexes with metals

Covalent to ionic

bond

Inner sphere Strong bonding to a metal via the direct

substitution of one outgoing ligand (for

instance, a hydroxyl group) by an incoming

one (for instance, an organic molecule with a

hydroxyl, phenol, or carboxyl functional

group)—see Eq. 1. There is no change in

oxidation state at the metal centre and charge is

conserved during the reaction

Chelation (Ahmed and Holmström 2014)

Chelation is the formation of polydentate

coordination complexes with metals.

Compared to monodentate complexes, they

have a greater stability

Covalent to ionic

bond

Inner sphere A special case of ligand exchange, where the

incoming ligand (usually an organic molecule)

is polydentate and thus able to replace two or

more of the simple outgoing ligands bound to

the central metal.

Cation bridging (Iskrenova-Tchoukova et al.

2010)

Cation bridging allows for the interaction of two

negatively charged surfaces such as a

phyllosilicate and an organic anion

Direct cation bridging

Mostly ionic bond

Inner sphere A bond formed when the hydration shell of a

polyvalent cation is displaced. The organic

anion becomes directly coordinated to the

cation, as in ligand exchange

Exchangeable (water)

bridging

Van der Waals forces

(see below)

Outer sphere Here water is not displaced and the cation

interacts with the organic anion essentially

through hydrogen bonding (see below). Both

polyvalent and monovalent cations can

participate in this type of interaction. It has

sometimes been labelled ‘water bridging’,

although this term remains ambiguous, as it has

also been used to describe ligand exchange

reactions. The term ‘exchangeable bridging’,

which has been coined to describe the cation

exchange phenomenon, may be more

descriptive

Hydrophobic interactions (Spaccini et al. 2002)

These occur whenever non-polar substances

exist in a polar solvent, such as water

Entropy-driven

structure

Outer sphere Aggregation of non-polar substances caused by

the repulsion of hydrophobic molecule by

water. Hydrophobic interactions also take place

during the clustering of amphiphillic molecules

into bilayers and micelles (hydrophilic exterior

protecting a hydrophobic core)

Other ‘weak’ interactions (van der Waals)

(Israelachvili 2011)

While weak, these forces are additive meaning

that in complex substrates such as those

commonly found in SOC, many van der

Waals interactions can combine to create

apparent strong sorption

Dipole–dipole force Outer sphere The electrostatic attraction between molecules

with permanent polarity, arising from

differences in the electronegativity of their

atomic constituents

Hydrogen bonding Outer sphere Hydrogen bonding refers to a specific type of

dipole–dipole interaction, which occurs when a

hydrogen atom bonded to a strongly

electronegative atom (typically F, O, or N)

interacts with another electronegative atom.

These interactions are stronger than ordinary

dipole–dipole forces

London dispersion

(induced dipole)

force

Outer sphere Temporary and weak attractive force arising

from the unequal movement of electrons within

a molecule, turning it momentarily into a

dipole. Unlike dipole–dipole interactions, the

London dispersion force does not arise from a

difference in the electronegativity of

component atoms, but merely the correlated

movements of electrons in interacting

molecules

The references point to one recent example of study in soil science
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and NanoSIMS to observe the direct adsorption of

isotopically labelled SOM on a clay fraction during

incubation. The authors found that SOM was prefer-

entially associated with rough areas of nano-mineral

clusters, including micropores, etch pits, and cracks.

However, the preservation of organic C at these

stabilisation ‘hotspots’ is difficult to ascribe to a single

mechanism. As hypothesised by Kögel-Knabner et al.

(2008), adsorption of SOC within these rough areas

provides a twofold stabilisation of SOC, where the

accessibility of the substrate to decomposers is

reduced and the substrate is concomitantly stabilised

by the aforementioned mechanisms of sorption.

Therefore, at the molecular-scale, it seems that

stabilisation by both physical separation and adsorp-

tion simultaneously co-occur (Fig. 1) and become

indistinguishable (Chenu and Plante 2006; Kögel-

Knabner et al. 2008; Vogel et al. 2014), thus

questioning the conceptual segregation of the mech-

anisms enumerated by Sollins et al. (1996).

Ca-mediated SOC stabilisation

Ca–SOC interactions

Research into SOC stabilisation has typically focused

on acidic soil environments and the effects of Al3? or

Fe3? or their poorly crystalline forms on SOC

(Grünewald et al. 2006; Kögel-Knabner et al. 2008).

Basic soil environments, and potential interactions

between the Ca and C cycles have received compar-

atively less attention (Grünewald et al. 2006). Yet, Ca

is the most abundant alkaline earth metal in the Earth’s

crust, making up 2.94% of the upper continental crust

(Wedepohl 1995). Furthermore, calcareous or Ca-rich

Fig. 1 Occlusion and sorption co-stabilise soil organic carbon at all spatial scales, but this co-occurrence becomes more apparent at the

nano-scale where they become operationally indistinguishable
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soils cover more than 30% of the Earth’s surface

(Bertrand et al. 2007; Chen and Barak 1982) and basic

soils account for at least 12% of the world’s soil

resources (Grünewald et al. 2006). Ca2? within a soil

matrix typically originates from the weathering of

lithosphere or surficial formations (Dijkstra et al.

2003; Likens et al. 1998), decomposition of Ca2?-rich

organic materials (Ranjbar and Jalali 2012), the lateral

movement of Ca2?-rich water (Clarholm and Skyll-

berg 2013), atmospheric dust deposition (Dijkstra

et al. 2003; Pulido-Villena et al. 2006) or anthro-

pogenic inputs. Ca2? is weathered with relative ease

from both primary and secondary minerals (Likens

et al. 1998) and has therefore typically been thought to

persist or accumulate chiefly in semi-arid to arid

environments. However, Ca-rich environments also

exist within temperate regions on soils developed from

calcareous parent material, out-of-equilibrium with

climate (Slessarev et al. 2016). High Ca concentra-

tions are also commonly found in the topsoil of acid

soils derived from crystalline lithologies due to

biological cycling (Cailleau et al. 2004; Federer and

Hornbeck 1985; Grand & Lavkulich 2013; Likens

et al. 1998; Ross et al. 1991). Therefore, Ca2? is an

environmentally ubiquitous cation that could poten-

tially play an unaccounted role in the stabilisation of

SOC.

The first investigation into the interactions between

Ca and SOC was published almost 80 years ago by

Sokoloff (1938), who provided experimental evidence

that organic matter solubility decreased upon addition

of Ca when compared to Na addition. Since then,

research in Ca-rich field environments has highlighted

a positive correlation between exchangeable Ca2?

(CaExch) and SOC concentration (see Fig. 2; Bertrand

et al. 2007; Bruckert et al. 1986; Clough and

Skjemstad 2000; Duchaufour 1982; Gaiffe et al.

1984; Oades 1988; Paul et al. 2003; Shang and

Tiessen 2003). As an example, Yang et al. (2016)

recently established that alpine grassland soils in the

Neotropics contained nearly double the concentration

of SOC (405.3 ± 41.7 t ha-1) when developed on Ca-

rich, calcareous lithology than their acidic counter-

parts (226.0 ± 5.6 t ha-1). Similarly, O’Brien et al.

(2015) and Li et al. (2017) demonstrated that CaExch
was the strongest explanatory variable for SOC

concentration of grasslands. However, identification

of the exact mechanisms responsible for this wide-

spread correlation remain elusive.

A simple case of co-occurrence?

The positive correlation between CaExch and SOC

could be explained by their simple co-occurrence, as

an increase in SOC concentration generally increases

the cation exchange capacity (CEC) of a soil (Yuan

et al. 1967). Calcium is a plant macronutrient and there

is evidence that Ca also has a localised positive effect

on net primary productivity (NPP) and SOM inputs

through above-ground and below-ground biomass

(Briedis et al. 2012b; Carmeis Filho et al. 2017;

Paradelo et al. 2015). This localised effect on NPP has

been shown to positively influence the accumulation

of SOC in limed Ferralsols (Oxisols; Briedis et al.

Fig. 2 Positive relationship

between exchangeable

calcium (centimoles of

charge per kg) and soil

organic carbon

concentration (%) in the Jura

Mountain range, adapted

from Gaiffe and Schmitt

(1980)
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2012b; Carmeis Filho et al. 2017) and could explain a

portion of the differences in SOC concentration

observed between acidic and calcareous soils. How-

ever, these explanations fail to account for the

decrease in respiration rate (per unit C) associated

with Ca prevalence and observed in multiple field

studies (Groffman et al. 2006; Hobbie et al. 2002) or

incubation experiments (Minick et al. 2017; Whit-

tinghill and Hobbie 2012). These results are at first

glance counter-intuitive since the addition of Ca2? to

an edaphic ecosystem is also linked to a change in

decomposer communities composition from fungi- to

bacterial dominance (Blagodatskaya and Anderson

1999; Rousk et al. 2009, 2010) and an improvement in

conditions for bacterial decomposition (Illmer and

Schinner 1991; Ivarson 1977; Zelles et al. 1987), at

least partially due to the buffering of soil pH to

circumneutral levels (Narendrula-Kotha and Nkon-

golo 2017). It would thus be expected that the rate of

enzymatic decomposition of SOC would increase

when Ca2? saturates the exchange complex (Ander-

sson et al. 1999; Chan and Heenan 1999; Thirukku-

maran and Morrison 1996). This could be the case in

the organic (litter) layer (Minick et al. 2017), but is

generally not observed in the mineral soil. Contrary to

hypotheses formulated in both studies, Hobbie et al.

(2002) and Groffman et al. (2006) found that microbial

respiration was actually lower in Ca-rich environ-

ments, even though physicochemical conditions for

microbial activity were improved. Furthermore, lab

experiments have shown that CaExch concentration is

correlated with a reduction in SOC leaching losses

(Minick et al. 2017), photo-oxidation (7%; Clough and

Skjemstad 2000) and respiration as CO2 during

incubation (Minick et al. 2017; Whittinghill and

Hobbie 2012). Therefore, CaExch seems to be linked

to a reduction in the propensity of C substrates for

decomposition that is not solely linked to its effects on

NPP or microbial ecology.

Consequently, this review will investigate the

potential mechanisms behind the stabilisation and

accumulation of SOC mediated by Ca and its mineral

forms, namely their influence on:

(i) aggregation and the occlusion of SOC;

(ii) inclusion of SOC within pedogenic- or bio-

genic-CaCO3;

(iii) organo-mineral and organo-cation interactions.

Mechanisms for Ca-mediated SOC stabilisation

Occlusion: Ca and aggregation

The Ca ion and aggregates

It is widely accepted that Ca2? has a significant

positive effect on aggregation and soil structural

stability and therefore, indirectly influences the accu-

mulation and occlusion of SOC. Early authors demon-

strated an influence of Ca2? on soil aggregation

(Martin et al. 1955; Peterson 1947). This dependence

was further investigated by Gaiffe et al. (1984) who

demonstrated that the removal of CaExch and its

replacement by KExch led to a disruption of aggregates.

As theorised by Edwards and Bremner (1967), one of

the main mechanisms thought to be behind this

stabilisation is the flocculation of negatively charged

separates by outer sphere interactions involving Ca2?,

which is explored further in the following section on

sorption processes. This process operates in the bulk

soil and it has also been hypothesised that Ca2? could

play a role in flocculating particles in the gut of certain

earthworm species, leading to the formation of ‘Ca

humates’ (Satchell 1967). This was supported by the

results of Shipitalo and Protz (1989) who utilised

micromorphology and chemical pre-treatments to

infer that Ca probably played a role in flocculating

particles within earthworm casts of certain species,

stabilising the microaggregates within them. Another

mechanism for the stabilisation of aggregates in Ca-

rich environments involves the formation of com-

plexes between Ca and high-molecular weight organic

compounds such as root mucilages or microbial

polysaccharides/polymeric substances. It has been

shown that these substances readily complex Ca2? and

create gel-like structures that bind aggregates

(Czarnes et al. 2000; de Kerchove and Elimelech

2007; Erktan et al. 2017; Gessa and Deiana 1992). In

particular, galacturonic acids, a common root muci-

lage, display a high affinity towards Ca, which links

polymer chains to form an adhesive matrix (de

Kerchove and Elimelech 2007). Czarnes et al. (2000)

also showed that these polygalacturonic acid gels

increase the hydrophobicity of aggregates, thereby

increasing their stability during wetting and drying

cycles. Further investigation is needed to analyse the
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role that adhesive Ca-mucilage matrices play in

aggregate stabilisation and the occlusion of SOC.

The effects of carbonate on aggregates

Interactions between Ca-bearing secondary minerals

and soil structure have been extensively covered in the

literature because of the use of liming (CaCO3

addition) in agriculture. There have been many

experiments that have documented the positive effects

of the addition of calcite/aragonite (CaCO3) or gyp-

sum (CaSO4.2H2O) on the structure of non-calcareous

soils (Armstrong and Tanton 1992; Baldock et al.

1994; Briedis et al. 2012a; Grant et al. 1992;

Grünewald et al. 2006; Inagaki et al. 2017; Kaiser

et al. 2014; Melvin et al. 2013; Muneer and Oades

1989a; Paradelo et al. 2016). Some authors have also

assessed the effects of CaCO3 removal from calcare-

ous soils on aggregate stability, finding that the

treatment reduced soil structural stability and

increased porosity (Falsone et al. 2010; Muneer and

Oades 1989c; Toutain 1974; Virto et al. 2011).

Furthermore and reminiscent of the work of Oades

and Waters (1991) on Fe oxides in Ferralsols (Ox-

isols), Fernández-Ugalde et al. (2011) demonstrated

that the hierarchical model of aggregation was

partially disrupted by carbonate. In the semi-arid

Mediterranean soils of their study, the authors showed

that the abundance of CaCO3 controlled macroaggre-

gate turnover and increased their stability, to the extent

that the usual disruption of macroaggregates, leading

to the release of constituent microaggregates, was

prevented (Fernández-Ugalde et al. 2011; Oades

1984).

There are several mechanisms by which CaCO3

could positively affect aggregate stability and the

occlusion of SOC. CaCO3 is easily weathered and acts

as an abundant source of Ca2?, thus encouraging the

flocculation of soil separates and aggregation through

the mechanisms listed above (Baldock and Skjemstad

2000; Clough and Skjemstad 2000; Wuddivira and

Camps-Roach 2007). Carbonate ions are also capable

of reprecipitation with Ca2? under the right environ-

mental conditions, forming secondary CaCO3 crystals

(from micrite to sparite) that cement aggregates

(Fernández-Ugalde et al. 2011, 2014; Shang and

Tiessen 2003; Virto et al. 2013). This mechanism was

analysed in detail by Falsone et al. (2010), who utilised

N2 adsorption and Hg porosimetry to demonstrate that

this formation of secondary CaCO3 crystals decreased

aggregate porosity in the 2–50 nm range and thus,

decreased the accessibility of intra-microaggregate

SOC to decomposers. Certain earthworm species have

also been shown to cement particles that pass through

their gut with a mixture of poorly crystalline biogenic

carbonates (calcite, vaterite, aragonite) excreted from

their calciferous glands (Brinza et al. 2014; Edwards

and Bohlen 1995). The cementing effect of carbonates

on aggregates is well-documented in arid soils in

which large concentrations of pedogenic carbonates

are found (Fernández-Ugalde et al. 2011, 2014; Virto

et al. 2013). However, it may also play a role in humid

or sub-humid environments where carbonate-rich

parent materials are continually getting dissolved

and locally reprecipitated, but this still needs to be

investigated further.

Although it is widely accepted that the occurrence

of CaCO3 positively affects soil structure and offers

favourable conditions for the stabilisation of SOC by

occlusion, its actual consequence on occluded SOC

stocks is less clear. In a recent review, Paradelo et al.

(2015) concluded that while CaCO3 addition had a

clear positive effect on soil structure, its effect on

occluded SOC stocks was uncertain. Positive (Egan

et al. 2018; Muneer and Oades 1989a, b), non-existent

(Paradelo et al. 2016) or negative effects (Chan and

Heenan 1999) of CaCO3-amendment on occluded

SOC have indeed been reported. In some instances, it

may be difficult to disentangle the integrative effects

of agricultural management from the simple effects of

CaCO3 additions. In natural, unamended soils, Fer-

nández-Ugalde et al. (2014) showed that carbonates

had a positive effect on occluded SOC stocks. This

finding needs to be replicated in a range of natural

soils, as differences in initial conditions (e.g. texture,

mineralogy, organic inputs and their distribution)

could reasonably result in different outcomes.

Inclusion

Inclusion is defined as the envelopment of SOC within

a mineral or cogenetic mineral assemblage that leads

to its physical protection (Babel 1975). Stabilisation of

SOC by inclusion works through a similar mechanism

to intercalation or occlusion, by physically separating

a substrate from decomposers. SOC may be trapped

within any form of pedogenic carbonates, but its

inclusion may not be quantitatively important when
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carbonate formation chiefly occurs through abiotic

processes. Diaz et al. (2016) recently dated small

concentrations of SOC (0.1–0.5%) included within

pedogenic carbonate nodules in Cameroon with C14

measurement, recording ages ranging between 8000

and 13,000 years. This highlights the potential of this

mechanism to stabilise SOC over long time periods,

but probably only in small concentrations.

Calcium carbonate is one of the most abundant

biominerals on Earth and can be synthesised by a wide

range of terrestrial organisms (Skinner and Jahren

2007). Biomineralisation of CaCO3 can either be

induced within cells, mediated by biological activity

that stimulates physicochemical precipitation, or ini-

tiated by the presence of an existing biological matrix

that initiates crystal nucleation and growth in the

extracellular environment (Bindschedler et al. 2016).

During each of these forms of biomineralisation, SOC

can become included and encapsulated within the

crystal structure (Verrecchia et al. 1995). A few

specific examples of biogenic carbonate forms include

calcified root cells, fungal filaments and rhizoliths

(calcified roots; e.g. Becze-Deàk et al. 1997; Jaillard

et al. 1991; Monger et al. 1991), calcified earthworm

biospheriods (Barta 2011), and the mineralisation of

bacterial or fungal organic templates (Bindschedler

et al. 2014; Cailleau et al. 2009). Another mechanism

for the inclusion of SOC could be biomineralisation

pathways such as the oxalate-carbonate pathway

(Verrecchia 1990). The oxalate-carbonate pathway

involves biomineralisation of CaCO3 during the

bacterial catabolism of calcium oxalate-rich SOC

produced by plants or fungi. It thus intimately links

SOC to the nucleation site of CaCO3 biomineralisation

and could allow its inclusion within the crystal matrix

in both acidic (Cailleau et al. 2004, 2005; Verrecchia

et al. 2006) and calcareous soils (Rowley et al. 2016).

However, there has been very little direct quantifica-

tion of the concentrations or 14C ages of SOC included

within biogenic carbonate forms, which could poten-

tially contain much higher SOC concentrations than

abiotically-formed pedogenic carbonates. Therefore,

further investigation is now needed to quantify the

inclusion of SOC within biogenic carbonate and its

role in SOC dynamics.

Sorption: Ca, minerals and organics

Organo-mineral interactions with calcite

Lithogenic and pedogenic CaCO3 could also play a

key role in the stabilisation of SOC via adsorption.

Most of the research into direct organo-calcite inter-

actions has focused on the interactions between DOC

and calcite in sorption experiments. Earlier work by

Suess (1970) and Carter (1978) showed that DOC

could be directly adsorbed onto CaCO3, while Suzuki

(2002) more recently showed that CaCO3 was an

effective adsorbant of DOC from black tea solutions,

possibly due to its high point of zero charge (9.5;

Grünewald et al. 2006). Thomas et al. (1993b) more

specifically studied the affinity of different synthetic

carbonates for common organic functional groups and

demonstrated that calcite, dolomite, and magnesite all

sorbed a wide range of organic compounds, which

included carboxylic acids, alcohols, sulphates, sul-

fonates, amines, amino acids and carboxylated poly-

mers. Interestingly, interaction with DOC has been

shown to modify carbonate precipitation equilibria, by

inhibiting either further crystal precipitation (Inskeep

and Bloom 1986; Reddy et al. 1990; Reynolds 1978)

or the dissolution of sorbent minerals (Thomas et al.

1993a). Jin and Zimmerman (2010) established that

CaCO3 obtained from aquifers preferentially adsorbed

dissolved organic matter with a high molecular

weight, which the authors attributed to a form of outer

sphere interaction. It has been theorised that the

kinetics of DOC adsorption by carbonates may be

biphasic, occurring through an initial rapid phase of

outer sphere interactions, which is then followed by a

slower phase of inner sphere and hydrophobic inter-

actions that in turn protect the carbonate surface from

dissolution (Jin and Zimmerman 2010; Lee et al. 2005;

Thomas et al. 1993b). While these DOC adsorption

experiments have provided interesting insight into

potential CaCO3–SOC interactions, there has been

relatively little direct research on the adsorption of

SOC by different forms of calcite/aragonite in soils.

Measurements of soil carbonate content commonly

differentiate between a reactive and a total pool (Pansu

and Gautheyrou 2006), but there is little evidence for

the role of these operationally-defined pools in

adsorption of SOC. Further research should focus on

the effects of the supposedly reactive, poorly
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crystalline or amorphous CaCO3 pool on the adsorp-

tion of SOC in natural environments.

Outer sphere processes

Irrespective of their carbonate content, many soils

have significant concentrations of free Ca2? which

may also contribute to the stabilisation of SOC. The

widely observed correlation between CaExch and SOC

has led to the implicit assumption that Ca2? predom-

inantly affects SOC through weak outer sphere

interactions (von Lützow et al. 2006), such as those

contributing to the retention of exchangeable cations

(Table 1). This form of cation bridging by Ca2? has

been highlighted as an important component of SOC

stabilisation by many authors and is well-documented

(Clough and Skjemstad 2000; Edwards and Bremner

1967; Oades 1988). As illustrated in the lyotropic

series, cations’ outer sphere (exchangeable) behaviour

is related to the size of their hydration shell and

valence. This is confirmed by chemical modelling,

which indicates that exchangeable bridges by Ca2?

typically have a larger residence time than those of

monovalent cations, like Na?, because the charge-to-

hydration radius ratio of Na? prevents it from

efficiently countering the repulsion between nega-

tively-charged surfaces (Iskrenova-Tchoukova et al.

2010; Sutton et al. 2005). Thus, Ca2? is a fundamental

flocculating agent of natural systems because of its

ability to form efficient outer sphere bridge units.

However, it is interesting to note that Al3? and H?

rate higher than Ca2? on the lyotropic series and

should thus cause similar or higher levels of apparent

flocculation in soils in which they are abundant, such

as most acid soils. Yet, it is widely observed that

colloidal mobility is enhanced in acidic environments

where Al3? and H? dominate and there is little or no

Ca2? present, such as those associated with the

formation of Luvisols (Lavkulich and Arocena

2011). It is also worth considering that the innate

reversibility of outer sphere interactions should mean

that exchangeable Ca bridges would not be inherently

persistent in natural soils. These considerations lead us

to explore the possibility that interactions between Ca

and SOC are not solely attributable to outer sphere

(exchangeable) processes and that, despite its correl-

ative association with SOC, CaExch may not be solely

responsible for the bulk of SOC stabilisation in Ca-

rich soils.

Inner sphere processes

It is generally observed that each cation has a different

range of interactions in soils. For instance, trivalent Fe

is seldom found in large amounts as a free ion in soil,

as it very readily hydrolyses to form insoluble

precipitates under most environmentally-relevant con-

ditions. Al3? also hydrolyses into insoluble hydrox-

ides at slightly acidic to basic pH, while in acidic soils,

it is found to participate both in outer sphere, cation

exchange and inner sphere, ligand exchange reactions.

Ca2? is thought to retain its hydration shell and behave

strictly like an exchangeable cation, as are other ‘base’

cations such as Mg2?, K? and Na? (Essington 2004).

However in soil science, the fundamental controls on

the propensity of each cation to form inner sphere

complexes with SOM are not as well understood as the

affinity of cations for non-specific exchange sites.

One of the reasons for this is that there are many

factors that can influence inner sphere complexation of

SOM by ions in the soil matrix, including character-

istics of cations (ionic potential, electronegativity,

polarisability of their electron cloud, hydrated radii,

propensity to retain their hydration shell), of ligands

(amount and type of organic functional groups) and of

the environment (pH, ionic strength, solution compo-

sition, metal-to-ligand ratio, pressure and temperature

conditions; Essington 2004). Cations can be broadly

split into three classes (Class A, B, and intermediate/

C) based upon the polarisability of their electron

cloud, which in turn, indicates how likely they are to

form inner sphere complexes with specific ligands

(Ahrland et al. 1958; Pearson 1963; Schwarzenbach

1961). Class A cations are weakly polarisable and tend

to form complexes with O-containing ligands, such as

carboxylate functional groups through ionic bonding.

On the other hand, Class B cations have a labile

electron cloud and tend to form complexes with N- or

S-bearing ligands through more covalent bonding

(Langmuir 1997; Sposito 2008). Al3? and the base

cations, including Ca2?, are considered group A

cations, indicating that they may theoretically form

inner sphere complexes with widely-occurring

O-bearing ligands such as carboxylate groups (Sposito

2008). However, each cation’s actual behaviour in soil

cannot be predicted from one or a couple of first-

principles only, as it results from the interaction of

several factors. For instance, Na is not generally seen

to engage in inner sphere complexation in soils, while
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K only does so in the interlayer of specific phyllosil-

icates. Advanced chemical modelling can offer insight

into these issues.

Authors have modelled the interactions between

dissolved organic C (DOC) and Ca2? in an attempt to

investigate their molecular-scale interactions (Aris-

tilde and Sposito 2008; Benedetti et al. 1995). These

models suggest that Ca2? can bind to SOC through

both inner sphere and outer sphere processes (Bogatko

et al. 2013; Iskrenova-Tchoukova et al. 2010;

Kalinichev and Kirkpatrick 2007; Sutton et al.

2005). Sutton et al. (2005) modelled the complexation

of deprotonated carboxyl groups by Ca2? and found

that their interactions were predominantly inner

sphere (75%). The model of Kalinichev and Kirk-

patrick (2007) also confirmed that Ca2? could form

direct cation bridges with carboxylate and to a lesser

extent, phenolic and other –OH functional groups,

unlike Mg2?, whose hydration water is more tightly

held (Dontsova and Norton 2002; Kalinichev and

Kirkpatrick 2007; Tipping 2005). Chemical modelling

thus indicates that Ca2? can interact with SOC through

inner- and outer-sphere processes, thereby potentially

increasing SOC stability against decomposition or

leaching (Minick et al. 2017).

Building empirical evidence for Ca–SOC interactions

While models predict that Ca2? can form both inner-

and outer-sphere bridges with SOC, empirical evi-

dence of these associations in natural environments

remains scarce. Density fractionation, which separates

free, occluded and mineral-associated SOC (Golchin

et al. 1994) has the potential to offer insight. When

performed sequentially (Sollins et al. 2009), density

fractionation can separate SOC fractions associated

with different minerals; furthermore, because the

method uses extremely concentrated salt solutions

(usually Na polytungstate), outer sphere associations

are not expected to survive the treatment, meaning that

only strong (inner sphere) association with minerals

are considered. Wen et al. (2017) recently showed that

there was more SOC associated with calcite-rich than

with dolomite-rich heavy fractions, possibly corrob-

orating modelling predictions of stronger SOC asso-

ciation with Ca than Mg (Kalinichev and Kirkpatrick

2007). The occluded fraction was however not sepa-

rated from the mineral-associated fraction, so that the

results remain somewhat equivocal. Further density

fractionation studies analysing the relative role of

occlusion and sorption for SOC accumulation in Ca-

rich soils would undoubtedly prove informative.

Density fractionation is however a costly and time-

consuming technique (Poeplau et al. In review) and

may be difficult to use in calcareous soils, since

polytungstate left in contact with free Ca for extended

periods can precipitate as insoluble Ca-metatungstate.

Methods applicable to the bulk soil would constitute

useful complements to fractionation approaches.

Selective extractions on bulk soil have typically

been used to analyse the effects of cation pools on

SOC stocks. As indicated in Fig. 2, the operationally

defined CaExch pool, extracted by salt solutions,

represents a reactive and abundant pool of Ca2? that

is regularly correlated with SOC concentration

(Bruckert et al. 1986; Gaiffe and Schmitt 1980; Li

et al. 2017; O’Brien et al. 2015), thus highlighting its

potential as an indicator variable for the measurement

of Ca2? interacting with SOC. However, by definition,

CaExch only represents Ca2? engaged in outer sphere

interactions. The selective chemical extraction of the

inner sphere Ca pool, corresponding to pyrophosphate

extractions for Al and Fe in acidic soil environments

(Bascomb 1968; Parfitt and Childs 1988; Rasmussen

et al. 2006), is challenging due to the insolubility of

most chelating agents once complexed by Ca (e.g., Ca-

pyrophosphate or Ca-oxalate). In a recent study, van

der Heijden et al. (2017) isolated a ‘‘non-crystalline

pool of Ca’’ in acidic, base-poor soils, which may have

included a significant contribution of Ca complexed

by SOM, but the extract (dilute oxalic ? nitric acid)

was not specific to organic complexes. Extraction with

other chelating agents that remain soluble in their Ca

form (e.g. ethylenediaminetetraacetic acid, EDTA;

Bélanger et al. 2008) or with salts of strong cation

complexants (e.g. copper chloride; Barra et al. 2001;

Juo and Kamprath 1979) may be informative; how-

ever, these extractants could also attack the mineral

CaCO3 pool, making their use difficult in calcareous

soils.

Alternatively, X-ray absorption spectroscopy

(XAS) could eventually be used to investigate the

coordination environment of Ca2?–SOC complexes

under different environmental conditions. As an

example, Martin-Diaconescu et al. (2015) have

recently successfully probed the coordination envi-

ronment of synthetic Ca complexes. While powerful,

these direct spectroscopic techniques require the use
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of synchrotron light source and can only be applied to

small amounts of samples with limited compositional

complexity. We are still lacking a method that allows

for the routine assessment of inner sphere Ca–SOM

complexes and their relative importance in different

soils, which constitutes a significant research gap

given the potential for inner sphere interactions to

stabilise SOMwith increased efficiency (Mikutta et al.

2007), and perhaps through ecosystem disturbance

events (Basile-Doelsch et al. 2009; Grand and

Lavkulich 2012).

Implications for conceptual models of SOC cycling

Despite the growing body of evidence supporting a

major role for specific soil minerals and cations in

SOC stabilisation (Doetterl et al. 2015), soil mineral-

ogy and geochemistry are largely absent from leading

models of SOC cycling. The following section will

discuss a few processes that have the potential to

improve representations of SOC stabilisation, with

particular emphasis on Ca-rich soils.

Digressing from the expected profile-scale depth

distributions

In addition to their influence on the total amount of

SOC retained in soil, polyvalent cations are suspected

to influence its vertical distribution in soil profiles.

Current pedometric approaches to mapping soil C

acknowledge the importance of accounting for soil

type when estimating the vertical distribution of SOC

(Kempen et al. 2011; Wiese et al. 2016). Polyvalent

cations can indeed cause departures from the generally

assumed exponential decline of SOC concentration

with depth (Hilinski 2001). A classical example

involves Podzols characterised by the effective

translocation of Al–SOC complexes to deep soil

horizons (Ferro-Vázquez et al. 2014; Grand and

Lavkulich 2011). Contrastingly, Calcisols have an

accumulation of Ca-saturated SOC in surface horizons

(Yang et al. 2016). This accumulation of Ca-saturated

SOC is likely caused by the complexation, floccula-

tion, and precipitation of organic acids and clays in the

presence of Ca, precluding their translocation to

subsoil horizons. Two of the most common low

molecular weight organic acids (oxalic and citric

acids) in soil notably form sparingly soluble salts in

the presence of Ca (calcium oxalate Ksp & 10-8.5;

Certini et al. 2000), preventing their translocation,

whereas their Al and Fe counterparts are highly

soluble (Gadd 1999). The fundamental differences in

how polyvalent cations modulate SOC inputs, stability

and depth distributions highlight the critical impor-

tance of accounting for geochemical factors when

modelling SOC dynamics.

Preferential sorption

Integrating a geochemical dimension into conceptual

models of SOM dynamics is also important because

the formation of organo-mineral complexes appears to

be a preferential process, with selectivity exhibited by

both the organic and mineral component (Spielvogel

et al. 2008). Very little is actually known about the

preferential nature of organo-mineral interactions in

soils. To date, there is some evidence within the

literature that specific organic compounds such as

N-rich microbial metabolites, microbial cell-wall

fragments, and possibly pyrogenic C may be selec-

tively sorbed by soil minerals (Brodowski et al. 2007;

Jin and Zimmerman 2010; Miltner et al. 2012; Scheel

et al. 2008; Schurig et al. 2013; Spielvogel et al. 2008).

Furthermore, it has been suggested that some reactive

mineral surfaces, such as those of Al and Fe phases,

may be disproportionally involved in the sorption of

specific classes of organics, such as proteins, lignin,

and phenolic compounds (Heckman et al. 2013;

Kögel-Knabner et al. 2008; Xiao et al. 2015). How-

ever, there have been very few studies looking at the

potential preferential sorption of organic compounds

in Ca-rich edaphic environments.

If molecular scale stabilisation of SOC by Ca2?

predominantly occurs through inner- or outer-sphere

cation bridging, then it should preferentially target

functional groups such as carboxyls and phenols.

Römkens and Dolfing (1998) and Kaiser (1998)

accordingly demonstrated that Ca2? preferentially

flocculated and precipitated high molecular weight

DOC compounds, which contained higher proportions

of carboxylic and phenolic functional groups. There is

also evidence for the preferential adsorption of

negatively charged products of lignin degradation

(syringyl units; Grünewald et al. 2006) and DOC (Jin

and Zimmerman 2010; Jin et al. 2014) by calcite. The

implications of this hypothesis for our understanding

of SOC dynamics could be profound. It could
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potentially provide a mechanism to bridge the two

competing hypotheses of SOC persistence, i.e. bio-

chemical recalcitrance vs. mineral association, since

organic compounds with different compositions could

have different probabilities for sorptive preservation.

This perspective is highly relevant to SOC modelling.

As an example, the CENTURY model assumes

universal preservation of lignin in stable SOC pools

(Parton 1996; Parton et al. 2015), which has been

questioned by experimental evidence (Gleixner et al.

1999, 2002). Accruing evidence on selective sorption

of specific compounds to minerals or cations, includ-

ing lignin derivatives, could speak in favour of

considering SOC biochemical composition as a pre-

dictor of residence time, but the parametrisation would

have to be adjusted for different geochemical

environments.

Conversely, Minick et al. (2017) demonstrated that

high additions of Ca at the Hubbard Brook experi-

mental forest specifically reduced the mineralisation

of 13C-depleted SOC, which should represent a

relatively fresh pool, little affected by oxidative

transformation (Rumpel and Kögel-Knabner 2011),

thus contradicting the hypothesis that Ca2? preferen-

tially stabilises oxidised SOC. Yet stabilisation of 13C-

depleted SOC could simply imply that occlusion was

the predominant mechanism of SOC stabilisation at

the Hubbard Brook forest. SOC occlusion could limit

the mineralisation of 13C-depleted sources because

aggregates occlude a heterogeneous mixture of both
13C-enriched, decomposed and relatively fresh, 13C-

depleted particulate-organic matter (Poeplau et al. In

review). However, this still requires further evidence.

Future investigation should specifically focus on the

relative importance of occlusion and adsorption for

SOC stabilisation, as influenced by the geochemical

environment (dominant free cation) and the composi-

tion of organic components (esp. prevalence of

functional groups).

Fig. 3 The shifting role of polyvalent cations in the stabilisa-

tion of SOC with increasing pH. A ‘window of opportunity’ for

microbial decomposition is highlighted in green according to the

proposition of (Clarholm and Skyllberg 2013). Thresholds are

based on values available in the literature and it is expected that

adjustments will occur as more results become available. Al–Fe

oxides refer to true oxides as well as oxyhydroxides and their

poorly crystalline forms. OCP oxalate-carbonate pathway
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pH: the master variable for SOC stabilisation

mechanisms?

As pH shifts from acidic to basic conditions, so does

the importance of SOC stabilisation by different

polyvalent cations and their mineral forms, moving

from Al3? or Fe3? to Ca2?, respectively (Tipping

2005). The prevalence of each cation is indeed largely

linked to soil pH due to the buffering capacity of

primary and secondary minerals, notably calcite and

Al oxides (Oste et al. 2002; Slessarev et al. 2016). As

each cation is associated with different SOC stabili-

sation mechanisms (Fig. 3), this shift in pH could

arguably be used to predict the concentration and types

of SOC being stabilised in each environment. There-

fore, we propose the following conceptual model: in

acidic environments, complexation of organic ligands

by free Al3? and Fe3? as well as their mineral forms

(Kalbitz and Kaiser 2008; Scheel et al. 2008) and the

cementation of aggregates by Fe oxides (Oades and

Waters 1991; Zhao et al. 2017) are likely to control

SOC stabilisation. There could also be a localised

effect of Ca in the topsoil of these acidic environments

caused by biological cycling and resulting accumula-

tion of Ca (Clarholm and Skyllberg 2013). As soil pH

increases above 6, Ca2? becomes more prevalent and

consequently, there should be increased evidence of

SOC stabilisation by inner- and outer-sphere Ca2?

bridging or Ca-mediated aggregation (Kayler et al.

2011). As soil pH increases further to pH[ 8.3,

excess Ca2? will begin to precipitate as CaCO3,

reducing the stabilisation by free Ca2? at the expense

of CaCO3-mediated mechanisms (Lindsay 1979).

When soil pH starts to increase beyond pH 9.5, soils

will become increasingly sodic and dominated by

Na?, which tends to disperse soil separates, reducing

occlusion (Wong et al. 2010) and sorption of SOC

(Iskrenova-Tchoukova et al. 2010; Sutton et al. 2005),

and consequently weaken SOC stabilisation.

As indicated by Fig. 3, stabilisation of SOC by

polyvalent cations is expected to be weakest at near-

neutral levels of pH, which also coincides with

optimum conditions for bacterial mineralisation

(Groffman et al. 2006; Illmer and Schinner 1991;

Ivarson 1977; Whittinghill and Hobbie 2012; Zelles

et al. 1987). This was suggested previously by

Clarholm and Skyllberg (2013) as a ‘‘window of

opportunity’’ (highlighted in green; Fig. 3) for C

mineralisation. Taking this reasoning a step further,

we hypothesize that low and high pH environments

will afford different capacities for SOC stabilisation.

Given the documented efficiency of sorption by Al and

Fe forms and of aggregation by Ca, we postulate that

adsorption by Al–Fe oxides generally dominates SOC

stabilisation at low pH, stabilising SOC for long time

periods; but as the pH increases beyond the ‘‘window

of opportunity’’, it could be expected that the domi-

nant stabilisation mechanism would be occlusion

within aggregates, potentially involving larger

amounts of SOC but for shorter durations. However,

due to the relatively limited body of work on Ca-

mediated SOC stabilisation mechanisms, these

hypotheses currently remain speculative; the domi-

nant SOC stabilisation mechanisms associated with

each cation, the amount of SOC they can affect and the

relative strength of the conferred protection still

require confirmation. Nonetheless, pH has the poten-

tial to act as a fundamental indicator of the mecha-

nisms controlling SOC stabilisation. Therefore, this

review suggests that SOC models should consider

incorporating pH as a master variable to represent the

effects of different stabilisation mechanisms by poly-

valent cations and their mineral forms on the accu-

mulation and persistence of SOC.

Conclusions

Although an addition of Ca2? generally improves

microbial conditions for decomposition by increasing

pH and reducing stress from H?, it can counter-

intuitively reduce respiration rates through the stabil-

isation of SOC. The main mechanisms behind Ca-

mediated SOC stabilisation are likely linked to the

ability of Ca2? to bridge negatively charged surfaces.

Chemical modelling indicates that Ca2? can bridge

SOC and minerals through both inner- and outer-

sphere interactions, but this still requires empirical

confirmation. When scaled up, Ca bridging also

positively affects soil structure; yet surprisingly little

is known about the implication for the amount and

stability of occluded SOC. The relative prevalence of

occlusion and adsorption for SOC stabilisation in Ca-

influenced soils needs to be determined, as it could

have important consequences for the stabilisation of

SOC in terms of its maximum amount, mean residence

time but also composition. Indeed, there is some

evidence that adsorption could preferentially involve
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some classes of organic compounds whereas occlusion

may be relatively indiscriminate, at least at the

macroscopic level. Soil pH could also play a funda-

mental role in predicting the occurrence of these

stabilisation mechanisms and should be considered for

inclusion in current SOC models. In order to better

represent interactions between the C and Ca cycle in

conceptual and numerical models of SOC cycling, we

suggest that further mechanistic investigation should

focus on the quantification of the relative prevalence

and strength of each stabilisation mechanism and their

variation across pH thresholds.
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Briedis C, de Moraes Sá JC, Caires EF, de Fátima Navarro J,

Inagaki TM, Boer A, de Oliveira Ferreira A, Neto CQ,

Canalli LB, Bürkner dos Santos J (2012a) Changes in

organic matter pools and increases in carbon sequestration

in response to surface liming in an oxisol under long-term

no-till. Soil Sci Soc Am J 76(1):151–160
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A B S T R A C T

Soil research in temperate to cool and humid regions has typically focused on acidic soils; there has been
relatively little investigation of the effects of calcium carbonate (CaCO3) on unamended soil properties or
function in these environments. The object of this study was to characterise the effects of small amounts of
CaCO3 on pedogenic trajectories and soil biogeochemistry in a humid subalpine valley of Switzerland. To isolate
the influence of CaCO3, six profiles were selected that had developed under almost identical conditions for soil
formation, i.e. climate, topography, vegetation structure, time since deglaciation, silicate mineralogy and tex-
ture. The main difference between the profiles was that three contained a small quantity of CaCO3 (< 6.2%;
thereafter, ‘CaCO3-bearing’) while the remaining three contained no detectable CaCO3 (thereafter, ‘CaCO3-free’).
The presence of CaCO3 was associated with cascading changes in soil biogeochemistry. These changes included
higher pH, an order of magnitude higher extractable Ca and twice as much soil organic carbon (SOC). CaCO3-
bearing profiles also displayed a higher proportion of poorly crystalline Fe forms. The higher pH at the CaCO3-
bearing site was attributable to the weak buffering provided by CaCO3 dissolution, which in turn maintained the
relatively higher extractable Ca. Exchangeable Ca (CaExch) and other reactive Ca forms could help stabilise SOC,
contributing to its accumulation through processes such as flocculation and subsequent occlusion within ag-
gregates and/or sorption to mineral surfaces. The increased SOC, CaExch and pH at the CaCO3-bearing site could
in turn be inhibiting the crystallisation of disordered Fe forms, but further research is required to confirm this
effect and isolate the exact mechanisms. Overall, this study shows that the presence of small amounts of CaCO3

in humid environments has a far-reaching influence on soil biogeochemistry and further supports the idea that
indicators of Ca prevalence have the potential to improve regional SOC estimates.

1. Introduction

Calcium carbonate (CaCO3) accounts for an important fraction of C
present in soils, linking the long-term geological C cycle with the faster
biogeochemical cycling of soil organic carbon (SOC; Gao et al., 2017;
Hasinger et al., 2015; Sanderman, 2012; Zamanian et al., 2016).
Globally, the presence of CaCO3 in soils is inversely correlated to ef-
fective precipitation because of its susceptibility to chemical weath-
ering (Arkley, 1963; Jenny, 1941; Slessarev et al., 2016). However,
there remains clear outliers in this global correlation, as CaCO3-bearing
soils can be found in humid environments and are typically related to
lithological CaCO3 reservoirs that are yet to be exhausted by leaching
(Slessarev et al., 2016). Furthermore, while the precipitation of CaCO3

by physicochemical processes is not typically favoured in humid or
acidic environments (Barta et al., 2018; Cerling, 1984), it can still occur

through the direct and indirect results of biological processes
(Bindschedler et al., 2016; Cailleau et al., 2005; Hasinger et al., 2015).
Thus, CaCO3 in soils can persist in a state of disequilibrium with cli-
mate, when driven by reserves of calcareous parent material or biolo-
gical processes.

The aforementioned disequilibrium is an example of pedogenic in-
ertia, defined as the persistence of certain soil conditions or processes in
spite of the presence of extrinsic pedogenic factors that favour their
discontinuation (Bryan and Teakle, 1949). The extrinsic pedogenic
factors refer to four of the five conventional factors of pedogenesis
(parent material, biota, topography and climate; Jenny, 1941), ex-
cluding time which acts as a vector (Muhs, 1984). In the previously
used example, the state of pedogenic inertia exists because an intrinsic
pedogenic factor, the continued and slow dissolution of CaCO3, pre-
vents the expression of an acidic soil favoured since deglaciation by the
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extrinsic factor of climate (Chadwick and Chorover, 2001). In turn, this
inertia can diverge the trajectory of pedogenesis, as evidenced by the
wide array of soils that develop on parent material containing varied
CaCO3 content in humid or mountainous environments (Kowalska
et al., 2019). Unless there is a change in extrinsic factors, pedogenic
inertia is by nature a transient condition that will eventually cease in a
threshold response. Pedogenic thresholds are defined as limits in in-
trinsic pedogenic factors or soil properties, that once breached, cause
rapid and irreversible transformations in pedogenesis and bio-
geochemistry (Chadwick and Chorover, 2001; Muhs, 1984). In the case
of CaCO3, a threshold may occur when its concentration becomes too
low to provide pH buffering to the soil system, triggering changes in soil
biogeochemistry.

The presence of CaCO3 plays a commanding role in governing soil
biogeochemistry. The primary mechanism for this is the buffering of
soil pH caused by the consumption of H+ during acid hydrolysis of
CaCO3 (Bache, 1984; Zamanian et al., 2016). pH is known as a master
variable in soil ecosystems and impacts many biological and chemical
processes, such as the composition of microbial communities (Bahram
et al., 2018; Rousk et al., 2010), mineral weathering rates (Chadwick
and Chorover, 2001), redox chemistry (Bartlett and James, 1993) and
the speciation and lability of many elements (Sposito, 2016). The dis-
solution of CaCO3 also provides a continued supply of Ca2+, which has
long been thought to promote the accumulation of SOC in CaCO3-
bearing soils through occlusion (Grant et al., 1992; Muneer and Oades,
1989) and sorption processes (Edwards and Bremner, 1967; Kalinichev
and Kirkpatrick, 2007; see review in Rowley et al., 2018). Recent evi-
dence has highlighted a potential stabilisation of SOC by Fe-Ca-ternary
complexation (Sowers et al., 2018a,b), which could be more prevalent
in CaCO3-bearing soils than acidic profiles with limited exchangeable
Ca (CaExch). However, further research is still needed to evidence links
between Ca, SOC, and reactive forms of Fe in different soil environ-
ments. In particular, the effects of small amounts of CaCO3, commonly
found in cool humid edaphic environments, on soil biogeochemistry
still require further investigation.

Therefore, the objective of this paper is to quantify the impact of
small amounts of CaCO3 on the pedogenesis and biogeochemistry of

soils in a humid environment (Nant Valley, Vaud Alps, Switzerland). To
isolate the effects of CaCO3 on pedogenesis at the Nant Valley, six soil
profiles were selected that had developed under near-identical condi-
tions for soil formation (Jenny, 1941) or extrinsic pedogenic factors
(Chadwick and Chorover, 2001; Muhs, 1984), except that three profiles
contained a small quantity of CaCO3 (< 6.2% CaCO3) while the other
three were devoid of carbonates. Our hypothesis was that the presence
or absence of CaCO3 would trigger a threshold response, resulting in
large divergences in pedogenesis and soil biogeochemistry, particularly
regarding the accumulation of SOC.

2. Materials and methods

2.1. Site description and sampling

This study was completed in the Nant Valley (573′000, 119′000
CH1903 LV03), a partially glaciated watershed in the Vaud Alps,
Switzerland. The valley is orientated north-south and situated on the
Morcles Nappe, a near-recumbent anticline consisting of Jurassic and
Cretaceous shallow-water limestones intercalated with marl and shale
deposits (Austin et al., 2008). Sampling took place in a pastoral area of
the valley floor (ca. 1500 m elevation above sea level), which is lightly-
grazed by heifers during summer months. This area receives approxi-
mately 1800 mm yr−1 precipitation, has a mean annual temperature of
6 °C (Vittoz and Gmür, 2008) and is typically covered in snow from
December to April.

Two sampling sites were selected that represented a range of CaCO3

contents, while having developed under near-identical soil forming
conditions. Potential variations in the CaCO3 content were identified in
the field using an auger, 10% v/v HCl and a field pH meter (Hellige pH
Indicator). Retained sites were located on subalpine prairies and thus
had the same vegetation structure, which had previously been char-
acterised in detail (Grand et al., 2016; Vittoz and Gmür, 2008). Soils at
each site developed in mixed alluvial, morainic and colluvial materials
issued from the Morcles Nappe (Grand et al., 2016; Perret and Martin,
2014), deposited around the time of the retreat of the Martinets Glacier
(ca. 15 Ka; Seguinot et al., 2018). Sites all had a minimal slope, the

Fig. 1. Profile locations in the Nant valley, Vaud Alps, Switzerland. Coordinates are in CH1903 LV03 (ESRI, 2019). Profiles labelled with an F (F1, F2, F3) are at the
CaCO3-free site and profiles labelled with a B (B1, B2, B3) are at the CaCO3-bearing site.

M.C. Rowley, et al. Geoderma 361 (2020) 114065

2



same altitude, similar climate due to their proximity to each other (ca.
400 m apart) and equivalent irradiance.

Three profiles were dug at each sampling site in July–August 2016
(Fig. 1). Profiles were classified as Eutric Cambisols (siltic) with no HCl
effervescence on the northwest bank and Cambic Phaeozems (siltic)
that effervesced on the southeast bank of the Nant River (IUSS Working
Group WRB, 2015). For brevity, the Eutric Cambisols will henceforth be
labelled as CaCO3-free (profiles F1, F2, F3, in fuchsia) and the Cambic
Phaeozems will be labelled as CaCO3-bearing (profiles B1, B2, B3, in
black). Profiles were sampled at 6–7 depth intervals (Table 1) to a
maximum depth of 50 cm, sampling the deepest layers first to prevent
intra-profile contamination. Samples were labelled from 1 to 6 / 7 with
increasing depth (e.g., F1.1-to-F1.6) and then transported to the Uni-
versity of Lausanne in sealed bags. Aboveground biomass (AGB) was
also randomly sampled from the sites to quantify potential differences
in vegetative inputs at the sites.

2.2. Laboratory analyses

Samples were air-dried and sieved to 2 mm. All analyses were
completed on this fine earth fraction unless stated otherwise and results
were corrected for residual humidity (van Reeuwijk, 2002). Sub-sam-
ples were ground to a fine powder (ca. 20 µm) for 3 min in an agate
crucible with a vibrating-disc mill (Siebtechnik Schibenschwingmuhle-
TS). AGB samples were oven-dried (40 °C), ground by hand and
homogenised for further analysis. Quality control procedures included
the analysis of an internal standard when appropriate, as well as the
inclusion of blanks and quality checks. A minimum of 10% blind re-
plicates were included in all analyses. All plastic and glassware were
acid washed (3 M HCl) to remove trace contamination.

2.2.1. pH and texture
Soil pH was measured potentiometrically using a glass-body com-

bination electrode (Thermo Scientific Orion ROSS Probe) on field moist
samples in a 0.1 M CaCl2 solution (1:2 soil:solution mass ratio). Texture
was determined using laser diffraction (0.01–2000 μm; Pansu and
Gautheyrou, 2006). Pre-treatment included digestion of soil organic
matter with increasing concentrations of H2O2 (10–35%). During the
procedure, pH was kept around neutrality with NaOH to prevent de-
struction of mineral components due to acidification. Samples were
then shaken with sodium hexametaphosphate for 16 h to chemically
disperse particles prior to measurement with a Beckman Coulter
LS13320 Particle Sizing Analyser. The analyser pump speed was set at
80% (ca. 9500 mL min−1) and samples were weakly sonicated in both
the auto-sampler and analyser (4/8 setting; ca. 2 J mL−1) prior to
measurement. The analyser was run using the default optical model
(Fraunhofer.rf780d) in auto-dilution mode. Measurements were taken
when an obscuration of 12% was attained.

2.2.2. Elemental analysis
The total elemental composition was quantified on ground samples

using X-ray fluorescence (XRF; PANalytical PW2400 WDXRF
Spectrometer) following lithium tetraborate fusion (PANalytical Perl X3
Fuser). Results were corrected for loss-on-ignition at 1050 °C (Solo
111–13/10/30). Organic C and total nitrogen were quantified on AGB
and soil ground samples by dry combustion (Carlo Erba 1108 and
Thermo Scientific Flash 2000 CHN Elemental Analysers). Soil samples
were fumigated for 24 h with 12 M HCl in order to remove inorganic C
prior to CHN elemental analysis (Harris et al., 2001; Ramnarine et al.,
2011). Samples were weighed to the nearest milligram before and after
fumigation to correct for mass changes. All samples gained mass due to
the formation of small quantities of chloride green rust, likely formed
from the reaction of Fe oxides with Cl− (Ramnarine et al., 2011).

2.2.3. Mineralogy
Bulk mineralogy was determined on ground samples prepared

according to Adatte et al. (1996) using X-ray diffraction (XRD; Thermo
ARL X’TRA Powder Diffractometer). Approximately 800 mg of ground
sample was pressed (20 bars) in a powder holder covered with blotting
paper. Pressed samples were then analysed using Cu Kα radiation at
45 kV / 40 mA with a 13 s counting time per 0.02° for 2 θ in the 1-65°
range. Samples were rotated at a range of 1° min−1 with an acquisition
step size of 0.03 – 0.05° 2 θ using a 0 / 0 type goniometer with a
250 mm radius. A spectral counter (Thermo ARL Water-cooled Silicon
Detector) was used to eliminate Cu Kβ and Fe parasitic emissions. The
bulk mineralogy of samples was then quantified using external stan-
dards (Adatte et al., 1996).

Samples from a randomly selected profile at each site were also
prepared for clay mineralogical analysis according to Adatte et al.
(1996). Briefly, samples from profiles F1 and B2 were mixed with
deionised water, agitated, and combined with 10% HCl to remove
carbonates. Insoluble residues were washed by centrifugation until
neutral pH was acquired. Different size fractions (< 2 µm and <
16 µm) were separated by sedimentation according to Stokes’ law.
Selected fractions were then pipetted onto glass plates and air-dried.
Resulting oriented slides were analysed by XRD before and after ethy-
lene glycol solvation (heating to 450 °C).

Total carbonate content expressed as CaCO3 equivalent material
(CCE) was determined using a weak acid dissolution followed by
measurement of the pH of the extractant (Loeppert et al., 1984). The
method was selected for its reproducibility in quantifying low amounts
of CaCO3, for which the XRD detection limit is around 1% (Loeppert
and Suarez, 1996). The method was also adapted to measure reactive
carbonates, by measuring extracts shortly after the addition of the weak
acid. Briefly, 2 g of soils were placed in 50 mL centrifuge tubes and
shaken on a rotary shaker (250 rpm) with 25 mL 0.4 M acetic acid.
Holes approximately 1 mm in diameter were made in the lids to allow
for degassing during the reaction. The pH of standards (reagent grade
CaCO3) and samples solutions was measured (Thermo-Fisher Scientific
Orion Star A111 Probe) at 1 h (reactive carbonates) and 16 h (total
carbonate) after the addition of acetic acid. Quality control was assured
by running blind, analytical and spiked replicates (Loeppert and Suarez,
1996).

2.2.4. Extractable cations
Fe and Al present in pedogenic oxides were extracted using a citrate-

bicarbonate dithionite solution (Fed or Ald; Mehra and Jackson, 1958),
while poorly crystalline and monomeric Fe and Al forms were extracted
with an oxalate solution (Feo or Alo; McKeague and Day, 1966). The
ratio of oxalate-to-dithionite extractable Fe (Feo/Fed) was used as a
measure of the crystallinity of Fe oxides (Skjemstad et al., 1992). One
surficial sample (B3.1) contained more Feo than Fed (ca. 20%; Table 1).
The citrate-bicarbonate dithionite extraction is typically less selective
and extracts more Fe than the oxalate extraction (Dahlgren, 1994), but
it can be less efficient at extracting chelated Fe (Rennert, 2019), po-
tentially explaining the Feo/Fed ratio > 1.

Exchangeable cations were extracted from field moist samples using
a 0.0166 M cobalt hexamine (Cohex; [Co(NH3)6]Cl3) extraction (Aran
et al., 2008). Pre-testing demonstrated that this extraction was the least
aggressive towards carbonates (data not shown). Cation exchange ca-
pacity (CECSUM) was calculated as the sum of extracted exchangeable
cations (cmolc kg−1), excluding H+. Ca was also quantified in several
other soil extracts including, in order of expected increasing extraction
strength: deionised water (1:4 ratio; Tirmizi et al., 2006), 2 M KCl (1:5
ratio; Keeney and Nelson, 1982), 0.05 M disodium EDTA (1:20 ratio; Lo
and Yang, 1999) and 0.5 M CuCl2 extraction (1:10 ratio; Barra et al.,
2001). All extracts were vacuum-filtered (0.45 μm) and diluted with 2%
HNO3 prior to analysis on an ICP-OES (Perkin Elmer Optima 8300 In-
ductively Coupled Plasma–optical Emission Spectrometer).
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2.3. Statistical analyses of soil variables

The effects of CaCO3 on soil variables were investigated using linear
mixed models in SAS 9.4TM. The estimation method was set to restricted
(residual) maximum likelihood. Conditional residuals were plotted
against predicted values to evaluate deviations from homoscedasticity
and goodness of fit. Residuals were also checked for normality with QQ-
plots (Galecki and Burzykowski, 2015). The significance of fixed effects
was evaluated using type III F-tests. The denominators’ degrees of
freedom were computed using the Satterthwaite adjustment
(Satterthwaite, 1946). For significant fixed effects, comparison of
means was carried out using t-tests without multiple inference adjust-
ment (Webster, 2007). The alpha level of significance was set at
α = 0.05 for all tests. All reported means are conditional least-square
means ± the standard error of the mean (SEM). Means for profiles are
the unweighted average of sampling intervals.

Models included site (CaCO3-bearing or free), depth classes and
their interaction as fixed effects. Observations were blocked by profile
and a different variance was computed for each site since observations
from the CaCO3-bearing site typically had a higher dispersion than
those from the CaCO3-free site. For extractable Fe, dispersion was also
higher for surface samples and the variance was additionally allowed to
vary with depth. To account for the autocorrelation of observations
within profiles, depth was set as a repeated measure effect with a first-
order autoregressive covariance structure. Choice of covariance struc-
ture was made based on the Bayesian Information Criteria.

A Pearson’s correlation coefficient heat map was created to explore
linear associations between variables using the Corrplot Package (Wei
and Simko, 2017) in R (2019). Variables in the heat map were ordered
hierarchically into two separate groups using the complete-linkage
method (Sørensen, 1948). A principal component analysis (PCA) was
conducted on the correlation matrix to synthesise relationships between
variables. A factor analysis was completed on the first 5 principal
components (accounting for> 82% of variance) using a quartimax
orthogonal rotation (Neuhaus and Wrigley, 1954). The purpose of the
quartimax rotation is to minimise the number of original variables as-
sociated with each factor to simplify interpretation. Observations were
then plotted according to their factor 1 and 2 scores in Matlab®.

Finally, differences in the shape of the depth curve of SOC between
the sites were explored by examining scatterplots of SOC versus depth.
Linear regressions were fitted to the data for each site. A higher root
mean square error (RMSE) was considered as an indication of lack-of-fit
(departure from the linear trend). Residuals from the linear regression
were also tested for normality using the Shapiro-Wilk test, with de-
partures from normality used as another indicator of deviation from the
linear trend.

3. Results

3.1. Soil texture, composition and silicate mineralogy

Soil texture was similar between the two sites (Fig. 2). All samples
had a silty-loam texture and were comprised of six predominant tex-
tural populations (Suppl. Fig. 1). There was slightly less silt at the
CaCO3-free site than at the CaCO3-bearing site (67.3 ± 0.7% versus
74.1 ± 0.4%), and consequently more sand- (15 ± 0.8% versus
10.6 ± 0.5%) and clay-sized particles (17.8 ± 0.3% versus
15.3 ± 0.3%). The surficial samples of F1 and F2 (F1.1, F2.1, F2.2 and
F2.3) as well as one deep sample (F2.6) had a more pronounced peak in
the fine sand population (Suppl. Fig. 1), which occurred at the expense
of fine silt populations.

Major elemental compositions were mostly similar at both sites
(Suppl. Table 1). Ti and other transition/post-transition metals were
largely invariant. The main differences pertained to Ca, which was
approximately an order of magnitude higher at the CaCO3-bearing site
(14.7 ± 3.3 g kg−1) than at the CaCO3-free site (1.9 ± 0.2 g kg−1).

There was a corresponding decrease in Si at the CaCO3-bearing site
(299.8 ± 1.5 g kg−1), relative to the CaCO3-free site
(318.3 ± 3.4 g kg−1). There were also small differences in the
amounts of other elements including Mg and P, which were slightly
higher at the CaCO3-bearing site (14.9 ± 0.1 g kg−1 Mg;
4.9 ± 0.8 g kg−1 P) than at the CaCO3-free site (12.7 ± 0.3 g kg−1

Mg; 1.4 ± 0.1 g kg−1 P). K was also marginally higher at the CaCO3-
bearing site (26.9 ± 0.3 g kg−1 versus 23.4 ± 0.9 g kg−1), while Na
was slightly higher at the CaCO3-free site (7.8 ± 0.0 g kg−1 versus
6.4 ± 0.1 g kg−1). Overall, the main difference in major elements
composition between the sites consisted of an increase in Ca at the
expense of Si in the CaCO3-bearing profiles.

Silicate mineralogy was also similar between the CaCO3-bearing and
CaCO3-free sites (Suppl. Table 2). Both sites had a bulk mineralogy that
was predominated by quartz (38–41%) and phyllosilicates (42–44%),
with small amounts of Na-plagioclase (5%), K-feldspar (2%) and goe-
thite (1%), while 8% of the diffraction signal remained unquantified.
Average Na-plagioclase content was slightly higher at the CaCO3-free
site (6.1 ± 0.2%) relative to the CaCO3-bearing (4.8 ± 0.3%), while
average content of K-feldspar was marginally higher at the CaCO3-
bearing site (2.2 ± 0.1%) relative to the CaCO3-free site
(1.5 ± 0.2%). The phyllosilicate mineralogy was also remarkably si-
milar between the two sites and consistent throughout the analysed
profiles. The phyllosilicate population in both the randomly selected
profiles (F1 and B2) was predominantly formed of chlorite and mica,
with a small quantity of illite-vermiculite mixed layer minerals.

3.2. Soil pH, CaCO3 and Ca forms

Soil pH was higher at the CaCO3-bearing site (range = 5–6.5) than
the CaCO3-free (range = 4–4.6). pH also increased significantly with
depth at both sites (Table 1). The amount of CaCO3 equivalent material
(CCE) was below detectable limits in profiles from the CaCO3-free site.
Profiles from the CaCO3-bearing site typically contained about 0.5%
reactive CCE and 0.8% total CCE (Fig. 3), except for four samples, also
identified by XRD, which contained several percent of CaCO3. These
four samples consisted of two surficial samples (B1.1, B1.2) and two of
the deepest samples (B2.6, B3.7). The overall proportion of reactive
carbonates, operationally-defined as having reacted with 0.4 M acetic
acid in under 1 h, was high (74.4 ± 3.7% average; Suppl. Table 2).

As with total Ca, extractable Ca was approximately an order of
magnitude higher at the CaCO3-bearing than at the CaCO3-free site

Fig. 2. Texture of samples from the CaCO3-free (fuchsia dots) and CaCO3-
bearing (black dots) profiles.
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(Fig. 4). CECSUM was also higher at the CaCO3-bearing (16.6 ± 1.9
cmolc kg−1) than at the CaCO3-free site (4.3 ± 0.6 cmolc kg−1). This
difference reflected the higher CaExch content (Suppl. Fig. 2) at the
CaCO3-bearing site (16.1 ± 2.1 cmolc kg−1) relative to the CaCO3-free
site (3.2 ± 0.8 cmolc kg−1), as Ca was the predominant exchangeable
cation at both sites. The Ca saturation of the exchange complex was
high at both sites, but was greatest and had a smaller range at the
CaCO3-bearing site (93–99%) than at the CaCO3-free site (48–93%).
This difference was reflected in corresponding increases in Al satura-
tion, as exchangeable Al (AlExch) was consistently detected at the
CaCO3-free site only.

Extraction efficiency of Ca increased in the order of
H2O < KCl ≈ Cohex < EDTA < CuCl2. 2 M KCl extracted similar
amounts of Ca as 0.0166 M Cohex at both sites, indicating that these
two extracts effectively targeted the classical, exchangeable pool. The
EDTA and CuCl2 also extracted the exchangeable Ca pool at the CaCO3-
free site (Fig. 4), but extracted more Ca at the CaCO3-bearing site,
particularly in the samples with higher CaCO3 contents.

3.3. Multivariate exploration of texture and mineralogy

Correlation analysis (Fig. 5) showed that there was a strong positive
correlation between CaCO3 and total Ca. There was also a strong po-
sitive correlation between CECSUM and CaExch. On the other hand, there
was a strong anti-correlation between CaExch/Ca saturation and AlExch/
Al saturation. Strong anti-correlations were also detected between fine
silt and fine sand/clay contents, reflecting the fact that soil texture was
dominated by silt populations, which exerted a ‘dilution’ effect (Bern,
2009) on other size classes (simplex behaviour). Total Mg and total Ca
were also significantly anti-correlated with changes in total Si, which
dominated major element composition, highlighting another ‘dilution’
effect.

A PCA (Suppl. Fig. 3A) followed by a factor analysis (Suppl. Fig. 3B)
demonstrated that sites were clearly split along multivariate factor 1
(Suppl. Fig. 3C). This factor represented the abundance of Ca (as shown
by the correlation with total Ca, CaCO3 and CaSat) and the anti-corre-
lation between total Ca / Mg and total Si / quartz. The second factor

Table 1
Selected properties of the study profiles at the Nant valley. Profiles F1, F2 and F3 are Eutric Cambisols (CaCO3-free) and profiles B1, B2 and B3 are Cambic Phaeozems
(CaCO3-bearing).

Sample
name

Depth
intervals

Genetic
Horizons

pH AlExch CaExch CECsum CaExch
saturation

AlExch
saturation

TON SOC C:N ratio Alo Feo Ald Fed Feo/Fed
ratio

(cm) cmol.c
kg−1

cmol.c
kg−1

cmol.c
kg−1

% % % % g kg−1 g kg−1 g kg−1 g kg−1

F1.1 0–5 Ah 4.1 0.4 6.2 7.3 84.9 5.7 0.6 4.7 8.0 2.6 13.2 3.2 24.0 0.6
F1.2 5–10 A1 4.3 0.3 4.5 5.3 84.9 6.4 0.4 3.0 7.5 2.8 12.5 3.3 23.0 0.5
F1.3 10–15 A2 4.3 0.2 4.1 4.7 87.0 5.2 0.3 2.3 7.3 3.1 11.8 3.3 22.3 0.5
F1.4 15–25 B1 4.5 0.2 3.8 4.6 82.8 5.1 0.2 1.6 6.8 2.6 12.1 3.8 24.6 0.5
F1.5 25–35 B2 4.5 0.2 4.1 4.6 89.1 4.5 0.2 1.3 6.1 2.9 11.2 3.9 25.4 0.4
F1.6 35–52 B3 4.6 0.1 4.3 4.6 93.3 1.5 0.2 0.9 5.3 2.5 9.1 3.0 22.8 0.4

F2.1 0–5 Ah 4.0 1.3 4.4 6.1 72.6 20.6 0.7 5.8 8.6 2.9 11.1 3.7 23.7 0.5
F2.2 5–10 A 4.2 1.5 1.6 3.2 48.4 45.7 0.3 2.4 7.7 3.1 11.5 3.6 22.1 0.5
F2.3 10–15 AB 4.2 1.4 1.5 3.0 50.0 44.5 0.3 2.3 7.5 2.8 10.6 3.9 23.1 0.5
F2.4 15–20 B1 4.3 1.0 1.7 2.8 61.1 36.7 0.3 2.0 7.3 2.9 10.8 3.7 21.8 0.5
F2.5 20–25 B2 4.4 0.9 1.6 2.6 62.9 34.5 0.2 1.5 6.7 2.8 9.9 3.9 23.3 0.4
F2.6 25–40 BC 4.4 0.8 1.6 2.5 63.5 33.1 0.2 1.0 5.6 2.1 7.4 3.0 19.7 0.4

F3.1 0–5 Ah 4.3 0.5 7.6 9.0 84.1 5.7 0.7 6.1 8.5 2.8 12.2 3.3 21.7 0.6
F3.2 5–10 A 4.4 0.9 3.2 4.5 71.2 19.8 0.4 3.4 7.8 3.0 11.6 3.6 21.8 0.5
F3.3 10–15 B1 4.5 0.9 2.6 3.8 66.9 23.5 0.3 2.3 7.4 2.7 9.9 3.6 21.5 0.5
F3.4 15–20 B2 4.4 1.1 1.7 3.0 56.4 34.8 0.3 2.0 7.3 3.0 10.6 4.3 24.6 0.4
F3.5 20–25 B3 4.5 1.1 1.9 3.2 58.1 33.8 0.2 1.7 7.4 3.2 10.5 4.1 22.9 0.5
F3.6 25–40 BC 4.5 1.1 1.7 3.1 54.3 35.9 0.2 1.5 7.5 3.2 10.1 3.8 20.5 0.5

B1.1 0–5 Ah1 6.3 0 23.2 23.7 97.6 0.0 0.8 7.7 9.2 0.9 13.1 0.9 24.7 0.5
B1.2 5–10 Ah2 6.4 0 23.0 23.4 98.4 0.0 0.8 6.8 8.9 1.0 14.0 1.0 25.4 0.6
B1.3 10–15 ABh 6.3 0 20.3 20.6 98.5 0.0 0.6 5.3 8.7 1.2 15.3 1.0 24.5 0.6
B1.4 15–20 Bh 6.4 0 16.9 17.2 98.4 0.0 0.5 4.3 8.5 1.4 17.9 1.2 26.8 0.7
B1.5 20–25 B1 6.4 0 15.2 15.5 98.3 0.0 0.4 3.4 8.3 1.2 15.3 1.2 26.3 0.6
B1.6 25–40 B2 6.3 0 11.8 12.0 98.2 0.0 0.3 2.3 7.8 1.3 13.8 1.4 29.9 0.5

B2.1 0–5 Ah1 5.7 0 23.5 23.8 98.7 0.0 0.9 8.3 9.2 1.6 17.6 1.3 20.2 0.9
B2.2 5–10 Ah2 5.7 0 18.4 18.6 98.8 0.0 0.8 7.3 9.3 1.6 20.8 1.5 25.1 0.8
B2.3 10–15 ABh 5.8 0 18.8 19.1 98.9 0.0 0.7 6.1 9.2 1.7 21.5 1.5 26.0 0.8
B2.4 15–20 Bh1 5.8 0 16.9 17.3 97.6 0.0 0.5 5.1 9.4 1.7 22.4 1.5 25.3 0.9
B2.5 20–25 Bh2 5.9 0 14.6 14.7 98.9 0.0 0.4 4.1 9.5 1.6 20.9 1.6 30.1 0.7
B2.6 25–40 BC 6.5 0 12.8 13.1 98.0 0.0 0.3 2.7 9.0 0.9 15.5 1.0 22.1 0.7

B3.1 0–5 Ah1 5.0 0 13.5 14.5 93.0 0.0 1.1 9.4 8.8 2.0 21.4 1.7 17.4 1.2
B3.2 5–10 Ah2 5.3 0 11.3 12.0 94.4 0.0 0.6 5.3 8.9 2.0 20.8 1.8 25.6 0.8
B3.3 10–15 ABh 5.1 0 12.3 12.9 95.3 0.0 0.5 5.1 9.4 1.9 21.1 1.8 26.3 0.8
B3.4 15–20 Bh 5.2 0 13.4 14.4 93.2 0.0 0.5 4.5 9.4 1.9 26.7 1.6 27.5 1.0
B3.5 20–25 B1 5.3 0 12.5 12.9 97.0 0.0 0.4 3.8 8.8 1.6 17.9 1.6 26.6 0.7
B3.6 25–30 B2 5.2 0 12.1 12.5 96.8 0.0 0.4 3.4 9.0 1.3 14.2 1.5 26.7 0.5
B3.7 30–37 BC 6.4 0 12.0 12.3 97.7 0.0 0.3 2.4 8.6 0.9 12.1 1.2 25.4 0.5

Genetic horizons; characterised according to FAO (2006).
CaExch, AlExch: exchangeable Ca and Al.
CECsum: cation exchange capacity calculated as the sum of exchangeable cations, not including H+.
TON, SOC and C:N ratio: total nitrogen, soil organic carbon and the ratio of the two
Feo, Alo: oxalate-extractable Fe and Al.
Fed, Ald: dithionite-extractable Fe and Al.
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was a proxy for texture. There was no difference between sites along
this factor, except for the fact that observations from the CaCO3-free
site showed a higher dispersion (had both lower and higher scores than
observations from the CaCO3-bearing site). Thus, overall differences in
texture and silicate mineralogy were relatively small, but there were
clear differences related to the presence or absence of CaCO3, which
differentiated the sites (Suppl. Fig. 3C).

3.4. Organic matter and free Al and Fe

Alo was lower at the CaCO3-bearing site (1.5 ± 0.2 g kg−1) than at
the CaCO3-free (2.8 ± 0.2 g kg−1), and did not vary with depth. Alo
displayed a strong negative correlation with pH (Fig. 6; R2 = 0.88). Ald
was generally equal to Alo at the CaCO3-bearing site, suggesting that
dithionite and oxalate quantitatively extracted the same Al pool. Ald
was however higher than Alo at the CaCO3-free site, suggesting that
some Al substitution (Al incorporation into the crystalline lattice of Fe
oxides dissolved by the dithionite treatment) had taken place.

Extractable Fe was an order of magnitude higher than extractable Al
at both sites. There was an effect of depth on the amount of Feo, which
became larger mid-profile (15–20 cm). There was also a significant
influence of depth on the proportion of oxalate-to-dithionite extractable
Fe, which typically decreased with depth, except for samples at

15–20 cm (Fig. 7). Both dithionite and oxalate extractable Fe were
higher at the CaCO3-bearing site (Fed = 25.3 ± 0.3 g kg−1;
Feo = 18.2 ± 1.6 g kg−1) than at the CaCO3-free
(Fed = 22.7 ± 0.4 g kg−1; Feo = 10.9 ± 0.5 g kg−1). The proportion
of oxalate-to-dithionite extractable Fe was also higher at the CaCO3-
bearing site (0.73 ± 0.06) than the CaCO3-free (0.48 ± 0.01). Thus,
extractable Fe was more abundant and predominantly found in poorly
crystalline or monomeric forms at the CaCO3-bearing site.

Organic carbon contents of AGB were similar between the sites
(Suppl. Fig. 4). AGB estimates, reported in Blattner, were 281 g m−2 at
the CaCO3-bearing sites and 350 g m−2 at the CaCO3-free site. We thus
calculated that above-ground C amounted to 110 g C m−2 at the CaCO3-
bearing site and 140 g C m−2 at the CaCO3-free site.

In contrast, SOC was approximately twice as high at the CaCO3-
bearing site (5.2 ± 0.2%) compared to the CaCO3-free soils
(2.5 ± 0.1%), decreasing systematically with depth at both sites
(Fig. 8). SOC decreased with depth more linearly at the CaCO3-bearing
site (RMSE of linear relationship = 3.36) than at the CaCO3-free
(RMSE = 6.76; Suppl. Fig. 5A:C). The distribution of residuals from the
linear relationship between SOC and depth at the CaCO3-bearing site
were normally distributed (p = 0.69), while the residuals at the CaCO3-
free site were not (p = 0.02). Total nitrogen followed an almost iden-
tical pattern and was thus higher at the CaCO3-bearing site

Fig. 3. Reactive and total contents of calcium carbonate equivalent for CaCO3-bearing profiles (B1, B2, B3). Calcium carbonate equivalent contents were below the
limits of detection at the CaCO3-free site.

Fig. 4. Calcium content of CaCO3-free and
CaCO3-bearing profiles. From left to right
are deionised water, 2 M potassium
chloride, 0.0166 M cobalt hexamine
(Cohex), 0.05 M disodium EDTA and 0.5 M
copper chloride extracts measured on an
inductively coupled plasma optical emission
spectrometer and total contents measured
with X-ray fluorescence (XRF). Y scales
differ by an order of magnitude. Bottom and
top edges of the boxes in the box plot re-
present the 25th and 75th percentiles, the
middle bars represent the median. Whiskers
represent the range of most extreme data
points not considered as outliers, while ‘+’
represent outliers defined as values outside
of the± 2.7 standard deviation range.
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(0.6 ± 0.0%) than at the CaCO3-free (0.3 ± 0.0%). Total N also
decreased systematically with depth. The C:N ratio was low at both sites
(Suppl. Fig. 6). It was slightly higher at the CaCO3-bearing site
(8.9 ± 0.3) than at the CaCO3-free site (7.2 ± 0.3), but the differ-
ences were very small.

4. Discussion

In this study, we aimed to determine the influence of small amounts
of CaCO3 on pedogenesis and biogeochemistry. We used a naturally
occurring gradient in CaCO3 content affecting otherwise highly similar

Fig. 5. Pearson’s correlation coefficient matrix divided into two parts. The lower-left part represents the value of positive (blue) and negative (red) correlation
coefficients as variations in circle size. The upper-right part displays the actual Pearson’s correlation coefficients. Boxes in the upper-right part are only coloured in if
the relationship is significant (α= 0.05). Strong correlation coefficients are highlighted in white and underlined (r≥ 0.85). The different variables are hierarchically
clustered using the complete-linkage method into two separate groups, highlighted with black rectangles in bold. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. Negative relationship between soil pH and oxalate extractable aluminium (Alo) for CaCO3-free (F1, F2, F3) and CaCO3-bearing profiles (B1, B2, B3).
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soils. With the constraints of finding near-identical soil forming con-
ditions, we retained only 6 profiles, which were all located in close
proximity (< 500 m). With such a low sample size, two things must be
kept in mind:

(1) The generalisation of findings to other soils is not supported by this
experimental layout (but remains possible if a detailed mechanistic
understanding is attained).

(2) Only large effects could be statistically detected.

It was of prime importance that the soils be similar except for the
presence/absence of CaCO3, in order to isolate the role of CaCO3 from
other pedogenic variables. Homogeneity of parent material was of
particular importance and is discussed further below.

4.1. Parent material

Textural analysis confirmed field observations that the parent ma-
terial was homogeneous, with all samples plotting within the silt loam
class. Both sites had 6 predominant textural populations, the modes of
which are commonly encountered in previously glaciated landscapes
(Boulton, 1978). The total composition of major elements were also
similar between the sites. There was however a clear increase in Ca at
the CaCO3-bearing sites due to the presence of CaCO3. This increase in
Ca also caused a proportional decrease in Si (silicates) due to a ‘dilution’
effect. The slightly higher Mg content at the CaCO3-bearing site could

be due to partial substitution of Mg for Ca in calcite (0.3% in measured
coarse fragments) or the presence of poorly crystalline dolomite and
accessory ferromagnesian minerals. P was also slightly elevated at the
CaCO3-bearing site, which could be a reflection of its lower mobility in
Ca-bearing geochemical environments (von Wandruszka, 2006). K was
marginally higher at the CaCO3-bearing site and Na was higher at the
CaCO3-free site, which corresponded to small differences in K-feldspar
and Na-plagioclase abundances, respectively. Relatively immobile ele-
ments such as Ti and other transition / post-transition metals showed
near-uniform distribution between samples from different profiles,
collected at different depths, pointing to a common source for parent
materials. Neoformation of pedogenic clay was incipient at both sites,
with only small quantities of an illite-vermiculite mixed-layer mineral
detected (Egli et al., 2003; Zollinger et al., 2013). Most of the phyllo-
silicates originated from the physical disintegration of shale compo-
nents of the Morcles Nappe.

While the siliceous component of the parent material at the two sites
was near-homogeneous, there was a natural variation in CaCO3 present
at the alpage. This was likely due to the variability in CaCO3 content of
surficial deposits issued from the Morcles Nappe. The Grand Muveran
cliffs protruding on the southeast side of the study area contain cal-
careous material, while the slopes of La Chaux on the northwest side
essentially consist of shales. Thus, during the partial alluvio-colluvial
reworking of the moraine and slope deposits that occurred following
deglaciation, some carbonates were added to the CaCO3-bearing site
while little to no carbonates were added to the CaCO3-free site.

Fig. 7. Ratio between oxalate (Feo) and dithionite (Fed) extractable Fe contents for CaCO3-free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles.

Fig. 8. Soil organic carbon (SOC) and total nitrogen contents for CaCO3-free (F1, F2, F3) and CaCO3-bearing (B1, B2, B3) profiles.
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CaCO3 was identified as being predominantly reactive at the Nant
Valley (Fig. 3) by the adapted Loeppert et al. (1984) method. This
method is not typically used for the measurement of reactive carbo-
nates, but its results were in reasonable agreement with the EDTA ex-
traction (Suppl. Fig. 7), which has been used previously for the esti-
mation of reactive carbonates (Glover, 1961). Thus, CaCO3 was most
likely predominantly reactive at the CaCO3-bearing site, increasing the
likelihood that it would play an active role in soil biogeochemistry.

Another difference between the sites was that free Fe forms were
significantly less crystalline at the CaCO3-bearing profiles, relative to
the CaCO3-free profiles. The sorption of organic colloids (Filimonova
et al., 2016; Kleber and Jahn, 2007) and cations such as CaExch
(Thompson et al., 2011), which were more abundant at the CaCO3-
bearing site, could have inhibited the formation of well-crystallised Fe
forms. The increased pH at this site may have also indirectly influenced
the crystallinity of Fe forms via its influence on their variable surface
charge and their interaction with CaExch (Schwertmann and Fechter,
1982), but this would still require further investigation. While the
presence of CaCO3 seemed to favour the prevalence of disordered Fe
forms, the Feo/Fed ratio did not vary systematically with SOC, CaExch or
pH making it hazardous to attribute the differences in crystallinity to a
single factor. It seems more likely that a mixture of indirect influences
of CaCO3 were involved in explaining the decreased crystallinity of Fe
forms at the CaCO3-bearing site.

4.2. Accumulation of SOC

Soil organic carbon was approximately twice as high at the CaCO3-
bearing site compared to the CaCO3-free site. A potential explanation
for this accumulation could involve the higher primary productivity of
grasses at the CaCO3-bearing site. Yet, AGB was slightly higher at the
CaCO3-free site relative to the CaCO3-bearing site. Increased root
turnover or exudation at the CaCO3-bearing site could explain part of
the differences in SOC, but this effect should be relatively small due to
the similarities between vegetation structure at the sites (Vittoz and
Gmür, 2008). Instead, it was probably the difference in the efficiency of
SOC stabilisation that drove the relative accumulation of SOC observed
at the CaCO3-bearing site.

In a previous study, Grand et al. (2016) demonstrated that soil re-
spiration was higher at the CaCO3-bearing site than the CaCO3-free site
for 3 out of 4 of the measured months (July–Oct.); yet estimated het-
erotrophic respiration (Hanson et al., 2000) was actually lower
throughout the entire measurement period, when expressed per unit
SOC (Suppl. Table 3). This suggests that SOC at the CaCO3-bearing site
has a certain biogeochemical stability, which may be contributing to-
wards its accumulation (Whittinghill and Hobbie, 2012). Due to simi-
larities between the sites, this stability cannot be explained by differ-
ences in texture or clay mineralogy. Potential geochemical controls that
could influence the accumulation of SOC at the Nant Valley include the
prevalence of reactive Ca and Fe forms, which are discussed further
below.

4.2.1. Reactive Ca forms
We found a weak positive correlation between CaExch and SOC at

our sites (Suppl. Fig. 8C), which was particularly evident in the CaCO3-
bearing profiles with higher pH and CaExch. CECsum was also higher at
the CaCO3-bearing sites (Suppl. Fig. 8D); this was partly attributable to
the higher SOC content acting as loci for cation exchange, as clay mi-
neralogy and texture were homogeneous at the sites. Thus, the com-
monly observed correlation between SOC and CaExch could partially be
explained by the increase in cation exchange sites provided by SOC
(Briedis et al., 2012). However, there is evidence that Ca can also in-
fluence SOC dynamics (Groffman et al., 2006; Hobbie et al., 2002;
Martí-Roura et al., 2019; Minick et al., 2017; Whittinghill and Hobbie,
2012) through several mechanisms (see Rowley et al., 2018 for more
details). In our study, the two-fold increase in SOC at the CaCO3-

bearing site supports the hypothesis that reactive Ca is causally linked
to the accumulation and stabilisation of SOC. Future investigation
should focus on the mechanisms by which Ca influences SOC dynamics.

4.2.2. Analysing Ca forms
Exchangeable Ca may not be the only reactive Ca pool that influ-

ences SOC. It has been hypothesised that Ca could also stabilise SOC
through inner sphere complexes (Rowley et al., 2018). This is supported
by chemical modelling (Iskrenova-Tchoukova et al., 2010; Kalinichev
and Kirkpatrick, 2007; Sutton et al., 2005), but as of yet, there is no
direct evidence of this in soils. We attempted to extract this tightly
bound, ‘chelated Ca’ pool using selective extractions, as has been done
with the selective dissolution of free Fe and Al. Our more aggressive
extracts, EDTA and CuCl2, yielded the same quantity of Ca as the ex-
changeable cations extracts (KCl/Cohex) at the CaCO3-free site, but
more Ca than the exchangeable cations extracts at the CaCO3-bearing
site. This was particularly apparent in samples with higher amounts of
CaCO3 and it thus seems as though both EDTA and CuCl2 were ag-
gressive towards reactive CaCO3, but failed to target Ca pools other
than the exchangeable pool at CaCO3-free sites. Thus, the existence in
soils of a tightly-bound Ca pool which is distinct from reactive CaCO3,
and its selective extraction, remains an open question.

4.2.3. Fe forms
It is widely established that poorly crystalline Fe forms can stabilise

SOC (Kögel-Knabner et al., 2008; von Lützow et al., 2006). In our study,
SOC displayed a weak positive correlation with Feo, which was parti-
cularly evident in the profiles with the highest amounts of extractable
Fe (Suppl. Fig. 8B). The same trend was observed for the degree of
crystallinity of Fe oxides (Feo/Fed; Suppl. Fig. 8A), as the amount of
crystalline oxides was comparatively similar between profiles and it
was mainly the amount of Feo that changed. The CaCO3-bearing profiles
displayed an increase in Feo/Fed ratio mid-profile (15–20 cm; Fig. 7),
potentially due to the mobility of poorly crystalline Fe species during
brief suboxic events linked to snowmelt. It is possible that this pattern
had some influence over the more linear SOC decline with depth at
these sites (Suppl. Fig. 5A:C). Overall, our results support a positive
relation between SOC accumulation and the amount of poorly crystal-
line Fe.

4.2.4. Ca and Fe interactions
It is interesting to note that our data hint at some kind of interaction

or competition between Ca and Fe forms (Suppl. Fig. 8A:D). Profiles B1
and B2 showed no association between SOC and Feo but were instead
characterised by a strong correlation between SOC and CaExch. On the
contrary, in profile B3, where pH and CaCO3 were slightly lower than in
the other CaCO3-bearing profiles, SOC was significantly related to Feo
and much less so to CaExch. Speculatively, we propose that some organic
functional groups may interact either with exchangeable cations or
with reactive oxides depending on the prevailing biogeochemical con-
ditions (pH and the prevalence of free elements), which may lead to a
change in the relative importance of SOC stabilisation mechanisms
(Rasmussen et al., 2018; Rowley et al., 2018).

Furthermore, a synergistic stabilisation of dissolved organic C by
poorly crystalline Fe and CaExch, involving the formation of Fe-Ca-or-
ganic C ternary complexes, has recently been described (Sowers et al.,
2018a,b). Hypothetically, this could also have exerted a positive feed-
back on the stabilisation of SOC at the CaCO3-bearing sites (Fig. 9), as
disordered Fe forms that are favoured by the higher SOC, CaExch and pH
would in turn further contribute to an accumulation of SOC, rendered
particularly effective by the presence of significant amounts of ex-
tractable Ca. This potential relationship between Ca and Fe and its
impacts on SOC stabilisation and accumulation should now be in-
vestigated further in Ca-rich soils.
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4.3. Implications for modelling efforts

There is growing evidence that geochemical indicators are im-
portant parameters for modelling the persistence of SOC (Rasmussen
et al., 2018; Vaughan et al., 2019). Indeed, models that infer SOC dy-
namics from clay content and climate would be unable to represent the
difference in SOC content attributed here to the presence or absence of
CaCO3. Rasmussen et al. (2018) recently questioned the use of clay and
climate as sole variables for modelling SOC and our results are in close
agreement with their broader analysis of 5500 soil profiles. Models
based on climate and clay content may be particularly inappropriate in
situations where soil geochemistry is in disequilibrium with climate
(occurrence of pedogenic inertia) and/or variations in types and crys-
tallinity of Fe phases exist. Furthermore, modelling the depth dis-
tribution of SOC using an exponential decay function would have also
misrepresented the different SOC-depth trends present at the sites,
further underestimating SOC stocks at the CaCO3-bearing site. These
errors could however be reduced by accounting for differences in soil
geochemistry and their subsequent effects on the accumulation of SOC
and its depth distribution.

4.4. Synthesis – cascading biogeochemistry and the shift in geochemical
controls on SOC stabilisation with pH

The divergence in biogeochemistry at the Nant Valley sites is caused
by a state of pedogenic inertia, driven by the cascading influence of
CaCO3 dissolution (Fig. 9). The CaCO3-bearing site exists in a state of
disequilibrium with climate as the pedogenic threshold of CaCO3 re-
moval has not yet been breached. This threshold is unlikely to be
breached in the near-future, due the presence of the adjacent calcareous
cliffs and their alluvio-colluvial inputs, so that the site will likely

continue to retain its Mollic nature, high pH, and base saturation
(Phaeozem).

Upon weathering, reactive CaCO3 buffered pH levels (Likens et al.,
1998), releasing CaExch into the soil solution. This CaExch can stabilise
SOC (Oades, 1988; Rowley et al., 2018), which likely contributed to its
accumulation in the CaCO3-bearing profiles (x2). The presence of
CaCO3 also seemed to indirectly participate in the stabilisation of
poorly crystalline Fe forms, which in turn, may have exerted a positive
feedback on the retention of SOC, possibly involving ternary Fe-Ca-SOC
complexes (Sowers et al., 2018a,b).

In contrast, the CaCO3-free profiles had a lower pH. These acidic
conditions in turn seemed to favour the prevalence of more crystalline
Fe oxides such as goethite and higher amounts of reactive Al forms such
as AlExch and Alo (Adams et al., 2000). This confirms the long-held
notion that decreasing soil pH identifies a shift along a weathering
sequence from Ca-to-Al dominated biogeochemistry (Adams et al.,
2000; Slessarev et al., 2016). In turn, this shift can be linked to different
SOC stabilisation mechanisms (Rasmussen et al., 2018; Rowley et al.,
2018), which could be used to help model the persistence of SOC. Thus,
this study further supports the notion that soil pH could be used as an
efficient and parsimonious variable for improving regional models of
pedogenesis, biogeochemical functioning, and even SOC stabilisation
(Clarholm and Skyllberg, 2013; Rowley et al., 2018). Future studies
should investigate the potential of soil pH as a widely available in-
dicator to account for the effects of geochemistry on SOC and im-
proving the accuracy of regional SOC estimates.
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A B S T R A C T

Our understanding of mechanisms governing soil organic matter (OM) stability is evolving. It is gradually be-
coming accepted that soil OM stability is not primarily regulated by the molecular structure of plant inputs, but
instead by the biotic and abiotic properties of the edaphic environment. Moreover, several experimental studies
conducted in artificial systems have suggested that mechanisms regulating OM stability may differ with depth in
the soil profile. Up to now however, there is very limited field-scale evidence regarding the hierarchy of controls
on soil OM dynamics and their changes with soil depth.

In this study, we take advantage of the high heterogeneity of ecological conditions occurring in the alpine belt
to identify the major determinants of OM dynamics and how their significance varies with depth in the soil
profile. Aboveground litter, mineral topsoil, and subsoil samples originating from 46 soil profiles spanning a
wide range of soil and vegetation types were analysed. We used Rock-Eval pyrolysis, a technique that in-
vestigates the thermal stability of OM, as an indicator of OM dynamics.

Our results show a clear divergence in predictors of OM thermal stability in the litter, topsoil, and subsoil
layers. The composition of OM correlated with its thermal stability in the litter layer but not in mineral soil
horizons, where the supply rate of fresh organic material and the physical and chemical characteristics of the
pedogenic environment appeared important instead. This study offers direct confirmation that soil OM dynamics
are influenced by different ecosystem properties in each soil layer. This has important implications for our
understanding of carbon cycling in soils under a changing climate.

1. Introduction

Soil organic matter (OM) provides essential ecosystem services as it
contributes to soil fertility, water quality and retention, biodiversity,
resistance to soil erosion, and could play a fundamental role in the
mitigation of climate change (Adhikari and Hartemink, 2016). There-
fore, it is necessary to understand the mechanisms governing its sta-
bility, namely its preservation from mineralisation (Plante et al., 2011;
Sollins et al., 1996; von Lützow et al., 2006) in order to maintain soil
OM stocks and their associated functions. It was previously widely held
that mineralisation rates of soil OM reflected the kinetics of enzymatic
reactions and were consequently largely dependent on the intrinsic
molecular composition of plant litter entering the soil system (Davidson
and Janssens, 2006). This concept has been formalised under the term
“selective degradation” (Sollins et al., 1996), and assumed that soil
microorganisms preferentially decomposed the inherently labile

components of OM, causing the accrual of recalcitrant components
(Aber et al., 1990; Melillo et al., 1982). Recent studies have however
questioned the idea that organic molecules could be inherently “stable”
or “recalcitrant” (Lehmann and Kleber, 2015; Marschner et al., 2008)
by showing that potentially persistent organic molecules, such as lignin,
could be mineralised relatively quickly in soils (Gleixner et al., 1999,
2002; Heim and Schmidt, 2007). Contrarily, supposedly labile com-
pounds, such as polysaccharides and proteins, can persist in soil for
several decades, centuries or even millennia before being mineralised
(Derrien et al., 2006; Gleixner et al., 1999, 2002). These long residence
times can be in large part attributed to protection or stabilisation by soil
minerals (Gleixner et al., 2002; Spielvogel et al., 2008). These recent
findings have led to the proposal of a new paradigm, conceptualised by
Schmidt et al. (2011). It suggests that selective degradation only plays
an essential role in the initial stages of litter decomposition on the soil
surface, while its importance becomes marginal when organic material
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is incorporated into the mineral soil. In the mineral soil, OM decom-
position rates would instead mainly be driven by its spatial accessibility
to microorganisms, their enzymes and the necessary compounds of
decomposition (mainly oxygen and moisture), and by the type and
number of interactions established with mineral surfaces (Lehmann and
Kleber, 2015; Schimel and Schaeffer, 2012; Sollins et al., 1996; von
Lützow et al., 2006). OM stability in the mineral soil would thus be
mainly governed by ecosystem properties such as climate, soil texture,
mineralogy and geochemistry (see synthesis by Schmidt et al., 2011 and
references therein).

Even though considerably high proportions (between 30 and 63%)
of carbon (C) are stored in the subsoil, between 30 and 100 cm deep
(Batjes, 1996), most of the studies on soil OM stabilisation mechanisms
have focused on the topsoil (Rumpel and Kögel-Knabner, 2011). This
may have resulted in a significant bias in our understanding of drivers
of OM stability. Indeed, manipulative laboratory experiments suggest
that factors controlling C dynamics in topsoil and subsoil may be sub-
stantially different. Fierer et al. (2003) and Salomé et al. (2010) in-
cubated topsoil and subsoil material and found that water potential and
supply of fresh organic material were important for surface horizons,
while nutrient input, temperature, and the physical accessibility of or-
ganic substrates appeared as the main regulatory mechanisms of C
mineralisation in the subsurface soil layers. Whether this divergence of
controls on soil OM stability is operative under field conditions remains
however difficult to evaluate.

Indeed, there is no universally recognised mean to assess soil OM
stability. Many different fractionation techniques have been devised
based on physical, chemical, or biological properties of OM (see Kögel-
Knabner et al., 2008 for a review). Physical and chemical fractionation
techniques separate soil OM into operationally-defined pools whose
relevance to field-scale OM dynamics remains difficult to assess
(Diochon et al., 2016). Investigations that consider the bulk sample
without pre-treatment may allow for a more integrative assessment of
OM stability. In this respect, biological mineralisation during long-term
incubation experiments is generally favoured (Plante et al., 2011), but
the inherent soil disturbance and the long durations of incubation re-
quired to be fully informative (up to several decades) represent an
impediment. Thermal decomposition techniques offer a promising al-
ternative to study soil OM stability. Results from thermal decomposi-
tion studies are consistent with those of incubation experiments (Plante
et al., 2011) and some physical fractionation schemes (Gregorich et al.,
2015; Saenger et al., 2015). The pertinence of thermal techniques is
based on the assumption, validated by Plante et al. (2011), that the
thermal stability of OM is related to its chemical properties or biological
stability, as the activation energy required for thermal bond cleavage
correlates to the chemical energy required for enzymatic cleavage
(Kögel-Knabner et al., 2008). Schiedung et al. (2017) recently showed
that thermal oxidation between 200 and 400 °C was a poor predictor of
old (17 years or older) versus recent vegetation inputs. Pyrolysis tech-
niques appear better suited to assess biological stability, as persistent
OM tends to disintegrate at higher temperatures than labile OM (Barré
et al., 2016). The Rock-Eval pyrolysis technique is now widely em-
ployed for routine analysis of OM in soil samples (see Sebag et al., 2016
for a review). This method quantifies total organic and inorganic C
contents of a sample (either soil or litter) and provides a wide range of
parameters that can be used to evaluate OM composition and its
thermal stability. When compared to other methods used to quantify
pools of recent or labile C (as assessed using 14C dating, incubation and
physical fractionation), Rock-Eval analysis performed most effectively
(Soucémarianadin et al., 2018a; Vinduskova et al., 2015).

In this study, the thermal stability of OM, taken as an indicator of
OM dynamics, was measured using Rock-Eval pyrolysis in litter (Oi
horizon), topsoil mineral (A horizons), and subsoil mineral layers (in-
cluding E, B, and C horizons) of 46 subalpine-alpine soil profiles. These
soil profiles spanned eight types of vegetation communities and a wide
range of soil pH and moisture conditions. The specific aims of this

research were (1) to identify the major predictors of OM thermal sta-
bility and (2) to assess how their relative importance varied with soil
depth. We hypothesised that there would be a clear shift in determi-
nants of OM thermal stability between soil layers, with the influence of
plant inputs being restricted to organic layers while the properties of
the mineral phase would become prominent at depth.

2. Methods

2.1. Sampling design

The 46 soil profiles were selected across three sites of northern and
western central Alps in Switzerland (Fig. 1) differing in terms of li-
thology (Table 1). The Morteys site is underlain by compact limestone
and calcareous surficial deposits, while the soil parent materials of the
Grimsel site are mainly granite, gneiss, and granodiorite (Oberhänsli
et al., 1988). The Réchy area is underlain by a variety of bedrock types
including gneiss, mica schist, quartzite, calcschist, marble, and “cor-
nieule” (a dolomite-gypsum greywacke). The three study sites were

Fig. 1. Location of the three study sites (represented by a star) in Switzerland.

Table 1
Characteristics of the study sites: coordinates, mean annual temperatures
(MAT), mean annual precipitations (MAP), elevation ranges (with median be-
tween brackets), vegetation belt, vegetation types present, lithology, and
number of soil profiles excavated at each study site. MAT and MAP are extra-
polated according to Zimmermann and Kienast (1999) with a 25m grid cell
size.

Morteys Grimsel Réchy

Latitude 46°32′N 46°32′N 46°10′N
Longitude 7°09′E 8°16′E 7°30′E
MAT [°C] 2.1 −0.44 −0.53
MAP [mm] 1650 2071 1480
Elevation [m] 1698–2232 (1884) 2310–2650 (2329) 2430–2697 (2573)
Vegetation

belt
Upper subalpine Lower alpine Lower alpine

Vegetation
types

Calcareous
grasslands,
subalpine pastures,
calcareous
snowbeds

Siliceous subalpine
and alpine
grasslands, typical
snowbeds

Siliceous alpine
grasslands, typical
and wet snowbeds,
windy ridges

Lithology Limestone Granite, gneiss,
granodiorite

Gneiss, micaschists,
quartzite, calcshists,
marble, dolomite

No. of soil
profiles

18 11 17
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covered with glaciers during the last Pleistocene glaciation (Würm).
The onset of the melting of the Rhône glacier in Switzerland is dated
circa 21,000 years before present and continued to the oldest Dryas,
around 16,000 years before present (Ivy-Ochs et al., 2004). This must
be considered as the maximum soil age at our study sites. A variety of
morphodynamic processes triggered the removal, transport, and accu-
mulation of material during the Quaternary, leading to a complex
mosaic of sediments of different ages (Baruck et al., 2016; Theurillat
et al., 1998). Therefore, surficial deposits such as scree slope, moraine,
and loess deposits are frequently found as soil parent materials. The
climatic conditions differ slightly between the three study sites con-
sistently with their biogeographic region and elevational belt. Due to its
internal position in the Alps, the climate of the Réchy area tends to-
wards drier continental conditions, while Morteys and Grimsel have a
slightly more humid and oceanic climate (Table 1). All soil profiles are
located above the present treeline. However, because of extensive
grazing and deforestation in the Middle Age, the present treeline ele-
vation is lower than it would be if driven purely by climatic influences
(Favilli et al., 2010). We can estimate that the Morteys study site is
located around the potential treeline (upper subalpine and lower alpine
belt) and the Grimsel and Réchy sites slightly above it (lower alpine and
alpine belt; Table 1).

Vascular plant species were exhaustively inventoried around each
soil profile. Then, for simplification and standardisation purposes, the
plant inventories with similar species composition and estimated cover
were grouped by cluster analysis and, based on its dominant species,
each group was associated to a specific plant community of the Swiss
vegetation classification system (Delarze et al., 2015). This procedure
identified a total of eight types of plant communities growing on the 46
soil profiles: (i) calcareous grasslands, (ii) subalpine pastures, (iii)
windy ridges, (iv) calcareous snowbeds, (v) siliceous subalpine grass-
lands, (vi) siliceous alpine grasslands, (vii) typical (siliceous) snowbeds
and (viii) wet snowbeds. Each vegetation type mirrors the ecological
conditions where plants grow (Suppl. Table 1) and can therefore be
considered as an “eco-unit” (Saenger et al., 2013). Vegetation in most
plots was extensively grazed by cow, goat, or sheep for 2–4months in
summer, with the strongest grazing impact expected in subalpine pas-
tures.

2.2. Soil description and analyses

Soil description was performed following the guidelines provided by
the Food and Agriculture Organization of the United Nations (FAO,
2006). Depth, colour (according to the Munsell soil colour chart), re-
lative abundance of calcium carbonate (established by 10% HCl test),
structure, percentage of skeleton (rock fragments> 2mm) and abun-
dance of fine roots (< 2mm in diameter) in each soil horizon were
estimated in the field. Organic (Oi, Oe and Oa), mineral topsoil (A), and
mineral subsoil horizons (E, B, and C) have been initially named ac-
cording to Baize and Girard (2009) and then converted to the inter-
national FAO nomenclature (FAO, 2006). Classification of soils fol-
lowed IUSS Working Group (2015) and that of humus forms followed
Jabiol et al. (2013).

Samples were collected in a total of 231 horizons, including the
organic horizons. Sampling occurred in early summer, within the three
months following snow melt, irrespective of the vegetation type.
Samples were dried at 45 °C. Mineral soil samples were then sieved at
2mm (fine earth fraction) and a part of the sieved sample was crushed
to powder in an agate mortar. The organic samples were ground to
0.12mm mesh size with a pulveriser (14 Fritsch Tracomme AG). pH
was measured in water (pHH2O) with a lab pH meter (Metrohm SA)
fitted with a double-junction combined glass electrode. The measure-
ment was conducted in a suspension of fine earth in deionized water
(1:2.5 soil water ratio) after 2 h of agitation. The texture of the fine
earth fraction was assessed by laser diffraction. Prior to particle size
analysis, calcium carbonate was removed by reaction with 10% HCl

which was subsequently rinsed off until a pH > 6 was reached. The
OM was then removed with 10–35% hydrogen peroxide (H2O2). During
and after the OM digestion, excess acidity was neutralised with sodium
hydroxide (NaOH) 0.1–0.5M. Finally, soil mineral particles suspended
in dilute Na-hexametaphosphate (40 g/L) were analysed in the dif-
fractometer (Malvern™ Mastersizer 2000). Organic carbon and total
nitrogen were measured on the dried crushed samples with a CHNS
Elemental analyser (EA1108-Carlo Erba Instrument). Calcium carbo-
nate was removed prior to analysis by addition of 10% HCl and sub-
sequent rinsing. The C/N ratio was calculated for each organic and
topsoil mineral layer. Unfortunately, N concentration in subsoil hor-
izons was below the reliable quantification limit precluding the inter-
pretation of C/N ratios there.

The total organic carbon (TOC) concentration and the OM proper-
ties of the 231 samples were obtained by thermal analysis performed
with a Rock-Eval 6 Pyrolyser (Vinci Technologies). Twenty samples had
TOC concentrations that were too low for reliable analysis
(TOC < 0.2%) and/or abnormal pyrolysis curves (no smooth pyro-
grams in the S2, S3 or S4 regions indicative of measurement failure)
and were deleted from the dataset; therefore 211 samples were retained
for the analyses. Between 40 and 70mg of dried crushed sample were
pyrolysed in an inert N2 atmosphere with increasing temperatures from
200 up to 650 °C with a heating rate of 25 °C/min. The residual sample
was then oxidised under oxygenated atmosphere starting at a tem-
perature of 400 increasing until 850 °C with the same heating rate.

The two phases of thermal decomposition released hydrocarbon
compounds (HC), CO2, and CO which were detected continuously. The
sum of these C fractions (excluding the CO2 released above 400 °C
during N2-pyrolysis and above 650 °C during oxidation, which corre-
sponds to the mineral C) represents the TOC concentration (Lafargue
et al., 1998). The TOC concentration correlated very well with the or-
ganic C concentration measured by elemental analysis (r2= 0.98,
Suppl. Fig. 1). All element concentrations were calculated on an oven-
dried soil basis. The hygroscopic moisture correction factor was de-
termined by oven-drying dried crushed samples at 55 °C during 30 h for
organic layers and 105 °C during 24 h for the other layers. The amount
of HC released relative to TOC is called the Hydrogen Index (HI) and is
considered proportional to the atomic H:C ratio in the sample. Simi-
larly, the amount of CO2 and CO released relative to TOC is called the
Oxygen Index (OI) and it is considered proportional to the atomic O:C
ratio. The HI and OI are regarded as proxies of the organic matter
stoichiometry or composition (Carrie et al., 2012).

The amount of HC released during pyrolysis between 200 and
650 °C forms a bell curve called the S2 pyrogram. The shape of this
pyrogram is sample-specific and is indicative of the thermal stability of
organic molecules in the sample. The area under the S2 pyrogram was
subdivided into four sections (A1, A2, A3 and A4) using temperature
cut-offs frequently used in the literature (Sebag et al., 2016):
200–340 °C for A1, 340–400 °C for A2, 400–460 °C for A3 and
460–650 °C for A4. Thermally labile organic molecules release high
quantities of HC during the early stage of the pyrolysis process (i.e.
large A1 and A2 areas), while thermally stable organic molecules crack
later (i.e. large A3 and A4 areas). On this basis, the thermal stability of
each sample was represented by two indices previously proposed by
Sebag et al. (2016): the R-Index representing thermally refractory OM
[R= (A3+A4) / (A1+A2+A3+A4)], and the I-Index representing
thermally labile OM [I= log10(A1+A2) / (A3)]. These two indices are
negatively correlated and only the R-Index was retained as an indicator
of OM thermal stability in the present study (Suppl. Fig. 2).

The R-Index was preferred over other Rock-Eval parameters such as
the OI, the HI, or temperatures at which 50% of C was evolved during
the pyrolysis or oxidation phase (T50_HC_PYR or T50_CO2_OX, re-
spectively), for the following reasons: (1) the OI and HI are more di-
rectly interpretable as indicators of OM stoichiometry than its stability;
(2) T50_CO2_OX has been shown to correlate poorly with other mea-
sures of OM stability (Soucémarianadin et al., 2018a,b); and (3)
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T50_HC_PYR is by definition very close to and highly correlated with
the R-Index, making its use redundant. Finally, Sebag et al. (2016) has
shown that the R-Index is an appropriate proxy for OM dynamics during
the decomposition process.

2.3. Potential drivers of OM thermal stability

A total of eighteen quantitative variables in five categories (site
conditions, vegetation type, soil properties, humus forms and OM
composition) were chosen for their potential impact on OM stability
(Table 2). The mean air temperature in summer (June to September
included), the average summer solar radiation and the mean annual
moisture index (precipitation-evapotranspiration) were extrapolated
for each soil location from the Swiss meteorological stations (www.
meteoswiss.ch) according to Zimmermann and Kienast (1999). The
aspect was measured in the field with a compass and then converted to
a “North-South (NS) gradient” by the formula:

= −NS radian Aspect0 cos[ ( )].gradient

The vegetation type was taken into account by performing a prin-
ciple component analysis (PCA) based on the species composition and
cover (after Hellinger transformation; see Legendre and Gallagher,
2001) recorded at each study point. Scores on the first two axes (Suppl.
Fig. 3) were retained for subsequent analyses. The two resulting vari-
ables were respectively called Vegetation PC1 scores and Vegetation
PC2 scores. To facilitate interpretation of these principal components,
Landolt ecological indicator values (Landolt et al., 2010) expressing
plant-specific requirements for soil pH (R) and moisture (F) were as-
sociated to each plant species of the dataset. A global indicator values
for each plant inventory was calculated with the species cover as a
weight. Finally, the Pearson correlation coefficient between the mean
indicator values and the PC1 and PC2 scores of each plant inventory
were calculated. Landolt's R value, corresponding to an increasing
preference for alkaline soils, correlated strongly and negatively with
Vegetation PC1 scores (Pearson's r=−0.88, 95% confidence in-
terval=−0.93 < r < −0.80). Landolt's F value, corresponding to
increasing requirement for soil moisture, was positively correlated with
Vegetation PC2 scores (r= 0.54, −0.30 < r < −0.72). Vegetation
PC1 scores were thus mainly related to the proportion of acidophilic
species, and separated plant communities typically associated with
calcareous versus siliceous substrates. Instead, Vegetation PC2 scores
reflected in part the contribution of hygrophilic species and dis-
tinguished grasslands from snowbeds.

Soil properties included pHH2O, clay (< 2 μm), silt (2–63 μm) and
sand (63–2000 μm) percentages and the occurrence of carbonate (pre-
sence/absence of 10% HCl reaction). The humus form, i.e. the sequence
of organic and underlying topsoil mineral horizons, was selected to
represent the integrated effects of plant and decomposer communities.
In this study, the humus form was represented by the Humus Index
(modified after Ponge et al., 2002) spanning from 2 (MULL) to 8
(MOR). The presence of waterlogged and rhizic conditions (binary
variables) was assigned, respectively, to the histic Anmoor humus forms
(Jabiol et al., 2013) and to humus forms having> 25% of dead or
living roots in the total volume (Jabiol et al., 2013). The OM properties
consisted in the TOC concentration and three indices of OM composi-
tion: the HI and OI from Rock-Eval pyrolysis and the C/N ratio.

Finally, we also investigated the relation between class variables
and OM thermal stability. Class variables included the lithological
origin of soil's parent material, pedogenic environments and horizon
type. Soil's parental lithology was assigned using our field observations
as well as existing geological and geomorphological maps (www.
swisstopo.admin.ch). We assigned three categories of parental litholo-
gies: (1) a “calcareous” category referring to limestones, calcareous
sandstones, marbles, and surficial deposits (screes and moraines) de-
rived almost exclusively from these materials; (2) a “mixed” category
containing surficial deposits of mixed origin (sedimentary,

metamorphic, and igneous components); and (3) a “Si-rich” category
containing granite, gneiss, quartzite, and surficial deposits derived al-
most exclusively from these materials. Pedogenic environments and
horizon types were assigned on the basis of field description and results
of soil lab analyses. We recognised four main types of pedogenic en-
vironments based on the degree of soil development and organic matter
mobility. First, weakly differentiated solums (Cambisols, Leptosols,
Regosols, Gleysols, Stagnosols) were set apart from podzolic solums
with strong horizon differentiation. Secondly, within weakly-differ-
entiated solums, we set apart circumneutral (subsoil pH > 6) from acid
(subsoil pH < 5.6) profiles, hypothesising a difference in organic
matter dynamics due to charge, dispersion and opportunity for mineral-
association (Rowley et al., 2018). Likewise, we set apart Humic Podzols
characterized by a strong accumulation of organic compounds to the
subsoil, from Ferric Podzols where subsoil accumulation is dominated
by Fe and Al compounds. We grouped horizon types following the same
guiding principles into four general classes. The “podzolic” class in-
cluded podzolic E, humic B (Bh), ferric B (Bs) and podzolic C horizons.
The “weakly differentiated” class included Bsi (siliceous, low Ca sa-
turation), Bci (absence of Ca-carbonate but high Ca saturation), Bca
(presence of calcium carbonate) and C horizons. The next class was
associated with soils with expressed redoximorphic features and in-
cluded Bg (stagnic conditions) and Br (strong reducing conditions)
horizons. The last class referred to buried A horizons (FAO, 2006).

2.4. Statistical analysis

The litter (Oi horizon), topsoil mineral (A horizon) and subsoil
mineral layers (E, B and C horizons) were considered separately in the
statistical analyses. The Oe and Oa horizons were excluded because of
their low occurrence in the data set (respectively 6 and 4% of the
samples). An information theoretic framework based on the Aikaike's
information criterion (IT-AIC, Burnham and Anderson, 2002) was em-
ployed in order to find the dominant factors influencing OM thermal
stability in each layer. Contrary to the traditional null hypothesis
testing (Anderson et al., 2000), the IT-AIC approach fundamentally
explores range of alternative fits (a “model set”) potentially associated
to a certain phenomenon and highlights the strongest associations
worthy of further investigations (Symonds and Moussall, 2011). In the
present study, a set of linear mixed-effects models (LMM) was built with
the R-Index as dependent variable and the potential drivers of Table 2
as independent variables, standardised to a mean of 0 and a standard
deviation of 0.5 according to Gelman (2008). The study sites and mean
horizon depth were set as random effects in order to discount their
potential influence on OM thermal stability. The independent variables
(predictors) to be included in the models were scrutinised in order to
avoid problematic collinearities. For each layer, groups of variables
having a Spearman's rank correlation coefficient higher than 0.7 were
identified, and the strongest predictor was retained. We also checked
that the choice of the alternative variable did not affect ranking of the
other predictors. The model set was composed of every possible com-
bination of the variables, including an intercept-only model. According
to Harrell (2001), the number of predictor variables simultaneously
considered in each model should not exceed 1/10 of the sample size to
avoid over-parameterisation. As the sample size of the litter layers was
33, the maximal number of predictors simultaneously considered in
each model was set to 3. The same maximum number of predictors was
used for mineral topsoil and subsoil horizons, although the number of
samples was higher (77 and 69, respectively), to ensure that each
analysis operated under similar constraints. The models composing the
set were then compared and ranked by their AICC (modified version of
AIC recommended for small sample sizes; AICc=AIC+ (2k2+ 2k) /
(n− k− 1), with n= sample size and k=number of estimated para-
meters). The approximation power of each model was expressed as the
difference (ΔAICC) between the AICC of the best model (the lowest AICC

value) and the AICC value for each of the other models. The ΔAICC was
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then used to calculate the Aikaike weight (wi) representing, for a given
model, the probability to be the best approximating model within the
model set. In this study, a “top model set” was created by subsetting the
models that had a cumulative Aikaike weight of ≤0.95. Then, within
the top model set, the relative importance of each variable was calcu-
lated by summing the Aikaike weights of the model(s) containing that
variable. The factors having the strongest effect on the response vari-
able were those with the highest summed Aikaike weights, i.e. having a
relative importance tending towards 1 (Burnham and Anderson, 2002).

The relationship between the response variable (R-Index) and the
factors having the highest relative importance was measured by the
Pearson correlation coefficient and its 95% confidence intervals. The
lower the confidence interval width, the higher the probability of the
Pearson correlation coefficient to correctly reflect population correla-
tion.

Finally, the role of class variables (soil parent material, pedogenic
process, horizon type) on OM thermal stability, which could not be
evaluated through the IT-AIC analysis, was investigated using a one-
way analysis of variance (ANOVA). Diagnostics for assumptions of
normality, homoscedasticity, and goodness-of-fit were performed on
residual plots. For significant effects, pairwise t-tests without adjust-
ment for multiple inferences (Webster, 2007) were performed to iden-
tify significant differences between R-Index means. The alpha level for
significance was set to α=0.05 for all tests.

3. Results

3.1. Thermal stability of the OM increases with depth in the soil profile

The R-Index, i.e. the proportion of refractory compounds in the
pyrolysed OM, increased with depth in the soil profile, from litter to
topsoil and subsoil mineral layers. In contrast, the I-index, a proxy for
preservation thermally labile, decreased with depth (Suppl. Fig. 2). This
progressive increase in OM thermal stability with depth was observed
in each of the eight vegetation types.

3.2. Factors influencing OM thermal stability in the litter layer

According to the IT-AIC analysis, OM thermal stability in the litter
layer was mainly related to the OM stoichiometry (C/N ratio and
Hydrogen Index, HI) and the proportion of hygrophilic species

(Vegetation PC2 scores; Fig. 2). The R-Index correlated negatively with
the C/N ratio (r=−0.72, −0.85 < r < −0.50) and positively with
Vegetation PC2 scores (r= 0.79, 0.61 < r < 0.89). The Hydrogen
Index (HI), representing the proportion of hydrogen (H) relative to C
atoms in OM, ranked as the third most important factor and was ne-
gatively related to the R-Index (r=−0.65, −0.81 < r < −0.39;
Suppl. Fig. 4). The litter from snowbeds showed the lowest C/N ratios
and HI values but the highest OM thermal stability.

3.3. Factors influencing OM thermal stability in the mineral topsoil

In the topsoil (A horizons), the thermal stability of the OM was
predominantly related to its concentration (Fig. 3). The correlation
between the R-Index and total organic C (TOC) concentration was ne-
gative and relatively weak (r=−0.53, −0.67 < r < −0.34). When
the topsoil was OM-rich (TOC > 15%), the OM thermal stability was
comparatively low. In some cases, these OM-rich A horizons were
water-saturated for more than six months per year and displayed a
hydromorphic humus type (classified as Anmoor; Jabiol et al., 2013). In
others cases, the OM-rich A horizons had a large proportion of roots,
and finally some of them presented a certain amount of fragmented
litter homogeneously mixed with the fine earth fraction, likely resulting
from bioturbation.

It should be noted that 28 of the 46 soil profiles presented several A
horizons. In these cases, the OM of the most surficial A horizon sys-
tematically had a lower thermal stability than the underlying one
(Suppl. Fig. 5), indicating increasing proportions of thermally stable
OM with depth. To further investigate the hierarchy of predictors of OM
thermal stability, we repeated the analysis with depth included as a
fixed effect rather than a random one. This allowed us to compare the
effectiveness of explanatory variables compared to that of depth. The
main predictor of OM thermal stability remained the TOC concentration
and was very closely followed by depth (Suppl. Fig. 6). This means that
the predictive power of TOC concentration is of the same order as that
of depth. The correlation between TOC concentration and depth was
relatively weak (r=−0.48).

3.4. Factors influencing OM thermal stability in the mineral subsoil

The OM thermal stability in the subsoil was negatively related to the
sand content and positively to the proportion of acidophilic species

Fig. 2. Predictors of OM thermal stability in the litter layer. (a) The six main explanatory variables influencing the R-Index in the litter layers, ranked according to
their relative importance. “Veget. PC2 scores”: scores on the 2nd axis of a principle component analysis based on vegetation composition and cover, corresponding to
a gradient of increasing contribution of hygrophilic species; “HI”: Hydrogen Index; “HCl+”: visible effervescence upon strong acid addition due to the presence of
carbonate in the soil; (b and c) R-Index values plotted against the two most important predictors, C/N and Vegetation PC2 scores. Colours represent the eight plant
communities. “Silic.”: siliceous. “subalp.”: subalpine.
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(Vegetation PC1 scores; Fig. 4b and c). The correlation remained weak
in both cases (r=−0.33, −0.52 < r < −0.10 and r= 0.25,
0.01 < r < 0.46, respectively). Silt and HI ranked respectively as
third and fourth most important predictors (Suppl. Fig. 7). For com-
parison, the predictive power of these factors greatly exceeded that of
horizon depth when included as a fixed effect (Suppl. Fig. 8). The
correlation between the R-Index and texture variables (sand and silt
proportion) was mainly driven by three eluvial (E) horizons, which
were particularly sandy. If these three samples were removed from the
analysis, the importance of texture was reduced and Vegetation PC1
scores became the most important predictor, followed by sand and silt
proportions (not shown).

This study took place in the alpine environment, with little human
activity, and as such the respective vegetation type reflected each site's
ecological conditions (Vonlanthen et al., 2006; Grand et al., 2016).
Vegetation PC1 scores represented a gradient of plant community
preference for alkaline soils (Landolt et al., 2010) and could thus be
considered as a proxy for soil geochemistry, as determined by the
nature of the geological substrate and pedogenic environment. The
nature of the geological substrate indeed explained 74% of the variance
in Vegetation PC1, while the pedogenic environment explained 62% of
the variance in Vegetation PC1 (Suppl. Fig. 9). This interpretation is
confirmed by the correlation between Vegetation PC1 and soil pH
(Suppl. Fig. 10).

Soil geochemistry was best represented by class variables that were
not suited to the IT-AIC analysis. We therefore conducted a separate
analysis of variance to test the effect of geological and soil classes on the
R-Index of subsoil horizons (Suppl. Fig. 11). Geological classes ex-
plained 19% of the variance in the R-Index, with samples associated
with Si-rich lithologies having a significantly higher R-Index than
samples associated with calcareous or mixed lithologies. Soil classes
explained 26% of the variance in the R-Index, with ferric podzols
having a significantly higher R-Index than other soils.

Moreover, thermal stability of subsoil layers varied according to the
type of horizon considered (Fig. 4d) and the pattern was not reducible
to horizon depth, as could be observed in the topsoil (Suppl. Fig. 5). E
horizons showed the lowest R-Index values, reaching the same range of
thermal stability displayed by A horizons (Fig. 3), while buried A
horizons (IIA; corresponding to fossil soils) showed among the highest
R-Index values. B and C horizons showed intermediate values. Sig-
nificant differences could be noted according to the different pedogenic
processes at work: in podzolic profiles, OM thermal stability increased
dramatically from eluvial (E) to illuvial horizons and was highest in
horizons dominated by the accumulation of sesquioxides (E ~ Bh <
Bs~ podzolic C). In weakly developed soils, OM thermal stability in-
creased slightly from carbonate-rich to siliceous horizons (Bca < Bsi).
In redoximorphic horizons, OM thermal stability was generally variable
and within range of other acid B and C horizons. Overall, the horizon
type and associated pedogenic process had detectable effects on the OM
thermal stability of the mineral subsoil layers.

4. Discussion

Due to its complex topography, geology, and geomorphology, the
Alpine environment generates steep natural gradients of vegetation, soil
moisture, texture, and geochemistry over very short spatial scales. This
natural variability was used to explore controls on OM thermal stabi-
lity. Study sites displayed a small climatic gradient (restricted region in
the Alps and limited elevation range). Accordingly, climate-related
variables (mean summer temperature, moisture index, and solar irra-
diance) were not found to be important predictors of OM thermal sta-
bility in the data set, likely due to the comparatively small range of
variation in these factors. Furthermore, anthropogenic impact on these
soils were not believed to have exerted a paramount influence since
study sites have never been ploughed, but have been used for extensive
pasture, largely replacing natural grazing by deer, gams or ibex.

Fig. 3. Predictors of OM thermal stability in the mineral topsoil. (a) The six
main explanatory variables influencing the R-Index in the topsoil, ranked by
their relative importance. “TOC”: total organic C concentration; “Summer
temp.”: mean summer temperature; “Silt”: % of mineral particles having a
diameter between 0.002 and 0.063mm; “Moist. Index”: mean annual moisture
index (precipitation – potential evapotranspiration) (b) R-Index values plotted
against the organic C concentration (TOC %). Colours represent the eight plant
communities, while letters represent peculiarities of the A horizon. “a”: hy-
dromorphic A (Anmoor in Jabiol et al., 2013); “r”: rhizic humus form, presence
of> 25% of dead and living roots in the total volume of O and A horizons
combined (Jabiol et al., 2013); “f”: fragmented litter homogeneously mixed
with fine earth fraction.
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We used the Rock-Eval R-Index, which gives a snapshot of the
proportion of thermally refractory compounds found within the OM, as
a proxy for organic matter dynamics, broadly understood as processes
leading to changes in OM properties. The use of Rock-Eval pyrolysis
allowed us to evaluate OM properties similarly across all soil layers
without applying any pre-treatment, and thus eliminated the risk of
creating experimental artefacts. As expected from results of other stu-
dies employing Rock-Eval analysis (Sebag et al., 2016 and references
therein), we found that the contribution from thermally stable OM
progressively increased with depth in the soil profile (Suppl. Fig. 1).
This is in accordance with the generally accepted idea that in the ab-
sence of perturbations, soil OM stability and residence time tend to
increase with depth (van der Voort et al., 2016). However, the R-Index
of subsoil horizons retained significant variability (Fig. 4d). Moreover,
differences in subsoil horizons could not be predicted from differences
observed in the litter layer or even the A horizon (Suppl. Fig. 12). As an

example, wet snowbeds had relatively high R-Index values in the litter
layer, but showed the lowest values in mineral horizons; siliceous
subalpine grasslands had among the lowest R-Index values in the litter
and topsoil horizons, but they showed the highest values in the subsoil
(Suppl. Fig. 13). This indicated that soil OM dynamics, as represented
by changes in OM thermal properties, followed diverging trajectories
with depth in different edaphic environments. In the next sections, we
will explore the factors correlated with OM thermal stability in each
major soil layer (litter, topsoil, and subsoil) and their significance.

In the litter layer, the thermal stability of OM varied according to its
stoichiometry (C/N and Hydrogen Index – HI) and to the plant com-
munity producing it (Vegetation PC2 scores). Differences in the C/N
and HI in the litter layer may arise both from the initial biochemical OM
composition and from the litter mineralisation degree. Variations in C/
N ratios were driven by differences in N rather than organic C con-
centration (Suppl. Fig. 14). Plants with efficient N uptake mediated by

Fig. 4. Predictors of OM thermal stability in the subsoil. (a) The six main explanatory variables influencing the R-Index in the subsoil, ranked by their relative
importance. “Veget. PC1 scores”: scores on the 1st axis of a principle component analysis based on vegetation composition and cover, corresponding to a shift from
calcophilic to acidophilic species. (b and c) R-Index values plotted against the two most important variables, Sand and Vegetation PC1 scores. Colours represent the
eight plant communities and symbols represent the horizon categories. (d) Boxplots of R-Index by mineral horizon types. The first four horizon types represent the
podzolic soil sequence, including “E” (eluvial horizon); “Bh” (illuvial accumulation of organic matter); “Bs” (illuvial accumulation of sesquioxides); “podzolic C” (C
horizon underlying a podzolic profile). The next four horizon types are found in weakly-developed solums, such as Cambisols, Leptosols, and Regosols, and include:
“Bsi” (siliceous, low Ca saturation); “Bci” (absence of Ca-carbonate but high Ca saturation); “Bca” (presence of Ca carbonate); “C” (subsoil horizon weakly affected by
pedogenic processes). The next two horizon types are found in soils with expressed redoximorphic features and include “Bg” (stagnic conditions) and “Br” (strong
reducing conditions) horizons. The last class “IIA” refers to buried A horizons (FAO, 2006). Black dots represent the mean values, the black line is the median, and
boxes are limited by 1st and 3rd quartiles. Numbers of observations are indicated above boxplots. Letters above boxplots indicate significant differences (p-
value < 0.05) calculated by pairwise t-tests conducted within broad classes of horizon types.
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mycorrhizal fungi or N-fixing capacity may produce N-enriched litter.
These characteristics are present in some vascular plant and moss
species of snowbeds (Woolgrove and Woodin, 1996; Mullen et al.,
1998), which showed the lowest C/N ratio and highest R-Index values
(Suppl. Figs. 13 & 14). The process might be further enhanced by N
accumulation in the snowpack, acting as a scavenger of air pollution
(Knutson et al., 1976). On the other hand, N accumulation (Aber and
Melillo, 1982; Manzoni et al., 2008) and OM dehydrogenisation (Barré
et al., 2016; Sebag et al., 2016) typically occur during decomposition.
Low C/N and HI values may be used as an indicator of the miner-
alisation degree (Grand and Lavkulich, 2012). The inverse relation
between the litter thermal stability and the C/N and HI values may
reflect the fact that a more thermally recalcitrant OM is produced as
decomposition proceeds. In this study, litter was collected in summer
and thus essentially consisted in material that had senesced nearly a
year ago (during the previous fall). The concomitant increase in thermal
stability and the proportion of hygrophilic species could also indicate
that longer periods of snow cover favour decomposition (Baptist et al.,
2010; Hobbie and Chapin, 1996) and selectively preserve thermally
resistant components (Sebag et al., 2016). Overall, the increase in the R-
Index, concomitant with the increase in N and decrease in H content,
corroborates the common observation that OM properties in the litter
layer simply reflect the quality of plant inputs and the extent of de-
composition.

In the A horizons, the main predictor of OM thermal stability,
among the 18 factors under study, was the concentration of soil C
(Fig. 3), which is in turn related to the balance between mechanisms
governing the fresh OM inputs and those controlling its mineralisation
or deep translocation. The predictive power of organic C concentration
on OM thermal stability was surprisingly large, matching that of depth
(Suppl. Fig. 6). The main split seemed to occur at an organic C con-
centration of about 15%. Below this threshold, the R-Index of OM was
highly variable while above this threshold, the R-Index was consistently
low (Fig. 3). Many of the organic C rich samples had unusually large
amounts of roots or visible litter fragments (indicative of active bio-
turbation delivering plant material to the mineral soil). Other displayed
traces of hydromorphy. Our sample set, restricted to a semi-natural
environment, thus contained a significant proportion of samples with a
high concentration of fresh OM displaying a thermally labile signature.
In the same way, Sebag et al. (2006) observed lower R-indices in soil
layers under dense plant cover (large inputs) when compared to sparse
vegetation (low inputs).

These findings indicate that the thermal signature of OM in the A
horizon was related to physical processes of OM delivery into the mi-
neral soil. The thermally labile signature of the OM-rich samples could
be due to several processes. Roots or litter-rich samples probably record
a kinetic phenomenon in which the thermal signature of the OM is
constantly ‘refreshed’ by abundant new inputs. A decline in enzymatic
efficiency at high substrate availability might play a role (Schimel and
Weintraub, 2003). For hydromorphic samples, it is well-known that
oxygen limitation can initiate a transition towards alternative re-
spiratory pathways that are less energy efficient, and thus a reduction in
decomposition (Schlesinger and Bernhardt, 2013). Furthermore, at high
organic loadings, the potential for OM stabilisation by interactions with
mineral surfaces decreases (Six et al., 2002). Organic-rich samples are
thus likely dominated by light particulate OM fractions, which gen-
erally represents a thermally labile OM pool (Saenger et al., 2015;
Soucémarianadin et al., 2018a). Overall, our results indicate that
thermal stability of topsoil OM is controlled by pedogenic processes
rather than OM composition or stoichiometry.

In subsoil mineral layers, OM thermal stability was mainly related
to texture and Vegetation PC1. However, the predictive power of these
factors was modest, indicating that a major part of OM thermal stability
in the subsoil remained unexplained by the present dataset. Vegetation
PC1 represented a gradient of calcophilic to acidophilic species and
could thus be interpreted as a proxy for soil geochemistry (Suppl.

Figs. 9 & 10). Recognising the indirectness in inferring soil geochem-
istry from plant communities, we performed an additional analysis of
variance which confirmed that geological and pedogenic classes had a
strong explanatory power on R-Index variations in the subsoil (Suppl.
Fig. 11). Variance explained by geology (19%) and soil (26%) classes
were actually larger than that explained by Vegetation PC1 (6%). This
result concurs with a recent study of instantaneous OM mineralisation
rates (represented by soil-surface efflux, also known as soil respiration)
in mountain soils, which found that 17% of the variation in whole-soil
respiration could be explained by soil classes (Grand et al., 2016).
Soucémarianadin et al. (2018b) suggested that soil class could con-
stitute an integrated parameter capturing important differences in OM
turnover; yet, pedogenic parameters are conspicuously absent from
most models of soil OM cycling. Interestingly, we found that texture (%
sand, silt, or clay) was only slightly related to the R-Index of OM in
subsoil layers once special pedogenic dynamics were accounted for,
such as that associated with the E horizons of podzols. This finding is
consistent with the results of a recent large meta-analysis (Rasmussen
et al., 2018) which showed that chemical and mineralogical parameters
far exceeded the predictive power of clay on soil OM stabilisation.

Moreover, significant differences in OM thermal stability were ob-
served between subsoil horizon types (Fig. 4d), which could not be
simply explained by an increase in the R-Index with depth. We instead
hypothesise that various stabilisation mechanisms, associated to spe-
cific pedogenic processes, could be responsible for the observed varia-
tions. According to von Lützow et al. (2008), stabilisation mechanisms
are indeed horizon-specific in Podzols. The potential for organo-mineral
interactions is thought to be low in eluvial horizons, where long-chain
alkyl structures could accumulate (Rumpel et al., 2004), perhaps as a
result of hydrophobic separation from decomposers. Complexation of
organics with monomeric Al and Fe has been proposed as the main
stabilisation mechanism in Bh horizons while Bs and podzolic C hor-
izons typically contain highly oxidised OM stabilised by organo-mineral
interactions, such as ligand-exchange (Rumpel et al., 2004; von Lützow
et al., 2008). Interestingly, OM thermal stability in Podzol mineral
layers measured in this study increased in the order E~ Bh < Bs layers
(Fig. 4d). In accordance with the conceptual model outlined by Rumpel
et al. (2004), a possible interpretation is that E horizons contained
mostly C and H-rich, thermally unstable moieties (Suppl. Fig. 15), while
Bh and Bs horizon were enriched in partially dehydrogenated, ther-
mally stable molecules. Moreover, our results might suggest that OM
interaction with metals, believed to dominate in Bh horizons, have a
weaker effect on OM properties than interactions with poorly crystal-
line oxides and aluminosilicates, expected in Bs horizons.

A potential stabilisation mediated by Ca was less apparent in our
dataset (Fig. 4d), but OM present in Ca-rich horizons (Bca) was more
thermally labile, and thus perhaps less processed, than the OM present
in Ca-poor horizons (Bsi). This may indicate that aggregation and
protection of some thermally labile OM by occlusion within aggregates
were more pronounced in Ca-rich horizons (Rowley et al., 2018).
Moreover, plant roots were visibly more abundant in the calcareous
subsoils than in their siliceous counterparts, and their turnover could
partly explain the large concentration of labile OM in Ca-rich B hor-
izons. Redoximorphic processes (Bg and Br horizons) were not asso-
ciated with a specific OM thermal signature, perhaps due to the typi-
cally seasonal nature of waterlogging in alpine soils. Overall, our result
supports a dominant role of the geochemical properties of the mineral
matrix on OM dynamics in the subsoil. Further investigation is needed
to establish whether the thermal resistance measured by Rock-Eval
pyrolysis is indeed reflective of the type of organo-mineral association
involved.

As previously proposed by Salomé et al. (2010), this study con-
firmed a substantial decoupling between organic, topsoil, and subsoil
mineral horizons in terms of factors influencing OM dynamics, as re-
presented by its thermal stability. This study was consistent with the
repeated findings of litter bag experiments (e.g. Preston et al., 2009)
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showing that the intrinsic properties of OM (litter source) and its se-
lective degradation play a role at the beginning of the OM decom-
position continuum (Lehmann and Kleber, 2015), in the litter layer,
before any pervasive opportunity for interaction with the mineral ma-
trix. Contrarily, in the topsoil and subsoil mineral layers, our data
showed that OM dynamics were influenced by the pedogenic environ-
ment, rather than being an intrinsic property driven by its initial
composition. In these layers, the vegetation type played an indirect role
on soil OM thermal stability by determining the rate of plant inputs
entering the soil system and its vertical distribution along the soil
profile (Jobbagy and Jackson, 2000), rather than by determining its
quality. As observed in many studies (Kögel-Knabner et al., 2008;
Rumpel et al., 2002), soil OM dynamics in subsoil horizons seemed to
be driven by the types and intensity of organo-mineral interactions and
physical protection from decomposers. Consistently with our initial
hypothesis, our study thus evidenced a clear shift in determinants of
OM dynamics between soil horizons, with the influence of the litter
source and OM stoichiometry seeming preeminent in organic layers and
properties of the mineral phase rising to the forefront in the subsoil.

It should be noted that the 18 factors explored in this study were not
exhaustive. In particular, we expect that measures of the molecular
composition of plant materials and composition of the decomposer
community could yield important further insights into OM dynamics in
the litter layer. In the mineral soil, we used proxies for soil mineralogy
and geochemistry (lithological origin of soil's parent material, pedo-
genesis, presence of acidophilic/calcophilic species). We expect that
detailed measures of mineralogical and geochemical parameters (e.g.,
specific surface area, clay mineralogy, oxide content and crystallinity,
carbonate content and crystallinity, base saturation, etc.) would pro-
vide more details on processes governing OM dynamics in the mineral
soil. Furthermore, our study was restricted to semi-natural grasslands of
the alpine and subalpine belts. This area is characterized by un-
cultivated, young soils with relatively small amounts of secondary mi-
nerals. Other studies in areas with diverse land uses and more pedo-
genetically advanced profiles are needed to extend these results beyond
mountain regions.

It is generally thought that global warming will increase soil organic
C mineralisation (Leifeld et al., 2009; Schimel, 1995). The present study
suggests that the effects of climate change will not be reducible to
changes in OM mineralisation rates as a result of the temperature-de-
pendency of enzymatic degradation (Q10-effects); indeed, pure Q10-
effects are likely to be of minor importance when compared to broader
ecosystem consequences. Our study suggests that shifts in plant com-
munities and in pedogenic trajectories could result in drastically altered
OM dynamics. This constitutes a critical research gap which under-
mines our capacity to predict the future of OM storage in soils.

5. Conclusions

Building upon the theoretical framework of Schmidt et al. (2011),
this study investigated ecosystem-scale controls on soil OM dynamics in
a wide range of soils co-occurring in a restricted geographical area of
the Swiss Alps. We used OM thermal stability as a proxy for OM dy-
namics, broadly understood as processes leading to patterns of OM
distribution and properties. The study of the whole soil profile allowed
to show a radical shift in the nature of predictors of OM dynamics be-
tween soil layers. In the litter layer, the OM thermal stability was re-
lated to its composition (a product of the initial composition of plant
inputs and probably more importantly, their degree of microbial pro-
cessing), suggesting a dominant biological and biochemical control. In
the topsoil, OM thermal stability was mainly related to the OM content,
which represented the balance between factors influencing inputs (litter
in-mixing, fine root density) and outputs (waterlogging). In the subsoil,
geochemical and pedogenetic parameters rose to the forefront as pre-
dictors of OM thermal stability. These results suggest that soil horizons
act as interacting yet distinct functional units in terms of OM dynamics

and are likely to respond differently to external forcing. Therefore,
next-generation conceptual or numerical models of soil OM cycling
would be greatly improved by the implementation of depth-resolved
schemes. Moreover, multi-disciplinary approaches, as the present one,
may prove to be particularly relevant for the understanding and the
prediction of soil OM fate under fast climate change.
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Abstract
Aims The Oxalate-Carbonate Pathway (OCP) is a bio-
geochemical process that transfers atmospheric CO2

into the geologic reservoir as CaCO3; however, until
now all investigations on this process have focused on
species with limited food benefits. This study evaluates

a potential OCP associated with Brosimum alicastrum,
a Neotropical species with agroforestry potential (ca.
70–200 kg-nuts yr−1), in the calcareous soils of Haiti
and Mexico.
Methods / results Enzymatic analysis demonstrated sig-
nificant concentrations of calcium oxalate (5.97 %
D.W.) were associated with B. alicastrum tissue in all
sample sites. The presence of oxalotrophism was also
confirmed with microbiological analyses in both coun-
tries. High concentrations of total calcium (>7 g kg−1)
and lithogenic carbonate obscured the localised
alkalinisation and identification of secondary carbonate
associatedwith the OCP atmost sample sites, exceptMa
Rouge, Haiti. Soils adjacent to subjects in Ma Rouge
demonstrated an increase in pH (0.63) and CaCO3 con-
centration (5.9 %) that, when coupled with root-like
secondary carbonate deposits in Mexico, implies that
the OCP does also occur in calcareous soils.
Conclusions Therefore this study confirms that the OCP
also occurs in calcareous soils, adjacent to B. alicastrum,
and could play a fundamental and un-accounted role in
the global calcium-carbon coupled cycle.

Keywords Oxalate-Carbonate Pathway (OCP) .

Brosimum alicastrum . Calcium oxalate . Carbon-
calcium cycle . Oxalotrophic bacteria

Introduction

Soils play a major role in the cycling of carbon (C) and
understanding the processes that regulate C migration

Plant Soil (2017) 412:465–479
DOI 10.1007/s11104-016-3135-3

Responsible Editor: Hans Lambers.

Study locations Merida, Yucatán Peninsula, Mexico: Oxtapacab
(20.77111°N / 89.50417 °W), San Jose Tzal (20.824167 °N /
89.66111 °W), Tzucacab (20.07083 °N / 89.05055 °W) and Haiti:
Anse-à-Pitres (18.04306 °N / 71.75833 °W), Anse-Rouge
(19.63333 °N / 73.05000 °W).

Highlights
1) Calcium oxalate identified in all analysedBrosimum alicastrum.
2) CaOx crystals probably help its younger form augment incident
UV-radiation in light-limited environments.
3) Ma Rouge, a Haitian sampling site, demonstrated signs of early
onset oxalotrophy.
4) Root-like secondary carbonate deposits were discovered in
Mexico.
5) Evidence suggests that Brosimum alicastrum is oxalogenic and
that oxalogenesis can occur in calcareous environments.
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from one reservoir to the next is of globally recognised
significance. The Oxalate-Carbonate Pathway (OCP;
Fig. 1) is a biogeochemical cycle that results in the
transfer of atmospheric carbon dioxide (CO2

Atm) into
the geologic C reservoir within soils, as calcium carbon-
ate (CaCO3). The process probably plays an important
role in the regulation of CO2

Atm within the global C
cycle (Cailleau et al. 2005; Cailleau et al. 2014) when
the source of calcium (Ca) is provided by silicate rocks.
OCP has several key components, involving; calcium
oxalate (CaOx; CaC2O4 • n H2O) producing plants,
fungi, phytophagous invertebrates, and oxalotrophic
bacteria (Cailleau et al. 2004, 2011; Cailleau et al.
2014; Garvie 2006). The first stage commences when
CO2

Atm is fixed by RuBisCo during photosynthesis,
forming biomass and oxalic acid (H2C2O4; Fig 2).
Oxalic acid can then be converted into insoluble CaOx
crystals (Ksp ≈ 10−8.5; Certini et al. 2000; Monje and
Baran 2002; Palak et al. 2012) by plants within
specialised cells called crystal idioblasts (Faheed et al.
2013; Franceschi and Nakata 2005; Nakata 2002, 2003).
These CaOx crystals are subsequently released during
herbivory and decomposition, creating a CaOx pool
adjacent to the producing species, in its rhizosphere
(Cailleau et al. 2011; Jayasuriya 1955), stomachs of
endopedonic species (Bassalik 1913), or within phyto-
abrasions (Cailleau et al. 2004; Verrecchia et al. 2006).
Consequently, this pool of CaOx can then be catabolised
by bacteria, labelled oxalotrophic through either the
common glycolate- (Bravo et al. 2013; Chandra and
Shethna 1977; Tamer and Aragno 1980) or less com-
mon serine-pathway (Sahin 2003), precipitating C as
CaCO3 and creating a distinct local alkalinisation of
acidic soils (Cromack et al. 1977; Fig. 3). Therefore,
an active OCP has the ability to biominerally transfer
CO2

Atm within the geologic reserve.
Although there have been numerous studies on the

OCP, analysis has typically focused on tree species in

Fig. 1 A simplified model of the Oxalate-Carbonate Pathway
(OCP), a process that transfers carbon dioxide from atmosphere
to secondary calcium carbonate. As described by Cailleau et al.
(2014), the process commences when a calcium oxalate producing
species (Tree) organically sequesters carbon during photosynthesis
(Corg), converting it into oxalic acid and then calcium oxalate.
Once released from organic material during decomposition or as
exudes, calcium oxalate is subsequently catabolised by
oxalotrophic bacteria (Bact.), converting one mol as carbonate and
releasing another as respired carbon dioxide. Fungi also assist in
the process by either breaking down oxalic rich matter and depos-
iting calcium oxalate for catabolism by bacteria, or by fungal
oxalotrophy

1.)

2.)

3.)

4.)
Fig. 2 Oxalic acid production and subsequent precipitation of
calcium oxalate from glucose. 1.) Glucose is first oxidated to form
pyruvate. 2.) Then pyruvate is carboxylated to produce oxaloace-
tate. 3.) The subsequent hydrolysis of oxaloacetate forms oxalate
and acetate. 4.) Where Ca2+ can then react with oxalic acid to form
calcium oxalate as either mono- or di-hydrate crystals (Verrecchia
1990; Verrecchia et al. 2006)

466 Plant Soil (2017) 412:465–479

H. Estrada-Medina :M. Tzec-Gamboa
Universidad Autónoma de Yucatán, Campus de Ciencias
Biológicas y Agropecuarias, Mérida, Mexico

A. Rozin
Sadhana Forest, Auroville, Tamil Nadu, India

M. C. Rowley (*) : I. Green
Bournemouth University, Faculty of Science and Technology,
Poole, UK
e-mail: mike.rowley@unil.ch



acidic soil environments. At current, investigations
have confirmed 24 species are associated with active
OCPs (Braissant et al. 2002; Cailleau et al. 2004;
Cailleau et al. 2014; Ferro 2012; Garvie 2003,
2006; Monje and Baran 2002), typically utilising the
emblematic localised alkalinisation of acidic soils as a
geochemical proxy for oxalogenesis. The most heavi-
ly investigated OCP is associated with Milicia excelsa
Welw. (Moraceae) in ferralitic soils of Africa (Aragno
et al. 2010; Braissant et al. 2004; Braissant et al.
2002; Cailleau et al. 2005; Cailleau et al. 2004;
Martin et al. 2012). For which, Cailleau et al.
(2011) demonstrated a potential sequestration of ca.
1 t C as CaCO3 throughout a model individual’s
lifetime. Later work identified a further two species
within the Moraceae family (Cailleau et al. 2014),
associated with an OCP, while earlier work has dem-
onstrated CaOx production in several other species
within the family (Wu and Kuo Huang 1997), includ-
ing the food-producing genus Brosimum (Scholz et al.
2007). However, most studies on the OCP have fo-
cused on species without agroforestry potential and
there has currently been no investigations into a po-
tential OCP associated with the Moraceae genus
Brosimum.

Brosimum alicastrum Swartz, Moraceae (B.
alicastrum) is a large Neotropical, ever-green,
canopy-emergent tree species utilised in Central
America for agroforestry purposes and conservation
marketing operations. It is common throughout the
dry and wet semi-evergreen forests of the Caribbean,
Central America, and Northern-South America
(Ortiz et al. 1995; Yates and Ramirez-Sosa 2004).
The species has a height range of around 20–40 m,
increasing with precipitation, and a common Diam-
eter at Breast Height (DBH) of 1–1.5 m, increasing
North–south (Peters 1983, 1989). It is a species
shown to be drought resistant (Brewer et al. 2003;
Querejeta et al. 2006), growing well in Leptosols of
different biomes, while producing nutritious nuts
(Peters and Pardo-tejeda 1982). These natural prod-
ucts can be processed to form a range of foods,

medicines and excellent fodder for almost all large
gregarious mammals, (Gillespie et al. 2004; Rico-
gray et al. 1991). The species starts seed production
after reaching sexual maturity (i.e. 5–7-yr) and,
thereafter, an individual can produce around 70–
200 kg-seeds yr−1 (±30 kg) throughout its 150–
200-yr life cycle (Gillespie et al. 2004; Ortiz et al.
1995; Peters 1983, 1989). Furthermore, recent work
by Woda and Martinez (2013) has shown that
B. alicastrum’s seeds have an established, economic
harvest return of US $ 650 ha yr−1 in Honduras,
almost doubling that of maize (US $ 326 ha yr−1);
thus, highlighting the potential of B. alicastrum as
an effective agroforestry crop.

If B. alicastrum was found to be in association
with an active OCP, it would represent an ideal
agroforestry crop with biomineral C fixation capabil-
ities. However, currently the OCP has only been
identified in acidic soils, free from inherited carbon-
ate (Cailleau et al. 2014), unlike the predominate
habitat of B. alicastrum (Peters and Pardo-tejeda
1982). The presence of carbonate in calcareous soils
increases the complexity of identifying an OCP
(Cailleau et al. 2014), but shouldn’t prevent its iden-
tification through the analysis of the process’ constit-
uents and geochemical proxies. Therefore, the aim of
this work is to ascertain if B. alicastrum is associated
with an active oxalate-carbonate pathway in the cal-
careous soils of Haiti and Mexico, via the following
questions:

1) Does B. alicastrum produce CaOx, and if so, is
there geochemical evidence of an active OCP adja-
cent to the species in calcareous soils?

2) Are there oxalotrophic bacterial communities in
calcareous soils adjacent to subject B. alicastrum
in both Haiti and Mexico?

3) What is the C fixation potential of a model
B. alicastrum agroforestry system in calcareous
soils?

Materials & methods

Site settings

Calcareous sample sites were selected with notable en-
vironmental and biogeographical similarities in Anse-à-

Fig. 3 Oxalotrophic catabolism of calcium oxalate by bacteria (in
Verrecchia et al. 2006, from Harder et al. 1974)
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Pitres (A, B - Banane, C - Bony, D – Ma Rouge) and
Anse Rouge (E), Haiti and, the Yucatán Peninsula (F -
Tzucacab, G - Oxtapacab, H – San Jose Tzal), Mexico
(Fig. 4). The Yucatán sites sit atop a partially emergent
carbonate platform of low-lying, Tertiary limestone
karst and were typically characterised as either Calcic
or Calcaric Leptosols or Cambisols in Oxtapacab and
San Joze Tazal, or Luvisols in Tzucacab (Ramos 1975;
Shang and Tiessen 2003; WRB 2015) that receive an
annual rainfall of approximately 1,100 mm yr−1

(Giddings and Soto 2003). Mexico provided mature
trees in contrast with Haiti, where only recent planta-
tions were available for sampling. Anse-à-Pitres and
Anse Rouge also sit atop Tertiary limestone karst, with
thin eroded soils that were predominately classified as
Calcaric or Calcic Cambisols, although several sites in
Ma Rouge presented a non-calcareous nature (just be-
low classification of Calcaric ≤2 % CaCO3; WRB
2015). Accurate climatic data on the two regions is
sparse, but both regions are subject to an annual

hurricane season of fluctuating strength (Whigham and
Lynch 1998;Whigham et al. 2003), which just preceded
sampling for this investigation (2013).

Sampling

A sample of 50 subject B. alicastrum of varying size and
maturity were selected from both study countries (20
Mexican, 30 Haitian) using stratified-random tech-
niques. Two samples were taken from each subject, an
experimental sample from adjacent to the subject and a
control sample, exogenous of the subject’s zone of
lateral edaphic influence (3.5–25 m depending on sub-
ject height). To analyse the bulk differences between
adjacent and control sites, all soil profiles were taken to
their shallow bedrock (10–40 cm) and bulked.

Samples ofB. alicastrum tissue were taken from each
subject for biogeochemical analyses. 3 Foliar and 3
branch samples were taken from the lowest branches
of each subject, mid-branch, ensuring uniformity

Fig. 4 Sample sites in Haiti and Mexico (Esri 2014)
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amongst samples in both countries. Root and bark sam-
ples were only taken from Mexican subjects to restrict
the damage to the younger trees in Haiti. Subject loca-
tions were recorded using GPS systems (Opteka GPS &
Garmin GPS 76) and measurements of DBH, soil sam-
ple depth, and height, were obtained using 30 m tape
and, where necessary, in conjunction with a clinometer
(Sokkia No. 8047).

Sample preparation

All soil and plant samples, except those for bacterial
analyses, were air-dried in the field to prevent decom-
position and decay, and then transported to Bourne-
mouth for laboratory analyses via courier. Bournemouth
samples were autoclaved (Astell Swiftlock Secure-
touch +; 121 °C for 30 mins) on arrival as part of the
plant health licence (Food, Environment and Rural Af-
fairs) for importing foreign soils and plant material into
the UK. Soil samples were then sieved to fine earth
fraction (<2 mm) for chemical analysis, while plant
samples were homogenised using a rotor mill and stain-
less steel-bore mill kit (Retsch MM200). Field-moist
samples from each study site, except Anse Rouge, were
sent urgently to a laboratory in the Yucatan for bacterial
analysis and stored at 4 °C prior to examination. Live
samples from Haiti were delayed in Mexican customs
for a month, but were also held at 4 °C.

Calcium oxalate analysis

Microscopy

The presence of CaOx in B. alicastrum tissue was first
identified using optical and Scanning Electron Micros-
copy (SEM). Samples were prepared for optical micros-
copy using techniques adapted from Ilarslan et al.
(2001). Various tissues from both countries were sub-
merged in Carnoy Fluid (3:1 ethyl alcohol: acetic acid)
and left in Petri dishes for 24 h, then re-submerged in
ethyl alcohol for 1.5 h. Samples were then coated in
2.5 % sodium hypochlorite and rested for 4 h before
mounting with glycerine-gelatine. Slides were observed
with an Olympus BX51 compound microscope, using
both dark and light field microscopy, and images were
captured with an Olympus DP70 Digital Microscope
Camera (Olympus Inc.).

SEM and Energy Dispersive X-ray Spectroscopic
(SEM/EDS) techniques adapted from Garvie (2003)

were used to image and detect the composition of ob-
served crystals. Homogenised plant tissue was applied
to alloy stubs using adhesive stickers and AuPd sputter
coated (B-7341 Agar Auto Sputter Coater) for 40–60 s.
Samples were subsequently analysed in high vacuum
using a Jeol JSM-6010 Plus/LV SEM, with an INCAX-
s igh t 8129 EDS sys tem (ETAS Inc . ) , and
InTouchScreen software. All EDS readings represent a
percentage of the analysed substance’s atomic weight
and were recorded in K-band. Furthermore, surficial
measurements are considered semi-quantitative as these
measurements are applied to 3-dimensional objects.

Enzymatic oxalate analysis

Calcium oxalate concentrations of each B. alicastrum
sample were quantified using a commercial Enzymatic
Oxalate Kit (EOK; Trinity Biotech Plc; Cailleau et al.
2014; Certini et al. 2000). The EOK functions through
the oxidation of oxalate by the enzyme (oxalate oxidase)
into CO2 and hydrogen peroxide, which is subsequently
oxidized by peroxidase, 3-methyl-2-benzthiazlinone hy-
drazine (MBTH) and 3-dimethylamino benzoic acid
(DMAB) into an indamine dye with a maximum absor-
bance of 590 nm. Sub-samples of 0.1 g were taken from
each plant tissue sample and placed into 30 mL tubes,
combined with 5 mL 1 M hydrochloric acid (HCl)
extractant and shaken for 16 h at 150 revs min−1 (Bibby
Stuart Orbital Shaker SO1). The extractants were then
centrifuged at 3,000 revs min−1 for 5 mins (Heraeus
Instruments Megafuge 1.0) and 1 mL supernatant trans-
ferred into new 30 mL tubes. This was subsequently
combined with 4 mL Ultra-Pure H2O (Millipore™;
18.2 mΩ at 25 °C) and 0.4 mL 2 M sodium hydroxide
(NaOH) for pH correction (pH 5–7) and, thereafter, the
manufacturer’s instructions were followed. Absorbance
was then measured at 590 nm using a Carey 50 UV/vis
spectrophotometer (Varian Inc.) after 20 min had
elapsed to allow full colour development. Certain soil
samples were also measured with the same techniques,
adjusting the extraction procedure for the lower concen-
trations of oxalate. The kits reported the oxalate concen-
tration in mg kg−1 which was then adjusted by multi-
plying the concentrations by the difference in M.W.
(1.66) between whewellite (CaOx monohydrate;
CaC2O4.H2O M.W.: 142.112 g M−1) and oxalate
(C2O4

−2 M.W.: 88.019 g M−1) to give CaOx
monohydrate concentrations of each sample.
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Total carbon analysis

Total C was ascertained using dry combustion tech-
niques adapted from Wright and Bailey (2001),
analysing the tissue of randomly selected B. alicastrum
subjects from each sampling location. Briefly, triplicates
of 1–2mg of homogenised sample were placed into a tin
capsule (Barry and Pinkard 2013; Schutz et al. 2009)
and combusted at 1,600 °C in a thermal elemental
analyser (Thermo Finnegan FlashEA 1112),
standardising peak integration by combusting 2.5-Bis
(5–tert-butyl-benzoxazol-2-yl) thiophene (BBOT).

Analysis of edaphic variables associated with the OCP

Loss on ignition

Organic matter content (% OM) of each soil sample was
calculated through loss on ignition (Cailleau et al.
2014). 1 g of oven dried (105 °C; Memmert UN 55)
soil was furnaced (Carbolite model OAF 11 / 1) at
450 °C for 12 h and the percentage mass loss on ignition
calculated.

Soil pH

pHH2O was measured using techniques adapted from
Cailleau et al. (2005). 4 g of soil was combined with
10 mL of distilled water (d H2O), reposed for 16 h and
measured in triplicate with a pH meter (Hach H135
Mini-lab Pro).

ICP-OES

The elemental composition of all soil samples was
ascertained using a Vista-Pro CCD Simultaneous
Inductively Coupled Plasma-Optical Emission Spec-
trometer (ICP-OES; Varian inc.) and different ex-
traction methods. Exchangeable concentrations
(Caexch and Pexch) were extracted using 1 M ammo-
nium nitrate (NH4NO3) extraction technique adapted
from MAFF (1986). 0.5 g of soil was combined with
10 mL 1 M NH4NO3 in 30 mL polypropylene tubes
and shaken for 33 min at 250 revs min−1, the re-
posed solution was then filtered (Whatman No. 42)
and analysed on the ICP-OES. Total concentrations
(CaTot) were extracted using nitric acid (HNO3) di-
gestion in a microwave (Anton Parr Multiwave
3000). 0.1 g of soil from each sample was digested

with 6 mL 70 % HNO3 (Fisher Scientific Primar
Plus Trace Metal grade) at 200 °C / 20 Bar
(800 W), for 30 mins. The microwaved solutions
were then filtered (No. 42) and diluted (50 mL) with
Ultra-pure H2O. Quality Control was ensured
through the analysis of process blanks and CRM
samples (NWRI/INRE TH-2; extraction efficiency
Ca = 100 .00 %, RSD = 3 .98 ; P = 87 .18 %,
RSD = 5.59).

Soil carbonate

Calcium carbonate concentration was evaluated with a
back titration (Cailleau et al. 2014). Briefly, 1 g of soil
was combined with 0.25 M Sulphuric acid (H2SO4) and
then back-titrated with 0.5 M NaOH until a pH 7 was
attained. It was not possible to confirm pure presence of
CaCO3 using XRD and although a potential error in-
duced by the presence of magnesium carbonate
(MaCO3) is small enough to preclude (Cailleau et al.
2005), CaCO3 concentrations are reported as (Ca1-x, Mg

x) CO3 % D.W..

Identification of oxalotrophy

Oxalotrophic bacterial analysis was completed on each
study site, except Anse Rouge, utilising techniques
adapted from Braissant et al. (2004). For each study site,
2 g of field moist sample was placed into a 50 mL
centrifuge tube and vortexed for 1 min with 20 mL of
1 % sodium hexametaphosphate ([NaPO3]6), before
reposing for a further 20 mins at room temperature.
Serial dilutions (10−2 a 10−4) were made with 0.9 %
sodium chloride (NaCl) solution and then propagated on
petri dishes with two layers of media (Aragno and
Schlegel 1992). The first layer was a Schegel medium
(7 g L−1), while the second layer consisted of Schegel
med ium wi th 4 g L− 1 CaOx monohydra te
(CaC2O4.H2O), diluted to 10−2 or 10−4. Dishes were
then incubated at 30 °C for 10–15 days and counted
for colonies, every 72 h after the 3rd day of incubation.

Inverse modelling of a potential OCP

The quantity of CO2
Atm captured during OCP bio-

induced CaCO3 precipitation associated with an ideal
oxalotrophic system was evaluated through the inverse
modelling of observed variables and previous literature
values (Benjamin et al. 2001; Cairns et al. 1997; Cairns
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et al. 2003; Gill and Jackson 2000; Peters 1989), using
inverse modelling equations given in the Supplementary
information. The model estimates a potential maximum
biomineral CaCO3 precipitation and organic C seques-
tration associated with a B. alicastrum OCP by inverse
modelling the biochemical characteristics ascertained
with the aforementioned methods.

Statistical analysis

Statistical analysis was utilised to evaluate the potential
oxalogenesis of B. alicastrum. All data was tested for
homoscedasticity (Levene’s test, p > 0.05) and then
analysed with partial correlation. Two-way ANOVAs
or independent t-tests were applied using IBM SPSS
Statistics Version 21, testing the differences between
adjacent and control samples, in both countries.

Results

Calcium oxalate analysis

Microscopy

Optical microscopy revealed crystal deposits throughout
B. alicastrum OM. Prismatic crystals were typically
associated with the vascular structure of OM, while
druse crystal deposits were associated with the lamina
of B. alicastrum foliar tissue, from both Haiti and Mex-
ico (Fig. 5). Crystals were present in all forms of sam-
pled B. alicastrum tissue (leaf, branch, bark, and root),
even in the youngest measured subjects (<0.5 yrs), while
in-situ SEM/EDS analyses detected Ca, C, and oxygen
in the crystals. Their composition and crystallographic
habiti (Verrecchia et al. 1993) confirmed their CaOx
monohydrate nature (Fig. 5).

A 

C 

1 

2 
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D

Fig. 5 Calcium oxalate crystals observed and imaged in
Brosimum alicastrum tissue using optical and scanning electron
microscopy. a Druse / sand CaOx crystals (1) associated with the
lamina, and prismatic CaOx crystals (2) associated with the vas-
cular system of foliar tissue from a Haitian subject. b Prismatic and

druse CaOx crystals in foliar tissue from a Mexican subject. c
Prismatic CaOx crystal isolated from the rhytidome of a Mexican
subject. d Prismatic CaOx crystal isolated from a Mexican sub-
ject’s root tissue all of which are prismatic habiti common in
whewellite
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Enzymatic oxalate analysis

Enzymatic oxalate kit analyses quantified the presence
of CaOx monohydrate in B. alicastrum tissue (Fig. 6).
Highest concentrations of CaOx were discovered in
Haitian leaf matter, while concentrations decreased with
age, between the younger Haitian (mean = 97.26 g kg−1)
and mature Mexican subjects (mean = 42.66 g kg−1,
t[19] = 4.385, p = 0.001). High mean concentrations of
CaOx were also found in B. alicastrum bark (72.79 g
kg−1) and root (57.86 g kg−1) material from Mexico,
with the lowest concentrations found in branch material
of both countries (mean = 38.30 g kg−1). CaOx

production did not correlate with CaExch (r2 = 0.208,
n = 50) or PExch (r2 = 0.004, n = 50).

Analysis of edaphic variables associated with the OCP

The effect of B. alicastrum on emblematic edaphic
variables associated with the OCP was tested using
two-way ANOVAs. The presence of B. alicastrum had
a negligible effect on all edaphic variables related to the
OCP, at all sites combined ([Ca1-x, Mg x] CO3

F[1,3] = 0.545, p = 0.462, Ca
Tot F[1, 3] = 0.189, p = 0.665

& pH F[1, 3] = 0.07, p = 0.787), except Ma Rouge, Haiti.
Ma Rouge displayed the lowest background concentra-
tions of CaTot (mean = 6.74 g kg−1) and, although the
subjects at Ma Rouge were very young (0.5–2 yrs), the
adjacent samples demonstrated clear germinal indications
of oxalotrophy (Table 1), namely: (i) a distinct localised
alkalinisation, (ii) an increase in concentrations of CaTot,
(iii; Ca1-x, Mg x) CO3 concentration (Fig. 7; Cailleau et al.
2014), and (iv) PExch, which is unrelated to the OCP, but
can be an indicator of CaOx production and release, which
subsequently liberates inorganic-bound P (Cannon et al.
1995). Therewas also an increase in CaExch (mean increase
2.73 g kg−1) in the adjacent Ma Rouge sites, but not others
(F[1, 3] = 0.002, p = 0.962), indicative of localised Ca
cycling by the trees (Jobbágy and Jackson 2001).

Oxalotrophic microbial analysis

Oxalotrophy was detected in cultures from all sampling
locations, in both Haiti and Mexico. All samples, except
one experimental sample and four control Haitian sam-
ples, tested positive for oxalotroph colonies. Haitian
study sites displayed a lower frequency of positive
colonies than Mexican sites which could be due to the
delay in customs; thus, making a direct comparison
between the two impossible.

Sampling observations

Multiple mechanisms for the release of B. alicastrum pro-
duced CaOx were identified in association with subjects in
both countries, for instance: phytophagous invertebrate
predation (termite) and mycological decomposition
(Fig. 8). Secondary carbonate deposits, confirmed through
effervescence with 2 M HCl, were found in association
with the largest subjects in Mexico. These carbonate de-
posits were typically concentric, located mid-soil profile,
in-between the root network of the subjects, and were

A

B

Fig. 6 Box plot graphs displaying oxalate concentrations
(% D.W.) of subject Brosimum alicastrum leaf and branch tissue
at Haitian sampling sites (a), and leaf, bark, root and branch tissue
at Mexican sampling sites (b)
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different in colour, texture and friability from the lithogenic
carbonate, crumbling easily upon extraction (Fig. 8).

Carbon capture potential

The calculated values given in Tables 2 and 3 represent
an ideal model of oxalotrophy, CaOx production, organ-
ic C sequestration, and also decomposition. Whereby,
all CaOx and C captured by B. alicastrum as either
organic C sequestration or CaCO3 precipitation, is
stored within the associated C reserve. CaOx concentra-
tions (% D.W.) are calculated from the CaOx concen-
trations ascertained with the enzymatic oxalate analysis
multiplied by the molecular weight of CaOx
monohydrate (whewellite; CaC2O4.H2O M.W.:
142.112 g M−1), the most abundant form of CaOx in
plants (Aragno et al. 2010).

Discussion

Calcium oxalate and B. alicastrum

The present study has demonstrated that CaOx is ubiq-
uitous throughout all forms of analysed B. alicastrum
tissues, and that production commences at a young age
for the species (<0.5 yrs). CaOx concentrations in sub-
ject tissue regularly exceeded 5 % D.W. (Libert and
Franceschi 1987) and the mean oxalate concentration
for all sampled tissues in both Haiti and Mexico was
5.97 % D.W. (59.71 g kg−1, n = 140). Furthermore,
inverse modelling of the species’ biochemical analysis
revealed that B. alicastrum deposits significant quanti-
ties of CaOx into its surrounding edaphic ecosystem on
an averaged, annual basis throughout its lifetime. The
quantities of oxalate within its tissue are proportionally

Table 1 Independent samples t-tests comparing the means of edaphic variables related to the oxalate-carbonate pathway, in the adjacent and
control profiles at the Ma Rouge sampling site

Variable Adjacent Control t P Eta2

Mean SD Mean SD

pH 7.94 0.24 7.31 0.17 5.38 0.00 0.74

CaTot (g kg−1) 42.79 31.00 6.74 1.91 2.84 0.04 0.45

(Ca1-x, Mg x) CO3 (% D.W.) 11.05 4.60 5.15 4.46 2.26 0.48 0.34

PExch x 10−3 (g kg−1) 8.09 3.37 1.63 1.40 4.34 0.00 0.65

A B
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Fig. 7 Box plot graphs
displaying soil variables
associated with the OCP from
adjacent and control (3.5 m
distance) samples at Ma Rouge
Haiti, which displayed the lowest
background concentrations of
total Ca, in the following order:
(a) soil pH values, (b) total
calcium concentration and (c)
calcium carbonate concentration,
the purity of which was not
ascertained
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magnified by the species large biomass; thus, creating a
potent source of potential OCP C storage if planted in an
acidic soil environment free from a lithogenic carbonate
source.

The primary phyto-function of CaOx production in
B. alicastrum remains unclear. Contrary to previ-
ous studies, this investigation found no significant
relationship between B. alicastrum’s CaOx produc-
tion and CaExch (Austenfeld and Leder 1978;
Rasmussen and Smith 1961; Volk et al. 2002) or PExch

(Cannon et al. 1995; Knight et al. 1992) concentra-
tions in most sites, providing weak evidence that
CaOx production is utilised for the phyto-regulation
of CaExch or release of PExch from inorganic-pools.
Equally, the use of B. alicastrum tissue for fodder and
the non-raphide morphology or size of crystals (Sakai
et al. 1984; Salinas et al. 2001) indicate that the

species does not use CaOx production as an herbiv-
ory deterrent. However, the concentrated production
of druse crystals in the lamina of B. alicastrum foliar
tissue could distribute UV light to chloroplasts, in-
creasing incident UV absorbency in understory en-
v i ronments , as or ig ina l ly hypothes i sed by
Franceschi (2001) and later demonstrated experi-
mentally by Kuo-Huang et al. (2007) in Peperomia
glabella. This hypothesis explains the observed de-
crease in subject foliar CaOx concentration with
age, while also explaining B. alicastrum’s high sur-
vival rates under dense canopy (>80 %; Laborde and
Corrales-Ferrayola 2012). Therefore, a role for
B. alicastrum CaOx druse crystal production in the
maximisation of incident UV light is hypothesised.

During this investigation, the root network of
B. alicastrum was of particular interest. B. alicsatrum
has a root network that is mainly concentrated in the
upper soil and bedrock layers (Querejeta et al. 2006).
The EOK analyses indicated thatB. alicastrum root tissue
contains a significant concentration of CaOx, which,
when coupled with the Cairns et al. (1997) root / shoot
ratio (0.26) andGill and Jackson (2000) root turnover rate
(0.1 yr−1), predict that B. alicastrum deposits significant
quantities of CaOx directly into its rhizosphere through
the continuous decomposition and regeneration of root
OM. Furthermore, investigations have demonstrated that
B. alicastrum roots have strong associations with mycor-
rhizal fungi (Allen et al. 2003; Allen et al. 2005) that,
Bravo et al. (2013) demonstrated act as highways for the
dispersal of oxalotrophic bacteria to oxalate, creating an
ideal mutualistic habitat for oxalotrophy.

A B

C D

Fig. 8 Photographic
observations from sampling. a
Evidence of phytophagous
invertebrate predation. b
Mycological degradation of
CaOx rich tissue in the
rhizosphere adjacent to aMexican
subject. c Idiosyncratic carbonate
mineral deposit, concentric and
root-like in structure, located
within the root network of a
Mexican subject. d Concentric
carbonate-rich mineral deposit at
1 m distance from a Mexican
subject

Table 2 Mean calcium oxalate and carbon contents of
B. alicastrum tissue from both countries used in the inverse
modelling of the carbon capture ability of an ideal individual or
hectare population

Tissue type Mean calcium
oxalate content
(% D.W.)

Mean total
carbon (% D.W.)

Leaf 7.54 35.68

Branch 3.91 41.63

Bark 7.28 45.70

Root 5.79 41.34

Mean tissue 5.97 39.98
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OCP and carbonate soils

All the constituents of an active OCP in ferralitic
soils have now been identified by this investigation
in calcareous ecosystems adjacent to B. alicastrum
in both Haiti and Mexico. These constituents in-
clude: an oxalate producing species (B. alica
strum), phytophagous invertebrate predation and
mycological decomposition of CaOx rich tissue, sig-
nificant oxalotrophic bacterial communities, and
secondary CaCO3. Furthermore a calcareous sample
site in Haiti, Ma Rouge, has demonstrated clear,
emblematic, early indications of oxalotrophy adja-
cent to subjects (Table 2) even though the subjects
are still very young (0.5–2 yrs). This was contrary to
our hypothesis that the trees would be too young to
have affected their local edaphic ecosystem; but, at
the time of sampling, the Ma Rouge trees had al-
ready grown to 1.4–1.8 m in height and were pro-
ducing significant quantities of CaOx, which was
also detectable in the soils adjacent to them (5–
25 g kg−1). As demonstrated by Bravo et al.
(2011), this soil CaOx pool can be catabolised
quickly upon entry into the edaphic ecosystem when
in the presence of oxalotrophs. Which, when
coupled with positive identification of oxalotrophy
in soils found adjacent to B. alicastrum in Ma
Rouge, strongly suggests that, like suggested by
Verrecchia et al. (1993), an OCP can occur in cal-
careous environments and secondary carbonate de-
posits found in association with the root networks in
Mexico are generated through an active OCP.

Although there was evidence of oxalotrophy in Ma
Rouge, typical edaphic variables associated with the OCP
were suppressed in most sites. This could be because of
the higher concentrations of Ca (CaExch &CaTot) masking
the typical indicators of an OCP. Ma Rouge displayed the
lowest concentrations of Ca (CaExch & CaTot) or CaCO3

(2 sites below the calcaric threshold) of any site samples.
The site was also the only site to present evidence of
CaExch cycling by the plants (Jobbágy and Jackson 2001).
However, the passive cycling of Ca could not explain the
observed increase in CaCO3 content of adjacent samples.
On the contrary, there was a larger increase in adjacent
concentrations of CaTot, relative to CaExch, which, as a
plant nutrient would be actively cycled by plants. This
increase is most likely linked to the CaCO3 increase
adjacent to the species, as will be the localised
alkalinisation. A significant saturation of exchange com-
plex by Ca (>4.47 g kg−1) of a deprotonated alkaline soil
would typically suppress the localised alkalinisation as-
sociated with an OCP in ferralitic environments; but, the
observed increase in CaCO3would further increase pH as
seen in Ma Rouge. Although the presence of lithogenic
CaCO3 makes it difficult to discern secondary CaCO3

deposits and thereby, identify an active OCP (Cailleau
et al. 2014), the root-like position, colour, shape, texture
and friability of secondary CaCO3 deposits in Mexico
were all suggestive of an OCP associated with
B. alicastrum. Therefore, Ca and C cycling of the OCP
in calcareous environments needs to be studied in more
detail to identify alternate indicators of the process in
alkaline soils.

In calcareous environments, plants under stress
from high CaExch concentrations, typically increase
CaOx production as a Ca detoxification mecha-
nism (Austenfeld and Leder 1978; Molano-Flores
2001; Rasmussen and Smith 1961; Volk et al.
2002; Webb 1999). This increased production of
CaOx would theoretically lead to a larger pool
available for oxalotrophy relative to a ferralitic
environment, subsequently increasing the C cy-
cling of the process. However, an identifiable C
sequestration of a calcareous OCP must be ruled
out because CO2 is concomitantly released into the
soil matrix when Ca2+ is liberated during the

Table 3 Estimates for the carbon capture ability of an ideal B. alicastrum individual and hectare plantation of 400 individuals

Predictions Total calcium
oxalate
output (kg)

Potential biomineral
precipitation of captured
CO2

ATM as CaCO3 (kg)

Potential organic carbon
sequestration of CO2

Atm

as biomass (kg)

Potential
total CO2

capture (kg)

Annual CO2

capture (kg yr−1

MLE−1)

Individual 1590 479 39,633 40,112 267

1 ha plantation (400 individuals) 636,000 191,600 15,853,200 16,048,800 106,800
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dissolution of CaCO3 in calcareous environments
(Fig. 9). This means that a calcareous OCP system
cannot truly be considered a C sink, but instead a
C capturer, as the allochthonous, non-carbonate
origin of the Ca2+ precipitated as CaCO3 cannot
be confirmed in this complex system. Instead, this
work has confirmed that B. alicastrum is an
oxalogenic species which is known to have signif-
icant agroforestry potential (Woda and Martinez
2013) and if planted in a location free from
lithogenic CaCO3, would act as an efficient agro-
forestry and C capture tool.

Conclusion

Calcium oxalate production takes place throughout
B. alicastrum tissue and the compound likely plays
an important role in the species’ adolescent form,
maximising photosynthesis, through the augmentation
of incident UV radiation in the lamina, in light-
limited environments. This research has also identi-
fied oxalotrophic bacterial communities in soils from
Haiti and Mexico, providing further evidence
for previous suggestions that oxalotrophism is glob-
ally diverse. Furthermore, this study has provided
experimental evidence for the hypothesis of
Verrecchia et al. (1993) that, the OCP can occur in
calcareous environments. Thus, when planted in soils
free from lithogenic carbonate, B. alicastrum would
represent a valuable C sequestration and agroforestry
crop which would have the ability to biominerally
sequester C via an active OCP, while providing food
for Neotropical communities in countries such as
Haiti, Mexico or Belize. Further investigation is
now required to:

1. Analyse B. alicastrum in acidic soil environments,
2. Assess the isotopic signatures of discovered carbon-

ate deposits,
3. Assess the origin of Ca sources in calcareous OCP

systems,

4. Identify more oxalogenic species with significant
agroforestry potential, to facilitate integration of this
biogeochemical C management solution into cur-
rent agroforestry systems.
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