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Abstract

The goal of this paper is an exhaustive investigation of the link between the tail
measure of a regularly varying time series and its spectral tail process, independently
introduced in Owada and Samorodnitsky (2012) and Basrak and Segers (2009). Our
main result is to prove in an abstract framework that there is a one to one corre-
spondance between these two objets, and given one of them to show that it is always
possible to build a time series of which it will be the tail measure or the spectral
tail process. For non negative time series, we recover results explicitly or implicitly
known in the theory of max-stable processes.

1 Introduction

Regular variation is a fundamental concept for the extreme value analysis of time series.
See for instance Kulik (2016) and the articles in this collection for a recent overview. For
stationary multivariate time series, Basrak and Segers (2009) proved that regular variation
is equivalent to the existence of the so-called tail and spectral tail processes which capture
the entire tail behaviour of the series. An important property of the spectral tail process is
the time change formula also proved by Basrak and Segers (2009). Recently, (Segers et al.,
2017) and (Owada and Samorodnitsky, 2012) introduced the tail measure of a regularly
varying, but not necessarily stationary, time series. The tail measure is a homogeneous
measure on the sequence space and it is shift-invariant for a stationary time series. This
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†Département de sciences actuarielles, Université de Lausanne, Quartier UNIL-Chamberonne, Bâtiment
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is an advantage with respect to the tail process which is never stationary. In addition, the
tail process can be recovered from the tail measure and it appears that the time change
formula is a straightforward consequence of the shift invariance of the tail measure.

A very natural question arises: given the tail process or the spectral tail process of a time
series, is it possible to reconstruct explicitly the tail measure? Furthermore, since the tail
and spectral tail processes can be defined solely in terms of the tail measure, given a process
satisfying the time change formula, is it possible to define a tail measure and a time series
of which it is the spectral tail process? The latter question was recently solved positively
by Janßen (2017) who shows that given a process satisfying the time change formula, there
exists a time series of which it is the spectral tail process.

The purpose of this paper is twofold. In Section 2 we will attempt to present a systematic
theory of tail measures on a abstract complete separable metric space and their representa-
tions, with a particular focus on shift-invariant tail measures. This is done by means only
of measure theory and the homogeneity and shift invariance properties of a tail measure,
without any appeal to regular variation or probabilistic asymptotic arguments. We estab-
lish in Theorem 2.4 the stochastic representation of tail measures with a characterization
of the shift invariance. These stochastic representations have a property similiar to the
time change formula which we refer to as the tilt shift formula. The spectral tail pro-
cess associated to the tail measure is then related to its stochastic representation and we
prove that there is a one-to-one correspondance between spectral tail processes, stochastic
representations and shift invariant tail measures in Theorem 2.9.

In Section 2.5, we discuss dissipative representations of tail measures and characterize the
existence of such representations, which are deeply related to the mixed moving average
representation of max-stable processes. We conclude this general investigation of tail mea-
sure by introducing maximal indices which extend the candidate extremal index of Basrak
and Segers (2009).

In Section 3, the abstract tail measures introduced in Section 2 are related to be the tail
measure of a regularly varying time series, in particular max-stable processes - see de Haan
(1984), Davis et al. (2013) or Buhl and Klüppelberg (2016). The main result of this section
is that we show that any shift-invariant homogeneous measure ν can be obtained as the
tail measure of a regularly varying stationary times series. Our construction relies on
a Poisson particle system, similarly to the representation of max-stable sequences, and
on the regular variation of Poisson point measures on abstract metric spaces. The main
theoretical tool we use is the theory ofM0 convergence on metric spaces and its application
to regular variation, following Hult and Lindskog (2006). We also make use of the theory of
convergence of random measures as set out in Kallenberg (2017). Our main result extend
the above mentioned result of Janßen (2017) to our more general framework. The properties
of the proposed class of stationary regularly varying time series are then studied and we
show in particular that they admit extremal indices which coincide with the maximal
indices introduced in Section 2.6.
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2 Tail measures on a metric space

2.1 Framework

The mathematical setting is the following. Let pE, Eq be a measurable cone, that is a
measurable space together with a multiplication by positive scalars

pu,xq P p0,8q ˆ E ÞÑ ux P E ,

which is measurable with respect to the product σ-field Bp0,8q b E{E and satisfies

1x “ x , upvpxqq “ puvqx , u, v ą 0 , x P E .

We assume that the cone admits a zero element 0E P E such that u0E “ 0E for all u ą 0
and that it is endowed with a pseudonorm, i.e. a measurable function } ¨ }E : E ÞÑ r0,8q
such that }ux}E “ u}x}E for all u ą 0, x P E and }x}E “ 0 implies x “ 0E. The triangle
inequality is not required.

The space EZ of E-valued sequences is endowed with the cylinder σ-algebra F “ EbZ and a
generic sequence is denoted x “ pxhqhPZ. The sequence identically equal to 0E is denoted
by 0EZ . The backshift operator B on EZ is defined by pBxqh “ xh´1, x P EZ, h P Z. Its
iterates are denoted Bk, k P Z.

Let H : EZ ÞÑ r0,8s be an F -measurable function. We say that H is homogeneous of order
α P R, or shortly α-homogeneous, if Hpuxq “ uαHpxq for all u ą 0, x P EZ.

The central object in this section is the notion of tail measure defined as follows.

Definition 2.1 (Tail measure). A tail measure with index α ą 0 is a positive measure ν
on pEZ,Fq with the following properties:

(i) νpt0EZuq “ 0;

(ii) νpt}x0}E ą 1uq “ 1;

(iii) νpt}xh}E ą 1uq ă 8 for all h P Z;

(iv) ν is α-homogeneous, that is νpuAq “ u´ανpAq for all A P F and u ą 0.

The tail measure ν is called shift-invariant if furthermore

(v) νpBAq “ νpAq for all A P F .

The following connection of tail measures on r0,8qZ and max-stable process is important.
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Remark 2.2. A time series X “ pXhqhPZ is called α-Fréchet max-stable if

´

n´1{α
n
ł

i“1

X
piq
h

¯

hPZ

d
“ pXhqhPZ

whereXpiq, i ě 1 are independent copies ofX. de Haan’s representation theorem (de Haan,
1984) implies that any α-Fréchet max-stable sequence X can be represented as

pXhqhPZ
d
“

´

ł

iě1

P
piq
h

¯

hPZ
(2.1)

where
ř

iě1 δPpiq is a Poisson random measure on r0,8qZ with intensity ν called the expo-
nent measure of X. Provided the marginal distribution of X0 is standard α-Fréchet, the
exponent measure ν is a tail measure in the sense of Definition 2.1. Conversely, for any
tail measure ν on r0,8qZ, Equation (2.1) defines an α-Fréchet max-stable sequence with
X0 following a standard α-Fréchet distribution.

The following lemma is useful to characterize tail measures. According to Definition 2.1,
the restriction of a tail measure ν to the set t}xh}E ą 1u is finite so that the Lemma allows
to deal with finite measures in order to characterize ν.

Lemma 2.3. Any tail measure ν is σ-finite and uniquely determined by its restrictions to
the sets t}xh}E ą 1u, h P Z.

Proof. By property (i) of Definition 2.1, the tail measure ν is supported by

EZ
zt0EZu “

ď

hPZ,ně1

Ah,n ,

with Ah,n “ tx P EZ : }xh}E ą n´1u. Since EZzt0EZu is a countable union of measurable
sets, we can also write it as a countable union of pairwise disjoint measurable sets. For
instance enumerating Ah,n, h P Z, n ě 1 as Di, i ě 1 and taking D1 “ D1,Di “ DiX pD1Y

¨ ¨ ¨YDi´1q
c, i ě 2, we have that EZzt0EZu “ Yiě1Di with the sets Di, i ě 1, being pairwise

disjoint. Since by property (iii) and (iv) we have that νpDiq ă 8, i ě 1, then ν is σ-finite
and completely determined by its restrictions to the sets Di, i ě 1, hence by its restriction
to the sets Ah,n, h P Z, n ě 1. Using further the homogeneity property (iv), it follows that
ν is determined by its restriction to the sets t}xh}E ą 1u, h P Z.

2.2 Stochastic representation of tail measures

The following theorem provides a fundamental stochastic representation of a tail measure
in terms of a E-valued stochastic process Z “ pZhqhPZ and characterizes shift-invariant tail
measures.
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Theorem 2.4. A measure ν on pEZ,Fq is a tail measure with index α ą 0 if and only
if there exists an E-valued stochastic process Z “ pZhqhPZ defined on a probability space
pΩ,A,Pq such that

PpZ “ 0EZq “ 0 , Er}Z0}
α
Es “ 1 , Er}Zh}

α
Es ă 8 for all h P Z , (2.2)

and

νpAq “

ż 8

0

PprZ P Aqαr´α´1dr , A P F . (2.3)

Moreover, ν is shift-invariant if and only if, for all non negative measurable α-homogeneous
functions H and h P Z,

ErHpBhZqs “ ErHpZqs . (2.4)

Note that in Equation (2.3), both terms may be equal to `8, for instance if A “ t}x}E ą
0u. This raises however no difficulty since the results from measure theory we use (e.g.
Fubini-Tonneli theorem) hold true for any non-negative functions and σ-finite measures,
regardless the integrals are finite or not.

We call the identity (2.4) the tilt shift formula, abbreviated TSF. It characterizes the shift-
invariance of the measure ν defined by (2.3) which does not depend on the choice of a
norm. It looks very much like stationarity of the process Z, but let us emphasize that
(2.4) is restricted to α-homogeneous test functions so it is much weaker than stationarity.
Of course, if Z is stationary then it satisfies (2.4). The tilt shift formula is equivalent to
each of the following equivalent conditions which will also be referred to indifferently as
the TSF:

(i) for all non negative measurable 0-homogeneous functions H0 : EZ Ñ r0,8s and h P Z,

Er}Z0}
α
EH0pB

hZqs “ Er}Zh}
α
EH0pZqs ; (2.5)

(ii) for all non negative measurable functions K : EZ Ñ R and h P Z,

Er}Z0}
α
EKp}Z0}

´1
E BhZqs “ Er}Zh}

α
EKp}Zh}

´1
E Zqs . (2.6)

Indeed, (2.6) obviously implies (2.4) and (2.5), (2.5) is obtained by applying (2.4) to the
α-homogeneous function Hpxq “ }x0}

α
EH0pxq and (2.6) is obtained by applying (2.4) to

the α-homogeneous function H0pxq “ }x0}
α
EKp}x0}

´1
E Bhxq defined to be 0 if }x0}E “ 0.

Remark 2.5. In the case E “ r0,8qZ, if ν has representation Equation (2.3), then the
max-stable process X with exponent measure ν defined by (2.1) can be represented as

pXhqhPZ
d
“

´

ł

iě1

UiZ
piq
h

¯

hPZ
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where
ř

iě1 δUi is a Poisson random measure on p0,8q with intensity αu´α´1du and, in-

dependently, Zpiq, i ě 1, are independent copies of Z. We note in passing that TSF for
Brown-Resnick max-stable processes first appears in (Dieker and Mikosch, 2015, Lemma
5.2), see also (Hashorva, 2018, Theorem 6.9) for general max-stable processes.

Proof of Theorem 2.4. It is easily checked that the measure ν defined by (2.3) is a tail
measure. The condition νpt0EZuq “ 0 follows from PpZ “ 0EZq “ 0. A direct computation
yields

νpt}xh}E ą 1uq “ E
ż 8

0

1tr}Zh}E ą 1uαr´α´1dr “ Er}Zh}
α
Es ,

whence we deduce

t}x0}E ą 1u “ Er}Z0}
α
Es “ 1 , νpt}xh}E ą 1uq “ Er}Zh}

α
Es ă 8 .

Homogeneity of order α follows from the simple change of variable r1 “ u´1r: for all u ą 0
and A P F , we have

νpuAq “

ż 8

0

PprZ P uAqαr´α´1dr “

ż 8

0

Ppu´1rZ P uAqαr´α´1dr

“ u´α
ż 8

0

PprZ P uAqαr´α´1dr “ u´ανpAq.

Conversely, let ν be a tail measure and let us prove the existence of a representation (2.3).
Let us first prove that there exists at least one measurable functional τ : EZ Ñ r0,8q
having the following properties:

(i) τpxq “ 0 if and only if x “ 0EZ ;

(ii) τ is 1-homogeneous;

(iii) νptτpxq ą 1uq “ 1.

Define ph “ νpt}xh}E ą 1uq for h P Z and let q P p0,8qZ be a positive sequence such that
ř

hPZ phq
α
h ă 8. Consider the map τ : EZ Ñ r0,8s defined by

τpxq “ sup
hPZ

qh}xh}E .

Then τ is 1-homogeneous and since }xh}E “ 0 if and only if xh “ 0E for all h P Z, we have
τpxq “ 0 if and only if x “ 0EZ . By the homogeneity of ν, we have

νptτpxq ą 1uq ď
ÿ

hPZ

νptqh}xh}E ą 1uq “
ÿ

hPZ

phq
α
h ă 8 ,

νptτpxq ą 1uq ě qα0 νpt}x0}E ą 1uq “ qα0 ą 0 ,
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whence νptτpxq ą 1uq P p0,8q. Therefore, by multiplying the sequence q by a suitable
normalizing constant, we can impose that νptτpxq ą 1uq “ 1.

Let now τ be an arbitrary measurable map having the properties (i), (ii) and (iii) and
define the “unit sphere” Sτ “ tτpxq “ 1u and the polar coordinate mapping

T : EZzt0EZu Ñ p0,8q ˆ Sτ ,
x ÞÑ pτpxq,x{τpxqq .

Define the probability measure σ on Sτ by

σpAq “ νptτpxq ą 1, x{τpxq P Auq , A P F ,

and the measure να on p0,8q with density αx´α´1 with respect to Lebesbue measure.
Since T is one-to-one and τ is homogeneous, we obtain the polar representation of ν, that
is ν ˝ T´1 “ να b σ or explicitly, for all A P F ,

νpAq “

ż 8

0

ż

EZ
1trx P Auσpdxqαr´α´1dr . (2.7)

Indeed, starting from the right hand side of (2.7), we compute

ż 8

0

ż

EZ
1trx P Auσpdxqαr´α´1dr

“

ż 8

0

ż

EZ
1tτpxq ą 1, rx{τpxq P Auνpdxqαr´α´1dr

“

ż 8

0

ż

EZ
τpxq´α1tτpxq ą 1, rx P Auνpdxqαr´α´1dr

“

ż 8

0

ż

EZ
τpxq´α1trτpxq ą 1, x P Auνpdxqαr´α´1dr

“

ż

EZ
1tx P Auνpdxq “ νpAq .

We use throughout these lines that νptτpxq “ 0uq “ νpt0EZuq “ 0. The successive
equalities rely on the definition of σ, the changes of variable r1 “ r{τpxq and x1 “ x{r,
the homogeneity of ν and τ and finally the fact that

ş8

0
1tr ą zuαr´α´1dr “ z´α with

z “ 1{τpxq.

Consider now a probability space pΩ,A,Pq on which we can define an EZ-valued random
element Z with distribution σ. Then (2.7) is exaclty the stochastic representation (2.3).
The conditions in (2.2) are a consequence of Definition 2.1 together with (2.3): νpt0EZuq “

PpZ “ 0EZq “ 0 and νpt}xh}E ą 1uq “ Er}Zh}
α
Es is finite for all h P Z and equal to 1 for

h “ 0.

Finally, assume that ν is shift-invariant and let H0 : EZ Ñ r0,8s be a 0-homogeneous mea-
surable function. Using the stochastic representation (2.3) and Fubini-Tonelli’s theorem
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for all h P Z we obtain

Er}Z0}
α
EH0pB

hZqs “ E
”

H0pB
hZq

ż 8

0

1tr}Z0}E ą 1uαr´α´1dr
ı

“

ż

EZ
H0pB

hxq1t}x0}E ą 1uνpdxq

“

ż

EZ
H0pxq1t}xh}E ą 1uνpdxq

“ E
”

H0pZq

ż 8

0

1tr}Zh}E ą 1uαr´α´1dr
ı

“ ErH0pZq}Zh}
α
Es .

The third equality uses the shift invariance of ν and this proves that (2.5) holds.

Conversely we prove that the tilt shift formula (2.5) implies the shift invariance of ν. For
this purpose, we note that for all h P Z and A P F ,

νpAX t}xh}E ą 1uq “

ż 8

0

Er1trZ P A , r}Zh}E ą 1usαr´α´1dr

“

ż 8

1

Er}Zh}
α
E1trZ{}Zh}E P Ausαr

´α´1dr

“

ż 8

1

Er}Z0}
α
E1

 

rBhZ{}Z0}E P A
(

sαr´α´1dr . (2.8)

We used successively the stochastic representation (2.3), the change of variable r1 “ r}Zh}E

(where }Zh}E is almost surely finite as a consequence of (2.2)) and the tilt-shift formula
(2.5). Similarly, for k P Z,

pν ˝B´kqpAX t}xh}E ą 1uq “

ż 8

0

Er1
 

rBkZ P A , r}Zh´k}E ą 1
(

sαr´α´1dr

“

ż 8

1

Er}Zh´k}
α
E1

 

rBkZ{}Zh´k}E P A
(

sαr´α´1dr

“

ż 8

1

Er}Z0}
α
E1

 

rBhZ{}Z0}E P A
(

sαr´α´1dr .

This proves that ν “ ν ˝ B´k on the set t}xh}E ą 1u. Since this holds for all h P Z,
Lemma 2.3 implies ν “ ν ˝B´k, whence ν is shift-invariant.

2.3 The spectral tail process and the time change formula

The following notion of tail process and spectral tail process plays an important role in
the theory of regularly varying time series, see Basrak and Segers (2009). We define here
these objects in terms of the tail measure only. The link between these two approaches
will be made in Section 3.3 and was already pointed by Owada and Samorodnitsky (2012),
section 4.
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Definition 2.6 (Local tail process). Let ν be a tail measure on EZ and assume that h P Z
is such that ph “ νpt}xh}E ą 1uq ą 0. The local tail process of ν at lag h is the process
Y phq with distribution

PpY phq
P Aq “

1

ph
νpt}xh}E ą 1,x P Auq , A P F .

The process Θphq
“ Y phq

{}Y
phq
h }E is called the local spectral tail process at lag h.

For h “ 0, we write simply Y “ Y p0q and Θ “ Θp0q, called the tail process and the spectral
tail process associated to ν.

Proposition 2.7. Let ν be a tail measure with stochastic representation (2.3). Then

ph “ νpt}xh}E ą 1uq “ Er}Zh}
α
Es ă 8. If ph ą 0, then }Y

phq
h }E and Θphq

“ Y phq
{}Y

phq
h }E

are independent, }Y
phq
h }E has an α-Pareto distribution, that is

Pp}Y phq
h }E ą uq “ u´α , u ą 1 ,

and the distribution of Θphq is given by

PpΘphq
P Aq “ p´1

h Er}Zh}
α
E1tZ{}Zh}E P Aus , A P F . (2.9)

Proof. By definition of the local tail process and using the stochastic representation (2.3),
we have for all measurable H : EZ Ñ r0,8s

phErHpY phq
qs “

ż

EZ
Hpxq1t}xh}E ą 1uνpdxq

“

ż 8

0

ErHprZq1tr}Zh}E ą 1usαr´α´1dr

“

ż 8

0

ErHprZq1tr}Zh}E ą 1, 0 ă ‖Zh‖ ă 8usαr´α´1dr

“

ż 8

1

E r}Zh}
α
EH prZ{}Zh}Eqsαr

´α´1dr .

The last equality relies on the change of variable r1 “ r}Zh}E. Applying this identity with
the 0-homogeneous function H0pxq “ 1tx{}xh}E P A, }xh}E ą 0u yields

PpΘphq
P Aq “ ErH0pY

phq
qs “

ż 8

1

E r}Zh}
α
EH0pZ{}Zh}Eqsαr

´α´1dr

“ p´1
h E r}Zh}

α
E1tZ{}Zh}E P Aus ,

proving Equation (2.9).

Corollary 2.8. A tail measure ν is shift-invariant if and only if ph “ 1 and Θphq d
“ BhΘ

for all h P Z. Then the spectral tail process Θ characterizes the tail measure ν and satisfies

ErH0pB
hΘqs “ Er}Θh}

α
EH0pΘqs , h P Z , (2.10)

for all 0-homogeneous measurable H0 : EZ Ñ r0,8q vanishing on t}x0}E “ 0u.
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We call Equation (2.10) the time change formula, abbreviated TCF. It first appeared in
Basrak and Segers (2009) in the context of stationary regularly varying time series. While
the original proof was based on limiting arguments, we propose here a direct proof based on
shift invariance of the tail measure, which was already noticed in Owada and Samorodnitsky
(2012). In view of Proposition 2.7, the TCF is in fact a direct consequence of the TSF (see
the proof below). The condition that H0 vanishes on t}x0}E “ 0u is important. To stress
this, the TCF can be formulated in the equivalent form: for all 0-homogeneous measurable
H0 : EZ Ñ r0,8q,

ErH0pB
hΘq1t}Θ´h}E ą 0us “ Er}Θh}

α
EH0pΘqs , h P Z . (2.11)

To see this, simply apply (2.10) to the function x ÞÑ H0pxq1t}x0}E ą 0u.

Proof of Corollary 2.8. If ν is shift-invariant, then the tilt shift formula (2.5) together with
Er}Z0}

α
Es “ 1 implies ph “ 1 for all h P Z. Equations (2.5) and (2.9) together imply, for

all h P Z, A P F ,

PpΘphq
P Aq “ Er}Zh}

α
E1tZ{}Zh}E P Aus

“ Er}Z0}
α
E1

 

BhZ{}Z0}E P A
(

s “ PpBhΘ P Aq ,

whence Θphq d
“ BhΘ. Conversely, if ph “ 1 and Θphq d

“ BhΘ for all h P Z, then we have
for all 0-homogeneous function H0,

E
“

}Z0}
α
EH0pB

hZq
‰

“ ErH0pB
hΘqs “ ErH0pΘ

phq
qs “ E r}Zh}

α
EH0pZqs ,

hence the TSF is satisfied and ν is shift-invariant by Theorem 2.4.

If ν is shift-invariant, then Equation (2.8) can be rewritten as

νpAX t}xh}E ą 1uq “

ż 8

1

Er1
 

rBhΘ P A
(

sαr´α´1dr ,

for all h P Z and A P F . In view of Lemma 2.3, we deduce that Θ characterizes the
shift-invariant tail measure ν. Furthermore, we have for all 0-homogeneous function H0

Er}Θh}
α
EH0pΘqs “ E

„

}Z0}
α
E

}Zh}
α
E

}Z0}
α
E

H0pZ{}Z0}Eq



“ E r}Zh}
α
EH0pZq1t}Z0}E ą 0us

“ E r}Zh}
α
EH0pZqs “ ErH0pB

hΘqs ,

where the second line of equalities is valid provided that H0 vanishes on t}x0}E “ 0u. This
shows that if ν is shift-invariant, the spectral tail process satisfies the TCF (2.10).

We have introduced the spectral tail process Θ associated to a tail measure ν. In the shift-
invariant case, it satisfies Pp}Θ0}E “ 1q “ 1 and the TCF (2.10) and it also characterizes ν.
A natural question then arises: if Θ satisfies Pp}Θ0}E “ 1q “ 1 and the TCF, can it
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be obtained as the spectral tail process of some shift-invariant tail measure ν? In the
multivariate setting E “ Rd, this question was addressed recently by Janßen (2017) in
connection with the theory of max-stable processes. The next theorem still provides a
positive answer in the more general framework. Our proofs are different and work directly
on the level of the tail measure (not on the level of a stationary regularly varying time
series, see Theorem 3.7 below).

Theorem 2.9. The mapping which to a tail measure associates its spectral tail process is a
one-to-one correspondence between the class of shift-invariant tail measures and the class
of processes Θ satisfying Pp}Θ0}E “ 1q “ 1 and the TCF (2.10).

Proof. Starting from a process Θ satisfying Pp}Θ0}E “ 1q “ 1 and the TCF (2.10), we need
to construct a shift-invariant tail measure ν with spectral tail process Θ. For q P r0,8qZ

and x P EZ, we define

‖x‖q,α “

˜

ÿ

jPZ

qj}xj}
α
E

¸1{α

.

We can always choose the sequence q such that

Pp0 ă ‖BkΘ‖q,α ă 8q “ 1 for all k P Z . (2.12)

It suffices to choose q such that qk ą 0 for all k P Z and
ř

kPZ qk “ 1. Then Pp‖BkΘ‖q,α ą
0q “ 1 since qk ą 0 and }Θ0}E “ 1 almost surely. Moreover, applying the time change
formula (2.11) with H ” 1 yields Er}Θk}

α
Es ď 1 for all k P Z, so that

Er‖BkΘ‖αq,αs “
ÿ

jPZ

qkEr}BkΘj}
α
Es ď

ÿ

kPZ

qk “ 1 .

Define rZ
pkq
“ BkΘ{‖BkΘ‖q,α, k P Z and the positive measure νq on EZ by

νqpAq “
ÿ

kPZ

qk

ż 8

0

Ppr rZ
pkq
P Aqαr´α´1dr (2.13)

for all A P F . Then νq is obviously α-homogeneous and νqpt0EZuq “ 0 and we have

11



furthermore, for all measurable function H : EZ Ñ r0,8q,
ż

EZ
Hpxq1t}x0}E ą 1uνqpdxq

“
ÿ

kPZ

qk

ż 8

0

E
”

Hpr rZ
pkq
q1

!

r}rZ
pkq

0 }E ą 1
)ı

αr´α´1dr

“
ÿ

kPZ

qk

ż 8

0

E
„

H

ˆ

rBkΘ

‖BkΘ‖q,α

˙

1
 

r}Θ´k}E ą ‖BkΘ‖q,α
(



αr´α´1dr

“
ÿ

kPZ

qk

ż 8

1

E
„

H

ˆ

rBkΘ

}Θ´k}E

˙

}Θ´k}
α
E

‖BkΘ‖αq,α



αr´α´1dr

“
ÿ

kPZ

qk

ż 8

1

E
„

}Θ´k}
α
EH

ˆ

rBkΘ

‖Θ´k‖

˙

‖Θ0‖α

‖BkΘ‖αq,α



αr´α´1dr .

In these lines, we used successively the definition (2.13), the definition of rZ, the change of
variable r1 “ ‖BkΘ‖q,α}Θ´k}

´1
E r (note that the event t}Θ´k}E “ 0u has no contribution

to the expectations) and finally the fact that Pp‖Θ0‖ “ 1q “ 1. The time change formula
now entails

ż

EZ
Hpxq1t}x0}E ą 1uνqpdxq “

ÿ

kPZ

qk

ż 8

1

E
„

H

ˆ

rΘ

}Θ0}E

˙

}Θk}
α
E

‖Θ‖αq,α



αr´α´1dr

“

ż 8

1

ErHprΘqsαr´α´1dr . (2.14)

Applying this identity to the 0-homogeneous function xÑ Hp}x0}
´1
E xq1t}x0}E ą 0u proves

that νq has spectral tail process Θ. It is easily obtained along the same lines, that for
all h P Z,

ż

EZ
Hpxq1t}xh}E ą 1uνqpdxq “

ż 8

1

ErHprBhΘqsαr´α´1dr .

The right hand side does not depend on q and taking H ” 1 yields νqpt}xh}E ą 1uq “ 1,
h P Z. Therefore the νq’s are tail measures that coincide on the sets t}xh}E ą 1u, h P Z.
By Lemma 2.3 they are all equal and hence νq does not depend q. This entails that νq is
shift-invariant since it is readily checked that νq ˝B

´h “ νBhq whence νq ˝B
´h “ νq.

Remark 2.10. In two particular cases, a simpler construction of the tail measure corre-
sponding to a given spectral tail process is available.

‚ If Pp}Θh}E ą 0q “ 1 for all h P Z, then the sequence q can be chosen as q “ δ0 and we
obtain

νpAq “

ż 8

0

PprΘ P Aqαr´α´1dr .

This provides a stochastic representation (2.3) of ν withZ “ Θ such that }Z0}E “ }Θ0}E “

1 almost surely.

12



‚ If Pp
ř

hPZ }Θh}
α
E ă 8q “ 1, then we can choose q ” 1 which yields

νpAq “
ÿ

hPZ

ż 8

0

PprBh
rZ P Aqαr´α´1dr , (2.15)

with rZ “ Θ{p
ř

kPZ }Θk}
α
Eq

1{α. This representation is related to the mixed moving max-
imum representation of max-stable process see e.g. Dombry and Kabluchko (2017) and
Section 2.5.

We will later need the following lemma on the support of a tail measure. We say that a
set C P F is a cone if x P C implies ux P C for all u ą 0.

Lemma 2.11. Let ν be a tail measure which admits the stochastic representation (2.3).
Let C be a cone. Then νpCq “ 0 ô PpZ P Cq “ 0. If ν and C are shift-invariant, then
νpCq “ 0 ô PpΘ P Cq “ 0.

Proof. If C is a cone, then Equation (2.3) yields νpCq “ PpZ P Cq ˆ 8, which proves the
first statement.

If ν is shift-invariant with spectral tail process Θ and C is a shift invariant cone, the
representation (2.13) yields

νpCq “
ÿ

kPZ

ż 8

0

P
´

rBkΘ{‖BkΘ‖q,α P C
¯

αr´α´1dr

“
ÿ

kPZ

ż 8

0

P
´

Θ P C
¯

αr´α´1dr “ PpΘ P Cq ˆ 8 .

This proves the second statement.

2.4 Another representation of the tail measure

We propose here another construction proof of Theorem 2.9. It is based on the infargmax
functional I defined on EZ by

Ipxq “

$

’

&

’

%

´8 if lim supkÑ´8 }xk}E “ supkPZ }xk}E ,

j P Z if supkďj´1 }xk}E ă }xj}E “ supkPZ }xk}E ,

`8 if supkďj }xk}E ă supkPZ }xk}E for all j .

For x P EZzt0EZu, a sufficient condition for Ipxq P Z is lim|k|Ñ8 }xk}E “ 0.

For two sequences q P r0,8qZ and x P EZ, we define the pointwise multiplication q ¨ x by
pq ¨ xqk “ qkxk, k P Z.
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Proposition 2.12. Let Θ be a process which satisfies the time change formula (2.10) and
let q P p0,8qZ be such that PpIpq ¨Θq P Zq “ 1. Define the measure νq on EZ by

νqpAq “
ÿ

jPZ

ż 8

0

P
`

rBjΘ P A , Ipq ¨BjΘq “ j
˘

αr´α´1dr , A P F .

Then νq does not depend on q and defines a shift-invariant tail measure with tail spectral
process Θ.

Note that any q P p0,8qZ such that
ř

kPZ q
α
k ă 8 satisfies PpIpq ¨Θq P Zq “ 1. Indeed, the

time change formula implies that Er}Θh}
α
Es ď 1, h P Z, so that Er

ř

jPZ q
α
j }Θj}

α
Es ă 8 and

therefore lim|j|Ñ8 qj}Θj}E “ 0 and Ipq ¨Θq P Z almost surely.

Proof. It is straightforward to check that νq is α-homogeneous and satisfies νqpt0EZuq “ 0.
For all measurable function H : EZ Ñ r0,8q, we have

ż

EZ
Hpxq1t}x0}E ą 1uνqpdxq

“
ÿ

jPZ

ż 8

0

E
“

HprBjΘq1
 

r}Θ´j}E ą 1 , Ipq ¨BjΘq “ j
(‰

αr´α´1dr

“
ÿ

jPZ

ż 8

1

E
„

}Θ´j}
α
EH

ˆ

rBjΘ

}Θ´j}E

˙

1
 

Ipq ¨BjΘq “ j
(



αr´α´1dr

“
ÿ

jPZ

ż 8

1

E
„

H

ˆ

rΘ

}Θ0}E

˙

1tIpq ¨Θq “ ju



αr´α´1dr

“

ż 8

1

E

«

HprΘq
ÿ

jPZ

1tIpq ¨Θq “ ju

ff

αr´α´1dr “

ż 8

1

ErHprΘqsαr´α´1dr .

We used here the definition of νq from Proposition 2.12, the change of variable r1 “
r{}Θ´j}E (note that the event t}Θ´j}E “ 0u has no contribution to the integrals), the time
change formula, the fact that Pp}Θ0}E “ 1q “ 1 and finally the assumption

ř

jPZ PpIpq ¨
Θq “ jq “ 1.

At this point, we have retrieved Equation (2.14) and the remainder of the proof follows
exactly the same lines as the proof of Theorem 2.9.

Remark 2.13. In the particular case PpIpΘq P Zq “ 1, we can take q ” 1 and we get

νpAq “
ÿ

jPZ

ż 8

0

P
`

rBjΘ P A , IpΘq “ 0
˘

αr´α´1dr , A P F .

Introducing the process Q such that LpQq “ LpΘ | IpΘq “ 0q, we obtain

νpAq “ PpIpΘq “ 0q
ÿ

jPZ

ż 8

0

PprBjQ P Aqαr´α´1dr , A P F .
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This representation is similar as the one from Eq. (2.15). In fact, this is a special case of
a moving shift representation of ν, see Section 2.5.

2.5 Moving shift representations and dissipative tail measures

We consider in this section the relationship between the existence of a moving shift repre-
sentation and the dissipative/dissipative decomposition of a tail measure. Note that ergodic
properties of tail measures are also considered in Owada and Samorodnitsky (2012), sec-
tion 5. We introduce only the minimum amount of ergodic theory and define the notion of
dissipative tail measure. For more details on (infinite measure) ergodic theory, we refer to
Aaronson (1997). The σ-field on EZ generated by cones, or equivalently by 0-homogeneous
functions, is denoted by C.

Definition 2.14. The dynamical system pEZ, C,ν, Bq is said dissipative if there exists a
cone C0 P C such that the sets BhC0, h P Z, are pairwise disjoint and ν is supported by
D “

Ť

hPZB
hC0, that is ν

`

EZzD
˘

“ 0.

On the other hand, Remarks 2.10 and 2.13 above motivate the following definition.

Definition 2.15. We say that a shift-invariant tail measure ν has a moving shit repre-
sentation if there exists a stochastic process rZ such that

νpAq “
ÿ

hPZ

ż 8

0

P
´

rBh
rZ P A

¯

αr´α´1dr , A P F . (2.16)

The conditions νpt0EZuq “ 0 and νpt}x0}E ą 1uq “ 1 entail

PprZ “ 0EZq “ 0 ,
ÿ

hPZ

Er}rZh}
α
Es “ 1 . (2.17)

Indeed, we have

νpt}x0}E ą 1uq “
ÿ

hPZ

ż 8

0

Ppr}rZ´h}E ą 1qαr´α´1dr “
ÿ

hPZ

Er}rZh}
α
Es .

Conversely, it is easily proved that, for any stochastic process rZ satisfying (2.17), the
measure ν defined by (2.16) is a shift-invariant tail measure.

Remark 2.16. Definition 2.15 is strongly related to the notion of mixed moving maximum
representation for max-stable process. If a max-stable processX has a dissipative exponent
measure with representation (2.16), then it can be represented as

Xh
d
“
ł

iě1

Ui rZ
piq

h´Ti
, h P Z ,
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where
ř

iě1 δpUi,Tiq is a Poisson random measure on p0,8q ˆ Z with intensity equal to

the product of αu´α´1du with the counting measure on Z, and, independently, rZ
piq

are
independent copies of rZ. This is a mixed moving maximum representation and X is
generated by a dissipative flow (Dombry and Kabluchko, 2017, Theorem 8).

Remark 2.17. Theorem 3.7 states that any tail measure has a stochastic representation (2.3).
One can wonder what is a stochastic representation for a tail measure ν given by a moving
shift representation (2.16). A possible construction is as follows: starting from rZ, consider
an independent Z-valued random variable K such that pk “ PpK “ kq P p0, 1q, k P Z and
define

Z “
ÿ

kPZ

p
´1{α
k Bk

rZ 1tK “ ku . (2.18)

In this construction Z appears as a randomly shifted and rescaled version of rZ. It is easy
to check that the stochastic representation (2.3) and the dissipative representation (2.16)
define the same tail measure ν.

The converse is not true, that is a shift-invariant tail measure does not always have a moving
shift representation of the form (2.16). The next result is strongly related to (Dombry and
Kabluchko, 2017, Theorem 3). We say that ν (resp. Z, Θ) is supported by A P F if
νpAcq “ 0 with Ac the complement of A in EZ (resp. PpZ P Acq “ 0, PpΘ P Acq “ 0).

Proposition 2.18. Let ν be a shift-invariant tail measure. The following statements are
equivalent:

(i) pEZ, C,ν, Bq is dissipative;

(ii) ν has a moving shift representation (2.16);

(iii) ν is supported by tx :
ř

hPZ }xh}
α ă 8u;

(iv) ν is supported by tx : lim|h|Ñ8 }xh}E “ 0u;

(v) ν is supported by tx : Ipxq P Zu.

Proof. - (i) ñ (ii): let C0 be as in Definition 2.14. According to Theorem 2.4, there exists
an E-valued stochastic process Z which satisfies (2.2) and (2.3). Therefore, the restriction
ν0 of the tail measure ν to C0 can be represented as

ν0pAq “

ż 8

0

PprZ P Aqαr´α´1dr ,

for all measurable sets A Ă C0. The fact that ν is dissipative implies that ν “
ř

hPZ ν0˝B
´h

and hence that ν admits the representation (2.16) with rZ “ Z.
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- (ii) ñ (iii): If ν has a dissipative representation (2.16), then rZ satisfies (2.17) and

Er
ř

hPZ }
rZh}

α
Es ă 8 implies that rZ is supported by tx :

ř

hPZ }xh}
α
E ă 8u. Then, the

representation (2.16) implies that this set also supports ν.

- (iii)ñ (iv)ñ (v): these implications are trivial since
ř

hPZ }xh}
α
E ă 8 implies lim|h|Ñ8 }xh}E “

0, which in turn implies Ipxq P Z for x ‰ 0EZ (recall νpt0EZuq “ 0).

- (v) ñ (i): take C0 “ tx : Ipxq “ 0u to check that ν is dissipative.

Remark 2.19. Since the sets tx :
ř

hPZ }xh}
α
E ă 8u, tx : lim|h|Ñ8 }xh}E “ 0u and tx :

Ipxq P Zu are shift-invariant cones, Lemma 2.11 implies that (iii), (iv) and (v) can be
equivalently expressed with Z or Θ where Z is a stochastic representation of ν as in (2.3)
and Θ is the corresponding spectral tail process.

2.6 Maximal indices

We introduce in this section the maximal indices of a shift-invariant tail measure ν that
are closely connected with the extremal indices of regularly varying stationary time series,
see Section 3.4 below.

Given an α-homogeneous shift-invariant tail measure ν and a 1-homogeneous functional τ :
EZ Ñ r0,8s such that νptτpxq ą 1uq “ 1 , we define the quantity θτ P r0, 1s, called maximal
index, by

θτ “ lim
nÑ8

1

n
ν

ˆ"

max
0ďhďn´1

τpBhxq ą 1

*˙

. (2.19)

The existence of the limit is a consequence of Fekete’s subadditive lemma. The shift
invariance of ν implies that the sequence un “ ν

` 

max0ďhďn´1 τpB
hxq ą 1

(˘

, n ě 1, is
subadditive. As a consequence, un{n converge to infně1 un{n and the limit is in r0, 1s since
the sequence is non-negative and u1 “ 1.

The next result shows that the maximal indices of a dissipative tail measure are positive
and provides expressions of the maximal indices in terms of the stochastic representation
and the spectral tail process of the tail measure.

Proposition 2.20. Assume that ν is dissipative and that the 1-homogeneous measurable
function τ : EZ Ñ r0,8s satisfies νptτpxq ą 1uq “ 1. Then θτ ą 0 and

θτ “ E
„

sup
hPZ

ταpBh
rZq



“ E
„

suphPZ τ
αpBhΘq

ř

hPZ }Θh}
α
E



“ PpIpΘq “ 0qE
„

sup
hPZ

ταpBhQq



,

with rZ as in the dissipative representation (2.16), Θ the spectral tail process of ν and Q
is a random sequence in EZ with distribution LpΘ | IpΘq “ 0q as in Remark 2.13.
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Remark 2.21. For a dissipative tail measure ν and τpxq “ }x0}E, we also have the following
identity proved in (Planinić and Soulier, 2018, Lemma 3.2)

θτ “ Ppsup
iě1
}Y i}E ď 1q “ Ppsup

iě1
}Y i}E ą 1q ,

where Y i “ YΘi, i P Z and Y is a Pareto random variable with tail index α, independent
of the sequence tΘju. This means that the maximal index is in this case the candidate
extremal index introduced in Basrak and Segers (2009). The link with the usual extremal
index will be made in Section 3.

The proof of Proposition 2.20 makes use of the following identity due to (Smith and Weiss-
mannn, 1996, Lemma 3.2): for a summable sequence puhqhPZ P r0,8q

Z,

lim
nÑ8

1

n

ÿ

hPZ

max
0ďkďn´1

uh`k “ sup
hPZ

uh . (2.20)

Proof of Proposition 2.20. Since ν is dissipative, we can introduce a dissipative represen-
tation (2.16) and write

ν

ˆ

max
0ďkďn´1

τpBkxq ą 1

˙

“
ÿ

hPZ

ż 8

0

P
ˆ

r max
0ďkďn´1

τpBk`h
rZq ą 1

˙

αr´α´1dr

“
ÿ

hPZ

E
„

max
0ďkďn´1

ταpBk`h
rZq



.

For n “ 1, we have in particular
ř

hPZ E
”

ταpBh
rZq

ı

“ 1 thanks to the normalizing con-

dition νpτpxq ą 1q “ 1. This proves that the sequence uh “ ταpBh
rZq, h P Z, is almost

surely summable and (2.20) implies

lim
nÑ8

1

n

ÿ

hPZ

max
0ďkďn´1

ταpBk`h
rZq “ sup

hPZ
ταpBh

rZq , almost surely .

Furthermore, for all n ě 1, the left hand side in the previous equation is bounded from
above by

ř

hPZ τ
αpBh

rZq which has finite expectation. Lebesgue ’s dominated convergence
theorem implies

θτ “ lim
nÑ8

1

n
ν

ˆ

max
0ďkďn´1

τpBkxq ą 1

˙

“ lim
nÑ8

1

n

ÿ

hPZ

E
„

max
0ďkďn´1

ταpBk`h
rZq



“ E
„

sup
hPZ

ταpBh
rZq



.

This proves the first formula. The second and third expressions of θτ are special cases
obtained for rZ “ Θ{p

ř

kPZ }Θk}
α
Eq

1{α and rZ “ P1{αpIpΘq “ 0qQ, see Remarks 2.10
and 2.13.
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3 Regularly varying time series on a metric space

In this section, we will build a regularly varying time series with a prescribed tail measure.
For this purpose, we first recall the most important definitions and properties of M0

convergence and regular variation on a metric space. For the sake of clarity, the results
are stated for a general metric space F in section 3.1 and 3.2 and we consider the specific
case F “ EZ in later sections.

3.1 Regular variation on a metric space

We follow here (Hult and Lindskog, 2006, Section 3). Let pF, dq be a metric space and
let 0F be an element of F. We assume that there exists a continuous map ps,xq Ñ sx from
r0,8q ˆ F to F such that for all x P F and s ď t P p0,8q, sptxq “ pstqx, 0x “ 0F and

dp0F, sxq ď dp0F, txq .

Such a map will be called a distance compatible outer multiplication. We denote the ball
with center at 0F and radius r ě 0 by Br. We endow F with its Borel σ-field.

LetM0pFq be the set of boundedly finite measures on Fzt0Fu, that is measures ν such that
νpAq ă 8 for all measurable sets A such that AX Br “ H for some r ą 0. Such sets will
be called separated from 0F. The null measure will be denoted by 0M. We will say that a
sequence tνn, n ě 1u of measures in M0pFq converges in M0pFq to a measure ν, which we

will denote by νn
M0pFq
ÝÑ ν, if

lim
nÑ8

νnpAq “ νpAq ,

for all measurable set A separated from 0F and such that νpBAq “ 0. This type of con-
vergence is referred to as weak# convergence in Daley and Vere-Jones (2003) and simply
vague convergence in Kallenberg (2017). For more details on the relationship between these
different types of convergence, we refer to Lindskog et al. (2014) or Basrak and Planinić
(2018).

By (Kallenberg, 2017, Lemma 4.1), limnÑ8 νn
M0pFq
ÝÑ ν if and only if limnÑ8 νnpfq “ νpfq

for all bounded Lipschitz continuous functions with support separated from zero. Hult and
Lindskog (2006) proved that convergence in M0pFq is equivalent to weak convergence on
the complement of balls centered at 0F. More precisely,

νn
M0pFq
ÝÑ ν ðñ for all but countably many r ą 0 , νn|Bcr

w
ÝÑ ν|Bcr (3.1)

where ν|A is the measure ν restricted to the set A and
w
Ñ denotes weak convergence.

Convergence in M0 can be metrized. Let ρr be Prohorov’s distance on the set of finite
measures defined on Bc

r. Let ρ be the metric on M0pFq defined by:

ρpµ, νq “

ż 8

0

e´tpρrpµ, νq ^ 1qdr , µ, ν PM0pFq . (3.2)
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Then pM0pFq, ρq is a complete separable metric space; cf. (Hult and Lindskog, 2006,
Theorem 2.3).

We can now define regular varying measures and random elements in F.

Definition 3.1. • A Borel measure µ on F is said to be regularly varying if there exists

a non decreasing sequence tanu and a measure µ˚ PM0pFq such that nµpan¨q
M0pFq
ÝÑ µ˚.

We then write µ P RVpF, tanu, µ
˚q.

• An F-valued random element X defined on a probability space pΩ,A,Pq is said to
be regularly varying if there exists a non decreasing sequence tanu tending to infinity

and a nonzero measure ν on Fzt0Fu such that nPpa´1
n X P ¨q

M0pFq
ÝÑ ν. We then write

X P RVpF, tanu, νq.

By (Hult and Lindskog, 2006, Theorem 3.1), if X P RVpF, tanu, νq, then there exists α ą 0
which will be called the tail index of X such that the measure ν is α-homogeneous and
the sequence tanu is regularly varying with index 1{α. We will need the following result
which is a straightforward application of the mapping theorem (Hult and Lindskog, 2006,
Theorem 2.5).

Lemma 3.2. Let pF, dq and pF1, d1q be two complete separable metric spaces each endowed
with a distance compatible outer multipication. Let 0F P F and let T : F Ñ F1 be a 1-
homogeneous map such that T p0Fq “ 0F1. Set F0 “ Fzt0Fu and F10 “ F1zt0F1u. Let µ, µ˚ be a
Borel measures on F and let tanu be a non decreasing sequence such that µ P RVpF0, an, µ

˚q.
If T is µ˚ almost surely continuous, continuous at 0F, and µ˚ ˝T´1 is not the null measure,
then µ ˝ T´1 P RVpF10, an, µ

˚ ˝ T´1q.

Proof. Define µn “ nµpan¨q. By assumption, µn
M0pFq
ÝÑ µ˚. By homogeneity of T , µn˝T

´1 “

nµ ˝ T´1pan¨q. We want to apply (Hult and Lindskog, 2006, Theorem 2.5) to prove that

µn˝T
´1 M0pF1q

ÝÑ µ˚˝T´1. Since T p0Fq “ 0F1 , there only remain to prove that if A is bounded
away from 0F1 , then T´1pAq is bounded away from 0F. If A Ă F1 is bounded away from
0F1 , there exists ε ą 0 such that y P A implies dpy,0F1q ą ε. Since T is continuous and
T p0Fq “ 0F1 , there exists η ą 0 such that dpx,0Fq ď η implies dpT pxq,0F1q ď ε. This
proves that if x P T´1pAq then dpx,0Fq ą η.

3.2 Regular varying Poisson point processes

Let N0pFq be the set of boundedly finite point measures on Fzt0Fu, i.e. measures ν such
that νpAq P N for all bounded Borel set A separated from 0F. This implies that ν has a
finite number of points outside each ball centered at 0F and we can write ν “

ř

jě1 δxj
where the points of ν are numbered in such a way that

dp0F,xiq ě dp0F,xjq
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if i ď j. It is then easily seen that N0pFq is a closed subset of M0pFq and that the

convergence νn
M0pFq
ÝÑ ν implies the convergence of points in F.

The restriction of the distance ρ defined in (3.2) to the space N0pFq has the following
property. Let the null measure be denoted by 0M and let π P N0pFq. Let the largest
distance of a point of π to 0F be denoted by ~π~F, i.e.

~π~F “ sup
xPπ

dp0F,xq .

If r ą ~π~F, then π has no point outside Br and thus ρrp0M, πq “ 0. Moreover, by
definition of the Prohorov distance,

ρrp0M, πq “ inftα ą 0 : πpF XBc
rq ď α, F closedu “ πpBc

rq .

That is, the Prohorov distance of a point measure to the zero measure is its number of
points. Therefore, if r ą ~π~F, then ρrp0M, πq “ 0. This yields

ρp0M, πq “

ż ~π~F

0

e´rpρrp0M, πq ^ 1qdr ď ~π~F . (3.3)

On the other hand, if r ă ~π~F then ρrp0M, πq ě 1 and 1´ e´x ě px^ 1q{2, thus we have

ρp0M, πq ě

ż ~π~F

0

e´rdr “ p1´ e´~π~Fq ě
1

2
p~π~F ^ 1q . (3.4)

These bounds imply that a subset A Ă N0pFq is separated from 0M if there exists ε ą 0
such that ~π~F ą ε for all π P A.

We define the mutiplitcation pt, νq Ñ t ¨ ν for t P p0,8q and ν PM0pFq by

t ¨ νpfq “

ż

E

fptxqνpdxq

for all nonnegative measurable functions f . If ν “
ř

jě1 δxi is a point measure, then
t ¨ ν “

ř

jě1 δtxj . Multiplication is continuous with respect to the product topology. For
π P N0 and 0 ă s ă t,

ρrp0M, sπq “ πps´1Bc
rq ď πps´1Bc

rq “ ρrp0M, sπq .

Therefore we can define a regularly varying point process on Fzt0Fu as a regularly varying
element in N0pFq in the sense of Definition 3.1.

Theorem 3.3. Let µ0, µ PM0pFq and tanu be a nondecreasing sequence such that an Ñ 8

and nµ0pan¨q
M0pFq
ÝÑ µ as n Ñ 8. Let Π be a Poisson point measure on Fzt0Fu with mean

measure µ0. Then Π P RVpN0pFq, tanu, µ
˚q where µ˚ is a measure on N0pFqzt0Mu defined

by

µ˚pBq “

ż

F

1tδx P Buµpdxq ,

for all Borel set B of N0pFq endowed with the distance ρ, and δx denotes the Dirac mass
at x P E. If µ is α-homogeneous and Π „ PPP pµq, then Π P RVpN0pFq, n

1{α, µ˚q.
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Note that the limit measure µ˚ is the image of µ under the injection of F into N0pFq
defined by x ÞÑ δx. It is concentrated on the subset of point measures that have exactly
one point. The underlying heuristic is that given that Π is large (in the sense dp0,Πq ą u
with uÑ 8), then Π can be approximated by a random point measure with only one large
point. This is yet another instance of the so-called single large jump principle.

Proof. We need to prove the convergence

nPpΠ{an P ¨q
M0pN0pFqq
ÝÑ µ˚ . (3.5)

By Theorem A.1, the convergence (3.5) holds if

lim
nÑ8

n
´

E
”

1´ e´
ş

F fpx{anqΠpdxq
ı¯

“

ż

N0pFq

´

1´ e´
ş

F fpxqπpdxq
¯

µ˚pdπq , (3.6)

for all continuous function f : FÑ r0,8q vanishing on a neighborhood of 0F. By definition
of µ˚, the right-hand side of (3.6) is equal to

ż

N0pFq

p1´ e´
ş

F fpxqπpdxqqµ˚pdπq “

ż

F

p1´ e´fpxqqµpdxq.

On the other hand, since Π is a Poisson point process, we have

n
´

E
”

1´ e´
ş

F fpx{anqΠpdxq
ı¯

“ n

ˆ

1´ exp

„
ż

F

`

e´fpx{anq ´ 1
˘

µ0pdxq

˙

“ n

ˆ

1´ exp

„

n´1

ż

F

´
`

1´ e´fpxq
˘

µnpdxq

˙

,

with µn “ nµ0pan¨q. The function 1 ´ e´f is non negative, bounded and with support
separated from zero; moreover µn Ñ µ in M0 by assumption, therefore

lim
nÑ8

n
´

E
”

1´ e´
ş

F fpx{anqΠpdxq
ı¯

“ lim
nÑ8

n

ˆ

1´ exp

„

n´1

ż

F

`

e´fpxq ´ 1
˘

µnpdxq

˙

“

ż

F

`

1´ e´fpxq
˘

µpdxq .

This proves the convergence (3.6) and the claimed regular variation of Π.

3.3 Regularly varying time series

We now introduce the notion of a regularly varying time series. We consider a complete
separable metric space pE, dEq with an element 0E and we assume that the metrid dE has
the homogeneity property dEp0E, sxq “ sdEp0E,xq for all s ą 0 and x P E. We then define
the pseudo norm }x}E “ dEp0E,xq.

22



Definition 3.4. Let X “ tXj, j P Zu be a time series with values in E. It is said to be
regularly varying if pXs, . . . , Xtq is regularly varying in Et´s`1 for all s ď t P Z.

Owada and Samorodnitsky (2012) proved that if X is regularly varying, then there exists
a measure ν on EZ, called the tail measure of X, whose finite dimensional projections
are the exponent measures νs,t and having the properties of a tail measure as introduced
in Definition 2.1. If X is stationary, then the tail measure is shift invariant.

Consider the metric dF on F “ EZ defined by

dFpx,yq “
ÿ

jPZ

2´|j|pdEpxj,yjq ^ 1q . (3.7)

It is proved in (Segers et al., 2017, Theorem 4.1) that the regular variation of the time
series X in the sense of Definition 3.4 is equivalent to the regular variation of X seen as
a random element with values in the complete separable metric space pF, dFq in the sense
of Definition 3.1, i.e. X P RVpF, tanu,νq with an such that limnÑ8 nPp}X0}E ą anq “ 1.
Therefore, we will hereafter indifferently say that X is regularly varying in the sense of
Definition 3.4 with tail measure ν or X P RVpEZ, tanu,νq.

The local tail process and spectral tail process associated to the tail measure ν can be
reinterpreted as limiting quantities for the regularly varying time series X. Their existence
also characterizes regular variation. The next result generalizes (Basrak and Segers, 2009,
Theoreom 2.1) for a non stationary time series.

Lemma 3.5. Let ν be a tail measure on EZ and for h P Z set ph “ νpt}x}E ą 1uq. For
h such that ph ą 0, let Y phq and Θphq be the local tail and spectral tail processes associated
to ν as in Definition 2.6. The following statements are equivalent;

(i) X P RVpEZ, tanu,νq;

(ii) For all h P Z, limnÑ8 nPp}Xh}E ą anq “ ph and for all h such that ph ą 0, we have,
as uÑ 8,

L
´

X{u
ˇ

ˇ

ˇ
}Xh}E ą u

¯

d
ÝÑ Y phq ; (3.8)

(iii) For all h P Z, limnÑ8 nPp}Xh}E ą anq “ ph and for h such that ph ą 0,

L
´

X{}Xh}E

ˇ

ˇ

ˇ
}Xh}E ą u

¯

d
ÝÑ Θphq . (3.9)

If X is stationary, then Θphq d
“ BhΘ and ν is shift-invariant.

Proof. We start by proving the implication (i) ñ (ii). By definition of regular variation,
for every h P Z we have limnÑ8 nPp}Xh}E ą anq “ ph and for every set A depending only
on a finite number of coordinates, we have

lim
nÑ8

nPpX P A, }Xh}E ą anq “ νptAX t}xh}E ą 1uq .
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By definition of the local tail process, we obtain

lim
nÑ8

PpX P A | }Xh}E ą anq “
1

ph
νptAX t}xh}E ą 1uq “ PpY phq

P Aq .

To prove the converse implication (ii) ñ (i), we first note that the tail measure is char-
acterized by its finite dimensional projections. Therefore it suffices to prove that these
projections are characterized by the tail process. Let A be a set which depends only on
the coordinates between s and t, s ď t P Z, and bounded away from zero in Et´s`1. This
means that there exists ε ą 0 such that x P A implies that

řt
h“s 1t}x}E ą εu ě 1. Note

also that if ph “ 0, then for all ε ą 0, limnÑ8 nPp}Xh}E ą anεq “ 0. Thus in the following
computations we will omit the indices h such that ph “ 0. Decomposing according to the
first exceedence over εan, we obtain

νs,tpAq “ lim
nÑ8

nPpa´1
n Xx,t P Aq

“ lim
nÑ8

t
ÿ

h“s

nPpa´1
n Xx,t P A, }Xh}E ą ε, max

sďiăh
}X i}E ď εq

“ lim
nÑ8

t
ÿ

h“s
phą0

nPpa´1
n }Xh}E ą anεq

Ppa´1
n Xx,t P A, }Xh}E ą ε,maxsďiăh }X i}E ď εq

Ppa´1
n }Xh}E ą anεq

“

t
ÿ

h“s
phą0

ε´αphP
ˆ

εY
phq
s,t P A, max

sďiďh´1
}Y i}E ď 1

˙

.

This proves that the finite dimensional distributions of the tail process characterize the
tail measure. The proof of the equivalence (ii) ô (iii) is straightforward generalization
of the corresponding result for Rd valued time series in Basrak and Segers (2009) and is
omitted.

Remark 3.6. In the case E “ r0,8q, Lemma 3.5 implies that the tail measure of a time
series X P RVpr0,8qZ, tanu,νq is the exponent measure of the limiting max-stable process,
see Remarks 2.2 and 2.5. More precisely, let Xpiq, i ě 1, be i.i.d. copies of X. Then the
regular variation of X implies that

a´1
n

n
ł

i“1

Xpiq fi.di.
ÝÑ

8
ł

i“1

Ppiq

where the suprema are taken componentwise and
ř8

i“1 δPpiq is a Poisson point process on
r0,8qZ with mean measure ν. This also shows that for a max-stable process the tail
measure and the exponent measure are the same.

In the sequel, given a shift-invariant tail measure, or equivalently given a spectral tail
process, we will build a time series
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3.3.1 Construction of a stationary regularly varying time series

As seen in Section 2, the tail measure of a stationary regularly varying time series with tail
index α ą 0 is a shift-invariant tail measure with homogeneous with index α. A natural
question is whether any shift-invariant tail measure ν on F “ EZ is the tail measure of a
stationary regularly varying time series X. The purpose of this section is to prove that
the answer is positive and provide one construction for such a process X.

Our intuition is guided by the case E “ r0,8q. Then, given a tail measure ν on r0,8qZ, the
max-stable process X with exponent measure ν is regularly varying with tail measure ν.
Furthermore, X is stationary if and only if ν is shift-invariant. This provides a straight-
forward solution in the non negative case. Before we generalize it, we recall the Poisson
point process representation of the max-stable process X: if ν admits representation (2.3)
with Z a non-negative time series, then

X
d
“
ł

iě1

Γ
´1{α
i Zpiq ,

where tΓiuiě1 are the points of a homogeneous Poisson process on r0,8q and independently,
Zpiq, i ě 1, are independent copies of Z and the supremum is taken componentwise.

In the general framework where E is a complete separable metric space and ν is a tail
measure on F “ EZ, we consider a Poisson point process Π „ PPPpνq. Note Π can be
constructed as

Π “
!

Γ
´1{α
i Zpiq , i ě 1

)

. (3.10)

We interpret the point process Π as a particle system that evolves in time, the i-th particle
having position ϕ

piq
h “ Γ

´1{α
i Z

piq
h at time h. The random process ϕpiq “ Γ

´1{α
i Zpiq P F “ EZ

is hence the trajectory of the i-th particle. We construct a time series X that records at
each time h the position of the particle which is farthest away from 0E, which we will call
the largest point. More formally, we define

Xh “ ϕ
pihq
h , ih “ arg max

iě1
}ϕ
piq
h }E , h P Z . (3.11)

Provided Pp}Zh}E ą 0q ą 0, there are almost surely infinitely many particles at time h with
positive norm and a unique particle with the largest norm. This is because the random
variables Γi, i ě 1 have continuous distributions and limiÑ8 Γ

´1{α
i “ 0 almost surely.

Therefore the arg max in (3.11) is unique and the random variable ih is well-defined.

Theorem 3.7. Given a shift-invariant tail measure ν on EZ, the E-valued time series X
defined by (3.11) is stationary and regularly varying on EZ with sequence an “ n1{α and
tail measure ν.

Proof. We will use the mapping Lemma 3.2. We consider F “ EZ endowed with the metric
dF defined in (3.7).
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Define the subset N 7

0pEq Ă N0pEq as the set of point measures that have exactly one
largest point and consider the map T : N 7

0pEq Ñ E that associate to such a point measure
its largest point. By Lemma B.2, N 7

0pEq is open and T is continuous on N 7

0pEq. We extend
T to N0pEq by setting the value 0E on N0pEqzN 7

0pEq.

Given a point measure π P N0pFq and h P Z, we define Phpπq as the restriction to Ezt0Eu

of the image of π under the projection x ÞÑ xh. More precisely, if π “
ř8

i“1 δxpiq with

xpiq P F, then Phpπq is the point measure on Ezt0Eu with points x
piq
h such that x

piq
h ‰ 0E.

For the particle system Π “ tϕpiq, i ě 1u,

PhΠ “ tϕ
piq
h : i ě 1 , ϕ

piq
h ‰ 0Eu

records the position at time h P Z of the non zero particles. Using the representation (3.10),
we also have

PhΠ “ tΓ
´1{α
i Z

piq
h : i ě 1 , Z

piq
h ‰ 0Eu .

Since Π is Poisson, PhΠ is a Poisson point process on Ezt0Eu with intensity

µpBq “ νptx : xh P Buq “ νptx : x0 P Buq ,

for all Borel measurable sets B Ă Ezt0Eu. The marginal measure µ does not depend on
h P Z because ν is shift-invariant. Moreover, PhΠ P N 7

0pEq almost surely since for i ‰ j,

PpΓ´1{α
i }Z

piq
h }E “ Γ

´1{α
j }Z

pjq
h }Eq “ 0.

We now define the map T on M0pFq onto F by

T pπq “ tT pPhπq, h P Zu .

The time series X defined in (3.11) can be reexpressed in terms of the map T : X “ T pΠq.
The stationarity of Xh follows from the shift-invariance of ν since BX “ T pBΠq

d
“ T pΠq

where BΠ “ tBϕpiq, i ě 1u
d
“ Π. The regular variation of X will be obtained as a

consequence of Lemma 3.2. By construction, T is 1-homogeneous, T p0Mq “ 0F and we
will check the following properties:

(a) the map T is continuous at 0M;

(b) the map T is almost surely continuous with respect to the distribution of Π.

- To prove that T is continuous at 0M, recall that the space F is endowed with the distance
defined in (3.7) and note that for π “

ř8

i“1 δxpiq P N0pFq,

dFp0F, T pπqq “
ÿ

hPZ

2´|h| max
iě1
p}x

piq
h }E ^ 1q ď 3 max

iě1
dFp0F,x

piq
q “ 3~π~F .

On the other hand, applying (3.4), we obtain that if ρp0M, πq ă 1{4, then

dFp0F, T pπqq ď 12ρp0M, πq .

This proves (a).
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- We now prove (b). By Lemma B.3, it suffices to prove that the projections Th “ T ˝ Ph
are continuous for all h. Since PpPhΠ P N 7

0pEqq “ 1, this follows from the continuity of T
on N 7

0pEq which is established in Lemma B.2.

To conclude the proof, there only remains to prove that the tail measure of X is ν. By
Lemma 3.2 and Theorem 3.3, the tail measure of X is µ˚ ˝ T ´1, given for A P Fzt0Fu by

µ˚ ˝ T ´1
pAq “

ż

F

1tT pδxq P Auνpdxq .

For x “ txh, h P Zu P F, we have T pδxq “ tT pδxhq, h P Zu “ x if x ‰ 0F and T p0Fq “

T p0Mq “ 0F. Thus µ˚ ˝ T ´1 “ ν.

The next two proposition state some interesting elementary properties of the process X
defined by (3.11). They are strongly related to max-stability. Let g : F Ñ F be the map
defined by gpxq “ t}xh}E, h P Zu.

Proposition 3.8. Consider the process X defined by (3.11). Then the non negative time
series t}Xh}E, h P Zu is max-stable with exponent measure ν ˝ g´1.

Proof. The max stability follows from the representation }Xh}E “ supiě1 Γ
´1{α
i }Zi}E and

the fact that ν ˝ g´1 is the exponent measure is a consequence of the mapping theorem
Lemma 3.2, since for a max-stable process, the tail measure and exponent measure are the
same.

In order to study further the stability property of the process X, we define the binary
operation d defined on E by

x1 d x2 “

"

x1 if }x1}E ě }x2}E

x2 otherwise
, x1,x2 P E .

Note that the binary operation d is associative, that is px1dx2qdx3 “ x1dpx2dx3q for
all x1,x2,x3 P E. It is not commutative since x1 d x2 ‰ x2 d x1 if x1 and x2 are distinct
elements with the same norm. However, elements with distinct norms do commute. More
generally, if x1, . . . ,xn are elements in E such that exactly one element has maximal norm,
x˚ say, then x1 d ¨ ¨ ¨ d xn “ x

˚ does not depend on the order of the xi’s.

Proposition 3.9. The process X defined by (3.11) admits the Lepage representation

X
d
“ d

8
i“1Γ

´1{α
i Zpiq , (3.12)

with tΓi, i ě 1u and tZpiq, i ě 1u as in (3.10) and the operation d is taken componentwise.
Furthermore, the process X is stable with respect to the operation d in the sense that,

n´1{α
d
n
i“1 X

piq d
“X , (3.13)

for every n ě 1, Xp1q, . . . ,Xpnq being independent copies of X.
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Proof. The representation (3.12) is simply a rewriting of the definition of the process X,
that is

d
8
i“1Γ

´1{α
i Zpiq “ T pΠq ,

where Π „ PPPpνq. Let n ě 1, Π1, . . . ,Πn be i.i.d. copies of Π and Xp1q, . . . ,Xpnq be
independent copies of X. Since T is 1-homogeneous, we have

n´1{α
d
n
i“1 X

piq
“ T pn´1{αΠ1 Y ¨ ¨ ¨ Y n

´1{αΠnq
d
“ T pΠq ,

since n´1{αΠ1 Y ¨ ¨ ¨ Y n
´1{αΠn „ PPPpνq.

3.4 Extremal indices and m-dependent approximation

The purpose of this section is to investigate more advanced properties of the process X
defined by (3.11) such as existence of extremal indices and m-dependent tail equivalent
approximations. Anti-clustering is also discussed in the next section. For the sake of
generality, we do not restrict our study to the process (3.11) but rather consider a large
class of processes constructed on the Poisson particle system Π „ PPPpνq.

Let us first introduce the notion of extremal index that provides an insight in the de-
pendence structure of a stationary regularly varying time series. For a time series ξ P
RVαpr0,8q

Z, panq,νq, we compare the growth rates of

Mn “ max
1ďhďn

ξh , and ĂMn “ max
1ďhďn

rξh ,

where the random variables rξh are independent copies of ξ0. Regular variation and inde-
pendence imply that ĂMn{an converges to a standard α-Fréchet distribution, that is

lim
nÑ8

P
ˆ

a´1
n max

1ďhďn

rξh ď x

˙

“ e´x
´α

,

for all x ą 0. Under assumptions discussed below, one can prove that

lim
nÑ8

P
ˆ

a´1
n max

1ďhďn
ξh ď x

˙

“ e´θx
´α

,

for x ą 0 where θ P r0, 1s is called the extremal index. If θ “ 0, we have a´1
n Mn

P
Ñ 0: the

maximum has a slower growth rate in the dependent case. When θ ą 0, the maximum
grows at rate an as in the independent case. The extremal index can also be defined as
the limit, if it exists,

θ “ lim
nÑ8

log
P pmax1ďhďn ξh ď anq

Ppξ ď anqn
. (3.14)
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In the abstract framework X P RVpEZ, panq,νq, we consider, for any 1-homogeneous con-
tinuous H : E Ñ r0,8q, the extremal index (if it exists) of the non negative time series
tHpXhq, h P Zu:

θH “ lim
nÑ8

log
P pmax1ďhďnHpXhq ď anq

PpHpX0q ď anqn
. (3.15)

The homogeneity and continuity of H ensure that HpXq P RVpr0,8qZ, tanu,ν ˝ H
´1q,

provided ν ˝H´1 is not the null measure.

There exists a vast literature on the extremal index and several conditions have been in-
troduced that ensure the existence of a positive extremal index. Building on Chernick
et al. (1991) and using the tail measure through the tail process introduced by Basrak and
Segers (2009), we will only consider here a condition based on m-dependent tail equiv-
alent approximations. An E-valued time series X is called m-dependent if the σ-fields
σpXh, h ď h0q and σpXh, h ě h0 `m ` 1q are independent for all h0 P Z. In particular,
a stationary 0-dependent time series is a series of independent and identically distributed
random variables.

Definition 3.10. A process X is said to have a tail equivalent approximation if there
exists a sequence of processes tXpmq,m ě 1u such that:

lim
mÑ8

lim sup
nÑ8

nPpdEpXh{an,X
pmq
h {anq ą εq “ 0 . (3.16)

The relationship between m-dependent tail equivalent approximation and existence of an
extremal index is made clear in the following theorem. Since the extremal index is essen-
tially defined for non-negative time series, we focus on that case.

Lemma 3.11. Let Xpmq
P RVpr0,8qZ, tanu,ν

pmqq be stationary and m-dependent. Then,

Xpmq has a positive extremal index equal to the maximal index θ
pmq
τ0 of νpmq associated

to the map τ0 defined on r0,8qZ by τpxq “ x0. If moreover Xpmq is a tail equivalent

approximation of a non negative time series X and if the limit limmÑ8 θ
pmq
τ0 exists, then it

is the extremal index of X.

Proof. Since an m-dependent sequence is α mixing with arbitrary fast rate, the existence
of the extremal index θ is proved by (Basrak and Segers, 2009, Theorem 4.5) and is given

by θpmq “ Ppmaxiě1 Y
pmq
i ď 1q. Thus θ “ θτ0 by Remark 2.21. The second statement is a

consequence of (Chernick et al., 1991, Proposition 1.4).

Based on this result, we now prove the existence of the extremal index θH the process X
considered in (3.11). The process X is defined by means of the stationary N0pEq-valued
sequence P “ tPhpΠq, h P Zu and the map T introduced in the proof of Theorem 3.7
but the specific form of T is irrelevant and only 1-homogeneity and continuity are needed.
Therefore we will first prove that the stationary sequence P admits an m-dependent tail
equivalent approximation and then obtain the extremal index of time series derived from P .
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Theorem 3.12. Let ν be a tail measure on EZ and Π „ PPPpνq be the associated particle
process. Consider the stationary N0pEq-valued process P “ tPhpΠq, h P Zu. If ν has a dis-
sipative representation (2.16), then P has an m-dependent tail-equivalent approximation.

Proof. Note first that Π can be expressed as

Π “
ÿ

iě1

δ
Γ
´1{α
i BTi rZ

piq , (3.17)

where δ
Γ
´1{α
i

is a Poisson point process on p0,8q with mean measure να, rZ
piq

are i.i.d.

copies of the process rZ in (2.16), B is the shift operator and
ř8

i“1 δTi is a Poisson point
process on Z with mean measure the counting measure on Z, independent of everything
else. Indeed, it suffices to check that the mean measure of the point process on the right
hand side of (3.17) is ν. This follows from (2.16).

We now define the m-dependent approximation P pmq of P . For m ě 1, define

P
pmq
h “

ÿ

iě1

δ
Γ
´1{α
i

rZ
piq
h´Ti

1t|h´ Ti| ď mu .

We must now check the tail equivalence condition (3.16). By stationarity, it suffices to
check it for h “ 0. That is we must prove that for all ε ą 0,

lim
mÑ8

lim sup
nÑ8

nPpρpa´1
n P 0, a

´1
n P

pmq
0 q ą εq “ 0 . (3.18)

Set Rm “
Ž8

i“1 Γ
´1{α
i }rZ

piq

´Ti
}E1t|Ti| ą mu. For r ą a´1

n Rm, a´1
n P

pmq
0 and a´1

n P 0 have the
same points on Bc

r. Therefore

ρpa´1
n P 0, a

´1
n P

pmq
0 q “

ż anRm

0

pρrpa
´1
n P 0, a

´1
n P

pmq
0 q ^ 1qe´rdr ď anRm .

Thus (3.18) will be obtained as a consequence of

lim
mÑ8

lim sup
nÑ8

nPpRm ą anεq “ 0 . (3.19)

To prove (3.19), note that for non negative random variables Zi, i ě 1, since Γ
´1{α
1 has a

Fréchet distribution, we have

P

˜

8
ł

i“1

Γ
´1{α
i Zi ą x

¸

ď

8
ÿ

i“1

P
´

Γ
´1{α
i Zi ą x

¯

ď

8
ÿ

i“1

P
´

Γ
´1{α
1 Zi ą x

¯

“

8
ÿ

i“1

p1´ e´x
´αErZαi sq .
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Therefore, if
ř8

i“1 ErZα
i s ă 8, we obtain by dominated convergence

lim sup
xÑ8

xαP

˜

8
ł

i“1

Γ
´1{α
i Zi ą x

¸

ď

8
ÿ

i“1

ErZα
i s .

Applying this bound to Rm, we obtain by dominated convergence theorem

lim
mÑ8

lim sup
nÑ8

nPpRm ą anεq ď lim
mÑ8

8
ÿ

i“1

Er}Z0}
α
E1t|Ti| ą mus “ 0 .

This proves (3.19).

To a function H : N0pEq Ñ r0,8q we associate the function pH : EZ Ñ r0,8qZ defined by
pHpxq “ tHpδxhq, h P Zu, x P EZ.

Corollary 3.13. Under the assumptions of Theorem 3.12, let H : N0pEq Ñ r0,8q be a
Lipschitz continuous 1-homogeneous function such that νptĤpxq ą 1uq “ 1. Then the time

series XH “ tH ˝ PhpΠq, h P Zu is in RVpr0,8qZ, tn1{αu,νHq with νH “ ν ˝ pH´1, has
an m-dependent tail equivalent approximation and an extremal index equal to the maximal
index θτ associated to ν and the map τ defined on EZ by τpxq “ Hpδx0q.

Proof. We will apply Lemma 3.11 and Theorem 3.12. Let P pmq be the m-dependent
approximation of P defined in the proof of Theorem 3.12. Then the time series Xpmq

defined by X
pmq
h “ H ˝PhpΠq, h P Z is m dependent and regularly varying by Lemma 3.2.

By Lemma 3.11, its extremal index θpmq is given by

θpmq “
E
”

max|h|ďm H̄
αprZhq

ı

E
”

ř

|h|ďm H̄
αprZhq

ı .

The tail equivalence condition (3.16) holds by the Lipschitz property of H. Thus the
sequence tXpmq

u is a tail equivalent approximation of X and we can apply Lemma 3.11
which proves (by application of the dominated convergence theorem) that the extremal
index of X is

θ “ lim
mÑ8

θpmq “
E
”

maxhPZ H̄
αprZhq

ı

E
”

ř

hPZ H̄
αprZhq

ı .
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3.5 The anti-clustering condition

In the literature of time series and extremal index, the anti-clustering condition introduced
by Davis and Hsing (1995) plays quite an important role, see e.g., Janssen et al. (2018),
Mikosch and Wintenberger (2016), Basrak and Tafro (2016), Basrak et al. (2012). Let us
first define the notion of anti-clustering for a stationary regularly varying sequence.

Definition 3.14. A stationary time series X P RVpEZ, panq,νq satisfies the anti-clusering
condition if there exists an intermediate sequence rn Ñ 8, rn{nÑ 0, such that

lim
mÑ8

lim sup
nÑ8

P
ˆ

max
mď|h|ďrn

dEpX t{an,0Eq ą u | dEpX0{an,0Eq ą u

˙

“ 0 . (3.20)

When E “ R, we retrieve the classical anti-clustering condition of (Davis and Hsing, 1995,
Condition 2.8). Although we have not used anti-clustering in our analysis of extremal ind
(Corollary 3.13), we show below that, for the class of processes considered, anti-clustering
is equivalent to the existence of a dissipative representation for ν. This suggests that
assuming the existence of a dissipative representation for ν in Corollary 3.13 is not a too
strong condition.

Theorem 3.15. The following statements are equivalent:

(i) ν has a dissipative representation (2.16);

(ii) the process pPhpΠqqhPZ satisfies the anti-clustering condition in pN0pEqq
Z in r0,8qZ;

(iii) for all H as in Corollary 3.13, XH satisfies the anti-clustering condition in r0,8qZ;

(iv) the max-stable process t~PhpΠq~E , h P Zu satisfies the anti-clustering condition r0,8qZ.

Proof. Since the process t~PhpΠq~E , h P Zu is max-stable, the equivalence between (i)
and (iv) is proved in (Debicki and Hashorva, 2016, Theorem 2.1). The implication (ii)ñ (iii)
is a consequence of the Lipshitz property of H; the implication (iii) ñ (iv) is trivial since
the map ~¨~E satisfies the condition of Corollary 3.13. Conversely, (iv) implies (ii) since
1
2
p~PhpΠq~E ^ 1q ď dN0pEqpa

´1
n PhpΠq,0Mq ď ~PhpΠq~E by (3.3) and (3.4).

Appendix

A Convergence in M0pN0pFqq

For µ PM0pN0pFqq, we denote by Bµ the set of Borel sets B Ă N0pFq that are bounded
away from zero and such that µpπpBBq ą 0q “ 0, with BB the boundary of B.
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Theorem A.1. Let µ, µ1, µ2, . . . PM0pN0pFqq. The following statements are equivalent:

(i) µn
M0pN0pFqq
ÝÑ µ as nÑ 8.

(ii) µn
fidi
ÝÑ µ as nÑ 8, in the sense that

µnpπpAiq “ mi, 1 ď i ď kq Ñ µpπpAiq “ mi, 1 ď i ď kq as nÑ 8

for all k ě 1, pm1, . . . ,mkq P Nkzt0u and A1, . . . , Ak P Bµ.

(iii) for all bounded continuous f : FÑ r0,8q vanishing on a neighborhood of 0F,

ż

N0pFq

`

1´ e´πpfq
˘

µnpdπq ÝÑ

ż

N0pFq

`

1´ e´πpfq
˘

µpdπq as nÑ 8

with πpfq “
ş

F
fpxqπpdxq.

This theorem is similar to the characterization of weak convergence of probablity measure
on N0pFq in terms of their finite dimensional distributions and Laplace functional by (Zhao,
2016, Theorem 3.10 and Corollary 3.11). We consider here M0-convergence of measures
with possibly infinite total mass, so that we exclude in (ii) the event tπpAiq “ 0, 1 ď i ď ku
that may have infinite mass and we use in (iii) a modified Laplace transform with 1´e´πpfq

instead of e´πpfq so as to ensure that the integrals are finite.

Proof. We begin with some notation and preliminaries that will be used throughout the
proofs below. We denote by Bc

F,r (resp. Bc
N0pFq,r

) the complement of the ball with center 0

and radius r ą 0 in F (resp. N0pFq). The bounds (3.3) and (3.4), imply that for r ď 1,

Bc
N0pFq,r

Ă tπpBc
F,rq ą 0u Ă Bc

N0pFq,r{4
. (A.1)

Let µ P MpN0pFqq be fixed and consider a sequence ri Ó 0 such that µpBBc
N0pFq,ri

q “

µpπpBBc
F,ri
q ą 0q “ 0 for all i ě 1. By (Hult and Lindskog, 2006, Theorem 2.2), the

M0-convergence µn
M0
ÝÑ µ is equivalent to the weak convergence µ

priq
n

w
ÝÑ µpriq for all i ě 1,

where µ
prq
n (resp. µprq) denotes the restriction of µn (resp. µ) to Bc

N0pFq,r
. By the inclusion

(A.1), this is also equivalent to the weak convergence µ̃
priq
n

w
ÝÑ µ̃priq for all i ě 1, where µ̃

prq
n

(resp. µ̃prq) denotes the restriction of µn (resp. µ) to tπpBc
F,ri
q ą 0u. The restriction µ̃

priq
n

will be useful because they behave well with respect to finite dimensional distributions.

The weak convergence µ
priq
n

w
ÝÑ µpriq (or µ̃

priq
n

w
ÝÑ µ̃priq) of finite measures can be char-

acterized as in (Zhao, 2016, Theorem 3.10 and Corollary 3.11) by the weak convergence
of finite dimensional distributions or pointwise convergence of Laplace functionals. Note
that the result and proof in Zhao (2016) are given for weak convergence of probability
measures only, but they are easily extended to finite measures since weak convergence is
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then equivalent to convergence of the total mass together with weak convergence of the
normalized measures.

Proof of (i) ñ (ii). From the preliminary discussion, the M0-convergence µn
M0
ÝÑ µ implies,

for all i ě 1, the convergence of µnpB
c
N0pFq,ri

q Ñ µpBc
N0pFq,ri

q and the weak convergence of

the finite dimensional distributions µ
priq
n

fidi
ÝÑ µpriq. This entails the convergence of finite

dimensional distributions in the sense of iiq because any set A P Bµ is bounded away from
zero and hence in Bc

N0pFq,ri
for ri small enough,

Proof of (ii) ñ (iii). It is enough to prove that (ii) implies weak convergence of the finite

dimensional distributions µ̃
priq
n

fidi
ÝÑ µ̃priq for all ri ě 1. Let k ě 1, A1, . . . , Ak P Bµ and

m1, . . . ,mk ě 0. Setting A0 “ Bc
F,ri
P Bµ, we have

µ̃priqn pπpAjq “ mj, 1 ď j ď kq “ µ̃npπpA0q ą 0, πpAjq “ mj, 1 ď j ď kq (A.2)

and (ii) implies convergence to

µ̃priqpπpAjq “ mj, 1 ď j ď kq “ µ̃pπpA0q ą 0, πpAjq “ mj, 1 ď j ď kq. (A.3)

This proves µ̃
priq
n

fidi
ÝÑ µ̃priq and µn

M0
ÝÑ µ.

Proof of (iii) ñ (i). We prove that (iii) implies that, for all i ě 1, the measures µ̃
priq
n ,

µ̃priq have finite total mass and converge weakly µ̃
priq
n

w
ÝÑ µ̃priq as n Ñ 8. We first prove

convergence of the total mass

µ̃priqn pN0pFqq “ µnpπpB
c
F,ri
q ą 0q Ñ µ̃priqpN0pFqq “ µpπpBc

F,ri
q ą 0q. (A.4)

Consider approximating functions h`l pxq Ó 1
 

x P clBc
F,ri

(

and h´l pxq Ò 1
 

x P intBc
F,ri

(

that
are continuous with values in r0, 1s and vanish on a neighborhood of 0F. The notation cl
and int stands for the closure and interior of the set respectively.

ż

N0pFq

´

1´ e´tπph
´
l q
¯

µnpdπq ď

ż

N0pFq

´

1´ e´tπpB
c
F,ri
q
¯

µnpdπq ď

ż

N0pFq

´

1´ e´tπph
`
l q
¯

µnpdπq.

The left and right hand sides in the previous inequalities converge and hence are bounded
uniformly in n ě 1. Furthermore, since πpBc

F,ri
q takes values in t0, 1, 2, . . .u, the quantity

ż

N0pFq

´

1´ e´tπpB
c
F,ri
q
¯

µnpdπq “
ÿ

mě1

p1´ e´tmqµn
`

πpBc
F,ri
q “ m

˘

satisfies

p1´ e´tqµn
`

πpBc
F,ri
q ą 0

˘

ď

ż

N0pFq

´

1´ e´tπpB
c
F,ri
q
¯

µnpdπq ď µn
`

πpBc
F,ri
q ą 0

˘

.
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We deduce supně1 µn
`

πpBc
F,ri
q ą 0

˘

ă 8 and this holds for all i ě 1. Then, letting nÑ 8

in
ż

N0pFq

´

1´ e´tπph
´
l q
¯

µnpdπq ď µn
`

πpBc
F,ri
q ą 0

˘

ď p1´e´tq´1

ż

N0pFq

´

1´ e´tπph
`
l q
¯

µnpdπq,

we get

lim inf
nÑ8

µnpπpB
c
F,ri
q ą 0q ě

ż

N0pFq

´

1´ e´tπph
´
l q
¯

µpdπq,

lim sup
nÑ8

µnpπpB
c
F,ri
q ą 0q ď p1´ e´tq´1

ż

N0pFq

´

1´ e´tπph
`
l q
¯

µpdπq.

Letting l Ñ 8 and t Ñ 8, monotone convergence entails that the right hand side in
the last two inequalities converge to µpπpclBc

F,ri
q ą 0q and µpπpintBc

F,ri
q ą 0q respectively.

These two quantities are equal because we have chose ri such that Bc
F,ri

P Bµ, that is
µpπpBBc

F,ri
q ą 0q “ 0. Consequently µnpπpB

c
F,ri
q ą 0q Ñ µpπpBc

F,ri
q ą 0q as n Ñ 8,

proving (A.4).

To prove that µ̃
priq
n

w
ÝÑ µ̃priq using the Laplace functional, it is enough to prove

lim
nÑ8

ż

N0pFq

e´πpfqµ̃priqn pdπq “

ż

N0pFq

e´πpfqµ̃priqpdπq

for all bounded continuous f : F Ñ r0,8q vanishing on a neighborhood of 0F. In view of
equation (A.4), this is equivalent to

lim
nÑ8

ż

N0pFq

`

1´ e´πpfq
˘

µ̃priqn pdπq “

ż

N0pFq

`

1´ e´πpfq
˘

µ̃priqpdπq.

The proof is similar to that of Equation (A.4) where the measures µnpdπq and µpdπq are
replaced throughout the proof by

`

1´ e´πpfq
˘

µnpdπq and
`

1´ e´πpfq
˘

µpdπq respectively.
Details are left to the reader for the sake of brevity. It is useful to note that

´

1´ e´tπph
˘
l q
¯´

1´ e´πpfq
¯

“

´

1´ e´πpth
˘
l q
¯

`

´

1´ e´πpfq
¯

´

´

1´ e´πpf`th
˘
l q
¯

so that (iii) allows to deal with the limit of the integrals as nÑ 8.

B Lemmas for the proof of Theorem 3.7

The Prohorov distance %E between two bounded measures µ, ν on a Borel space E is defined
by (Daley and Vere-Jones, 2003, Section A2.5)

%Epµ, νq “ inftε ě 0 : µpAq ď νpAεq ` ε , νpAq ď µpAεq ` ε for all closed sets Au (B.1)
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Lemma B.1. Let µ, ν be two point measures on a metric space pE, dq. Then %Epµ, νq ě
|µpEq ´ νpEq|. If x,y P E, then %Epδx, δyq ď dpx,yq ^ 1.

Proof. Assume for instance that µpEq “ n and νpEq “ k with k ă n. Let x1, . . . ,xn be
the points of µ and let A “ tx1, . . . ,xnu. Then A is closed, µpAq “ n and for all ε ą 0,
νpAεq ď k. This proves that %Epµ, νq ě n ´ k. The second statement is in (Dudley, 2002,
Section 11.3 p.394).

Recall from Section 3.3.1 the definition of the set N 7

0pEq and the map T and the definition
of the metric ρ in (3.2).

Lemma B.2. The subset N 7

0pEq is open in N0pEq and the map T : N0pEq Ñ E is continuous
on N 7

0pEq.

Proof. Let π P N 7

0pEq and m “ ~π~E. Then there exists η ą 0 such that π has exactly one
point in BpT pπq, ηq. A point measure π1 P N0pEq has either zero point or 1 or at least two
points in Bc

m´η. By Lemma B.1, in the first and last cases, ρrpπ, π
1q ^ 1 “ 1, hence

ρpπ, π1q ě

ż 8

m´η

e´rdr ě e´m .

Thus, if ρpπ, π1q ă e´m, then π1 has exactly one point in Bc
m´η, which is therefore its single

largest point and π1 P N 7

0pEq. This proves that N 7

0pEq is open. By Lemma B.1 again, for
r ą m´ η, we have ρrpπ, π

1q ^ 1 “ dEpT pπq, T pπ
1qq ^ 1 thus

ρpπ, π1q ě

ż 8

m´η

e´rpdEpT pπq, T pπ
1
qq ^ 1qdr ě pdEpT pπq, T pπ

1
qq ^ 1qe´m .

This proves that T is continuous at π.

Lemma B.3. Let pS, dSq be a metric space and g : SÑ F “ EZ. Then S is continuous with
respect to the distance dF defined in (3.7) if and only if gj : SÑ E defined by gjpsq “ pgpsqqj
for s P S is continuous for all j P Z.

Proof. The direct implication is trivial. We prove the converse. Assume that gj is contin-
uous for all j. Fix s0 P S, ε P p0, 1q and choose K such that 2´K ď ε{4. By assumption,
there exists η (which depends on ε and K) such that for all j P t´K, . . . ,Ku and s P S
such dSps0, sq ď η, dEpgjps0q, gjpsqq ď ε{2. This yields

dFpgps0q, gpsqq “
ÿ

jPZ

2´|j|dEpgjps0q, gjpsqq ^ 1 ď
ε

6

ÿ

|j|ďK

2´|j| `
ÿ

|j|ąK

2´|j| ď ε .
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