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Abstract

The goal of this paper is an exhaustive investigation of the link between the tail
measure of a regularly varying time series and its spectral tail process, independently
introduced in ( ) and ( ). Our
main result is to prove in an abstract framework that there is a one to one corre-
spondance between these two objets, and given one of them to show that it is always
possible to build a time series of which it will be the tail measure or the spectral
tail process. For non negative time series, we recover results explicitly or implicitly
known in the theory of max-stable processes.

1 Introduction

Regular variation is a fundamental concept for the extreme value analysis of time series.
See for instance ( ) and the articles in this collection for a recent overview. For
stationary multivariate time series, ( ) proved that regular variation
is equivalent to the existence of the so-called tail and spectral tail processes which capture
the entire tail behaviour of the series. An important property of the spectral tail process is
the time change formula also proved by ( ). Recently, ( ,

) and ( : ) introduced the tail measure of a regularly
varying, but not necessarily stationary, time series. The tail measure is a homogeneous
measure on the sequence space and it is shift-invariant for a stationary time series. This
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is an advantage with respect to the tail process which is never stationary. In addition, the
tail process can be recovered from the tail measure and it appears that the time change
formula is a straightforward consequence of the shift invariance of the tail measure.

A very natural question arises: given the tail process or the spectral tail process of a time
series, is it possible to reconstruct explicitly the tail measure? Furthermore, since the tail
and spectral tail processes can be defined solely in terms of the tail measure, given a process
satisfying the time change formula, is it possible to define a tail measure and a time series
of which it is the spectral tail process? The latter question was recently solved positively
by ( ) who shows that given a process satisfying the time change formula, there
exists a time series of which it is the spectral tail process.

The purpose of this paper is twofold. In Section 2 we will attempt to present a systematic
theory of tail measures on a abstract complete separable metric space and their representa-
tions, with a particular focus on shift-invariant tail measures. This is done by means only
of measure theory and the homogeneity and shift invariance properties of a tail measure,
without any appeal to regular variation or probabilistic asymptotic arguments. We estab-
lish in Theorem 2.4 the stochastic representation of tail measures with a characterization
of the shift invariance. These stochastic representations have a property similiar to the
time change formula which we refer to as the tilt shift formula. The spectral tail pro-
cess associated to the tail measure is then related to its stochastic representation and we
prove that there is a one-to-one correspondance between spectral tail processes, stochastic
representations and shift invariant tail measures in Theorem 2.9.

In Section 2.5, we discuss dissipative representations of tail measures and characterize the
existence of such representations, which are deeply related to the mixed moving average
representation of max-stable processes. We conclude this general investigation of tail mea-
sure by introducing maximal indices which extend the candidate extremal index of

(2009).

In Section 3, the abstract tail measures introduced in Section 2 are related to be the tail
measure of a regularly varying time series, in particular max-stable processes - see

( ), ( ) or ( ). The main result of this section
is that we show that any shift-invariant homogeneous measure v can be obtained as the
tail measure of a regularly varying stationary times series. Our construction relies on
a Poisson particle system, similarly to the representation of max-stable sequences, and
on the regular variation of Poisson point measures on abstract metric spaces. The main
theoretical tool we use is the theory of M| convergence on metric spaces and its application

to regular variation, following ( ). We also make use of the theory of
convergence of random measures as set out in ( ). Our main result extend
the above mentioned result of ( ) to our more general framework. The properties

of the proposed class of stationary regularly varying time series are then studied and we
show in particular that they admit extremal indices which coincide with the maximal
indices introduced in Section 2.6.



2 Tail measures on a metric space

2.1 Framework

The mathematical setting is the following. Let (E,&) be a measurable cone, that is a
measurable space together with a multiplication by positive scalars

(u,z) e (0,0) x E—~ux ek,
which is measurable with respect to the product o-field B(0,00) ® £/€ and satisfies
le =z, uv(z))=(w)x, uy,v>0, k.

We assume that the cone admits a zero element Og € E such that uOg = Og for all u > 0
and that it is endowed with a pseudonorm, i.e. a measurable function | - |g : E — [0, o)
such that |ux|e = u|z|e for all w > 0, € E and |x||g = 0 implies & = Og. The triangle
inequality is not required.

The space EZ of E-valued sequences is endowed with the cylinder o-algebra F = £%Z and a

generic sequence is denoted @ = (@p,)nez. The sequence identically equal to O is denoted

by Ogz. The backshift operator B on EZ is defined by (Bx), = ®,_1, © € EZ, h € Z. Its
iterates are denoted B¥, k € Z.

Let H : EZ — [0, 0] be an F-measurable function. We say that H is homogeneous of order
a € R, or shortly a-homogeneous, if H(uz) = u*H(x) for all u > 0, x € EZ.

The central object in this section is the notion of tail measure defined as follows.

Definition 2.1 (Tail measure). A tail measure with index o > 0 is a positive measure v
on (EZ, F) with the following properties:

(i) v({0gz}) = 0;
(ir) v({|zoe > 1}) = 1;
(iii) v({|zp]e > 1}) < o0 for all h € Z;

(iv) v is a-homogeneous, that is v(uA) = u=“v(A) for all Ae F and u > 0.
The tail measure v s called shift-invariant if furthermore
(v) v(BA) =v(A) for all Ae F.

The following connection of tail measures on [0, 00)* and max-stable process is important.



Remark 2.2. A time series X = (X}p,)nez is called a-Fréchet max-stable if

n

~1/a X“’) dx
<n \/ h heZ ( h)heZ

=1

where X ; > 1 are independent copies of X . de Haan’s representation theorem (de Haan,
1984) implies that any a-Fréchet max-stable sequence X can be represented as

(Xn)hez = <\/P§j)>hez (2.1)

=1

where » ., dp( is a Poisson random measure on [0, )% with intensity v called the expo-
nent measure of X. Provided the marginal distribution of X is standard a-Fréchet, the
exponent measure v is a tail measure in the sense of Definition 2.1. Conversely, for any
tail measure v on [0,00)%, Equation (2.1) defines an a-Fréchet max-stable sequence with
X following a standard a-Fréchet distribution.

The following lemma is useful to characterize tail measures. According to Definition 2.1,
the restriction of a tail measure v to the set {||x|g > 1} is finite so that the Lemma allows
to deal with finite measures in order to characterize v.

Lemma 2.3. Any tail measure v is o-finite and uniquely determined by its restrictions to
the sets {|xulle > 1}, h € Z.

Proof. By property (i) of Definition 2.1, the tail measure v is supported by

E{0gz} = | Aun

heZ,n>=1

with Ay, = {x € EZ : ||z)|e > n'}. Since EZ\{0Ogz} is a countable union of measurable
sets, we can also write it as a countable union of pairwise disjoint measurable sets. For
instance enumerating Ay, ,, h € Z,n > 1 as D;,i > 1 and taking Dy = D1, D; = D; n (Dy U
~-uD;_1)¢ 1 = 2, we have that EZ\{Ogz} = U;>1D; with the sets D;, ¢ > 1, being pairwise
disjoint. Since by property (iii) and (iv) we have that v(D;) < 00,7 = 1, then v is o-finite
and completely determined by its restrictions to the sets D;, i > 1, hence by its restriction
to the sets Ay ,,, h € Z, n > 1. Using further the homogeneity property (iv), it follows that
v is determined by its restriction to the sets {|xle > 1}, h € Z. O

2.2 Stochastic representation of tail measures

The following theorem provides a fundamental stochastic representation of a tail measure
in terms of a E-valued stochastic process Z = (Z},)5ez and characterizes shift-invariant tail
measures.



Theorem 2.4. A measure v on (EZ, F) is a tail measure with index o > 0 if and only
if there exists an E-valued stochastic process Z = (Zp)nez defined on a probability space

(Q, A, P) such that
P(Z =0g2) =0, E[|Zo|g] =1, E[|ZL|g] <o forallheZ, (2.2)

and

v(A) = J P(rZ e A)ar*'dr, AeF. (2.3)
0

Moreover, v is shift-invariant if and only if, for all non negative measurable a-homogeneous
functions H and h € Z,

E[H(B"Z)| = E[H(Z)] . (2.4)

Note that in Equation (2.3), both terms may be equal to +co, for instance if A = {|x|e >
0}. This raises however no difficulty since the results from measure theory we use (e.g.
Fubini-Tonneli theorem) hold true for any non-negative functions and o-finite measures,
regardless the integrals are finite or not.

We call the identity (2.4) the tilt shift formula, abbreviated TSF. It characterizes the shift-
invariance of the measure v defined by (2.3) which does not depend on the choice of a
norm. It looks very much like stationarity of the process Z, but let us emphasize that
(2.4) is restricted to a-homogeneous test functions so it is much weaker than stationarity.
Of course, if Z is stationary then it satisfies (2.4). The tilt shift formula is equivalent to
each of the following equivalent conditions which will also be referred to indifferently as
the TSF:

(i) for all non negative measurable 0-homogeneous functions Hy : EZ — [0, 00] and h € Z,

El| ZolgHo(B"Z)] = E[| Z1[E Ho(2)] ; (2.5)

(i) for all non negative measurable functions K : EZ — R and h € Z,

El| ZolgK(|1Zole"B"2)] = E[| Z1eK (1 Znle" 2)] - (2.6)

Indeed, (2.6) obviously implies (2.4) and (2.5), (2.5) is obtained by applying (2.4) to the
a-homogeneous function H(x) = ||@o||g Ho(x) and (2.6) is obtained by applying (2.4) to
the a-homogeneous function Hy(z) = |xo| 2K (|20l B"z) defined to be 0 if |xofe = 0.

Remark 2.5. In the case E = [0,90)Z, if v has representation Equation (2.3), then the
max-stable process X with exponent measure v defined by (2.1) can be represented as

Xz £ (\V/ 0:2))

i=1 hez
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where Y., 0y, is a Poisson random measure on (0, 00) with intensity au™*"'du and, in-
dependently, Z @ i > 1, are independent copies of Z. We note in passing that TSF for
Brown-Resnick max-stable processes first appears in ( , , Lemma
5.2), see also ( , , Theorem 6.9) for general max-stable processes.

Proof of Theorem 2.J. 1t is easily checked that the measure v defined by (2.3) is a tail
measure. The condition v({0gz}) = 0 follows from P(Z = Ogz) = 0. A direct computation
yields

0
v({llene > 1}) = EJ Hrl|Zyle > 1} ar™ " dr = E[| Z,]g] .
0

whence we deduce
{lzole > 1} = E[|Zo[g] =1, v({[zwn|e > 1}) = E[|Z4[E] < .

Homogeneity of order « follows from the simple change of variable ' = u~1r: for all u > 0
and A € F, we have

© o0
v(ud) = J P(rZ e uA)ar *'dr = J P(u~'rZ e uA) ar * tdr

0 0
0

= u_O‘J P(rZ e uA) ar * 'dr = u “v(A).
0

Conversely, let v be a tail measure and let us prove the existence of a representation (2.3).
Let us first prove that there exists at least one measurable functional 7 : EZ — [0, )
having the following properties:

(i) 7(x) = 0 if and only if = Ogz;

(ii) 7 is 1-homogeneous;

(iii) v({r(z) > 1}) = 1.

Define pj, = v({|zx|e > 1}) for h € Z and let q € (0,0)% be a positive sequence such that
D inez Prait < . Consider the map 7 : EZ — [0, «0] defined by

7(x) = sup qn|xn e -
heZ

Then 7 is 1-homogeneous and since |x;|le = 0 if and only if @, = Og for all h € Z, we have
7(x) = 0 if and only if & = Ogz. By the homogeneity of v, we have

v({r(@) > 1}) < Y v({alzale > 1}) = ) padiy <0,

heZ heZ
v({r(®) > 1}) = ggr({|=ofe > 1}) =5 > 0,



whence v({7(x) > 1}) € (0,0). Therefore, by multiplying the sequence g by a suitable
normalizing constant, we can impose that v({r(x) > 1}) = 1.

Let now 7 be an arbitrary measurable map having the properties (i), (ii) and (iii) and
define the “unit sphere” S, = {7(x) = 1} and the polar coordinate mapping

T EA\[0g} —  (0,00) x S, |
x = (T(z),z/7()) .

Define the probability measure o on S, by
o(A)=v({r(x) > 1, z/7(x)e A}), AeF,

and the measure v, on (0,00) with density az~®! with respect to Lebesbue measure.
Since T' is one-to-one and 7 is homogeneous, we obtain the polar representation of v, that
is voT ! = v, ®0c or explicitly, for all A e F,

V(A) — L : JE e e A} o(dz)ar——ldr . (2.7)

Indeed, starting from the right hand side of (2.7), we compute

R
= LOO LZ Hr(z) > 1, re/r(z) € A}v(de)ar™*"'dr

- JOO [‘ 7(x) " *L{r(x) > 1, rec e Al v(dx)ar " tdr

0 JEZ

— Joo F m(x) " *L{rr(z) > 1, e Alv(dx)ar " 'dr

0 JEZ

_ JE I e A} v(dz) = v(A) .

We use throughout these lines that v({7(z) = 0}) = v({Ogz}) = 0. The successive
equalities rely on the definition of o, the changes of variable ' = r/r(x) and @’ = x/r,
the homogeneity of v and 7 and finally the fact that § 1{r > z}ar=*"'dr = 27 with
z=1/7(x).

Consider now a probability space (€2, .4,P) on which we can define an EZ-valued random
element Z with distribution o. Then (2.7) is exaclty the stochastic representation (2.3).
The conditions in (2.2) are a consequence of Definition 2.1 together with (2.3): v({0gz}) =

P(Z = 0gz) = 0 and v({||zn|e > 1}) = E[| Z1|§] is finite for all h € Z and equal to 1 for
h = 0.

Finally, assume that v is shift-invariant and let Hy : EZ — [0, c0] be a 0-homogeneous mea-
surable function. Using the stochastic representation (2.3) and Fubini-Tonelli’s theorem
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for all h € Z we obtain

Bl| 20l (5 2)] - E[Ho(B'Z) [ 117 Zole > tjar-iar]

_ JE Ho(B"2)1{|zo|e > 1}r(dz)
- | (@)t > 1y(de)

0 0]
— ]E[HO(Z)J H{r|Zn|e > 1}ar’°"1dr]
0
= E[Ho(Z)| Znllg] -
The third equality uses the shift invariance of v and this proves that (2.5) holds.

Conversely we prove that the tilt shift formula (2.5) implies the shift invariance of v. For
this purpose, we note that for all h € Z and A € F,

a0
v(Ar (el > 1) = | BLEZ A, r|Zie > ar s

0
Q0

_ J E[| Z,|21{rZ/| Zs]e € AYJar—"dr
1

- [(ElZier 8 2/ Zoke € AYjortar . (29
1

We used successively the stochastic representation (2.3), the change of variable ' = r||Z}, e
(where [|Z},|e is almost surely finite as a consequence of (2.2)) and the tilt-shift formula
(2.5). Similarly, for k € Z,

(v o B ™) (An {|zne > 1}) = | E[1{rB*Z e A, v|Z) 4| > 1}]ar " 'dr
(o0
= | ElZi-slg1{rB 2/| Z1ile € AYJartar
1

:J E[HZOHgﬂ{rBhZ/HzOHE e A}lar—*"'dr.
1

This proves that v = v o B~ on the set {|z|g > 1}. Since this holds for all h € Z,
Lemma 2.3 implies ¥ = v o B™*, whence v is shift-invariant. O]

2.3 The spectral tail process and the time change formula

The following notion of tail process and spectral tail process plays an important role in

the theory of regularly varying time series, see ( ). We define here
these objects in terms of the tail measure only. The link between these two approaches
will be made in Section 3.3 and was already pointed by ( ),
section 4.



Definition 2.6 (Local tail process). Let v be a tail measure on EZ and assume that h € Z
is such that p, = v({|zy|e > 1}) > 0. The local tail process of v at lag h is the process
Y™ with distribution

PY® € A) = —v({lanle > Lazc A}, AcF.
Phn

The process @M = Y(h)/HYgl)HE is called the local spectral tail process at lag h.

For h =0, we write simply’ Y = Y and © = OO, called the tail process and the spectral
tail process associated to v.

Proposition 2.7. Let v be a tail measure with stochastic representation (2.3). Then
pn = v({lzalle > 1)) = E[|Zu[jg] < 0. I p > 0, then |Y [V e and ) = ¥ @ /Y[ e
are independent, HY;L}L)HE has an a-Pareto distribution, that is

P Y™Me>u) =u™, u>1,
and the distribution of O™ is given by
PO € A) = p,'E[|Z,|g1{Z/| Znle € A}], AeF. (2.9)

Proof. By definition of the local tail process and using the stochastic representation (2.3),
we have for all measurable H : EZ — [0, 0]

PEHY )] = | H@)1{lele > 1v(da)

= | E[H0rZ2)1{r|Z}|g > 1}]ar * tdr

JO
("0
= | E[HOZ2)1{r|Z,|e > 1, 0<|Z}| < co}]ar * tdr
J,(-)oo
= E[|Zh|3H (rZ/|Zn|e)] cr™ dr .
1

The last equality relies on the change of variable ' = r|Z},|e. Applying this identity with
the 0-homogeneous function Hy(x) = 1{x/|xs|e € A, |xn|e > 0} yields

0
RO € A) = E[H(Y )] = [ B(|ZuleHo(Z/|Zule))ar'ar
1
=0y Bl Z4[g1{Z/| Zn]e € A}]
proving Equation (2.9). O

Corollary 2.8. A tail measure v is shift-invariant if and only if p, = 1 and OW < phe
for all h € Z. Then the spectral tail process © characterizes the tail measure v and satisfies

E[Hy(B"®)] = E[|©[¢Ho(®)], helZ, (2.10)

for all 0-homogeneous measurable Hy : EZ — [0, 00) vanishing on {|zo|e = 0}.
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We call Equation (2.10) the time change formula, abbreviated TCF. It first appeared in
( ) in the context of stationary regularly varying time series. While
the original proof was based on limiting arguments, we propose here a direct proof based on
shift invariance of the tail measure, which was already noticed in
( ). In view of Proposition 2.7, the TCF is in fact a direct consequence of the T'SF (see
the proof below). The condition that Hy vanishes on {||gllg = 0} is important. To stress
this, the TCF can be formulated in the equivalent form: for all 0-homogeneous measurable
Hy : EZ — [0, 0),

E[Ho(B"©)1{|©_4]e > 0}] = E[|©4]¢Ho(®)] , heZ. (2.11)
To see this, simply apply (2.10) to the function @ — Hy(x)1{|xo|e > 0}.

Proof of Corollary 2.8. 1f v is shift-invariant, then the tilt shift formula (2.5) together with
E[|Zo||g] = 1 implies p, = 1 for all h € Z. Equations (2.5) and (2.9) together imply, for
all he Z, Ae F,
PO e A) = E[| Z4[21{Z/| Zn]e € A}]
= E[|Zo|g1{B"Z/| Zo|ec € A}] = P(B"©® € A)

whence @™ £ ph@. Conversely, if p, = 1 and " 2 Bh@ for all h e 7, then we have
for all 0-homogeneous function Hy,

E[|Zo|gHo(B"Z)] = E[Hy(B"O)] = E[Hy(©™)] = E[| Z4|g Ho(Z)] ,

hence the TSF is satisfied and v is shift-invariant by Theorem 2.4.
If v is shift-invariant, then Equation (2.8) can be rewritten as

v(An{|zple > 1}) = JOOE[I[{TB}‘@ € A}lar—*1dr |

1

for all h € Z and A € F. In view of Lemma 2.3, we deduce that ® characterizes the
shift-invariant tail measure v. Furthermore, we have for all 0-homogeneous function H,

1 Z,g
1Zo|g
= E[|Z,|¢Ho(Z)] = E[Ho(B"O)]

E[l©n[gHo(©)] = E [Zoi%‘ Ho(Z/Zo\E)] =E[|Zn[gHo(Z)1{] Zole > 0}]

where the second line of equalities is valid provided that Hy vanishes on {|zo|/g = 0}. This
shows that if v is shift-invariant, the spectral tail process satisfies the TCF (2.10). O

We have introduced the spectral tail process ® associated to a tail measure v. In the shift-
invariant case, it satisfies P(|@g|g = 1) = 1 and the TCF (2.10) and it also characterizes v.
A natural question then arises: if © satisfies P(|@g|e = 1) = 1 and the TCF, can it

10



be obtained as the spectral tail process of some shift-invariant tail measure v? In the
multivariate setting E = R, this question was addressed recently by ( ) in
connection with the theory of max-stable processes. The next theorem still provides a
positive answer in the more general framework. Our proofs are different and work directly
on the level of the tail measure (not on the level of a stationary regularly varying time
series, see Theorem 3.7 below).

Theorem 2.9. The mapping which to a tail measure associates its spectral tail process is a
one-to-one correspondence between the class of shift-invariant tail measures and the class
of processes © satisfying P(|@ole = 1) = 1 and the TCF (2.10).

Proof. Starting from a process © satisfying P(|©lle = 1) = 1 and the TCF (2.10), we need
to construct a shift-invariant tail measure v with spectral tail process ©. For ¢ € [0, o)

and x € EZ, we define
1/a
[]lg0 = <Z%H%\‘E> :

JEZ
We can always choose the sequence ¢ such that
PO < ||B*®|jga <) =1 forallkeZ. (2.12)

It suffices to choose ¢ such that g, > 0 for all k € Z and >, _, g = 1. Then P(||B*¥®||, >
0) = 1 since ¢ > 0 and |G|e = 1 almost surely. Moreover, applying the time change
formula (2.11) with H = 1 yields E[|©|g] < 1 for all k € Z, so that

E[|B*®|;.] = Y aE[|1B O8] < D ar = 1.

JEZ keZ
Define 2" — B*®/||B*®||,.0, k € Z and the positive measure v, on E” by
C e ™ —a-1
vo(A) =D g | P(rZ" e Aar > ldr (2.13)
kez, V0

for all A € F. Then v, is obviously a-homogeneous and v,({Ogz}) = 0 and we have

11



furthermore, for all measurable function H : EZ — [0, o0),

| H@1w0le > 1w (a2)

(~0

= Z qr E[H(Tﬁ(k))ﬂ{r\\éék)h = 1}]&T_a_1d7"
kez YO ]
_ éqk :OE K (%) 1{r|©_ye > ||B’“®Hq,a}} U
- ) X
S [(e[n(:22), B@gg’v;a] .
- o[ B 10-er (o) e |or e

In these lines, we used successively the definition (2.13), the definition of Z , the change of
variable 7' = || B¥@||,./|©_1|g'r (note that the event {||© _,|g = 0} has no contribution
to the expectations) and finally the fact that P(]|@g|| = 1) = 1. The time change formula
now entails

[ @ teole > taw) = o [ 2 [ (20) JOUE ] o
EZ 1 HG)OHE H@Hg’a

keZ

= JwE[H(TQ)]ar_“_ldr : (2.14)

Applying this identity to the 0-homogeneous function z — H(||zo|g 'x)1{||xo|e > 0} proves
that v, has spectral tail process ©. It is easily obtained along the same lines, that for
all h e Z,

0

L @t iale = 1) = [ ElHGB O ar

The right hand side does not depend on ¢ and taking H = 1 yields v,({|zy|e > 1}) = 1,
h € Z. Therefore the v,’s are tail measures that coincide on the sets {|z,|e > 1}, h € Z.
By Lemma 2.3 they are all equal and hence v, does not depend ¢. This entails that v, is
shift-invariant since it is readily checked that v,0 B™" = v phg Whence v, o Bh=v, O

Remark 2.10. In two particular cases, a simpler construction of the tail measure corre-
sponding to a given spectral tail process is available.

o If P(|®|e > 0) =1 for all h € Z, then the sequence ¢ can be chosen as ¢ = Jp and we
obtain

0
v(A) = J P(r® e A)ar > tdr .
0

This provides a stochastic representation (2.3) of v with Z = © such that | Z|[g = | Oyl =
1 almost surely.

12



o IfP(D,7 |©O]g <) =1, then we can choose ¢ = 1 which yields

Q0
p(a) =Y f P(rB"Z e Aar——ldr (2.15)
hez V0
with Z = ©/ (X7 |©Ok&)Y*. This representation is related to the mixed moving max-
imum representation of max-stable process see e.g. ( ) and
Section 2.5.

We will later need the following lemma on the support of a tail measure. We say that a
set C' € F is a cone if € C' implies ux € C for all u > 0.

Lemma 2.11. Let v be a tail measure which admits the stochastic representation (2.3).
Let C be a cone. Then v(C) =0< P(Z e C) =0. Ifv and C are shift-invariant, then
v(C)=0<POeC)=0.

Proof. 1f C'is a cone, then Equation (2.3) yields v(C) = P(Z € C') x o0, which proves the
first statement.

If v is shift-invariant with spectral tail process ® and C' is a shift invariant cone, the
representation (2.13) yields

o0
v(C) = ZJ P(TB’“@/HB’“@HW e C)ar—a—ldr
keZ
o0

0

_ EJ P(@eC)ar‘a_ldr:IP(GeC) X 00 |
kez Y0

This proves the second statement. O

2.4 Another representation of the tail measure

We propose here another construction proof of Theorem 2.9. It is based on the infargmax
functional I defined on EZ by
—oo if limsupy_,_y, [®k|e = suprez |®x e ,
I(x)=q7ieZ if suppe; q|zile < |zjle = supsey 1z |
+oo  ifsup,g; |Tr|e < supgez [l@k]e for all ;.
For & € E*\{Ogz}, a sufficient condition for I(z) € Z is lim_o |@x]e = 0.

For two sequences ¢ € [0,0)% and x € EZ, we define the pointwise multiplication ¢ - = by
(¢ )k = @k, k € Z.
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Proposition 2.12. Let © be a process which satisfies the time change formula (2.10) and
let g € (0,90)% be such that P(I(q-©) € Z) = 1. Define the measure v, on EZ by

ZJ (rBP®@c A, I(qg-B'®) =j)ar " 'dr, AeF.

JEZ

Then v, does not depend on q and defines a shift-invariant tail measure with tail spectral
process ©.

Note that any g € (0,0)% such that Y., _, ¢ < oo satisfies P(I(¢-©) € Z) = 1. Indeed, the
time change formula implies that E[|©|g] < 1, h € Z, so that E[> ., ¢§'|©;|g] < oo and
therefore limy;|_, ¢;[©;|e = 0 and I(g - ©) € Z almost surely.

Proof. 1t is straightforward to check that v, is a-homogeneous and satisfies v,({0gz}) = 0
For all measurable function H : EZ — [0, o0), we have

| A ledde > 102

— ZJ ]E[H (rB'O)L{r|®_j|e > 1, I(g- B'O®) = j}|ar > 'dr
- ]EZZ ]E l”g—jEH <|®—jE) ﬂ{](q B’©) J}] d

-], =l (o) a0 = arer

- LOOE [H(TG)) Z 1{Ig-©) = j}] ar~*ldr = LwE[H(r@)]araldr :

We used here the definition of v, from Proposition 2.12, the change of variable ' =
r/|©_;|e (note that the event {||©_,|e = 0} has no contribution to the integrals), the time
change formula, the fact that P(|©gle = 1) = 1 and finally the assumption >, P(I(q -
0)=j)=1

At this point, we have retrieved Equation (2.14) and the remainder of the proof follows
exactly the same lines as the proof of Theorem 2.9. ]

Remark 2.13. In the particular case P(I(®) € Z) = 1, we can take ¢ = 1 and we get

ZJ (rBP@ec A, I(©) =0)ar'dr, AeF.

JEZ

Introducing the process @ such that £(Q) = L(© | I(©) = 0), we obtain

v(A) = ZJ (rB’Q e A)ar > 'dr, AelF.

JEZ

14



This representation is similar as the one from Eq. (2.15). In fact, this is a special case of
a moving shift representation of v, see Section 2.5.

2.5 Moving shift representations and dissipative tail measures

We consider in this section the relationship between the existence of a moving shift repre-
sentation and the dissipative/dissipative decomposition of a tail measure. Note that ergodic
properties of tail measures are also considered in ( ), sec-
tion 5. We introduce only the minimum amount of ergodic theory and define the notion of
dissipative tail measure. For more details on (infinite measure) ergodic theory, we refer to

( ). The o-field on EZ generated by cones, or equivalently by 0-homogeneous
functions, is denoted by C.

Definition 2.14. The dynamical system (EZ,C,v, B) is said dissipative if there exists a
cone Cy € C such that the sets B"Cy, h € Z, are pairwise disjoint and v is supported by
D = ez, B"Cy, that is v (EX\D) = 0.

On the other hand, Remarks 2.10 and 2.13 above motivate the following definition.

Definition 2.15. We say that a shift-invariant tail measure v has a moving shit repre-
sentation if there exists a stochastic process Z such that

v(A) = ZJ P (rth € A) ar dr, AeF. (2.16)
hez VO

The conditions v({0gz}) = 0 and v({|xo|e > 1}) = 1 entail

P(Z=0g)=0, > E[|Zg]=1. (2.17)
heZ

Indeed, we have

v({|@ole > 1}) = ), JOO P(r|Z-ale > Dar—"'dr = Y E[| Z,[g] -
hez ¥0

heZ
Conversely, it is easily proved that, for any stochastic process VA satisfying (2.17), the
measure v defined by (2.16) is a shift-invariant tail measure.

Remark 2.16. Definition 2.15 is strongly related to the notion of mixed moving maximum
representation for max-stable process. If a max-stable process X has a dissipative exponent
measure with representation (2.16), then it can be represented as

Xhi\/Uzzslev hEZ,

=1
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where >, dw, ) is a Poisson random measure on (0,00) x Z with intensity equal to
the product of au*a*1d~u with the counting measure on Z, and, independently, VA © are
independent copies of Z. This is a mixed moving maximum representation and X is

generated by a dissipative flow ( , , Theorem 8).

Remark 2.17. Theorem 3.7 states that any tail measure has a stochastic representation (2.3).
One can wonder what is a stochastic representation for a tail measure v given by a moving
shift representation (2.16). A possible construction is as follows: starting from Z, consider
an independent Z-valued random variable K such that p, = P(K = k) € (0,1), k € Z and
define

Z=>p, "B*Z1{K =k} (2.18)
keZ

In this construction Z appears as a randomly shifted and rescaled version of Z. Tt is easy
to check that the stochastic representation (2.3) and the dissipative representation (2.16)
define the same tail measure v.

The converse is not true, that is a shift-invariant tail measure does not always have a moving
shift representation of the form (2.16). The next result is strongly related to (

, , Theorem 3). We say that v (resp. Z, ©) is supported by A € F if
v(A°) = 0 with A° the complement of A in E? (resp. P(Z € A°) =0, P(© € A°) = 0).

Proposition 2.18. Let v be a shift-invariant tail measure. The following statements are
equivalent:

(i) (EZ,C,v, B) is dissipative;

(ii) v has a moving shift representation (2.16);

(111) v is supported by {x : Y, , |xn|* < 0};

(iv) v is supported by {x : limyyx |2k = 0};

(v) v is supported by {x : I(x) € Z}.

Proof. - (i) = (ii): let Cj be as in Definition 2.14. According to Theorem 2.4, there exists

an E-valued stochastic process Z which satisfies (2.2) and (2.3). Therefore, the restriction
vy of the tail measure v to Cy can be represented as

0
vo(A) = J P(rZ e A)ar * 'dr,
0

for all measurable sets A = Cj. The fact that v is dissipative implies that v = >, , vgoB™"
and hence that v admits the representation (2.16) with Z = Z.

16



- (i) = (iii): If v has a dissipative representation (2.16), then Z satisfies (2.17) and
E[> ez 1Z1|g] < oo implies that Z is supported by {x : >}, ., |zn|g < o0}. Then, the
representation (2.16) implies that this set also supports v.

- (iii) = (iv) = (v): these implications are trivial since )}, _, [24[|g < o0 implies limp—o [Zn]le =
0, which in turn implies I(x) € Z for @ # Ogz (recall v({0gz}) = 0).

- (v) = (i): take Cy = {@ : I(x) = 0} to check that v is dissipative.
[

Remark 2.19. Since the sets {x : >, [znllg < oo}, {z : limpy—w [2n]e = 0} and {x :
I(x) € Z} are shift-invariant cones, Lemma 2.11 implies that (iii), (iv) and (v) can be
equivalently expressed with Z or ® where Z is a stochastic representation of v as in (2.3)
and © is the corresponding spectral tail process.

2.6 Maximal indices

We introduce in this section the maximal indices of a shift-invariant tail measure v that
are closely connected with the extremal indices of regularly varying stationary time series,
see Section 3.4 below.

Given an a-homogeneous shift-invariant tail measure v and a 1-homogeneous functional 7 :
EZ — [0, o] such that v({7(x) > 1}) = 1, we define the quantity @, € [0, 1], called maximal
index, by

0, = lim 1 ({ max 7(B"z) > 1}) : (2.19)

n—o N 0<h<n—1

The existence of the limit is a consequence of Fekete’s subadditive lemma. The shift
invariance of v implies that the sequence u, = v ({maxoghgn,l T(Bha:) > 1}), n>=1,is
subadditive. As a consequence, u,/n converge to inf,>; u,/n and the limit is in [0, 1] since
the sequence is non-negative and u; = 1.

The next result shows that the maximal indices of a dissipative tail measure are positive
and provides expressions of the maximal indices in terms of the stochastic representation
and the spectral tail process of the tail measure.

Proposition 2.20. Assume that v is dissipative and that the 1-homogeneous measurable
function T : EZ — [0, 0] satisfies v({7(x) > 1}) = 1. Then 6, > 0 and

0, =E [sup ra(Bhi)] —E [S“phez (B h@)] — P(I(©®) = 0)E [sup Ta(BhQ)] ,
heZ ZheZ H@h”g heZ

with Z as in the dissipative representation (2.16), © the spectral tail process of v and Q
is a random sequence in EZ with distribution L(© | [(®) = 0) as in Remark 2.13.
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Remark 2.21. For a dissipative tail measure v and 7(x) = |@lg, we also have the following
identity proved in ( , , Lemma 3.2)

0, =P(sup||Y;|e < 1) =P(sup |[Yille > 1),
i>1 i>1
where Y, = Y0O,, 7€ Z and Y is a Pareto random variable with tail index «, independent
of the sequence {®,}. This means that the maximal index is in this case the candidate
extremal index introduced in ( ). The link with the usual extremal
index will be made in Section 3.

The proof of Proposition 2.20 makes use of the following identity due to (
, , Lemma 3.2): for a summable sequence (u)nez € [0, 20)Z,

o1
lim — Z max Upir = Sup uy . (2.20)
n—o0 N, b Z0<k$n—1 heZ,

€

Proof of Proposition 2.20. Since v is dissipative, we can introduce a dissipative represen-
tation (2.16) and write

o0
v ( max 7(B"x) > 1) = ZJ P (7“ max 7(B""Z) > 1) ar—“Ldr
heZ

0<k<n—1 0 O<k<n-—1
:Z]E max 7*(B*thZ)| .
0<k<n—1
heZ

For n = 1, we have in particular ), _, E [T“(Bhﬁ)] = 1 thanks to the normalizing con-

dition »(7(z) > 1) = 1. This proves that the sequence u, = 7(B"Z), h € Z, is almost
surely summable and (2.20) implies
1

lim — max 7%(B*"™"Z) =sup7®(B"Z), almost surely .
n—o N 0<k<n—1 helZ,
heZ

Furthermore, for all n > 1, the left hand side in the previous equation is bounded from
above by >, ., 7*(B"Z) which has finite expectation. Lebesgue ’s dominated convergence
theorem implies

1
0, = lim —v ( max 7(B*x) > 1)

n—o N 0<k<n—1

n—o N 0<k<n—1 heZ

1 - -
lim — IE[ max Ta(Bk+hZ)] :E[supT“(BhZ)} :
heT,
This proves the first formula. The second and third expressions of 6, are special cases
obtained for Z = ©/(X,.; |Okg)V* and Z = PY*(I(®) = 0)Q, see Remarks 2.10
and 2.13. ]
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3 Regularly varying time series on a metric space

In this section, we will build a regularly varying time series with a prescribed tail measure.
For this purpose, we first recall the most important definitions and properties of M
convergence and regular variation on a metric space. For the sake of clarity, the results
are stated for a general metric space F' in section 3.1 and 3.2 and we consider the specific
case F = EZ in later sections.

3.1 Regular variation on a metric space

We follow here ( , , Section 3). Let (F,d) be a metric space and
let O be an element of F. We assume that there exists a continuous map (s, ) — sz from
[0,0) x F to F such that for all x € F and s <t € (0,0), s(tx) = (st)x, Ox = O and

d(OF,SCU) < d(OF,tw) .

Such a map will be called a distance compatible outer multiplication. We denote the ball
with center at O and radius r = 0 by B,. We endow F with its Borel o-field.

Let My (F) be the set of boundedly finite measures on F\{Og}, that is measures v such that
v(A) < o for all measurable sets A such that A n B, = & for some r > 0. Such sets will
be called separated from Or. The null measure will be denoted by 0,,. We will say that a

sequence {v,,n = 1} of measures in M (F) converges in My(F) to a measure v, which we
. Mo (F) .
will denote by v, — v, i

lim vn(A) = v(A),

n—o0

for all measurable set A separated from O and such that v(0A) = 0. This type of con-

vergence is referred to as weak” convergence in ( ) and simply
vague convergence in ( ). For more details on the relationship between these
different types of convergence, we refer to ( ) or
(2018).
. Mo(F) . e

By ( ) , Lemma 4.1), lim,,_,,, v, "—> v if and only if lim,, ., v,(f) = v(f)
for all bounded Lipschitz continuous functions with support separated from zero.

( ) proved that convergence in My(F) is equivalent to weak convergence on
the complement of balls centered at O. More precisely,

v, 8 ) for all but countably many r > 0, Vnlge — Vg (3.1)

where v, is the measure v restricted to the set A and = denotes weak convergence.
Convergence in M, can be metrized. Let p, be Prohorov’s distance on the set of finite
measures defined on B¢. Let p be the metric on Mg(F) defined by:

p(p,v) = JOOO e (pr(p,v) A )dr,  u,ve My(F). (3.2)
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Then (Mo(F),p) is a complete separable metric space; cf. ( , ,
Theorem 2.3).

We can now define regular varying measures and random elements in F.

Definition 3.1. o A Borel measure i on F is said to be reqularly varying if there exists

a non decreasing sequence {a,} and a measure 1* € Mo(F) such that nu(ay,-) Mo(F) Lr.

We then write € RV(F, {an}, 1*).

o An F-valued random element X defined on a probability space (2, A,P) is said to

be reqularly varying if there exists a non decreasing sequence {a,} tending to infinity

and a nonzero measure v on F\{Og} such that nP(a,'X € -) MO We then write

X € RV(F,{a,},v).

By ( : , Theorem 3.1), if X € RV(F, {a,},v), then there exists a > 0
which will be called the tail index of X such that the measure v is a-homogeneous and
the sequence {a,} is regularly varying with index 1/a. We will need the following result
which is a straightforward application of the mapping theorem ( ,
Theorem 2.5).

Y

Lemma 3.2. Let (F,d) and (F',d’) be two complete separable metric spaces each endowed
with a distance compatible outer multipication. Let O € F and let T : F — F be a I-
homogeneous map such that T(0g) = Og. Set Fo = F\{Og} and Fy = F\{Og }. Let u, u* be a
Borel measures on F and let {a,} be a non decreasing sequence such that pn € RV (Fo, ay, p*).
If T is u* almost surely continuous, continuous at O, and u*oT 1 is not the null measure,
then po T~ e RV(F), an, u* o T71).

Proof. Define u,, = nu(a,-). By assumption, u, Molf) p*. By homogeneity of T, p, 0T~ =
npo T (a,"). We want to apply ( , , Theorem 2.5) to prove that
o1 MolE) p*oT~1. Since T(0f) = O, there only remain to prove that if A is bounded

away from O, then T71(A) is bounded away from Of. If A = F’ is bounded away from
Of:, there exists € > 0 such that y € A implies d(y,0F) > €. Since T is continuous and
T(0f) = O, there exists n > 0 such that d(x,0¢) < n implies d(T(x),0r) < e. This
proves that if & € T7'(A) then d(z, Of) > 7. O

3.2 Regular varying Poisson point processes

Let No(F) be the set of boundedly finite point measures on F\{Og}, i.e. measures v such
that v(A) € N for all bounded Borel set A separated from Og. This implies that v has a
finite number of points outside each ball centered at O and we can write v = > .., g
where the points of v are numbered in such a way that

d(OF, IEz) = d(OF, dij)
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if i < j. It is then easily seen that Ny(F) is a closed subset of My(F) and that the

Mo(F) . . . .
convergence v, — v implies the convergence of points in F.

The restriction of the distance p defined in (3.2) to the space Ny(F) has the following
property. Let the null measure be denoted by 0y and let 7 € Ny(F). Let the largest
distance of a point of 7 to O be denoted by ||7 ||, i.e.

7l = sup d(0f, z) .

TeT

If » > ||7||g, then 7 has no point outside B, and thus p,(Or, 7) = 0. Moreover, by
definition of the Prohorov distance,

pr(Opg, ) = inf{a > 0: w(F N By) < a, F closed} = 7(By) .

That is, the Prohorov distance of a point measure to the zero measure is its number of
points. Therefore, if 7 > |||, then p, (0, 7) = 0. This yields

7wl
pOs) = | e pOu ) A D < el (3.3)
0
On the other hand, if r < [|7|| then p,(Or, 7) = 1 and 1 —e™ = (2 A 1)/2, thus we have
l=lle 1
pOsm) > [ ey = (1= > Sl A1) (3.4)
0

These bounds imply that a subset A < Ny(F) is separated from 0,4 if there exists € > 0
such that |||z > € for all 7 € A.

We define the mutiplitcation (¢,v) — t-v for ¢t € (0,00) and v € My(F) by

() = | feavide)

for all nonnegative measurable functions f. If v = >, d5, is a point measure, then
t-v=>, =1 dtz;- Multiplication is continuous with respect to the product topology. For
meNyand 0 < s < t,

pr(Opq, 57) = (s BE) < (s ' BY) = p, (0, s7)

Therefore we can define a regularly varying point process on F\{Og} as a regularly varying
element in ANy(F) in the sense of Definition 3.1.

Theorem 3.3. Let g, p € My(F) and {a,} be a nondecreasing sequence such that a,, — o0

and no(ay,-) Ael5) p asn — oo. Let IT be a Poisson point measure on F\{Og} with mean

measure po. Then I1 € RV(No(F), {a,}, u*) where pu* is a measure on No(F)\{Or} defined
by

u*(B) = f 1{6, € Bju(dz) .

for all Borel set B of No(F) endowed with the distance p, and 6, denotes the Dirac mass
at © € E. If u is a-homogeneous and I1 ~ PPP(u), then I1 € RV(Ny(F), nV/®, u*).
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Note that the limit measure p* is the image of p under the injection of F into Ny(F)
defined by @ — .. It is concentrated on the subset of point measures that have exactly
one point. The underlying heuristic is that given that II is large (in the sense d(0,1I) > u
with u — 00), then II can be approximated by a random point measure with only one large
point. This is yet another instance of the so-called single large jump principle.

Proof. We need to prove the convergence

nP(Il/a, € ) geaC w (3.5)

By Theorem A.1, the convergence (3.5) holds if

lim (E [1 " <m/an>n(df”>]> — f (1 . ('””’“(d“’)) prdm),  (3.6)
No(F)

n—00

for all continuous function f : F — [0, c0) vanishing on a neighborhood of Og. By definition
of p*, the right-hand side of (3.6) is equal to

| aeew e an < | @ - e f®)ua)
No(F) F

On the other hand, since II is a Poisson point process, we have

n (E [1 _ efsmw/an)n(dw)]) =n (1 — exp l L (e-f@/an) 1) uo(da:)])
“n (- [ [ - 0= aa])

with 1, = nuo(a,). The function 1 — e~/ is non negative, bounded and with support
separated from zero; moreover i, — p in Mg by assumption, therefore

lim n (E [1 - e_SFf(m/“")H(dm)D = lim n (1 — exp ln_lf (e_f(m) —1) ,un(daz)])
F

n—0o0 n—o0
= f (1—e /@) p(de) .
F
This proves the convergence (3.6) and the claimed regular variation of II. ]

3.3 Regularly varying time series

We now introduce the notion of a regularly varying time series. We consider a complete
separable metric space (E,dg) with an element Og and we assume that the metrid dg has
the homogeneity property dg(Og, sz) = sdg(0g, ) for all s > 0 and « € E. We then define
the pseudo norm |x|g = dg(Og, x).
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Definition 3.4. Let X = {X;,j € Z} be a time series with values in E. It is said to be
reqularly varying if (X, ..., X;) is reqularly varying in E=5%1 for all s < t € Z.

( ) proved that if X is regularly varying, then there exists
a measure v on EZ, called the tail measure of X, whose finite dimensional projections
are the exponent measures v, and having the properties of a tail measure as introduced
in Definition 2.1. If X is stationary, then the tail measure is shift invariant.

Consider the metric dp on F = EZ defined by

de(@,y) = > 27 W (de(a;, y,) A 1) . (3.7)
JEZL
It is proved in ( , , Theorem 4.1) that the regular variation of the time

series X in the sense of Definition 3.4 is equivalent to the regular variation of X seen as
a random element with values in the complete separable metric space (F,dg) in the sense
of Definition 3.1, i.e. X € RV(F,{a,},v) with a, such that lim, . nP(| Xl > a,) = 1.
Therefore, we will hereafter indifferently say that X is regularly varying in the sense of
Definition 3.4 with tail measure v or X € RV(EZ, {a,},v).

The local tail process and spectral tail process associated to the tail measure v can be
reinterpreted as limiting quantities for the regularly varying time series X . Their existence
also characterizes regular variation. The next result generalizes ( , ,
Theoreom 2.1) for a non stationary time series.

Lemma 3.5. Let v be a tail measure on EZ and for h € Z set p, = v({||z|e > 1}). For
h such that p, > 0, let Y™ and ®™ be the local tail and spectral tail processes associated
to v as in Definition 2.6. The following statements are equivalent;

(i) X € RV(EZ, {a,},v);

(ii) For all h € Z, lim,,_,o nP(| X4||e > a,) = pn and for all h such that p, > 0, we have,
as u — oo,

(X /fu | 1K e > w) 5 ¥ (3.8)

(7ii) For all h € Z, lim,, o, nP(| X 4|[e > an) = pn and for h such that p > 0,

£ (X/1X1]e

IXnle > u) - 00 (3.9)

If X is stationary, then ®™ L Br@ and v is shift-invariant.

Proof. We start by proving the implication (i) = (ii). By definition of regular variation,
for every h € Z we have lim,, ., nP(| X ||e > a,) = pn and for every set A depending only
on a finite number of coordinates, we have

T}i_r)gan’(X eA | Xule > an) =v({{An{|x,|e > 1}) .
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By definition of the local tail process, we obtain
1
lim P(X € A| | Xule > an) = —v({An {|z]e > 1}) = P(Y®W € A) .
e Pn

To prove the converse implication (ii) = (i), we first note that the tail measure is char-
acterized by its finite dimensional projections. Therefore it suffices to prove that these
projections are characterized by the tail process. Let A be a set which depends only on
the coordinates between s and ¢, s < t € Z, and bounded away from zero in E‘=*1. This
means that there exists ¢ > 0 such that = € A implies that >, __1{||z|e > ¢} = 1. Note
also that if p, = 0, then for all € > 0, lim,,_,o, nP(| X |g > a,€) = 0. Thus in the following
computations we will omit the indices h such that p, = 0. Decomposing according to the
first exceedence over ea,,, we obtain

vei(A) = lim nP(a,' X, € A)

n—00

t
= lim Z nP(a,' X, € A, | X1|e > €, max | X[le <€)
n—0o0 hes s<i<h
t _
Pla;' X1 € A, | X 1le > 6, max,eiopn | Xille < €)
IRET -1 n z,t ) h||E ) s<i<h i||E
= lim ), nP(a,"|Xhle > ane) P(az | Xnle > anc)

h=s

Pp>0

¢
- Z € “ppP (ngft) €A, max |Y,|e < 1) :

s<i<h—1
h=s

pp>0

This proves that the finite dimensional distributions of the tail process characterize the
tail measure. The proof of the equivalence (ii) < (iii) is straightforward generalization
of the corresponding result for R? valued time series in ( ) and is
omitted. ]

Remark 3.6. In the case E = [0,0), Lemma 3.5 implies that the tail measure of a time
series X € RV([0,0)7, {a,},v) is the exponent measure of the limiting max-stable process,
see Remarks 2.2 and 2.5. More precisely, let X@ §>1, be iid. copies of X. Then the
regular variation of X implies that

a;l \n/Xu) fi.di. <O/P(i)
i=1 i=1

where the suprema are taken componentwise and .. | dp() is a Poisson point process on
[0,00)% with mean measure v. This also shows that for a max-stable process the tail
measure and the exponent measure are the same.

In the sequel, given a shift-invariant tail measure, or equivalently given a spectral tail
process, we will build a time series
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3.3.1 Construction of a stationary regularly varying time series

As seen in Section 2, the tail measure of a stationary regularly varying time series with tail
index o > 0 is a shift-invariant tail measure with homogeneous with index a. A natural
question is whether any shift-invariant tail measure v on F = EZ is the tail measure of a
stationary regularly varying time series X. The purpose of this section is to prove that
the answer is positive and provide one construction for such a process X.

Our intuition is guided by the case E = [0, 00). Then, given a tail measure v on [0, 00)Z, the
max-stable process X with exponent measure v is regularly varying with tail measure v.
Furthermore, X is stationary if and only if v is shift-invariant. This provides a straight-
forward solution in the non negative case. Before we generalize it, we recall the Poisson
point process representation of the max-stable process X: if ¥ admits representation (2.3)
with Z a non-negative time series, then

x £\/r;"z",

i=1

where {I';};>1 are the points of a homogeneous Poisson process on [0, c0) and independently,
Z9 i =1, are independent copies of Z and the supremum is taken componentwise.

In the general framework where E is a complete separable metric space and v is a tail
measure on F = EZ, we consider a Poisson point process II ~ PPP(v). Note II can be

constructed as .
M= {r;l/‘lzw i 1} . (3.10)

We interpret the point process II as a particle system that evolves in time, the i-th particle
having position gogf) = F;l/aZg) at time h. The random process @) = F;I/O‘Z(i) e F=E?
is hence the trajectory of the i-th particle. We construct a time series X that records at
each time h the position of the particle which is farthest away from Og, which we will call

the largest point. More formally, we define

X, = cpgh) , ip = argmax ng,(f)HE , helZ. (3.11)

1=

Provided P(||Zy|lge > 0) > 0, there are almost surely infinitely many particles at time h with
positive norm and a unique particle with the largest norm. This is because the random
variables I';, ¢+ > 1 have continuous distributions and lim; ,,, I'; Ve — (0 almost surely.
Therefore the argmax in (3.11) is unique and the random variable i, is well-defined.

Theorem 3.7. Given a shift-invariant tail measure v on EZ, the E-valued time series X
defined by (3.11) is stationary and reqularly varying on EZ with sequence a, = n*® and
tail measure v.

Proof. We will use the mapping Lemma 3.2. We consider F = EZ endowed with the metric
dg defined in (3.7).
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Define the subset NVZ(E) < Ny(E) as the set of point measures that have exactly one
largest point and consider the map 7" : ./\/(’f(E) — E that associate to such a point measure
its largest point. By Lemma B.2, N{(E) is open and T is continuous on V¥ (E). We extend
T to Ny(E) by setting the value Og on N(E)\WNZ(E).

Given a point measure m € Ny(F) and h € Z, we define Py, () as the restriction to E\{Og}
of the image of m under the projection & — x;. More precisely, if 7 = >}7 d,¢ with
x(® € F, then P, (7) is the point measure on E\{Og} with points wﬁf) such that :BS) # Og.
For the particle system IT = {¢ i > 1},

Pl = {07 i=1, o7 # 0g}

records the position at time h € Z of the non zero particles. Using the representation (3.10),
we also have

Pl ={T; 729 i>1, 2 20} .
Since IT is Poisson, P,II is a Poisson point process on E\{Og} with intensity
uw(B) =v({x:x,€ B}) =v({x:xye B}),

for all Borel measurable sets B < E\{Og}. The marginal measure p does not depend on
h € Z because v is shift-invariant. Moreover, P,IT € NZ(E) almost surely since for i # j,

B2 e = ;112 ) = 0.
We now define the map 7 on M;(F) onto F by
T(m) ={T(P,m),heZ} .
The time series X defined in (3.11) can be reexpressed in terms of the map 7: X = T (II).

The stationarity of X, follows from the shift-invariance of v since BX = T (BII) L 7T (1I)

where BII = {By® i > 1} 2 II. The regular variation of X will be obtained as a
consequence of Lemma 3.2. By construction, 7 is 1-homogeneous, 7 (0r) = O and we
will check the following properties:

(a) the map 7 is continuous at 0;

(b) the map 7T is almost surely continuous with respect to the distribution of II.

- To prove that 7T is continuous at 04, recall that the space F is endowed with the distance
defined in (3.7) and note that for 7 = 3.7 | 6,4 € No(F),

de(0r, 7)) = 312 M max(|a; e A 1) < 3maxde(0g, ) = 3| -
heZ = =z

On the other hand, applying (3.4), we obtain that if p(Or, 7) < 1/4, then
dF<OF7T(Tr)) < 12p(0./\/l77r) .

This proves (a).
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- We now prove (b). By Lemma B.3, it suffices to prove that the projections T}, = T o P,
are continuous for all h. Since P(P,II € NZ(E)) = 1, this follows from the continuity of T
on Né‘(E) which is established in Lemma B.2.

To conclude the proof, there only remains to prove that the tail measure of X is v. By
Lemma 3.2 and Theorem 3.3, the tail measure of X is u* o 7!, given for A € F\{Og} by

1o T Y(A) = L 1T (5,) € A (de) .

For € = {x),h € Z} € F, we have T (0z) = {I'(0z,),h € Z} = x if x # Of and T (0f) =
T(0pn) = Op. Thus p*o T =v. O

The next two proposition state some interesting elementary properties of the process X
defined by (3.11). They are strongly related to max-stability. Let g : F — F be the map
defined by g(x) = {|xn|e, h € Z}.

Proposition 3.8. Consider the process X defined by (3.11). Then the non negative time
series {| X 1|, h € Z} is maz-stable with exponent measure v o g!.

Proof. The max stability follows from the representation |X|e = sup,>; I';’ Y2 Z|le and
the fact that v o g~! is the exponent measure is a consequence of the mapping theorem
Lemma 3.2, since for a max-stable process, the tail measure and exponent measure are the
same. [

In order to study further the stability property of the process X, we define the binary
operation ® defined on E by

xy if |z1[e > e

. x,xo€E.
xs otherwise ’ L2

1 O 2 :{

Note that the binary operation © is associative, that is (1 O x2) O3 = 1 O (2 O x3) for
all 1, xo, x5 € E. It is not commutative since &1 O @y # s O x1 if &1 and xo are distinct
elements with the same norm. However, elements with distinct norms do commute. More
generally, if 1, ..., x, are elements in E such that exactly one element has maximal norm,
x* say, then 1 ®--- ©x, = x* does not depend on the order of the x;’s.

Proposition 3.9. The process X defined by (3.11) admits the Lepage representation
X Lop,T; " Zw, (3.12)

with {T,i > 1} and {Z9,i = 1} as in (3.10) and the operation © is taken componentwise.
Furthermore, the process X 1is stable with respect to the operation ©® in the sense that,

nVeor, X024 x (3.13)

for everyn =1, xW o xm being independent copies of X.
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Proof. The representation (3.12) is simply a rewriting of the definition of the process X,
that is

o, IV zO = 71y,

where IT ~ PPP(v). Let n > 1, IT;,..., I, be i.i.d. copies of Il and XM ... X®™ be
independent copies of X. Since T is 1-homogeneous, we have

nfl/a @?:1 X(Z) — T(nfl/aﬂl (U] nil/aHn) i T(H> )

since n~ YTl U -+ - U n~Y°TI, ~ PPP(v). O

3.4 Extremal indices and m-dependent approximation

The purpose of this section is to investigate more advanced properties of the process X
defined by (3.11) such as existence of extremal indices and m-dependent tail equivalent
approximations. Anti-clustering is also discussed in the next section. For the sake of
generality, we do not restrict our study to the process (3.11) but rather consider a large
class of processes constructed on the Poisson particle system II ~ PPP(v).

Let us first introduce the notion of extremal index that provides an insight in the de-
pendence structure of a stationary regularly varying time series. For a time series £ €
RV, ([0, )%, (a,),v), we compare the growth rates of

M, = max &,, and M, = max &, ,
1<h<n 1<h<n

where the random variables Eh are independent copies of &. Regular variation and inde-
pendence imply that M, /a, converges to a standard a-Fréchet distribution, that is

. -1 ~ o
hmIP)(an maxﬁhém)—e T

n—00 1<h<n

for all z > 0. Under assumptions discussed below, one can prove that

. _1 _0 —Q
hmIP’(an maxfhéx)ze S

n—00 1<h<n

for z > 0 where 6 € [0,1] is called the extremal index. If § = 0, we have a, ' M, L 0: the
maximum has a slower growth rate in the dependent case. When 6 > 0, the maximum
grows at rate a, as in the independent case. The extremal index can also be defined as
the limit, if it exists,

6 _ hm 10g ]P)(maxl<h<n gh < an)

Lim PlE < a,)" (3.14)
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In the abstract framework X € RV (EZ, (a,), V), we consider, for any 1-homogeneous con-
tinuous H : E — [0,00), the extremal index (if it exists) of the non negative time series
{H(X}),heZ}:
) P (maxi<pen H(X 1) < ayp)
Oy = lim 1 ==
0RO T P(H(X,) < an)”

The homogeneity and continuity of H ensure that H(X) € RV([0,90)%, {a,},v o H™!),
provided v o H~! is not the null measure.

(3.15)

There exists a vast literature on the extremal index and several conditions have been in-
troduced that ensure the existence of a positive extremal index. Building on
( ) and using the tail measure through the tail process introduced by

( ), we will only consider here a condition based on m-dependent tail equiv-
alent approximations. An E-valued time series X is called m-dependent if the o-fields
o(Xn,h < hy) and o(Xp,h = hg + m + 1) are independent for all hy € Z. In particular,
a stationary O-dependent time series is a series of independent and identically distributed
random variables.

Definition 3.10. A process X is said to have a tail equivalent approrimation if there
exists a sequence of processes {X(m), m = 1} such that:

lim limsup nIP’(dE(Xh/an,X,(lm)/an) >e€)=0. (3.16)

m—=%0 p s

The relationship between m-dependent tail equivalent approximation and existence of an
extremal index is made clear in the following theorem. Since the extremal index is essen-
tially defined for non-negative time series, we focus on that case.

Lemma 3.11. Let X™ € RV([0, 0)Z, {a,}, ™) be stationary and m-dependent. Then,

X™) has a positive extremal index equal to the mazimal index 9%") of ™ associated
to the map 7y defined on [0,0)% by T(x) = x¢. If moreover X™ s a tail equivalent

)

approzimation of a non negative time series X and if the limit lim,, 6%” exists, then it

is the extremal index of X .

Proof. Since an m-dependent sequence is o mixing with arbitrary fast rate, the existence

of the extremal index € is proved by ( : , Theorem 4.5) and is given
by 0™ = P(max;> Y;(m) < 1). Thus 0 = 0., by Remark 2.21. The second statement is a
consequence of ( , , Proposition 1.4). ]

Based on this result, we now prove the existence of the extremal index #y the process X
considered in (3.11). The process X is defined by means of the stationary Ny(E)-valued
sequence P = {P,(II),h € Z} and the map T introduced in the proof of Theorem 3.7
but the specific form of T is irrelevant and only 1-homogeneity and continuity are needed.
Therefore we will first prove that the stationary sequence P admits an m-dependent tail
equivalent approximation and then obtain the extremal index of time series derived from P.
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Theorem 3.12. Let v be a tail measure on EZ and I1 ~ PPP(v) be the associated particle
process. Consider the stationary No(E)-valued process P = {P,(I1),h € Z}. If v has a dis-
sipative representation (2.16), then P has an m-dependent tail-equivalent approximation.

Proof. Note first that II can be expressed as
=) Oy 79 (3.17)
i>1

~ (1

. . . . (@) .
where 0.1/« is a Poisson point process on (0,0) with mean measure v,, Z ~ are ii.d.
i

copies of the process Z in (2.16), B is the shift operator and -, d7, is a Poisson point
process on Z with mean measure the counting measure on Z, independent of everything
else. Indeed, it suffices to check that the mean measure of the point process on the right
hand side of (3.17) is v. This follows from (2.16).

We now define the m-dependent approximation P™ of P. For m > 1, define

P - Z%ﬂ/a zo =T <m}.

121

We must now check the tail equivalence condition (3.16). By stationarity, it suffices to
check it for h = 0. That is we must prove that for all € > 0,

lim lim sup nIP’(,o(a;lPo,a;IPém)) >e)=0. (3.18)

m—=®0 nw
Set Ry, = /iy Fi_l/a HE(_z)Tz||E]l{|T1| >m}. Forr > a,'R,,, aglPém) and a ' Py have the
same points on Bf. Therefore
anBRm
p(aglPo,aglPém)) = J (pr(a;IPo,aglPém)) A De "dr < a, Ry,

0

Thus (3.18) will be obtained as a consequence of

lim limsup nP(R,, > a,e) = 0. (3.19)

m—=%0 pnsw

To prove (3.19), note that for non negative random variables Z;,i > 1, since I‘l_l/a has a
Fréchet distribution, we have

0
P (\/ Tz, > x> <
=1

<

)

P

P <r‘1/“zi > :1:)

i=1

e¢]
P (Fl_l/aZi < x> _ Z(l e EIZ

i=1

e

~
I
—
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Therefore, if >, | E[Z#] < o0, we obtain by dominated convergence

0 o8]
lim sup z°P (\/ r;'°z > ZB) < ZE[ZZO‘] :
i=1

T i=1

Applying this bound to R,,, we obtain by dominated convergence theorem

0

lim lim sup nP(Ry, > ane) < lim > K[| Zo|g1{|T;| > m}] = 0.
m—00

This proves (3.19). O

To a function H : Ny(E) — [0,50) we associate the function H : EZ — [0,0)% defined by
H(x) = {H(0s,),h € Z}, x € EZ.

Corollary 3.13. Under the assumptions of Theorem 3.12, let H : No(E) — [0,00) be a
Lipschitz continuous 1-homogeneous function such that v({H (x) > 1}) = 1. Then the time
series Xy = {H o Py(I), h € Z} is in RV([0, %)%, {n/*}, vy) with vy = v o H™', has
an m-dependent tail equivalent approrimation and an extremal index equal to the mazrimal
index 0, associated to v and the map T defined on EZ by 7(x) = H(0g,).

Proof. We will apply Lemma 3.11 and Theorem 3.12. Let P be the m-dependent
approximation of P defined in the proof of Theorem 3.12. Then the time series X (™
defined by X flm) = H o Py(Il), h € Z is m dependent and regularly varying by Lemma 3.2.
By Lemma 3.11, its extremal index #(™ is given by

o) E [max'h'@ 1z ")]

B[S Ao(20)

The tail equivalence condition (3.16) holds by the Lipschitz property of H. Thus the
sequence {X (m)} is a tail equivalent approximation of X and we can apply Lemma 3.11

which proves (by application of the dominated convergence theorem) that the extremal
index of X is

E [maxhez H“(?h)]

0 = lim 0™ = —
e E| Sy H(Z0) |
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3.5 The anti-clustering condition

In the literature of time series and extremal index, the anti-clustering condition introduced
by ( ) plays quite an important role, see e.g., ( ),

( ) ( ), ( ). Let us

first define the notion of anti-clustering for a stationary regularly varying sequence.

Definition 3.14. A stationary time series X € RV(EZ, (a,,),v) satisfies the anti-clusering
condition if there exists an intermediate sequence r, — o, r,/n — 0, such that

lim limsup P ( max deg(X/an,0g) > u | dg(Xo/ay,, Og) > u) =0. (3.20)

m—0 5, 00 m<|h|<ry,

When E = R, we retrieve the classical anti-clustering condition of ( , ,
Condition 2.8). Although we have not used anti-clustering in our analysis of extremal ind
(Corollary 3.13), we show below that, for the class of processes considered, anti-clustering
is equivalent to the existence of a dissipative representation for v. This suggests that
assuming the existence of a dissipative representation for v in Corollary 3.13 is not a too
strong condition.

Theorem 3.15. The following statements are equivalent:

(i) v has a dissipative representation (2.16);
(ii) the process (Py(I1))nez satisfies the anti-clustering condition in (No(E))Z in [0, 0)%;
(iii) for all H as in Corollary 3.13, X g satisfies the anti-clustering condition in [0, 00)Z;

(iv) the maz-stable process {|| Py(I)||c , h € Z} satisfies the anti-clustering condition [0, o0)Z.
Proof. Since the process {||P,(II)[|g,h € Z} is max-stable, the equivalence between (i)
and (iv) is proved in ( : , Theorem 2.1). The implication (ii) = (iii)
is a consequence of the Lipshitz property of H; the implication (iii) = (iv) is trivial since

the map ||-||g satisfies the condition of Corollary 3.13. Conversely, (iv) implies (ii) since
sUIPaD) e A 1) < dugey(a, Pa(I), 00q) < [ Po(ID)]lg by (3.3) and (3.4). 0

Appendix

A Convergence in My(N;y(F))

For 1 € My(No(F)), we denote by B, the set of Borel sets B < Ny(F) that are bounded
away from zero and such that p(7(0B) > 0) = 0, with ¢ B the boundary of B.
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Theorem A.1. Let u, piq, piz, - .. € Mo(No(F)). The following statements are equivalent:

() MO(NO( ) [ asn — .

(71) pin ALY W as n — 0, in the sense that
pn (m(A;) =my, 1<i<k)—> p(r(A) =m;, 1<i<k) asn— o
for allk =1, (mq,...,my) € N\{0} and Ay, ..., Ay € B,..

(iii) for all bounded continuous f : F — [0, 00) vanishing on a neighborhood of O,

J (1- e’”(f)) o () —> (1- e’”(f)) p(dr) asn— o
No(F) No(F)

with 7(f) = § f(x)m(dz)

This theorem is similar to the characterization of weak convergence of probablity measure
on Ny(F) in terms of their finite dimensional distributions and Laplace functional by ( ,

, Theorem 3.10 and Corollary 3.11). We consider here Mj-convergence of measures
with possibly infinite total mass, so that we exclude in (ii) the event {m(A4;) =0, 1 <i < k}
that may have infinite mass and we use in (iii) a modified Laplace transform with 1 —e~"(/)
instead of e=™/) s0 as to ensure that the integrals are finite.

Proof. We begin with some notation and preliminaries that will be used throughout the
proofs below. We denote by B, (resp. B, (F),r) the complement of the ball with center 0
and radius r > 0 in F (resp. NVy(F)). The bounds (3.3) and (3.4), imply that for r < 1,

BN() {7T<BF 7") > 0} = BNO(F) r/4: (Al)

Let p1 € M(No(F)) be fixed and consider a sequence r; | 0 such that u(0Bg ) ,.) =
w(m(@0Bg,.) > 0) = 0 for all i > 1. By ( : , Theorem 2.2), the

Mjy-convergence i, Mo, 1 is equivalent to the weak convergence ugi) s um) for all i > 1,

where ,ugf) (resp. p")) denotes the restriction of p, (resp. ,u) to Bf\/( F).~- BY the inclusion

(A1), thls is also equivalent to the weak convergence ,uq(l ri) i) for all i > 1, where pn)

(resp. i) denotes the restriction of p, (resp. p) to {m(BE .. ) > 0}. The restriction i)

will be useful because they behave well with respect to finite dimensional distributions.

The weak convergence ,u( ri) 5 pm) (or [Lq(f") 5 ")) of finite measures can be char-

acterized as in ( , , Theorem 3.10 and Corollary 3.11) by the weak convergence
of finite dimensional distributions or pointwise convergence of Laplace functionals. Note
that the result and proof in ( ) are given for weak convergence of probability
measures only, but they are easily extended to finite measures since weak convergence is
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then equivalent to convergence of the total mass together with weak convergence of the
normalized measures.

Proof of (i) = (ii). From the preliminary discussion, the My-convergence i, Mo, i implies,
for all ¢ > 1, the convergence of p, (B ) ,.) = 1(Bjy, ) ,,) and the weak convergence of

the finite dimensional distributions ugf') AL p"). This entails the convergence of finite

dimensional distributions in the sense of ii) because any set A € B,, is bounded away from
zero and hence in BX/O(F) », for 7; small enough,

Proof of (ii) = (i11). 1t is enough to prove that (ii) implies weak convergence of the finite

dimensional distributions ,&7(1”) Jid A for all r; > 1. Let k > 1, Ay,..., A, € B,, and
mi, .. > 0. Setting Ao = Bg,. € B, we have
A (r(Ay) = my, 1< 5 < k) = fin(m(Ag) > 0, w(Aj) =my, 1<j<k) (A.2)

and (ii) implies convergence to
AU (r(Ay) = my, 1< G <k) = (m(Ag) >0, m(A4;)) =my, 1 <j<k) (A3)

This proves ,u,(1 ri) Jid A7) and g, Mo, 1.

Proof of (iii) = (1). We prove that (iii) implies that, for all i > 1, the measures [L%m,
(") have finite total mass and converge weakly [Lﬁfi)

convergence of the total mass
A No(F)) = pa(m(BE,,) > 0) — " (NG(F)) = u(w(BE,,) > 0). (A.4)

Consider approximating functions h; (z) | 1{z € cIBg, } and h; (z) 1 1{z € int B¢, } that
are continuous with values in [0, 1] and vanish on a neighborhood of Og. The notation cl
and int stands for the closure and interior of the set respectively.

s 1) as n — oo, We first prove

f (1 — etk ) o (drr) < J (1 — eft”(BE’w)> o (d7r) < J (1 — e_t”(h7)> p (dTT).
No(F) No(F) No(F)

The left and right hand sides in the previous inequalities converge and hence are bounded
uniformly in n > 1. Furthermore, since 7T(BC .) takes values in {0,1,2,...}, the quantity

f/\fo(F) <1 — e—tw(BE,ri)> o (d7) = Z (1 - e ™), (W(BEM) _ m)

m=1

satisfies
(I —e Y (7(BE,,) > 0) < f/\/( ) (1 - e_m(Bsﬂ)> fin (A7) < pi, (w(BE,,) > 0).
o(F
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We deduce sup,,-; pn (7(BE,,) > 0) < oo and this holds for all i > 1. Then, letting n — oo
in

f (1= ™00 puy(dm) < puo (v(BE,) > 0) < (1 —e‘“_lf
No(F)

<1 o e—tﬂ'(h?—)> Mn(dﬂ->7
No(F)

we get

n—0o0

lim inf i, (7(Bg,,) > 0) = f <1 - e_t”(hz_)) p(dm),
No(F)

lim sup i, (7(Bg,,) > 0) < (1 - et)lj (1 — e*t”(h;r)> p(dm).
No(F)

n—o0

Letting [ — o0 and ¢ — o0, monotone convergence entails that the right hand side in
the last two inequalities converge to u(m(clBg,,) > 0) and p(7r(intBg ) > 0) respectively.
These two quantities are equal because we have chose r; such that Bg, € By, that is
p(m(0BE,,) > 0) = 0. Consequently p,(m(Bg,,) > 0) — p(n(Bg,) > 0) as n — oo,
proving (A.4).

To prove that ,1;”) > i) using the Laplace functional, it is enough to prove

lim e_”(f)ﬂgi)(dﬂ) = J e_”(f)ﬂ(ri)(dﬂ)
=% J Ny (F) No(F)

for all bounded continuous f : F — [0, 00) vanishing on a neighborhood of Og. In view of
equation (A.4), this is equivalent to

lim (1- e’”(f)) A (dr) = J (1- e’”(f)) f(r;)(dm).
n—0 No(F) No(F)

The proof is similar to that of Equation (A.4) where the measures p,(dr) and p(dr) are
replaced throughout the proof by (1 —e ™)) p,(dr) and (1 — e™™)) p(dr) respectively.
Details are left to the reader for the sake of brevity. It is useful to note that

<1 . e—tw(hf)) (1 . e—w(f)) _ <1 . e—w(thf)) + (1 . e—w(f)) . <1 . e—7r(f+thli)>

so that (iii) allows to deal with the limit of the integrals as n — 0. O

B Lemmas for the proof of Theorem 3.7

The Prohorov distance gg between two bounded measures p, v on a Borel space E is defined
by ( , , Section A2.5)

oe(p,v) =inf{e = 0: pu(A) < v(A°) + €, v(A) < u(A°) + € for all closed sets A} (B.1)
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Lemma B.1. Let p,v be two point measures on a metric space (E,d). Then og(p,v) =
\W(E) —v(E)|. If ¢,y € E, then ge(dy,0y) < d(x,y) A 1.

Proof. Assume for instance that p(E) = n and v(E) = k with £ < n. Let @q,...,x, be
the points of p and let A = {x;,...,@,}. Then A is closed, u(A) = n and for all € > 0,
v(A) < k. This proves that gg(p,v) = n — k. The second statement is in ( , ,
Section 11.3 p.394). O

Recall from Section 3.3.1 the definition of the set AV (E) and the map 7' and the definition
of the metric p in (3.2).

Lemma B.2. The subset N{(E) is open in No(E) and the map T : No(E) — E is continuous
1
on Nj(E).

Proof. Let e NZ(E) and m = ||x|z. Then there exists n > 0 such that 7 has exactly one
point in B(T(7),n). A point measure 7’ € Ny(E) has either zero point or 1 or at least two
points in By, _,. By Lemma B.1, in the first and last cases, p,(m,7') A 1 = 1, hence

0

p(m, ') = J e "dr = e .

m-=n

Thus, if p(m,7") < e™™, then 7" has exactly one point in By, ,, which is therefore its single
largest point and ' € NZ(E). This proves that N¢(E) is open. By Lemma B.1 again, for
r >m —mn, we have p.(m,7") A 1 =dg(T(7),T(7’)) A 1 thus

oe}

p(m, ') = f e "(de(T(m), T(x")) A 1)dr = (de(T(7), T(7")) A 1)e™™ .

m—n
This proves that 1" is continuous at . O
Lemma B.3. Let (S,ds) be a metric space and g : S — F = EZ. Then S is continuous with

respect to the distance de defined in (3.7) if and only if g; - S — E defined by g;(s) = (9(s));
for s €S is continuous for all j € Z.

Proof. The direct implication is trivial. We prove the converse. Assume that g; is contin-
uous for all j. Fix sg € S, € € (0,1) and choose K such that 2% < ¢/4. By assumption,
there exists 7 (which depends on € and K') such that for all j € {—-K,..., K} and s € S
such ds(so, s) <1, de(g;(s0), g;(s)) < €/2. This yields

dr(9(50),9(5)) = 2,2V de(g;(s0),g5(5) A 1< & 3 27014 3 2l < e

jet. iI<K i>K
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